Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsProtonElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsProtonElasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsProtonElasticXS.cc (Version 10.2.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4ChipsProtonElasticXS.cc 93080 2015-10-02 14:45:31Z gcosmo $
 27 //                                                 28 //
 28 //                                                 29 //
 29 // G4 Physics class: G4ChipsProtonElasticXS fo     30 // G4 Physics class: G4ChipsProtonElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10     31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01
 31 // The last update: M.V. Kossov, CERN/ITEP (Mo     32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 12-Jan-10 (from G4QElCrSect)
 32 //                                                 33 //
 33 // -------------------------------------------     34 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sectio     35 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated i     36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------     37 // -------------------------------------------------------------------------------
 37                                                    38 
 38                                                    39 
 39 #include "G4ChipsProtonElasticXS.hh"               40 #include "G4ChipsProtonElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 43 #include "G4Proton.hh"                             44 #include "G4Proton.hh"
 44 #include "G4Nucleus.hh"                            45 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"                      46 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"                   47 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"                           48 #include "G4IonTable.hh"
 48                                                    49 
 49 // factory                                         50 // factory
 50 #include "G4CrossSectionFactory.hh"                51 #include "G4CrossSectionFactory.hh"
 51 //                                                 52 //
 52 G4_DECLARE_XS_FACTORY(G4ChipsProtonElasticXS);     53 G4_DECLARE_XS_FACTORY(G4ChipsProtonElasticXS);
 53                                                    54 
 54 namespace {                                        55 namespace {
 55     G4double mProt;                                56     G4double mProt;
 56     G4double mProt2;                               57     G4double mProt2;
 57 }                                                  58 }
 58                                                    59 
 59 G4ChipsProtonElasticXS::G4ChipsProtonElasticXS     60 G4ChipsProtonElasticXS::G4ChipsProtonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 60 {                                                  61 {
 61   // Initialization of the parameters              62   // Initialization of the parameters
 62   lPMin=-8.;  // Min tabulated logarithmicMome     63   lPMin=-8.;  // Min tabulated logarithmicMomentum(D)
 63   lPMax= 8.;  // Max tabulated logarithmicMome     64   lPMax= 8.;  // Max tabulated logarithmicMomentum(D)
 64   dlnP=(lPMax-lPMin)/nLast;// LogStep in the t     65   dlnP=(lPMax-lPMin)/nLast;// LogStep in the table(D)
 65   onlyCS=false;// Flag toCalculateOnlyCS(not S     66   onlyCS=false;// Flag toCalculateOnlyCS(not Si/Bi)(L)
 66   lastSIG=0.; // Last calculated cross section     67   lastSIG=0.; // Last calculated cross section    (L)
 67   lastLP=-10.;// Last log(mom_ofTheIncidentHad     68   lastLP=-10.;// Last log(mom_ofTheIncidentHadron)(L)
 68   lastTM=0.;  // Last t_maximum                    69   lastTM=0.;  // Last t_maximum                   (L)
 69   theSS=0.;   // The Last sq.slope of 1st difr     70   theSS=0.;   // The Last sq.slope of 1st difr.Max(L)
 70   theS1=0.;   // The Last mantissa of 1st difr     71   theS1=0.;   // The Last mantissa of 1st difr.Max(L)
 71   theB1=0.;   // The Last slope of 1st difruct     72   theB1=0.;   // The Last slope of 1st difruct.Max(L)
 72   theS2=0.;   // The Last mantissa of 2nd difr     73   theS2=0.;   // The Last mantissa of 2nd difr.Max(L)
 73   theB2=0.;   // The Last slope of 2nd difruct     74   theB2=0.;   // The Last slope of 2nd difruct.Max(L)
 74   theS3=0.;   // The Last mantissa of 3d difr.     75   theS3=0.;   // The Last mantissa of 3d difr. Max(L)
 75   theB3=0.;   // The Last slope of 3d difruct.     76   theB3=0.;   // The Last slope of 3d difruct. Max(L)
 76   theS4=0.;   // The Last mantissa of 4th difr     77   theS4=0.;   // The Last mantissa of 4th difr.Max(L)
 77   theB4=0.;   // The Last slope of 4th difruct     78   theB4=0.;   // The Last slope of 4th difruct.Max(L)
 78   lastTZ=0;   // Last atomic number of the tar     79   lastTZ=0;   // Last atomic number of the target
 79   lastTN=0;   // Last # of neutrons in the tar     80   lastTN=0;   // Last # of neutrons in the target
 80   lastPIN=0.; // Last initialized max momentum     81   lastPIN=0.; // Last initialized max momentum
 81   lastCST=0;  // Elastic cross-section table       82   lastCST=0;  // Elastic cross-section table
 82   lastPAR=0;  // Parameters for FunctionalCalc     83   lastPAR=0;  // Parameters for FunctionalCalculation
 83   lastSST=0;  // E-dep of sq.slope of the 1st      84   lastSST=0;  // E-dep of sq.slope of the 1st dif.Max
 84   lastS1T=0;  // E-dep of mantissa of the 1st      85   lastS1T=0;  // E-dep of mantissa of the 1st dif.Max
 85   lastB1T=0;  // E-dep of the slope of the 1st     86   lastB1T=0;  // E-dep of the slope of the 1st difMax
 86   lastS2T=0;  // E-dep of mantissa of the 2nd      87   lastS2T=0;  // E-dep of mantissa of the 2nd difrMax
 87   lastB2T=0;  // E-dep of the slope of the 2nd     88   lastB2T=0;  // E-dep of the slope of the 2nd difMax
 88   lastS3T=0;  // E-dep of mantissa of the 3d d     89   lastS3T=0;  // E-dep of mantissa of the 3d difr.Max
 89   lastB3T=0;  // E-dep of the slope of the 3d      90   lastB3T=0;  // E-dep of the slope of the 3d difrMax
 90   lastS4T=0;  // E-dep of mantissa of the 4th      91   lastS4T=0;  // E-dep of mantissa of the 4th difrMax
 91   lastB4T=0;  // E-dep of the slope of the 4th     92   lastB4T=0;  // E-dep of the slope of the 4th difMax
 92   lastN=0;    // The last N of calculated nucl     93   lastN=0;    // The last N of calculated nucleus
 93   lastZ=0;    // The last Z of calculated nucl     94   lastZ=0;    // The last Z of calculated nucleus
 94   lastP=0.;   // Last used in cross section Mo     95   lastP=0.;   // Last used in cross section Momentum
 95   lastTH=0.;  // Last threshold momentum           96   lastTH=0.;  // Last threshold momentum
 96   lastCS=0.;  // Last value of the Cross Secti     97   lastCS=0.;  // Last value of the Cross Section
 97   lastI=0;    // The last position in the DAMD     98   lastI=0;    // The last position in the DAMDB
 98                                                    99     
 99     mProt= G4Proton::Proton()->GetPDGMass()*.0    100     mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV
100     mProt2= mProt*mProt;                          101     mProt2= mProt*mProt;
101                                                   102 
102                                                   103     
103 }                                                 104 }
104                                                   105 
105                                                   106 
106 G4ChipsProtonElasticXS::~G4ChipsProtonElasticX    107 G4ChipsProtonElasticXS::~G4ChipsProtonElasticXS()
107 {                                                 108 {
108   std::vector<G4double*>::iterator pos;           109   std::vector<G4double*>::iterator pos;
109   for (pos=CST.begin(); pos<CST.end(); pos++)     110   for (pos=CST.begin(); pos<CST.end(); pos++)
110   { delete [] *pos; }                             111   { delete [] *pos; }
111   CST.clear();                                    112   CST.clear();
112   for (pos=PAR.begin(); pos<PAR.end(); pos++)     113   for (pos=PAR.begin(); pos<PAR.end(); pos++)
113   { delete [] *pos; }                             114   { delete [] *pos; }
114   PAR.clear();                                    115   PAR.clear();
115   for (pos=SST.begin(); pos<SST.end(); pos++)     116   for (pos=SST.begin(); pos<SST.end(); pos++)
116   { delete [] *pos; }                             117   { delete [] *pos; }
117   SST.clear();                                    118   SST.clear();
118   for (pos=S1T.begin(); pos<S1T.end(); pos++)     119   for (pos=S1T.begin(); pos<S1T.end(); pos++)
119   { delete [] *pos; }                             120   { delete [] *pos; }
120   S1T.clear();                                    121   S1T.clear();
121   for (pos=B1T.begin(); pos<B1T.end(); pos++)     122   for (pos=B1T.begin(); pos<B1T.end(); pos++)
122   { delete [] *pos; }                             123   { delete [] *pos; }
123   B1T.clear();                                    124   B1T.clear();
124   for (pos=S2T.begin(); pos<S2T.end(); pos++)     125   for (pos=S2T.begin(); pos<S2T.end(); pos++)
125   { delete [] *pos; }                             126   { delete [] *pos; }
126   S2T.clear();                                    127   S2T.clear();
127   for (pos=B2T.begin(); pos<B2T.end(); pos++)     128   for (pos=B2T.begin(); pos<B2T.end(); pos++)
128   { delete [] *pos; }                             129   { delete [] *pos; }
129   B2T.clear();                                    130   B2T.clear();
130   for (pos=S3T.begin(); pos<S3T.end(); pos++)     131   for (pos=S3T.begin(); pos<S3T.end(); pos++)
131   { delete [] *pos; }                             132   { delete [] *pos; }
132   S3T.clear();                                    133   S3T.clear();
133   for (pos=B3T.begin(); pos<B3T.end(); pos++)     134   for (pos=B3T.begin(); pos<B3T.end(); pos++)
134   { delete [] *pos; }                             135   { delete [] *pos; }
135   B3T.clear();                                    136   B3T.clear();
136   for (pos=S4T.begin(); pos<S4T.end(); pos++)     137   for (pos=S4T.begin(); pos<S4T.end(); pos++)
137   { delete [] *pos; }                             138   { delete [] *pos; }
138   S4T.clear();                                    139   S4T.clear();
139   for (pos=B4T.begin(); pos<B4T.end(); pos++)     140   for (pos=B4T.begin(); pos<B4T.end(); pos++)
140   { delete [] *pos; }                             141   { delete [] *pos; }
141   B4T.clear();                                    142   B4T.clear();
142                                                   143  
143 }                                                 144 }
144                                                   145 
145 void                                              146 void
146 G4ChipsProtonElasticXS::CrossSectionDescriptio    147 G4ChipsProtonElasticXS::CrossSectionDescription(std::ostream& outFile) const
147 {                                                 148 {
148     outFile << "G4ChipsProtonElasticXS provide    149     outFile << "G4ChipsProtonElasticXS provides the elastic cross\n"
149             << "section for proton nucleus sca    150             << "section for proton nucleus scattering as a function of incident\n"
150             << "momentum. The cross section is    151             << "momentum. The cross section is calculated using M. Kossov's\n"
151             << "CHIPS parameterization of cros    152             << "CHIPS parameterization of cross section data.\n";
152 }                                                 153 }
153                                                   154 
154 G4bool G4ChipsProtonElasticXS::IsIsoApplicable    155 G4bool G4ChipsProtonElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
155          const G4Element*,                        156          const G4Element*,
156          const G4Material*)                       157          const G4Material*)
157 {                                                 158 {
158   return true;                                    159   return true;
159 }                                                 160 }
160                                                   161 
161                                                   162 
162 G4double G4ChipsProtonElasticXS::GetIsoCrossSe    163 G4double G4ChipsProtonElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
163               const G4Isotope*,                   164               const G4Isotope*,
164               const G4Element*,                   165               const G4Element*,
165               const G4Material*)                  166               const G4Material*)
166 {                                                 167 {
167   G4double pMom=Pt->GetTotalMomentum();           168   G4double pMom=Pt->GetTotalMomentum();
168   G4int tgN = A - tgZ;                            169   G4int tgN = A - tgZ;
169                                                   170 
170   return GetChipsCrossSection(pMom, tgZ, tgN,     171   return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
171 }                                                 172 }
172                                                   173 
173                                                   174 
174 // The main member function giving the collisi    175 // The main member function giving the collision cross section (P is in IU, CS is in mb)
175 // Make pMom in independent units ! (Now it is    176 // Make pMom in independent units ! (Now it is MeV)
176 G4double G4ChipsProtonElasticXS::GetChipsCross    177 G4double G4ChipsProtonElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
177 {                                                 178 {
178                                                   179 
179   G4double pEn=pMom;                              180   G4double pEn=pMom;
180   onlyCS=false;                                   181   onlyCS=false;
181                                                   182 
182   G4bool in=false;                   // By def    183   G4bool in=false;                   // By default the isotope must be found in the AMDB
183   lastP   = 0.;                      // New mo    184   lastP   = 0.;                      // New momentum history (nothing to compare with)
184   lastN   = tgN;                     // The la    185   lastN   = tgN;                     // The last N of the calculated nucleus
185   lastZ   = tgZ;                     // The la    186   lastZ   = tgZ;                     // The last Z of the calculated nucleus
186   lastI   = (G4int)colN.size();      // Size o << 187   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
187   if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 188   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
188   {                                  // The nu    189   {                                  // The nucleus with projPDG is found in AMDB
189     if(colN[i]==tgN && colZ[i]==tgZ) // Isotop    190     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
190     {                                             191     {
191       lastI=i;                                    192       lastI=i;
192       lastTH =colTH[i];              // Last T    193       lastTH =colTH[i];              // Last THreshold (A-dependent)
193       if(pEn<=lastTH)                             194       if(pEn<=lastTH)
194       {                                           195       {
195         return 0.;                   // Energy    196         return 0.;                   // Energy is below the Threshold value
196       }                                           197       }
197       lastP  =colP [i];              // Last M    198       lastP  =colP [i];              // Last Momentum  (A-dependent)
198       lastCS =colCS[i];              // Last C    199       lastCS =colCS[i];              // Last CrossSect (A-dependent)
199       if(lastP == pMom)              // Do not    200       if(lastP == pMom)              // Do not recalculate
200       {                                           201       {
201         CalculateCrossSection(onlyCS,-1,i,2212    202         CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // Update param's only
202         return lastCS*millibarn;     // Use th    203         return lastCS*millibarn;     // Use theLastCS
203       }                                           204       }
204       in = true;                       // This    205       in = true;                       // This is the case when the isotop is found in DB
205       // Momentum pMom is in IU ! @@ Units        206       // Momentum pMom is in IU ! @@ Units
206       lastCS=CalculateCrossSection(onlyCS,-1,i    207       lastCS=CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // read & update
207       if(lastCS<=0. && pEn>lastTH)    // Corre    208       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
208       {                                           209       {
209         lastTH=pEn;                               210         lastTH=pEn;
210       }                                           211       }
211       break;                           // Go o    212       break;                           // Go out of the LOOP with found lastI
212     }                                             213     }
213   } // End of attampt to find the nucleus in D    214   } // End of attampt to find the nucleus in DB
214   if(!in)                            // This n    215   if(!in)                            // This nucleus has not been calculated previously
215   {                                               216   {
216     //!!The slave functions must provide cross    217     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
217     lastCS=CalculateCrossSection(onlyCS,0,last    218     lastCS=CalculateCrossSection(onlyCS,0,lastI,2212,lastZ,lastN,pMom);//calculate&create
218     if(lastCS<=0.)                                219     if(lastCS<=0.)
219     {                                             220     {
220       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    221       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
221       if(pEn>lastTH)                              222       if(pEn>lastTH)
222       {                                           223       {
223         lastTH=pEn;                               224         lastTH=pEn;
224       }                                           225       }
225     }                                             226     }
226     colN.push_back(tgN);                          227     colN.push_back(tgN);
227     colZ.push_back(tgZ);                          228     colZ.push_back(tgZ);
228     colP.push_back(pMom);                         229     colP.push_back(pMom);
229     colTH.push_back(lastTH);                      230     colTH.push_back(lastTH);
230     colCS.push_back(lastCS);                      231     colCS.push_back(lastCS);
231     return lastCS*millibarn;                      232     return lastCS*millibarn;
232   } // End of creation of the new set of param    233   } // End of creation of the new set of parameters
233   else                                            234   else
234   {                                               235   {
235     colP[lastI]=pMom;                             236     colP[lastI]=pMom;
236     colCS[lastI]=lastCS;                          237     colCS[lastI]=lastCS;
237   }                                               238   }
238   return lastCS*millibarn;                        239   return lastCS*millibarn;
239 }                                                 240 }
240                                                   241 
241 // Calculation of total elastic cross section     242 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
242 // F=0 - create AMDB, F=-1 - read&update AMDB,    243 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
243 G4double G4ChipsProtonElasticXS::CalculateCros    244 G4double G4ChipsProtonElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
244                                              G    245                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
245 {                                                 246 {
246   G4double pMom=pIU/GeV;                // All    247   G4double pMom=pIU/GeV;                // All calculations are in GeV
247   onlyCS=CS;                            // Fla    248   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
248   lastLP=std::log(pMom);                // Mak    249   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
249   if(F)                                 // Thi    250   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
250   {                                               251   {
251     if(F<0)                             // the    252     if(F<0)                             // the AMDB must be loded
252     {                                             253     {
253       lastPIN = PIN[I];                 // Max    254       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
254       lastPAR = PAR[I];                 // Poi    255       lastPAR = PAR[I];                 // Pointer to the parameter set
255       lastCST = CST[I];                 // Poi    256       lastCST = CST[I];                 // Pointer to the total sross-section table
256       lastSST = SST[I];                 // Poi    257       lastSST = SST[I];                 // Pointer to the first squared slope
257       lastS1T = S1T[I];                 // Poi    258       lastS1T = S1T[I];                 // Pointer to the first mantissa
258       lastB1T = B1T[I];                 // Poi    259       lastB1T = B1T[I];                 // Pointer to the first slope
259       lastS2T = S2T[I];                 // Poi    260       lastS2T = S2T[I];                 // Pointer to the second mantissa
260       lastB2T = B2T[I];                 // Poi    261       lastB2T = B2T[I];                 // Pointer to the second slope
261       lastS3T = S3T[I];                 // Poi    262       lastS3T = S3T[I];                 // Pointer to the third mantissa
262       lastB3T = B3T[I];                 // Poi    263       lastB3T = B3T[I];                 // Pointer to the rhird slope
263       lastS4T = S4T[I];                 // Poi    264       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
264       lastB4T = B4T[I];                 // Poi    265       lastB4T = B4T[I];                 // Pointer to the 4-th slope
265     }                                             266     }
266     if(lastLP>lastPIN && lastLP<lPMax)            267     if(lastLP>lastPIN && lastLP<lPMax)
267     {                                             268     {
268       lastPIN=GetPTables(lastLP,lastPIN,PDG,tg    269       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
269       PIN[I]=lastPIN;                   // Rem    270       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
270     }                                             271     }
271   }                                               272   }
272   else                                  // Thi    273   else                                  // This isotope wasn't initialized => CREATE
273   {                                               274   {
274     lastPAR = new G4double[nPoints];    // All    275     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
275     lastPAR[nLast]=0;                   // Ini    276     lastPAR[nLast]=0;                   // Initialization for VALGRIND
276     lastCST = new G4double[nPoints];    // All    277     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
277     lastSST = new G4double[nPoints];    // All    278     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
278     lastS1T = new G4double[nPoints];    // All    279     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
279     lastB1T = new G4double[nPoints];    // All    280     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
280     lastS2T = new G4double[nPoints];    // All    281     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
281     lastB2T = new G4double[nPoints];    // All    282     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
282     lastS3T = new G4double[nPoints];    // All    283     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
283     lastB3T = new G4double[nPoints];    // All    284     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
284     lastS4T = new G4double[nPoints];    // All    285     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
285     lastB4T = new G4double[nPoints];    // All    286     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
286     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,    287     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
287     PIN.push_back(lastPIN);             // Fil    288     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
288     PAR.push_back(lastPAR);             // Fil    289     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
289     CST.push_back(lastCST);             // Fil    290     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
290     SST.push_back(lastSST);             // Fil    291     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
291     S1T.push_back(lastS1T);             // Fil    292     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
292     B1T.push_back(lastB1T);             // Fil    293     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
293     S2T.push_back(lastS2T);             // Fil    294     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
294     B2T.push_back(lastB2T);             // Fil    295     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
295     S3T.push_back(lastS3T);             // Fil    296     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
296     B3T.push_back(lastB3T);             // Fil    297     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
297     S4T.push_back(lastS4T);             // Fil    298     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
298     B4T.push_back(lastB4T);             // Fil    299     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
299   } // End of creation/update of the new set o    300   } // End of creation/update of the new set of parameters and tables
300   // =--------= NOW Update (if necessary) and     301   // =--------= NOW Update (if necessary) and Calculate the Cross Section =------------=
301   if(lastLP>lastPIN && lastLP<lPMax)              302   if(lastLP>lastPIN && lastLP<lPMax)
302   {                                               303   {
303     lastPIN = GetPTables(lastLP,lastPIN,PDG,tg    304     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
304   }                                               305   }
305   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p    306   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
306   if(lastLP>lPMin && lastLP<=lastPIN)   // Lin    307   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
307   {                                               308   {
308     if(lastLP==lastPIN)                           309     if(lastLP==lastPIN)
309     {                                             310     {
310       G4double shift=(lastLP-lPMin)/dlnP+.0000    311       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
311       G4int    blast=static_cast<int>(shift);     312       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
312       if(blast<0 || blast>=nLast) G4cout<<"G4Q    313       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
313       lastSIG = lastCST[blast];                   314       lastSIG = lastCST[blast];
314       if(!onlyCS)                       // Ski    315       if(!onlyCS)                       // Skip the differential cross-section parameters
315       {                                           316       {
316         theSS  = lastSST[blast];                  317         theSS  = lastSST[blast];
317         theS1  = lastS1T[blast];                  318         theS1  = lastS1T[blast];
318         theB1  = lastB1T[blast];                  319         theB1  = lastB1T[blast];
319         theS2  = lastS2T[blast];                  320         theS2  = lastS2T[blast];
320         theB2  = lastB2T[blast];                  321         theB2  = lastB2T[blast];
321         theS3  = lastS3T[blast];                  322         theS3  = lastS3T[blast];
322         theB3  = lastB3T[blast];                  323         theB3  = lastB3T[blast];
323         theS4  = lastS4T[blast];                  324         theS4  = lastS4T[blast];
324         theB4  = lastB4T[blast];                  325         theB4  = lastB4T[blast];
325       }                                           326       }
326     }                                             327     }
327     else                                          328     else
328     {                                             329     {
329       G4double shift=(lastLP-lPMin)/dlnP;         330       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
330       G4int    blast=static_cast<int>(shift);     331       G4int    blast=static_cast<int>(shift);    // the lower bin number
331       if(blast<0)   blast=0;                      332       if(blast<0)   blast=0;
332       if(blast>=nLast) blast=nLast-1;             333       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
333       shift-=blast;                               334       shift-=blast;                              // step inside the unit bin
334       G4int lastL=blast+1;                        335       G4int lastL=blast+1;                       // the upper bin number
335       G4double SIGL=lastCST[blast];               336       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
336       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL    337       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
337       if(!onlyCS)                       // Ski    338       if(!onlyCS)                       // Skip the differential cross-section parameters
338       {                                           339       {
339         G4double SSTL=lastSST[blast];             340         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
340         theSS=SSTL+shift*(lastSST[lastL]-SSTL)    341         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
341         G4double S1TL=lastS1T[blast];             342         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
342         theS1=S1TL+shift*(lastS1T[lastL]-S1TL)    343         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
343         G4double B1TL=lastB1T[blast];             344         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
344         theB1=B1TL+shift*(lastB1T[lastL]-B1TL)    345         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
345         G4double S2TL=lastS2T[blast];             346         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
346         theS2=S2TL+shift*(lastS2T[lastL]-S2TL)    347         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
347         G4double B2TL=lastB2T[blast];             348         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
348         theB2=B2TL+shift*(lastB2T[lastL]-B2TL)    349         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
349         G4double S3TL=lastS3T[blast];             350         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
350         theS3=S3TL+shift*(lastS3T[lastL]-S3TL)    351         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
351         G4double B3TL=lastB3T[blast];             352         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
352         theB3=B3TL+shift*(lastB3T[lastL]-B3TL)    353         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
353         G4double S4TL=lastS4T[blast];             354         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
354         theS4=S4TL+shift*(lastS4T[lastL]-S4TL)    355         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
355         G4double B4TL=lastB4T[blast];             356         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
356         theB4=B4TL+shift*(lastB4T[lastL]-B4TL)    357         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
357       }                                           358       }
358     }                                             359     }
359   }                                               360   }
360   else lastSIG=GetTabValues(lastLP, PDG, tgZ,     361   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
361   if(lastSIG<0.) lastSIG = 0.;                    362   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
362   return lastSIG;                                 363   return lastSIG;
363 }                                                 364 }
364                                                   365 
365 // It has parameter sets for all tZ/tN/PDG, us    366 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
366 G4double G4ChipsProtonElasticXS::GetPTables(G4    367 G4double G4ChipsProtonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
367                                                   368                                                   G4int tgZ, G4int tgN)
368 {                                                 369 {
369   // @@ At present all nA==pA ---------> Each     370   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
370   static const G4double pwd=2727;                 371   static const G4double pwd=2727;
371   const G4int n_npel=24;                // #of    372   const G4int n_npel=24;                // #of parameters for np-elastic (<nPoints=128)
372   const G4int n_ppel=32;                // #of    373   const G4int n_ppel=32;                // #of parameters for pp-elastic (<nPoints=128)
373   //                      -0- -1-  -2- -3- -4-    374   //                      -0- -1-  -2- -3- -4-  -5- -6- -7- -8- -9--10--11--12--13- -14-
374   G4double np_el[n_npel]={12.,.05,.0001,5.,.35    375   G4double np_el[n_npel]={12.,.05,.0001,5.,.35,6.75,.14,19.,.6,6.75,.14,13.,.14,.6,.00013,
375                           75.,.001,7.2,4.32,.0    376                           75.,.001,7.2,4.32,.012,2.5,0.0,12.,.34};
376   //                      -15--16--17- -18- -1    377   //                      -15--16--17- -18- -19--20--21--22--23-
377   //                       -0-   -1-  -2- -3-     378   //                       -0-   -1-  -2- -3- -4- -5-  -6-  -7-  -8--9--10--11--12--13-
378   G4double pp_el[n_ppel]={2.865,18.9,.6461,3.,    379   G4double pp_el[n_ppel]={2.865,18.9,.6461,3.,9.,.425,.4276,.0022,5.,74.,3.,3.4,.2,.17,
379                           .001,8.,.055,3.64,5.    380                           .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10,
380                           8.5e8,1.e10,1.1,3.4e    381                           8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
381   //                      -14--15- -16- -17- -    382   //                      -14--15- -16- -17- -18-  -19- -20- -21- -22-  -23-   -24-  -25-
382   //                       -26- -27-  -28- -29    383   //                       -26- -27-  -28- -29- -30- -31-
383   if(PDG==2212)                                   384   if(PDG==2212)
384   {                                               385   {
385     // -- Total pp elastic cross section cs &     386     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
386     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l    387     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
387     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d    388     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
388     //   par(0)       par(7)     par(1) par(2)    389     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
389     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4    390     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
390     //     par(8) par(9) par(10)        par(11    391     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
391     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40    392     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
392     // par(15) par(16)  par(17)     par(18) pa    393     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
393     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10);     394     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
394     //  par(24) par(25)     par(26)  par(27) p    395     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
395     //                                            396     //
396     if(lastPAR[nLast]!=pwd) // A unique flag t    397     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
397     {                                             398     {
398       if ( tgZ == 0 && tgN == 1 )                 399       if ( tgZ == 0 && tgN == 1 )
399       {                                           400       {
400         for (G4int ip=0; ip<n_npel; ip++) last    401         for (G4int ip=0; ip<n_npel; ip++) lastPAR[ip]=np_el[ip]; // pn
401                                                   402 
402       }                                           403       }
403       else if ( tgZ == 1 && tgN == 0 )            404       else if ( tgZ == 1 && tgN == 0 )
404       {                                           405       {
405         for (G4int ip=0; ip<n_ppel; ip++) last    406         for (G4int ip=0; ip<n_ppel; ip++) lastPAR[ip]=pp_el[ip]; // pp
406       }                                           407       }
407       else                                        408       else
408       {                                           409       {
409         G4double a=tgZ+tgN;                       410         G4double a=tgZ+tgN;
410         G4double sa=std::sqrt(a);                 411         G4double sa=std::sqrt(a);
411         G4double ssa=std::sqrt(sa);               412         G4double ssa=std::sqrt(sa);
412         G4double asa=a*sa;                        413         G4double asa=a*sa;
413         G4double a2=a*a;                          414         G4double a2=a*a;
414         G4double a3=a2*a;                         415         G4double a3=a2*a;
415         G4double a4=a3*a;                         416         G4double a4=a3*a;
416         G4double a5=a4*a;                         417         G4double a5=a4*a;
417         G4double a6=a4*a2;                        418         G4double a6=a4*a2;
418         G4double a7=a6*a;                         419         G4double a7=a6*a;
419         G4double a8=a7*a;                         420         G4double a8=a7*a;
420         G4double a9=a8*a;                         421         G4double a9=a8*a;
421         G4double a10=a5*a5;                       422         G4double a10=a5*a5;
422         G4double a12=a6*a6;                       423         G4double a12=a6*a6;
423         G4double a14=a7*a7;                       424         G4double a14=a7*a7;
424         G4double a16=a8*a8;                       425         G4double a16=a8*a8;
425         G4double a17=a16*a;                       426         G4double a17=a16*a;
426         G4double a20=a16*a4;                      427         G4double a20=a16*a4;
427         G4double a32=a16*a16;                     428         G4double a32=a16*a16;
428         // Reaction cross-section parameters (    429         // Reaction cross-section parameters (pel=peh_fit.f)
429         lastPAR[0]=5./(1.+22./asa);               430         lastPAR[0]=5./(1.+22./asa);                                          // p1
430         lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3.    431         lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3.6/a3);                         // p2
431         lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/(    432         lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/(1.+1.3E-6*a3);                 // p3
432         lastPAR[3]=1.3*a;                         433         lastPAR[3]=1.3*a;                                                    // p4
433         lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4);        434         lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4);                                   // p5
434         lastPAR[5]=.07*asa/(1.+.009*a2);          435         lastPAR[5]=.07*asa/(1.+.009*a2);                                     // p6
435         lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2.    436         lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2.E-16/a+3.E-19*a));             // p7 (11)
436         lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E    437         lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E16/a20)/(1.+6.E-9*a4)+.015/a2; // p8
437         lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a1    438         lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a16+5.E-7*a3)+.0003/sa;          // p9 (10)
438         // @@ the differential cross-section i    439         // @@ the differential cross-section is parameterized separately for A>6 & A<7
439         if(a<6.5)                                 440         if(a<6.5)
440         {                                         441         {
441           G4double a28=a16*a12;                   442           G4double a28=a16*a12;
442           // The main pre-exponent      (pel_s    443           // The main pre-exponent      (pel_sg)
443           lastPAR[ 9]=4000*a;                     444           lastPAR[ 9]=4000*a;                                // p1
444           lastPAR[10]=1.2e7*a8+380*a17;           445           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
445           lastPAR[11]=.7/(1.+4.e-12*a16);         446           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
446           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);     447           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
447           lastPAR[13]=.28*a;                      448           lastPAR[13]=.28*a;                                 // p5
448           lastPAR[14]=1.2*a2+2.3;                 449           lastPAR[14]=1.2*a2+2.3;                            // p6
449           lastPAR[15]=3.8/a;                      450           lastPAR[15]=3.8/a;                                 // p7
450           // The main slope             (pel_s    451           // The main slope             (pel_sl)
451           lastPAR[16]=.01/(1.+.0024*a5);          452           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
452           lastPAR[17]=.2*a;                       453           lastPAR[17]=.2*a;                                  // p2
453           lastPAR[18]=9.e-7/(1.+.035*a5);         454           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
454           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1    455           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
455           // The main quadratic         (pel_s    456           // The main quadratic         (pel_sh)
456           lastPAR[20]=2.25*a3;                    457           lastPAR[20]=2.25*a3;                               // p1
457           lastPAR[21]=18.;                        458           lastPAR[21]=18.;                                   // p2
458           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7)    459           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
459           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1    460           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
460           // The 1st max pre-exponent   (pel_q    461           // The 1st max pre-exponent   (pel_qq)
461           lastPAR[24]=1.e5/(a8+2.5e12/a16);       462           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
462           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28    463           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
463           lastPAR[26]=.0006*a3;                   464           lastPAR[26]=.0006*a3;                              // p3
464           // The 1st max slope          (pel_q    465           // The 1st max slope          (pel_qs)
465           lastPAR[27]=10.+4.e-8*a12*a;            466           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
466           lastPAR[28]=.114;                       467           lastPAR[28]=.114;                                  // p2
467           lastPAR[29]=.003;                       468           lastPAR[29]=.003;                                  // p3
468           lastPAR[30]=2.e-23;                     469           lastPAR[30]=2.e-23;                                // p4
469           // The effective pre-exponent (pel_s    470           // The effective pre-exponent (pel_ss)
470           lastPAR[31]=1./(1.+.0001*a8);           471           lastPAR[31]=1./(1.+.0001*a8);                      // p1
471           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);      472           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
472           lastPAR[33]=.03;                        473           lastPAR[33]=.03;                                   // p3
473           // The effective slope        (pel_s    474           // The effective slope        (pel_sb)
474           lastPAR[34]=a/2;                        475           lastPAR[34]=a/2;                                   // p1
475           lastPAR[35]=2.e-7*a4;                   476           lastPAR[35]=2.e-7*a4;                              // p2
476           lastPAR[36]=4.;                         477           lastPAR[36]=4.;                                    // p3
477           lastPAR[37]=64./a3;                     478           lastPAR[37]=64./a3;                                // p4
478           // The gloria pre-exponent    (pel_u    479           // The gloria pre-exponent    (pel_us)
479           lastPAR[38]=1.e8*std::exp(.32*asa);     480           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
480           lastPAR[39]=20.*std::exp(.45*asa);      481           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
481           lastPAR[40]=7.e3+2.4e6/a5;              482           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
482           lastPAR[41]=2.5e5*std::exp(.085*a3);    483           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
483           lastPAR[42]=2.5*a;                      484           lastPAR[42]=2.5*a;                                 // p5
484           // The gloria slope           (pel_u    485           // The gloria slope           (pel_ub)
485           lastPAR[43]=920.+.03*a8*a3;             486           lastPAR[43]=920.+.03*a8*a3;                        // p1
486           lastPAR[44]=93.+.0023*a12;              487           lastPAR[44]=93.+.0023*a12;                         // p2
487         }                                         488         }
488         else                                      489         else
489         {                                         490         {
490           G4double p1a10=2.2e-28*a10;             491           G4double p1a10=2.2e-28*a10;
491           G4double r4a16=6.e14/a16;               492           G4double r4a16=6.e14/a16;
492           G4double s4a16=r4a16*r4a16;             493           G4double s4a16=r4a16*r4a16;
493           // a24                                  494           // a24
494           // a36                                  495           // a36
495           // The main pre-exponent      (peh_s    496           // The main pre-exponent      (peh_sg)
496           lastPAR[ 9]=4.5*std::pow(a,1.15);       497           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
497           lastPAR[10]=.06*std::pow(a,.6);         498           lastPAR[10]=.06*std::pow(a,.6);                    // p2
498           lastPAR[11]=.6*a/(1.+2.e15/a16);        499           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
499           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3    500           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
500           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4    501           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
501           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.    502           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
502           // The main slope             (peh_s    503           // The main slope             (peh_sl)
503           lastPAR[15]=400./a12+2.e-22*a9;         504           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
504           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14    505           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
505           lastPAR[17]=1000./a2+9.5*sa*ssa;        506           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
506           lastPAR[18]=4.e-6*a*asa+1.e11/a16;      507           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
507           lastPAR[19]=(120./a+.002*a2)/(1.+2.e    508           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
508           lastPAR[20]=9.+100./a;                  509           lastPAR[20]=9.+100./a;                             // p6
509           // The main quadratic         (peh_s    510           // The main quadratic         (peh_sh)
510           lastPAR[21]=.002*a3+3.e7/a6;            511           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
511           lastPAR[22]=7.e-15*a4*asa;              512           lastPAR[22]=7.e-15*a4*asa;                         // p2
512           lastPAR[23]=9000./a4;                   513           lastPAR[23]=9000./a4;                              // p3
513           // The 1st max pre-exponent   (peh_q    514           // The 1st max pre-exponent   (peh_qq)
514           lastPAR[24]=.0011*asa/(1.+3.e34/a32/    515           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
515           lastPAR[25]=1.e-5*a2+2.e14/a16;         516           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
516           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1    517           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
517           lastPAR[27]=.016*asa/(1.+5.e16/a16);    518           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
518           // The 1st max slope          (peh_q    519           // The 1st max slope          (peh_qs)
519           lastPAR[28]=.002*a4/(1.+7.e7/std::po    520           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
520           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.    521           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
521           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8)    522           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
522           lastPAR[31]=100./asa;                   523           lastPAR[31]=100./asa;                              // p4
523           // The 2nd max pre-exponent   (peh_s    524           // The 2nd max pre-exponent   (peh_ss)
524           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/    525           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
525           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);     526           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
526           lastPAR[34]=1.3+3.e5/a4;                527           lastPAR[34]=1.3+3.e5/a4;                           // p3
527           lastPAR[35]=500./(a2+50.)+3;            528           lastPAR[35]=500./(a2+50.)+3;                       // p4
528           lastPAR[36]=1.e-9/a+s4a16*s4a16;        529           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
529           // The 2nd max slope          (peh_s    530           // The 2nd max slope          (peh_sb)
530           lastPAR[37]=.4*asa+3.e-9*a6;            531           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
531           lastPAR[38]=.0005*a5;                   532           lastPAR[38]=.0005*a5;                              // p2
532           lastPAR[39]=.002*a5;                    533           lastPAR[39]=.002*a5;                               // p3
533           lastPAR[40]=10.;                        534           lastPAR[40]=10.;                                   // p4
534           // The effective pre-exponent (peh_u    535           // The effective pre-exponent (peh_us)
535           lastPAR[41]=.05+.005*a;                 536           lastPAR[41]=.05+.005*a;                            // p1
536           lastPAR[42]=7.e-8/sa;                   537           lastPAR[42]=7.e-8/sa;                              // p2
537           lastPAR[43]=.8*sa;                      538           lastPAR[43]=.8*sa;                                 // p3
538           lastPAR[44]=.02*sa;                     539           lastPAR[44]=.02*sa;                                // p4
539           lastPAR[45]=1.e8/a3;                    540           lastPAR[45]=1.e8/a3;                               // p5
540           lastPAR[46]=3.e32/(a32+1.e32);          541           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
541           // The effective slope        (peh_u    542           // The effective slope        (peh_ub)
542           lastPAR[47]=24.;                        543           lastPAR[47]=24.;                                   // p1
543           lastPAR[48]=20./sa;                     544           lastPAR[48]=20./sa;                                // p2
544           lastPAR[49]=7.e3*a/(sa+1.);             545           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
545           lastPAR[50]=900.*sa/(1.+500./a3);       546           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
546         }                                         547         }
547         // Parameter for lowEnergyNeutrons        548         // Parameter for lowEnergyNeutrons
548         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*    549         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
549       }                                           550       }
550       lastPAR[nLast]=pwd;                         551       lastPAR[nLast]=pwd;
551       // and initialize the zero element of th    552       // and initialize the zero element of the table
552       G4double lp=lPMin;                          553       G4double lp=lPMin;                                      // ln(momentum)
553       G4bool memCS=onlyCS;                        554       G4bool memCS=onlyCS;                                    // ??
554       onlyCS=false;                               555       onlyCS=false;
555       lastCST[0]=GetTabValues(lp, PDG, tgZ, tg    556       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
556       onlyCS=memCS;                               557       onlyCS=memCS;
557       lastSST[0]=theSS;                           558       lastSST[0]=theSS;
558       lastS1T[0]=theS1;                           559       lastS1T[0]=theS1;
559       lastB1T[0]=theB1;                           560       lastB1T[0]=theB1;
560       lastS2T[0]=theS2;                           561       lastS2T[0]=theS2;
561       lastB2T[0]=theB2;                           562       lastB2T[0]=theB2;
562       lastS3T[0]=theS3;                           563       lastS3T[0]=theS3;
563       lastB3T[0]=theB3;                           564       lastB3T[0]=theB3;
564       lastS4T[0]=theS4;                           565       lastS4T[0]=theS4;
565       lastB4T[0]=theB4;                           566       lastB4T[0]=theB4;
566     }                                             567     }
567     if(LP>ILP)                                    568     if(LP>ILP)
568     {                                             569     {
569       G4int ini = static_cast<int>((ILP-lPMin+    570       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
570       if(ini<0) ini=0;                            571       if(ini<0) ini=0;
571       if(ini<nPoints)                             572       if(ini<nPoints)
572       {                                           573       {
573         G4int fin = static_cast<int>((LP-lPMin    574         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
574         if(fin>=nPoints) fin=nLast;               575         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
575         if(fin>=ini)                              576         if(fin>=ini)
576         {                                         577         {
577           G4double lp=0.;                         578           G4double lp=0.;
578           for(G4int ip=ini; ip<=fin; ip++)        579           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
579           {                                       580           {
580             lp=lPMin+ip*dlnP;                     581             lp=lPMin+ip*dlnP;                     // ln(momentum)
581             G4bool memCS=onlyCS;                  582             G4bool memCS=onlyCS;
582             onlyCS=false;                         583             onlyCS=false;
583             lastCST[ip]=GetTabValues(lp, PDG,     584             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
584             onlyCS=memCS;                         585             onlyCS=memCS;
585             lastSST[ip]=theSS;                    586             lastSST[ip]=theSS;
586             lastS1T[ip]=theS1;                    587             lastS1T[ip]=theS1;
587             lastB1T[ip]=theB1;                    588             lastB1T[ip]=theB1;
588             lastS2T[ip]=theS2;                    589             lastS2T[ip]=theS2;
589             lastB2T[ip]=theB2;                    590             lastB2T[ip]=theB2;
590             lastS3T[ip]=theS3;                    591             lastS3T[ip]=theS3;
591             lastB3T[ip]=theB3;                    592             lastB3T[ip]=theB3;
592             lastS4T[ip]=theS4;                    593             lastS4T[ip]=theS4;
593             lastB4T[ip]=theB4;                    594             lastB4T[ip]=theB4;
594           }                                       595           }
595           return lp;                              596           return lp;
596         }                                         597         }
597         else G4cout<<"*Warning*G4ChipsProtonEl    598         else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="
598                    <<tgZ<<", N="<<tgN<<", i="<    599                    <<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP<<" > ILP="
599                    <<ILP<<" nothing is done!"<    600                    <<ILP<<" nothing is done!"<<G4endl;
600       }                                           601       }
601       else G4cout<<"*Warning*G4ChipsProtonElas    602       else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="
602                  <<tgZ<<", N="<<tgN<<", i="<<i    603                  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
603                  <<" > ILP="<<ILP<<", lPMax="<    604                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
604     }                                             605     }
605   }                                               606   }
606   else                                            607   else
607   {                                               608   {
608     // G4cout<<"*Error*G4ChipsProtonElasticXS:    609     // G4cout<<"*Error*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
609     //       <<", N="<<tgN<<", while it is def    610     //       <<", N="<<tgN<<", while it is defined only for PDG=2212"<<G4endl;
610     // throw G4QException("G4ChipsProtonElasti    611     // throw G4QException("G4ChipsProtonElasticXS::GetPTables: only pA're implemented");
611     G4ExceptionDescription ed;                    612     G4ExceptionDescription ed;
612     ed << "PDG = " << PDG << ", Z = " << tgZ <    613     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
613        << ", while it is defined only for PDG=    614        << ", while it is defined only for PDG=2212 (p)" << G4endl;
614     G4Exception("G4ChipsProtonElasticXS::GetPT    615     G4Exception("G4ChipsProtonElasticXS::GetPTables()", "HAD_CHPS_0000",
615                 FatalException, ed);              616                 FatalException, ed);
616   }                                               617   }
617   return ILP;                                     618   return ILP;
618 }                                                 619 }
619                                                   620 
620 // Returns Q2=-t in independent units (MeV^2)     621 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
621 G4double G4ChipsProtonElasticXS::GetExchangeT(    622 G4double G4ChipsProtonElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
622 {                                                 623 {
623   static const G4double GeVSQ=gigaelectronvolt    624   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
624   static const G4double third=1./3.;              625   static const G4double third=1./3.;
625   static const G4double fifth=1./5.;              626   static const G4double fifth=1./5.;
626   static const G4double sevth=1./7.;              627   static const G4double sevth=1./7.;
627   if(PDG!=2212) G4cout<<"**Warning*G4ChipsProt    628   if(PDG!=2212) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExT:PDG="<<PDG<<G4endl;
628   if(onlyCS) G4cout<<"**Warning*G4ChipsProtonE    629   if(onlyCS) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExchanT:onlyCS=1"<<G4endl;
629   if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor    630   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
630   G4double q2=0.;                                 631   G4double q2=0.;
631   if(tgZ==1 && tgN==0)                // ===>     632   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
632   {                                               633   {
633     G4double E1=lastTM*theB1;                     634     G4double E1=lastTM*theB1;
634     G4double R1=(1.-std::exp(-E1));               635     G4double R1=(1.-std::exp(-E1));
635     G4double E2=lastTM*theB2;                     636     G4double E2=lastTM*theB2;
636     G4double R2=(1.-std::exp(-E2*E2*E2));         637     G4double R2=(1.-std::exp(-E2*E2*E2));
637     G4double E3=lastTM*theB3;                     638     G4double E3=lastTM*theB3;
638     G4double R3=(1.-std::exp(-E3));               639     G4double R3=(1.-std::exp(-E3));
639     G4double I1=R1*theS1/theB1;                   640     G4double I1=R1*theS1/theB1;
640     G4double I2=R2*theS2;                         641     G4double I2=R2*theS2;
641     G4double I3=R3*theS3;                         642     G4double I3=R3*theS3;
642     G4double I12=I1+I2;                           643     G4double I12=I1+I2;
643     G4double rand=(I12+I3)*G4UniformRand();       644     G4double rand=(I12+I3)*G4UniformRand();
644     if     (rand<I1 )                             645     if     (rand<I1 )
645     {                                             646     {
646       G4double ran=R1*G4UniformRand();            647       G4double ran=R1*G4UniformRand();
647       if(ran>1.) ran=1.;                          648       if(ran>1.) ran=1.;
648       q2=-std::log(1.-ran)/theB1;                 649       q2=-std::log(1.-ran)/theB1;
649     }                                             650     }
650     else if(rand<I12)                             651     else if(rand<I12)
651     {                                             652     {
652       G4double ran=R2*G4UniformRand();            653       G4double ran=R2*G4UniformRand();
653       if(ran>1.) ran=1.;                          654       if(ran>1.) ran=1.;
654       q2=-std::log(1.-ran);                       655       q2=-std::log(1.-ran);
655       if(q2<0.) q2=0.;                            656       if(q2<0.) q2=0.;
656       q2=std::pow(q2,third)/theB2;                657       q2=std::pow(q2,third)/theB2;
657     }                                             658     }
658     else                                          659     else
659     {                                             660     {
660       G4double ran=R3*G4UniformRand();            661       G4double ran=R3*G4UniformRand();
661       if(ran>1.) ran=1.;                          662       if(ran>1.) ran=1.;
662       q2=-std::log(1.-ran)/theB3;                 663       q2=-std::log(1.-ran)/theB3;
663     }                                             664     }
664   }                                               665   }
665   else                                            666   else
666   {                                               667   {
667     G4double a=tgZ+tgN;                           668     G4double a=tgZ+tgN;
668     G4double E1=lastTM*(theB1+lastTM*theSS);      669     G4double E1=lastTM*(theB1+lastTM*theSS);
669     G4double R1=(1.-std::exp(-E1));               670     G4double R1=(1.-std::exp(-E1));
670     G4double tss=theSS+theSS; // for future so    671     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
671     G4double tm2=lastTM*lastTM;                   672     G4double tm2=lastTM*lastTM;
672     G4double E2=lastTM*tm2*theB2;                 673     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
673     if(a>6.5)E2*=tm2;                             674     if(a>6.5)E2*=tm2;                               // for heavy nuclei
674     G4double R2=(1.-std::exp(-E2));               675     G4double R2=(1.-std::exp(-E2));
675     G4double E3=lastTM*theB3;                     676     G4double E3=lastTM*theB3;
676     if(a>6.5)E3*=tm2*tm2*tm2;                     677     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
677     G4double R3=(1.-std::exp(-E3));               678     G4double R3=(1.-std::exp(-E3));
678     G4double E4=lastTM*theB4;                     679     G4double E4=lastTM*theB4;
679     G4double R4=(1.-std::exp(-E4));               680     G4double R4=(1.-std::exp(-E4));
680     G4double I1=R1*theS1;                         681     G4double I1=R1*theS1;
681     G4double I2=R2*theS2;                         682     G4double I2=R2*theS2;
682     G4double I3=R3*theS3;                         683     G4double I3=R3*theS3;
683     G4double I4=R4*theS4;                         684     G4double I4=R4*theS4;
684     G4double I12=I1+I2;                           685     G4double I12=I1+I2;
685     G4double I13=I12+I3;                          686     G4double I13=I12+I3;
686     G4double rand=(I13+I4)*G4UniformRand();       687     G4double rand=(I13+I4)*G4UniformRand();
687     if(rand<I1)                                   688     if(rand<I1)
688     {                                             689     {
689       G4double ran=R1*G4UniformRand();            690       G4double ran=R1*G4UniformRand();
690       if(ran>1.) ran=1.;                          691       if(ran>1.) ran=1.;
691       q2=-std::log(1.-ran)/theB1;                 692       q2=-std::log(1.-ran)/theB1;
692       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t    693       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
693     }                                             694     }
694     else if(rand<I12)                             695     else if(rand<I12)
695     {                                             696     {
696       G4double ran=R2*G4UniformRand();            697       G4double ran=R2*G4UniformRand();
697       if(ran>1.) ran=1.;                          698       if(ran>1.) ran=1.;
698       q2=-std::log(1.-ran)/theB2;                 699       q2=-std::log(1.-ran)/theB2;
699       if(q2<0.) q2=0.;                            700       if(q2<0.) q2=0.;
700       if(a<6.5) q2=std::pow(q2,third);            701       if(a<6.5) q2=std::pow(q2,third);
701       else      q2=std::pow(q2,fifth);            702       else      q2=std::pow(q2,fifth);
702     }                                             703     }
703     else if(rand<I13)                             704     else if(rand<I13)
704     {                                             705     {
705       G4double ran=R3*G4UniformRand();            706       G4double ran=R3*G4UniformRand();
706       if(ran>1.) ran=1.;                          707       if(ran>1.) ran=1.;
707       q2=-std::log(1.-ran)/theB3;                 708       q2=-std::log(1.-ran)/theB3;
708       if(q2<0.) q2=0.;                            709       if(q2<0.) q2=0.;
709       if(a>6.5) q2=std::pow(q2,sevth);            710       if(a>6.5) q2=std::pow(q2,sevth);
710     }                                             711     }
711     else                                          712     else
712     {                                             713     {
713       G4double ran=R4*G4UniformRand();            714       G4double ran=R4*G4UniformRand();
714       if(ran>1.) ran=1.;                          715       if(ran>1.) ran=1.;
715       q2=-std::log(1.-ran)/theB4;                 716       q2=-std::log(1.-ran)/theB4;
716       if(a<6.5) q2=lastTM-q2;                     717       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
717     }                                             718     }
718   }                                               719   }
719   if(q2<0.) q2=0.;                                720   if(q2<0.) q2=0.;
720   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas    721   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
721   if(q2>lastTM)                                   722   if(q2>lastTM)
722   {                                               723   {
723     q2=lastTM;                                    724     q2=lastTM;
724   }                                               725   }
725   return q2*GeVSQ;                                726   return q2*GeVSQ;
726 }                                                 727 }
727                                                   728 
728 // Returns B in independent units (MeV^-2) (al    729 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
729 G4double G4ChipsProtonElasticXS::GetSlope(G4in    730 G4double G4ChipsProtonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
730 {                                                 731 {
731   static const G4double GeVSQ=gigaelectronvolt    732   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
732   if(onlyCS) G4cout<<"*Warning*G4ChipsProtonEl    733   if(onlyCS) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetSlope:onlyCS=true"<<G4endl;
733   if(lastLP<-4.3) return 0.;          // S-wav    734   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
734   if(PDG!=2212)                                   735   if(PDG!=2212)
735   {                                               736   {
736     // G4cout<<"*Error*G4ChipsProtonElasticXS:    737     // G4cout<<"*Error*G4ChipsProtonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ<<", N="
737     //       <<tgN<<", while it is defined onl    738     //       <<tgN<<", while it is defined only for PDG=2212"<<G4endl;
738     // throw G4QException("G4ChipsProtonElasti    739     // throw G4QException("G4ChipsProtonElasticXS::GetSlope: pA are implemented");
739     G4ExceptionDescription ed;                    740     G4ExceptionDescription ed;
740     ed << "PDG = " << PDG << ", Z = " << tgZ <    741     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
741        << ", while it is defined only for PDG=    742        << ", while it is defined only for PDG=2212 (p)" << G4endl;
742     G4Exception("G4ChipsProtonElasticXS::GetSl    743     G4Exception("G4ChipsProtonElasticXS::GetSlope()", "HAD_CHPS_0000",
743                 FatalException, ed);              744                 FatalException, ed);
744   }                                               745   }
745   if(theB1<0.) theB1=0.;                          746   if(theB1<0.) theB1=0.;
746   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4    747   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
747   return theB1/GeVSQ;                             748   return theB1/GeVSQ;
748 }                                                 749 }
749                                                   750 
750 // Returns half max(Q2=-t) in independent unit    751 // Returns half max(Q2=-t) in independent units (MeV^2)
751 G4double G4ChipsProtonElasticXS::GetHMaxT()       752 G4double G4ChipsProtonElasticXS::GetHMaxT()
752 {                                                 753 {
753   static const G4double HGeVSQ=gigaelectronvol    754   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
754   return lastTM*HGeVSQ;                           755   return lastTM*HGeVSQ;
755 }                                                 756 }
756                                                   757 
757 // lastLP is used, so calculating tables, one     758 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
758 G4double G4ChipsProtonElasticXS::GetTabValues(    759 G4double G4ChipsProtonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
759                                                   760                                                     G4int tgN)
760 {                                                 761 {
761   if(PDG!=2212) G4cout<<"*Warning*G4ChipsProto    762   if(PDG!=2212) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetTabV:PDG="<<PDG<<G4endl;
762                                                << 763   if(tgZ<0 || tgZ>92)
763   //AR-24Apr2018 Switch to allow transuranic e << 
764   const G4bool isHeavyElementAllowed = true;   << 
765   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 
766   {                                               764   {
767     G4cout<<"*Warning*G4QProtonElCS::GetTabVal    765     G4cout<<"*Warning*G4QProtonElCS::GetTabValue: (1-92) No isotopes for Z="<<tgZ<<G4endl;
768     return 0.;                                    766     return 0.;
769   }                                               767   }
770   G4int iZ=tgZ-1; // Z index                      768   G4int iZ=tgZ-1; // Z index
771   if(iZ<0)                                        769   if(iZ<0)
772   {                                               770   {
773     iZ=0;         // conversion of the neutron    771     iZ=0;         // conversion of the neutron target to the proton target
774     tgZ=1;                                        772     tgZ=1;
775     tgN=0;                                        773     tgN=0;
776   }                                               774   }
777   G4double p=std::exp(lp);              // mom    775   G4double p=std::exp(lp);              // momentum
778   G4double sp=std::sqrt(p);             // sqr    776   G4double sp=std::sqrt(p);             // sqrt(p)
779   G4double p2=p*p;                                777   G4double p2=p*p;            
780   G4double p3=p2*p;                               778   G4double p3=p2*p;
781   G4double p4=p3*p;                               779   G4double p4=p3*p;
782   if ( tgZ == 1 && tgN == 0 ) // pp/nn            780   if ( tgZ == 1 && tgN == 0 ) // pp/nn
783   {                                               781   {
784     G4double p2s=p2*sp;                           782     G4double p2s=p2*sp;
785     G4double dl2=lp-lastPAR[8];                   783     G4double dl2=lp-lastPAR[8];
786     theSS=lastPAR[31];                            784     theSS=lastPAR[31];
787     theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1.    785     theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1.+lastPAR[11]/p4/p)+
788           (lastPAR[12]/p2+lastPAR[13]*p)/(p4+l    786           (lastPAR[12]/p2+lastPAR[13]*p)/(p4+lastPAR[14]*sp);
789     theB1=lastPAR[15]*std::pow(p,lastPAR[16])/    787     theB1=lastPAR[15]*std::pow(p,lastPAR[16])/(1.+lastPAR[17]/p3);
790     theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[    788     theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[20]*p);
791     theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[    789     theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]/sp); 
792     theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastP    790     theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastPAR[26]*p2+lastPAR[27]);
793     theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[    791     theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[30]); 
794     theS4=0.;                                     792     theS4=0.;
795     theB4=0.;                                     793     theB4=0.; 
796     // Returns the total elastic pp cross-sect    794     // Returns the total elastic pp cross-section (to avoid spoiling lastSIG)
797     G4double dl1=lp-lastPAR[3];                   795     G4double dl1=lp-lastPAR[3];
798     return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+    796     return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+(lastPAR[1]+lastPAR[2]*dl1*dl1+lastPAR[4]/p)
799                                                   797                                                    /(1.+lastPAR[5]*lp)/(1.+lastPAR[6]/p4);
800   }                                               798   }
801   else                                            799   else
802   {                                               800   {
803     G4double p5=p4*p;                             801     G4double p5=p4*p;
804     G4double p6=p5*p;                             802     G4double p6=p5*p;
805     G4double p8=p6*p2;                            803     G4double p8=p6*p2;
806     G4double p10=p8*p2;                           804     G4double p10=p8*p2;
807     G4double p12=p10*p2;                          805     G4double p12=p10*p2;
808     G4double p16=p8*p8;                           806     G4double p16=p8*p8;
809     //G4double p24=p16*p8;                        807     //G4double p24=p16*p8;
810     G4double dl=lp-5.;                            808     G4double dl=lp-5.;
811     G4double a=tgZ+tgN;                           809     G4double a=tgZ+tgN;
812     if(a<6.5)                                     810     if(a<6.5)
813     {                                             811     {
814     G4double pah=std::pow(p,a/2);                 812     G4double pah=std::pow(p,a/2);
815     G4double pa=pah*pah;                          813     G4double pa=pah*pah;
816     G4double pa2=pa*pa;                           814     G4double pa2=pa*pa;
817                                                   815 
818       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+    816       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
819             (lastPAR[13]*dl*dl+lastPAR[14])/(1    817             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
820       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l    818       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
821       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la    819       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
822       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)    820       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
823       theB2=lastPAR[27]*std::pow(p,lastPAR[28]    821       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
824       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+    822       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
825       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la    823       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
826       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*    824       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
827                 lastPAR[40]/(1.+lastPAR[41]*st    825                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
828       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4    826       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
829     }                                             827     }
830     else                                          828     else
831     {                                             829     {
832       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las    830       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
833             lastPAR[13]/(p5+lastPAR[14]/p16);     831             lastPAR[13]/(p5+lastPAR[14]/p16);
834       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la    832       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
835             lastPAR[17]/(1.+lastPAR[18]/p4);      833             lastPAR[17]/(1.+lastPAR[18]/p4);
836       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR    834       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
837       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR    835       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
838       theB2=lastPAR[28]/std::pow(p,lastPAR[29]    836       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
839       theS3=lastPAR[32]/std::pow(p,lastPAR[35]    837       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
840             lastPAR[33]/(1.+lastPAR[34]/p6);      838             lastPAR[33]/(1.+lastPAR[34]/p6);
841       theB3=lastPAR[37]/p8+lastPAR[38]/p2+last    839       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
842       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.    840       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
843             (lastPAR[43]+lastPAR[44]*dl*dl)/(1    841             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
844       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las    842       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
845     }                                             843     }
846     // Returns the total elastic (n/p)A cross-    844     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
847     //         p1               p2                845     //         p1               p2              p3            p6
848     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l    846     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p+lastPAR[5]/p6)+
849      lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/    847      lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/(p4+std::pow((lastPAR[8]/p),lastPAR[6]));
850     //   p4            p5               p8        848     //   p4            p5               p8                 p9             p7
851   }                                               849   }
852   return 0.;                                      850   return 0.;
853 } // End of GetTableValues                        851 } // End of GetTableValues
854                                                   852 
855 // Returns max -t=Q2 (GeV^2) for the momentum     853 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
856 G4double G4ChipsProtonElasticXS::GetQ2max(G4in    854 G4double G4ChipsProtonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
857                                                   855                                                 G4double pP)
858 {                                                 856 {
859                                                   857 
860   G4double pP2=pP*pP;                             858   G4double pP2=pP*pP;                                 // squared momentum of the projectile
861   if(tgZ==1 && tgN==0)                            859   if(tgZ==1 && tgN==0)
862   {                                               860   {
863     G4double tMid=std::sqrt(pP2+mProt2)*mProt-    861     G4double tMid=std::sqrt(pP2+mProt2)*mProt-mProt2; // CMS 90deg value of -t=Q2 (GeV^2)
864     return tMid+tMid;                             862     return tMid+tMid;
865   }                                               863   }
866   else if(tgZ || tgN)                             864   else if(tgZ || tgN)                                 // ---> pA
867   {                                               865   {
868     G4double mt=G4ParticleTable::GetParticleTa    866     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
869     G4double dmt=mt+mt;                           867     G4double dmt=mt+mt;
870     G4double mds=dmt*std::sqrt(pP2+mProt2)+mPr    868     G4double mds=dmt*std::sqrt(pP2+mProt2)+mProt2+mt*mt;// Mondelstam mds
871     return dmt*dmt*pP2/mds;                       869     return dmt*dmt*pP2/mds;
872   }                                               870   }
873   else                                            871   else
874   {                                               872   {
875     // G4cout<<"*Error*G4ChipsProtonElasticXS:    873     // G4cout<<"*Error*G4ChipsProtonElasticXS::GetQ2max: PDG="<<PDG<<", Z="<<tgZ<<", N="
876     //       <<tgN<<", while it is defined onl    874     //       <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl;
877     // throw G4QException("G4ChipsProtonElasti    875     // throw G4QException("G4ChipsProtonElasticXS::GetQ2max: only pA are implemented");
878     G4ExceptionDescription ed;                    876     G4ExceptionDescription ed;
879     ed << "PDG = " << PDG << ", Z = " << tgZ <    877     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
880        << ", while it is defined only for p pr    878        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
881     G4Exception("G4ChipsProtonElasticXS::GetQ2    879     G4Exception("G4ChipsProtonElasticXS::GetQ2max()", "HAD_CHPS_0000",
882                 FatalException, ed);              880                 FatalException, ed);
883     return 0;                                     881     return 0;
884   }                                               882   }
885 }                                                 883 }
886                                                   884