Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // 28 // 29 // G4 Physics class: G4ChipsProtonElasticXS fo 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10 31 // The last update: M.V. Kossov, CERN/ITEP (Mo 32 // 33 // ------------------------------------------- 34 // Short description: Interaction cross-sectio 35 // Class extracted from CHIPS and integrated i 36 // ------------------------------------------- 37 38 39 #include "G4ChipsProtonElasticXS.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4DynamicParticle.hh" 42 #include "G4ParticleDefinition.hh" 43 #include "G4Proton.hh" 44 #include "G4Nucleus.hh" 45 #include "G4ParticleTable.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4IonTable.hh" 48 49 // factory 50 #include "G4CrossSectionFactory.hh" 51 // 52 G4_DECLARE_XS_FACTORY(G4ChipsProtonElasticXS); 53 54 namespace { 55 G4double mProt; 56 G4double mProt2; 57 } 58 59 G4ChipsProtonElasticXS::G4ChipsProtonElasticXS 60 { 61 // Initialization of the parameters 62 lPMin=-8.; // Min tabulated logarithmicMome 63 lPMax= 8.; // Max tabulated logarithmicMome 64 dlnP=(lPMax-lPMin)/nLast;// LogStep in the t 65 onlyCS=false;// Flag toCalculateOnlyCS(not S 66 lastSIG=0.; // Last calculated cross section 67 lastLP=-10.;// Last log(mom_ofTheIncidentHad 68 lastTM=0.; // Last t_maximum 69 theSS=0.; // The Last sq.slope of 1st difr 70 theS1=0.; // The Last mantissa of 1st difr 71 theB1=0.; // The Last slope of 1st difruct 72 theS2=0.; // The Last mantissa of 2nd difr 73 theB2=0.; // The Last slope of 2nd difruct 74 theS3=0.; // The Last mantissa of 3d difr. 75 theB3=0.; // The Last slope of 3d difruct. 76 theS4=0.; // The Last mantissa of 4th difr 77 theB4=0.; // The Last slope of 4th difruct 78 lastTZ=0; // Last atomic number of the tar 79 lastTN=0; // Last # of neutrons in the tar 80 lastPIN=0.; // Last initialized max momentum 81 lastCST=0; // Elastic cross-section table 82 lastPAR=0; // Parameters for FunctionalCalc 83 lastSST=0; // E-dep of sq.slope of the 1st 84 lastS1T=0; // E-dep of mantissa of the 1st 85 lastB1T=0; // E-dep of the slope of the 1st 86 lastS2T=0; // E-dep of mantissa of the 2nd 87 lastB2T=0; // E-dep of the slope of the 2nd 88 lastS3T=0; // E-dep of mantissa of the 3d d 89 lastB3T=0; // E-dep of the slope of the 3d 90 lastS4T=0; // E-dep of mantissa of the 4th 91 lastB4T=0; // E-dep of the slope of the 4th 92 lastN=0; // The last N of calculated nucl 93 lastZ=0; // The last Z of calculated nucl 94 lastP=0.; // Last used in cross section Mo 95 lastTH=0.; // Last threshold momentum 96 lastCS=0.; // Last value of the Cross Secti 97 lastI=0; // The last position in the DAMD 98 99 mProt= G4Proton::Proton()->GetPDGMass()*.0 100 mProt2= mProt*mProt; 101 102 103 } 104 105 106 G4ChipsProtonElasticXS::~G4ChipsProtonElasticX 107 { 108 std::vector<G4double*>::iterator pos; 109 for (pos=CST.begin(); pos<CST.end(); pos++) 110 { delete [] *pos; } 111 CST.clear(); 112 for (pos=PAR.begin(); pos<PAR.end(); pos++) 113 { delete [] *pos; } 114 PAR.clear(); 115 for (pos=SST.begin(); pos<SST.end(); pos++) 116 { delete [] *pos; } 117 SST.clear(); 118 for (pos=S1T.begin(); pos<S1T.end(); pos++) 119 { delete [] *pos; } 120 S1T.clear(); 121 for (pos=B1T.begin(); pos<B1T.end(); pos++) 122 { delete [] *pos; } 123 B1T.clear(); 124 for (pos=S2T.begin(); pos<S2T.end(); pos++) 125 { delete [] *pos; } 126 S2T.clear(); 127 for (pos=B2T.begin(); pos<B2T.end(); pos++) 128 { delete [] *pos; } 129 B2T.clear(); 130 for (pos=S3T.begin(); pos<S3T.end(); pos++) 131 { delete [] *pos; } 132 S3T.clear(); 133 for (pos=B3T.begin(); pos<B3T.end(); pos++) 134 { delete [] *pos; } 135 B3T.clear(); 136 for (pos=S4T.begin(); pos<S4T.end(); pos++) 137 { delete [] *pos; } 138 S4T.clear(); 139 for (pos=B4T.begin(); pos<B4T.end(); pos++) 140 { delete [] *pos; } 141 B4T.clear(); 142 143 } 144 145 void 146 G4ChipsProtonElasticXS::CrossSectionDescriptio 147 { 148 outFile << "G4ChipsProtonElasticXS provide 149 << "section for proton nucleus sca 150 << "momentum. The cross section is 151 << "CHIPS parameterization of cros 152 } 153 154 G4bool G4ChipsProtonElasticXS::IsIsoApplicable 155 const G4Element*, 156 const G4Material*) 157 { 158 return true; 159 } 160 161 162 G4double G4ChipsProtonElasticXS::GetIsoCrossSe 163 const G4Isotope*, 164 const G4Element*, 165 const G4Material*) 166 { 167 G4double pMom=Pt->GetTotalMomentum(); 168 G4int tgN = A - tgZ; 169 170 return GetChipsCrossSection(pMom, tgZ, tgN, 171 } 172 173 174 // The main member function giving the collisi 175 // Make pMom in independent units ! (Now it is 176 G4double G4ChipsProtonElasticXS::GetChipsCross 177 { 178 179 G4double pEn=pMom; 180 onlyCS=false; 181 182 G4bool in=false; // By def 183 lastP = 0.; // New mo 184 lastN = tgN; // The la 185 lastZ = tgZ; // The la 186 lastI = (G4int)colN.size(); // Size o 187 if(lastI) for(G4int i=0; i<lastI; ++i) // Lo 188 { // The nu 189 if(colN[i]==tgN && colZ[i]==tgZ) // Isotop 190 { 191 lastI=i; 192 lastTH =colTH[i]; // Last T 193 if(pEn<=lastTH) 194 { 195 return 0.; // Energy 196 } 197 lastP =colP [i]; // Last M 198 lastCS =colCS[i]; // Last C 199 if(lastP == pMom) // Do not 200 { 201 CalculateCrossSection(onlyCS,-1,i,2212 202 return lastCS*millibarn; // Use th 203 } 204 in = true; // This 205 // Momentum pMom is in IU ! @@ Units 206 lastCS=CalculateCrossSection(onlyCS,-1,i 207 if(lastCS<=0. && pEn>lastTH) // Corre 208 { 209 lastTH=pEn; 210 } 211 break; // Go o 212 } 213 } // End of attampt to find the nucleus in D 214 if(!in) // This n 215 { 216 //!!The slave functions must provide cross 217 lastCS=CalculateCrossSection(onlyCS,0,last 218 if(lastCS<=0.) 219 { 220 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 221 if(pEn>lastTH) 222 { 223 lastTH=pEn; 224 } 225 } 226 colN.push_back(tgN); 227 colZ.push_back(tgZ); 228 colP.push_back(pMom); 229 colTH.push_back(lastTH); 230 colCS.push_back(lastCS); 231 return lastCS*millibarn; 232 } // End of creation of the new set of param 233 else 234 { 235 colP[lastI]=pMom; 236 colCS[lastI]=lastCS; 237 } 238 return lastCS*millibarn; 239 } 240 241 // Calculation of total elastic cross section 242 // F=0 - create AMDB, F=-1 - read&update AMDB, 243 G4double G4ChipsProtonElasticXS::CalculateCros 244 G 245 { 246 G4double pMom=pIU/GeV; // All 247 onlyCS=CS; // Fla 248 lastLP=std::log(pMom); // Mak 249 if(F) // Thi 250 { 251 if(F<0) // the 252 { 253 lastPIN = PIN[I]; // Max 254 lastPAR = PAR[I]; // Poi 255 lastCST = CST[I]; // Poi 256 lastSST = SST[I]; // Poi 257 lastS1T = S1T[I]; // Poi 258 lastB1T = B1T[I]; // Poi 259 lastS2T = S2T[I]; // Poi 260 lastB2T = B2T[I]; // Poi 261 lastS3T = S3T[I]; // Poi 262 lastB3T = B3T[I]; // Poi 263 lastS4T = S4T[I]; // Poi 264 lastB4T = B4T[I]; // Poi 265 } 266 if(lastLP>lastPIN && lastLP<lPMax) 267 { 268 lastPIN=GetPTables(lastLP,lastPIN,PDG,tg 269 PIN[I]=lastPIN; // Rem 270 } 271 } 272 else // Thi 273 { 274 lastPAR = new G4double[nPoints]; // All 275 lastPAR[nLast]=0; // Ini 276 lastCST = new G4double[nPoints]; // All 277 lastSST = new G4double[nPoints]; // All 278 lastS1T = new G4double[nPoints]; // All 279 lastB1T = new G4double[nPoints]; // All 280 lastS2T = new G4double[nPoints]; // All 281 lastB2T = new G4double[nPoints]; // All 282 lastS3T = new G4double[nPoints]; // All 283 lastB3T = new G4double[nPoints]; // All 284 lastS4T = new G4double[nPoints]; // All 285 lastB4T = new G4double[nPoints]; // All 286 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ, 287 PIN.push_back(lastPIN); // Fil 288 PAR.push_back(lastPAR); // Fil 289 CST.push_back(lastCST); // Fil 290 SST.push_back(lastSST); // Fil 291 S1T.push_back(lastS1T); // Fil 292 B1T.push_back(lastB1T); // Fil 293 S2T.push_back(lastS2T); // Fil 294 B2T.push_back(lastB2T); // Fil 295 S3T.push_back(lastS3T); // Fil 296 B3T.push_back(lastB3T); // Fil 297 S4T.push_back(lastS4T); // Fil 298 B4T.push_back(lastB4T); // Fil 299 } // End of creation/update of the new set o 300 // =--------= NOW Update (if necessary) and 301 if(lastLP>lastPIN && lastLP<lPMax) 302 { 303 lastPIN = GetPTables(lastLP,lastPIN,PDG,tg 304 } 305 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p 306 if(lastLP>lPMin && lastLP<=lastPIN) // Lin 307 { 308 if(lastLP==lastPIN) 309 { 310 G4double shift=(lastLP-lPMin)/dlnP+.0000 311 G4int blast=static_cast<int>(shift); 312 if(blast<0 || blast>=nLast) G4cout<<"G4Q 313 lastSIG = lastCST[blast]; 314 if(!onlyCS) // Ski 315 { 316 theSS = lastSST[blast]; 317 theS1 = lastS1T[blast]; 318 theB1 = lastB1T[blast]; 319 theS2 = lastS2T[blast]; 320 theB2 = lastB2T[blast]; 321 theS3 = lastS3T[blast]; 322 theB3 = lastB3T[blast]; 323 theS4 = lastS4T[blast]; 324 theB4 = lastB4T[blast]; 325 } 326 } 327 else 328 { 329 G4double shift=(lastLP-lPMin)/dlnP; 330 G4int blast=static_cast<int>(shift); 331 if(blast<0) blast=0; 332 if(blast>=nLast) blast=nLast-1; 333 shift-=blast; 334 G4int lastL=blast+1; 335 G4double SIGL=lastCST[blast]; 336 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL 337 if(!onlyCS) // Ski 338 { 339 G4double SSTL=lastSST[blast]; 340 theSS=SSTL+shift*(lastSST[lastL]-SSTL) 341 G4double S1TL=lastS1T[blast]; 342 theS1=S1TL+shift*(lastS1T[lastL]-S1TL) 343 G4double B1TL=lastB1T[blast]; 344 theB1=B1TL+shift*(lastB1T[lastL]-B1TL) 345 G4double S2TL=lastS2T[blast]; 346 theS2=S2TL+shift*(lastS2T[lastL]-S2TL) 347 G4double B2TL=lastB2T[blast]; 348 theB2=B2TL+shift*(lastB2T[lastL]-B2TL) 349 G4double S3TL=lastS3T[blast]; 350 theS3=S3TL+shift*(lastS3T[lastL]-S3TL) 351 G4double B3TL=lastB3T[blast]; 352 theB3=B3TL+shift*(lastB3T[lastL]-B3TL) 353 G4double S4TL=lastS4T[blast]; 354 theS4=S4TL+shift*(lastS4T[lastL]-S4TL) 355 G4double B4TL=lastB4T[blast]; 356 theB4=B4TL+shift*(lastB4T[lastL]-B4TL) 357 } 358 } 359 } 360 else lastSIG=GetTabValues(lastLP, PDG, tgZ, 361 if(lastSIG<0.) lastSIG = 0.; 362 return lastSIG; 363 } 364 365 // It has parameter sets for all tZ/tN/PDG, us 366 G4double G4ChipsProtonElasticXS::GetPTables(G4 367 368 { 369 // @@ At present all nA==pA ---------> Each 370 static const G4double pwd=2727; 371 const G4int n_npel=24; // #of 372 const G4int n_ppel=32; // #of 373 // -0- -1- -2- -3- -4- 374 G4double np_el[n_npel]={12.,.05,.0001,5.,.35 375 75.,.001,7.2,4.32,.0 376 // -15--16--17- -18- -1 377 // -0- -1- -2- -3- 378 G4double pp_el[n_ppel]={2.865,18.9,.6461,3., 379 .001,8.,.055,3.64,5. 380 8.5e8,1.e10,1.1,3.4e 381 // -14--15- -16- -17- - 382 // -26- -27- -28- -29 383 if(PDG==2212) 384 { 385 // -- Total pp elastic cross section cs & 386 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l 387 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d 388 // par(0) par(7) par(1) par(2) 389 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4 390 // par(8) par(9) par(10) par(11 391 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40 392 // par(15) par(16) par(17) par(18) pa 393 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); 394 // par(24) par(25) par(26) par(27) p 395 // 396 if(lastPAR[nLast]!=pwd) // A unique flag t 397 { 398 if ( tgZ == 0 && tgN == 1 ) 399 { 400 for (G4int ip=0; ip<n_npel; ip++) last 401 402 } 403 else if ( tgZ == 1 && tgN == 0 ) 404 { 405 for (G4int ip=0; ip<n_ppel; ip++) last 406 } 407 else 408 { 409 G4double a=tgZ+tgN; 410 G4double sa=std::sqrt(a); 411 G4double ssa=std::sqrt(sa); 412 G4double asa=a*sa; 413 G4double a2=a*a; 414 G4double a3=a2*a; 415 G4double a4=a3*a; 416 G4double a5=a4*a; 417 G4double a6=a4*a2; 418 G4double a7=a6*a; 419 G4double a8=a7*a; 420 G4double a9=a8*a; 421 G4double a10=a5*a5; 422 G4double a12=a6*a6; 423 G4double a14=a7*a7; 424 G4double a16=a8*a8; 425 G4double a17=a16*a; 426 G4double a20=a16*a4; 427 G4double a32=a16*a16; 428 // Reaction cross-section parameters ( 429 lastPAR[0]=5./(1.+22./asa); 430 lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3. 431 lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/( 432 lastPAR[3]=1.3*a; 433 lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4); 434 lastPAR[5]=.07*asa/(1.+.009*a2); 435 lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2. 436 lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E 437 lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a1 438 // @@ the differential cross-section i 439 if(a<6.5) 440 { 441 G4double a28=a16*a12; 442 // The main pre-exponent (pel_s 443 lastPAR[ 9]=4000*a; 444 lastPAR[10]=1.2e7*a8+380*a17; 445 lastPAR[11]=.7/(1.+4.e-12*a16); 446 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); 447 lastPAR[13]=.28*a; 448 lastPAR[14]=1.2*a2+2.3; 449 lastPAR[15]=3.8/a; 450 // The main slope (pel_s 451 lastPAR[16]=.01/(1.+.0024*a5); 452 lastPAR[17]=.2*a; 453 lastPAR[18]=9.e-7/(1.+.035*a5); 454 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1 455 // The main quadratic (pel_s 456 lastPAR[20]=2.25*a3; 457 lastPAR[21]=18.; 458 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7) 459 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1 460 // The 1st max pre-exponent (pel_q 461 lastPAR[24]=1.e5/(a8+2.5e12/a16); 462 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28 463 lastPAR[26]=.0006*a3; 464 // The 1st max slope (pel_q 465 lastPAR[27]=10.+4.e-8*a12*a; 466 lastPAR[28]=.114; 467 lastPAR[29]=.003; 468 lastPAR[30]=2.e-23; 469 // The effective pre-exponent (pel_s 470 lastPAR[31]=1./(1.+.0001*a8); 471 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); 472 lastPAR[33]=.03; 473 // The effective slope (pel_s 474 lastPAR[34]=a/2; 475 lastPAR[35]=2.e-7*a4; 476 lastPAR[36]=4.; 477 lastPAR[37]=64./a3; 478 // The gloria pre-exponent (pel_u 479 lastPAR[38]=1.e8*std::exp(.32*asa); 480 lastPAR[39]=20.*std::exp(.45*asa); 481 lastPAR[40]=7.e3+2.4e6/a5; 482 lastPAR[41]=2.5e5*std::exp(.085*a3); 483 lastPAR[42]=2.5*a; 484 // The gloria slope (pel_u 485 lastPAR[43]=920.+.03*a8*a3; 486 lastPAR[44]=93.+.0023*a12; 487 } 488 else 489 { 490 G4double p1a10=2.2e-28*a10; 491 G4double r4a16=6.e14/a16; 492 G4double s4a16=r4a16*r4a16; 493 // a24 494 // a36 495 // The main pre-exponent (peh_s 496 lastPAR[ 9]=4.5*std::pow(a,1.15); 497 lastPAR[10]=.06*std::pow(a,.6); 498 lastPAR[11]=.6*a/(1.+2.e15/a16); 499 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3 500 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4 501 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1. 502 // The main slope (peh_s 503 lastPAR[15]=400./a12+2.e-22*a9; 504 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14 505 lastPAR[17]=1000./a2+9.5*sa*ssa; 506 lastPAR[18]=4.e-6*a*asa+1.e11/a16; 507 lastPAR[19]=(120./a+.002*a2)/(1.+2.e 508 lastPAR[20]=9.+100./a; 509 // The main quadratic (peh_s 510 lastPAR[21]=.002*a3+3.e7/a6; 511 lastPAR[22]=7.e-15*a4*asa; 512 lastPAR[23]=9000./a4; 513 // The 1st max pre-exponent (peh_q 514 lastPAR[24]=.0011*asa/(1.+3.e34/a32/ 515 lastPAR[25]=1.e-5*a2+2.e14/a16; 516 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1 517 lastPAR[27]=.016*asa/(1.+5.e16/a16); 518 // The 1st max slope (peh_q 519 lastPAR[28]=.002*a4/(1.+7.e7/std::po 520 lastPAR[29]=2.e6/a6+7.2/std::pow(a,. 521 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8) 522 lastPAR[31]=100./asa; 523 // The 2nd max pre-exponent (peh_s 524 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/ 525 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); 526 lastPAR[34]=1.3+3.e5/a4; 527 lastPAR[35]=500./(a2+50.)+3; 528 lastPAR[36]=1.e-9/a+s4a16*s4a16; 529 // The 2nd max slope (peh_s 530 lastPAR[37]=.4*asa+3.e-9*a6; 531 lastPAR[38]=.0005*a5; 532 lastPAR[39]=.002*a5; 533 lastPAR[40]=10.; 534 // The effective pre-exponent (peh_u 535 lastPAR[41]=.05+.005*a; 536 lastPAR[42]=7.e-8/sa; 537 lastPAR[43]=.8*sa; 538 lastPAR[44]=.02*sa; 539 lastPAR[45]=1.e8/a3; 540 lastPAR[46]=3.e32/(a32+1.e32); 541 // The effective slope (peh_u 542 lastPAR[47]=24.; 543 lastPAR[48]=20./sa; 544 lastPAR[49]=7.e3*a/(sa+1.); 545 lastPAR[50]=900.*sa/(1.+500./a3); 546 } 547 // Parameter for lowEnergyNeutrons 548 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18* 549 } 550 lastPAR[nLast]=pwd; 551 // and initialize the zero element of th 552 G4double lp=lPMin; 553 G4bool memCS=onlyCS; 554 onlyCS=false; 555 lastCST[0]=GetTabValues(lp, PDG, tgZ, tg 556 onlyCS=memCS; 557 lastSST[0]=theSS; 558 lastS1T[0]=theS1; 559 lastB1T[0]=theB1; 560 lastS2T[0]=theS2; 561 lastB2T[0]=theB2; 562 lastS3T[0]=theS3; 563 lastB3T[0]=theB3; 564 lastS4T[0]=theS4; 565 lastB4T[0]=theB4; 566 } 567 if(LP>ILP) 568 { 569 G4int ini = static_cast<int>((ILP-lPMin+ 570 if(ini<0) ini=0; 571 if(ini<nPoints) 572 { 573 G4int fin = static_cast<int>((LP-lPMin 574 if(fin>=nPoints) fin=nLast; 575 if(fin>=ini) 576 { 577 G4double lp=0.; 578 for(G4int ip=ini; ip<=fin; ip++) 579 { 580 lp=lPMin+ip*dlnP; 581 G4bool memCS=onlyCS; 582 onlyCS=false; 583 lastCST[ip]=GetTabValues(lp, PDG, 584 onlyCS=memCS; 585 lastSST[ip]=theSS; 586 lastS1T[ip]=theS1; 587 lastB1T[ip]=theB1; 588 lastS2T[ip]=theS2; 589 lastB2T[ip]=theB2; 590 lastS3T[ip]=theS3; 591 lastB3T[ip]=theB3; 592 lastS4T[ip]=theS4; 593 lastB4T[ip]=theB4; 594 } 595 return lp; 596 } 597 else G4cout<<"*Warning*G4ChipsProtonEl 598 <<tgZ<<", N="<<tgN<<", i="< 599 <<ILP<<" nothing is done!"< 600 } 601 else G4cout<<"*Warning*G4ChipsProtonElas 602 <<tgZ<<", N="<<tgN<<", i="<<i 603 <<" > ILP="<<ILP<<", lPMax="< 604 } 605 } 606 else 607 { 608 // G4cout<<"*Error*G4ChipsProtonElasticXS: 609 // <<", N="<<tgN<<", while it is def 610 // throw G4QException("G4ChipsProtonElasti 611 G4ExceptionDescription ed; 612 ed << "PDG = " << PDG << ", Z = " << tgZ < 613 << ", while it is defined only for PDG= 614 G4Exception("G4ChipsProtonElasticXS::GetPT 615 FatalException, ed); 616 } 617 return ILP; 618 } 619 620 // Returns Q2=-t in independent units (MeV^2) 621 G4double G4ChipsProtonElasticXS::GetExchangeT( 622 { 623 static const G4double GeVSQ=gigaelectronvolt 624 static const G4double third=1./3.; 625 static const G4double fifth=1./5.; 626 static const G4double sevth=1./7.; 627 if(PDG!=2212) G4cout<<"**Warning*G4ChipsProt 628 if(onlyCS) G4cout<<"**Warning*G4ChipsProtonE 629 if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor 630 G4double q2=0.; 631 if(tgZ==1 && tgN==0) // ===> 632 { 633 G4double E1=lastTM*theB1; 634 G4double R1=(1.-std::exp(-E1)); 635 G4double E2=lastTM*theB2; 636 G4double R2=(1.-std::exp(-E2*E2*E2)); 637 G4double E3=lastTM*theB3; 638 G4double R3=(1.-std::exp(-E3)); 639 G4double I1=R1*theS1/theB1; 640 G4double I2=R2*theS2; 641 G4double I3=R3*theS3; 642 G4double I12=I1+I2; 643 G4double rand=(I12+I3)*G4UniformRand(); 644 if (rand<I1 ) 645 { 646 G4double ran=R1*G4UniformRand(); 647 if(ran>1.) ran=1.; 648 q2=-std::log(1.-ran)/theB1; 649 } 650 else if(rand<I12) 651 { 652 G4double ran=R2*G4UniformRand(); 653 if(ran>1.) ran=1.; 654 q2=-std::log(1.-ran); 655 if(q2<0.) q2=0.; 656 q2=std::pow(q2,third)/theB2; 657 } 658 else 659 { 660 G4double ran=R3*G4UniformRand(); 661 if(ran>1.) ran=1.; 662 q2=-std::log(1.-ran)/theB3; 663 } 664 } 665 else 666 { 667 G4double a=tgZ+tgN; 668 G4double E1=lastTM*(theB1+lastTM*theSS); 669 G4double R1=(1.-std::exp(-E1)); 670 G4double tss=theSS+theSS; // for future so 671 G4double tm2=lastTM*lastTM; 672 G4double E2=lastTM*tm2*theB2; 673 if(a>6.5)E2*=tm2; 674 G4double R2=(1.-std::exp(-E2)); 675 G4double E3=lastTM*theB3; 676 if(a>6.5)E3*=tm2*tm2*tm2; 677 G4double R3=(1.-std::exp(-E3)); 678 G4double E4=lastTM*theB4; 679 G4double R4=(1.-std::exp(-E4)); 680 G4double I1=R1*theS1; 681 G4double I2=R2*theS2; 682 G4double I3=R3*theS3; 683 G4double I4=R4*theS4; 684 G4double I12=I1+I2; 685 G4double I13=I12+I3; 686 G4double rand=(I13+I4)*G4UniformRand(); 687 if(rand<I1) 688 { 689 G4double ran=R1*G4UniformRand(); 690 if(ran>1.) ran=1.; 691 q2=-std::log(1.-ran)/theB1; 692 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t 693 } 694 else if(rand<I12) 695 { 696 G4double ran=R2*G4UniformRand(); 697 if(ran>1.) ran=1.; 698 q2=-std::log(1.-ran)/theB2; 699 if(q2<0.) q2=0.; 700 if(a<6.5) q2=std::pow(q2,third); 701 else q2=std::pow(q2,fifth); 702 } 703 else if(rand<I13) 704 { 705 G4double ran=R3*G4UniformRand(); 706 if(ran>1.) ran=1.; 707 q2=-std::log(1.-ran)/theB3; 708 if(q2<0.) q2=0.; 709 if(a>6.5) q2=std::pow(q2,sevth); 710 } 711 else 712 { 713 G4double ran=R4*G4UniformRand(); 714 if(ran>1.) ran=1.; 715 q2=-std::log(1.-ran)/theB4; 716 if(a<6.5) q2=lastTM-q2; 717 } 718 } 719 if(q2<0.) q2=0.; 720 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas 721 if(q2>lastTM) 722 { 723 q2=lastTM; 724 } 725 return q2*GeVSQ; 726 } 727 728 // Returns B in independent units (MeV^-2) (al 729 G4double G4ChipsProtonElasticXS::GetSlope(G4in 730 { 731 static const G4double GeVSQ=gigaelectronvolt 732 if(onlyCS) G4cout<<"*Warning*G4ChipsProtonEl 733 if(lastLP<-4.3) return 0.; // S-wav 734 if(PDG!=2212) 735 { 736 // G4cout<<"*Error*G4ChipsProtonElasticXS: 737 // <<tgN<<", while it is defined onl 738 // throw G4QException("G4ChipsProtonElasti 739 G4ExceptionDescription ed; 740 ed << "PDG = " << PDG << ", Z = " << tgZ < 741 << ", while it is defined only for PDG= 742 G4Exception("G4ChipsProtonElasticXS::GetSl 743 FatalException, ed); 744 } 745 if(theB1<0.) theB1=0.; 746 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4 747 return theB1/GeVSQ; 748 } 749 750 // Returns half max(Q2=-t) in independent unit 751 G4double G4ChipsProtonElasticXS::GetHMaxT() 752 { 753 static const G4double HGeVSQ=gigaelectronvol 754 return lastTM*HGeVSQ; 755 } 756 757 // lastLP is used, so calculating tables, one 758 G4double G4ChipsProtonElasticXS::GetTabValues( 759 760 { 761 if(PDG!=2212) G4cout<<"*Warning*G4ChipsProto 762 763 //AR-24Apr2018 Switch to allow transuranic e 764 const G4bool isHeavyElementAllowed = true; 765 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> 766 { 767 G4cout<<"*Warning*G4QProtonElCS::GetTabVal 768 return 0.; 769 } 770 G4int iZ=tgZ-1; // Z index 771 if(iZ<0) 772 { 773 iZ=0; // conversion of the neutron 774 tgZ=1; 775 tgN=0; 776 } 777 G4double p=std::exp(lp); // mom 778 G4double sp=std::sqrt(p); // sqr 779 G4double p2=p*p; 780 G4double p3=p2*p; 781 G4double p4=p3*p; 782 if ( tgZ == 1 && tgN == 0 ) // pp/nn 783 { 784 G4double p2s=p2*sp; 785 G4double dl2=lp-lastPAR[8]; 786 theSS=lastPAR[31]; 787 theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1. 788 (lastPAR[12]/p2+lastPAR[13]*p)/(p4+l 789 theB1=lastPAR[15]*std::pow(p,lastPAR[16])/ 790 theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[ 791 theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[ 792 theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastP 793 theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[ 794 theS4=0.; 795 theB4=0.; 796 // Returns the total elastic pp cross-sect 797 G4double dl1=lp-lastPAR[3]; 798 return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+ 799 800 } 801 else 802 { 803 G4double p5=p4*p; 804 G4double p6=p5*p; 805 G4double p8=p6*p2; 806 G4double p10=p8*p2; 807 G4double p12=p10*p2; 808 G4double p16=p8*p8; 809 //G4double p24=p16*p8; 810 G4double dl=lp-5.; 811 G4double a=tgZ+tgN; 812 if(a<6.5) 813 { 814 G4double pah=std::pow(p,a/2); 815 G4double pa=pah*pah; 816 G4double pa2=pa*pa; 817 818 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+ 819 (lastPAR[13]*dl*dl+lastPAR[14])/(1 820 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l 821 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la 822 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4) 823 theB2=lastPAR[27]*std::pow(p,lastPAR[28] 824 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+ 825 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la 826 theS4=p2*(pah*lastPAR[38]*std::exp(-pah* 827 lastPAR[40]/(1.+lastPAR[41]*st 828 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4 829 } 830 else 831 { 832 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las 833 lastPAR[13]/(p5+lastPAR[14]/p16); 834 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la 835 lastPAR[17]/(1.+lastPAR[18]/p4); 836 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR 837 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR 838 theB2=lastPAR[28]/std::pow(p,lastPAR[29] 839 theS3=lastPAR[32]/std::pow(p,lastPAR[35] 840 lastPAR[33]/(1.+lastPAR[34]/p6); 841 theB3=lastPAR[37]/p8+lastPAR[38]/p2+last 842 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1. 843 (lastPAR[43]+lastPAR[44]*dl*dl)/(1 844 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las 845 } 846 // Returns the total elastic (n/p)A cross- 847 // p1 p2 848 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l 849 lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/ 850 // p4 p5 p8 851 } 852 return 0.; 853 } // End of GetTableValues 854 855 // Returns max -t=Q2 (GeV^2) for the momentum 856 G4double G4ChipsProtonElasticXS::GetQ2max(G4in 857 858 { 859 860 G4double pP2=pP*pP; 861 if(tgZ==1 && tgN==0) 862 { 863 G4double tMid=std::sqrt(pP2+mProt2)*mProt- 864 return tMid+tMid; 865 } 866 else if(tgZ || tgN) 867 { 868 G4double mt=G4ParticleTable::GetParticleTa 869 G4double dmt=mt+mt; 870 G4double mds=dmt*std::sqrt(pP2+mProt2)+mPr 871 return dmt*dmt*pP2/mds; 872 } 873 else 874 { 875 // G4cout<<"*Error*G4ChipsProtonElasticXS: 876 // <<tgN<<", while it is defined onl 877 // throw G4QException("G4ChipsProtonElasti 878 G4ExceptionDescription ed; 879 ed << "PDG = " << PDG << ", Z = " << tgZ < 880 << ", while it is defined only for p pr 881 G4Exception("G4ChipsProtonElasticXS::GetQ2 882 FatalException, ed); 883 return 0; 884 } 885 } 886