Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4ChipsProtonElasticXS.cc 93080 2015-10-02 14:45:31Z gcosmo $ 27 // 28 // 28 // 29 // 29 // G4 Physics class: G4ChipsProtonElasticXS fo 30 // G4 Physics class: G4ChipsProtonElasticXS for pA elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 10-OCT-01 31 // The last update: M.V. Kossov, CERN/ITEP (Mo 32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 12-Jan-10 (from G4QElCrSect) 32 // 33 // 33 // ------------------------------------------- 34 // ------------------------------------------------------------------------------- 34 // Short description: Interaction cross-sectio 35 // Short description: Interaction cross-sections for the elastic process. 35 // Class extracted from CHIPS and integrated i 36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski 36 // ------------------------------------------- 37 // ------------------------------------------------------------------------------- 37 38 38 39 39 #include "G4ChipsProtonElasticXS.hh" 40 #include "G4ChipsProtonElasticXS.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4SystemOfUnits.hh" 41 #include "G4DynamicParticle.hh" 42 #include "G4DynamicParticle.hh" 42 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4Proton.hh" 44 #include "G4Proton.hh" 44 #include "G4Nucleus.hh" 45 #include "G4Nucleus.hh" 45 #include "G4ParticleTable.hh" 46 #include "G4ParticleTable.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4NucleiProperties.hh" 47 #include "G4IonTable.hh" 48 #include "G4IonTable.hh" 48 49 49 // factory 50 // factory 50 #include "G4CrossSectionFactory.hh" 51 #include "G4CrossSectionFactory.hh" 51 // 52 // 52 G4_DECLARE_XS_FACTORY(G4ChipsProtonElasticXS); 53 G4_DECLARE_XS_FACTORY(G4ChipsProtonElasticXS); 53 54 54 namespace { 55 namespace { 55 G4double mProt; 56 G4double mProt; 56 G4double mProt2; 57 G4double mProt2; 57 } 58 } 58 59 59 G4ChipsProtonElasticXS::G4ChipsProtonElasticXS 60 G4ChipsProtonElasticXS::G4ChipsProtonElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1) 60 { 61 { 61 // Initialization of the parameters 62 // Initialization of the parameters 62 lPMin=-8.; // Min tabulated logarithmicMome 63 lPMin=-8.; // Min tabulated logarithmicMomentum(D) 63 lPMax= 8.; // Max tabulated logarithmicMome 64 lPMax= 8.; // Max tabulated logarithmicMomentum(D) 64 dlnP=(lPMax-lPMin)/nLast;// LogStep in the t 65 dlnP=(lPMax-lPMin)/nLast;// LogStep in the table(D) 65 onlyCS=false;// Flag toCalculateOnlyCS(not S 66 onlyCS=false;// Flag toCalculateOnlyCS(not Si/Bi)(L) 66 lastSIG=0.; // Last calculated cross section 67 lastSIG=0.; // Last calculated cross section (L) 67 lastLP=-10.;// Last log(mom_ofTheIncidentHad 68 lastLP=-10.;// Last log(mom_ofTheIncidentHadron)(L) 68 lastTM=0.; // Last t_maximum 69 lastTM=0.; // Last t_maximum (L) 69 theSS=0.; // The Last sq.slope of 1st difr 70 theSS=0.; // The Last sq.slope of 1st difr.Max(L) 70 theS1=0.; // The Last mantissa of 1st difr 71 theS1=0.; // The Last mantissa of 1st difr.Max(L) 71 theB1=0.; // The Last slope of 1st difruct 72 theB1=0.; // The Last slope of 1st difruct.Max(L) 72 theS2=0.; // The Last mantissa of 2nd difr 73 theS2=0.; // The Last mantissa of 2nd difr.Max(L) 73 theB2=0.; // The Last slope of 2nd difruct 74 theB2=0.; // The Last slope of 2nd difruct.Max(L) 74 theS3=0.; // The Last mantissa of 3d difr. 75 theS3=0.; // The Last mantissa of 3d difr. Max(L) 75 theB3=0.; // The Last slope of 3d difruct. 76 theB3=0.; // The Last slope of 3d difruct. Max(L) 76 theS4=0.; // The Last mantissa of 4th difr 77 theS4=0.; // The Last mantissa of 4th difr.Max(L) 77 theB4=0.; // The Last slope of 4th difruct 78 theB4=0.; // The Last slope of 4th difruct.Max(L) 78 lastTZ=0; // Last atomic number of the tar 79 lastTZ=0; // Last atomic number of the target 79 lastTN=0; // Last # of neutrons in the tar 80 lastTN=0; // Last # of neutrons in the target 80 lastPIN=0.; // Last initialized max momentum 81 lastPIN=0.; // Last initialized max momentum 81 lastCST=0; // Elastic cross-section table 82 lastCST=0; // Elastic cross-section table 82 lastPAR=0; // Parameters for FunctionalCalc 83 lastPAR=0; // Parameters for FunctionalCalculation 83 lastSST=0; // E-dep of sq.slope of the 1st 84 lastSST=0; // E-dep of sq.slope of the 1st dif.Max 84 lastS1T=0; // E-dep of mantissa of the 1st 85 lastS1T=0; // E-dep of mantissa of the 1st dif.Max 85 lastB1T=0; // E-dep of the slope of the 1st 86 lastB1T=0; // E-dep of the slope of the 1st difMax 86 lastS2T=0; // E-dep of mantissa of the 2nd 87 lastS2T=0; // E-dep of mantissa of the 2nd difrMax 87 lastB2T=0; // E-dep of the slope of the 2nd 88 lastB2T=0; // E-dep of the slope of the 2nd difMax 88 lastS3T=0; // E-dep of mantissa of the 3d d 89 lastS3T=0; // E-dep of mantissa of the 3d difr.Max 89 lastB3T=0; // E-dep of the slope of the 3d 90 lastB3T=0; // E-dep of the slope of the 3d difrMax 90 lastS4T=0; // E-dep of mantissa of the 4th 91 lastS4T=0; // E-dep of mantissa of the 4th difrMax 91 lastB4T=0; // E-dep of the slope of the 4th 92 lastB4T=0; // E-dep of the slope of the 4th difMax 92 lastN=0; // The last N of calculated nucl 93 lastN=0; // The last N of calculated nucleus 93 lastZ=0; // The last Z of calculated nucl 94 lastZ=0; // The last Z of calculated nucleus 94 lastP=0.; // Last used in cross section Mo 95 lastP=0.; // Last used in cross section Momentum 95 lastTH=0.; // Last threshold momentum 96 lastTH=0.; // Last threshold momentum 96 lastCS=0.; // Last value of the Cross Secti 97 lastCS=0.; // Last value of the Cross Section 97 lastI=0; // The last position in the DAMD 98 lastI=0; // The last position in the DAMDB 98 99 99 mProt= G4Proton::Proton()->GetPDGMass()*.0 100 mProt= G4Proton::Proton()->GetPDGMass()*.001; // MeV to GeV 100 mProt2= mProt*mProt; 101 mProt2= mProt*mProt; 101 102 102 103 103 } 104 } 104 105 105 106 106 G4ChipsProtonElasticXS::~G4ChipsProtonElasticX 107 G4ChipsProtonElasticXS::~G4ChipsProtonElasticXS() 107 { 108 { 108 std::vector<G4double*>::iterator pos; 109 std::vector<G4double*>::iterator pos; 109 for (pos=CST.begin(); pos<CST.end(); pos++) 110 for (pos=CST.begin(); pos<CST.end(); pos++) 110 { delete [] *pos; } 111 { delete [] *pos; } 111 CST.clear(); 112 CST.clear(); 112 for (pos=PAR.begin(); pos<PAR.end(); pos++) 113 for (pos=PAR.begin(); pos<PAR.end(); pos++) 113 { delete [] *pos; } 114 { delete [] *pos; } 114 PAR.clear(); 115 PAR.clear(); 115 for (pos=SST.begin(); pos<SST.end(); pos++) 116 for (pos=SST.begin(); pos<SST.end(); pos++) 116 { delete [] *pos; } 117 { delete [] *pos; } 117 SST.clear(); 118 SST.clear(); 118 for (pos=S1T.begin(); pos<S1T.end(); pos++) 119 for (pos=S1T.begin(); pos<S1T.end(); pos++) 119 { delete [] *pos; } 120 { delete [] *pos; } 120 S1T.clear(); 121 S1T.clear(); 121 for (pos=B1T.begin(); pos<B1T.end(); pos++) 122 for (pos=B1T.begin(); pos<B1T.end(); pos++) 122 { delete [] *pos; } 123 { delete [] *pos; } 123 B1T.clear(); 124 B1T.clear(); 124 for (pos=S2T.begin(); pos<S2T.end(); pos++) 125 for (pos=S2T.begin(); pos<S2T.end(); pos++) 125 { delete [] *pos; } 126 { delete [] *pos; } 126 S2T.clear(); 127 S2T.clear(); 127 for (pos=B2T.begin(); pos<B2T.end(); pos++) 128 for (pos=B2T.begin(); pos<B2T.end(); pos++) 128 { delete [] *pos; } 129 { delete [] *pos; } 129 B2T.clear(); 130 B2T.clear(); 130 for (pos=S3T.begin(); pos<S3T.end(); pos++) 131 for (pos=S3T.begin(); pos<S3T.end(); pos++) 131 { delete [] *pos; } 132 { delete [] *pos; } 132 S3T.clear(); 133 S3T.clear(); 133 for (pos=B3T.begin(); pos<B3T.end(); pos++) 134 for (pos=B3T.begin(); pos<B3T.end(); pos++) 134 { delete [] *pos; } 135 { delete [] *pos; } 135 B3T.clear(); 136 B3T.clear(); 136 for (pos=S4T.begin(); pos<S4T.end(); pos++) 137 for (pos=S4T.begin(); pos<S4T.end(); pos++) 137 { delete [] *pos; } 138 { delete [] *pos; } 138 S4T.clear(); 139 S4T.clear(); 139 for (pos=B4T.begin(); pos<B4T.end(); pos++) 140 for (pos=B4T.begin(); pos<B4T.end(); pos++) 140 { delete [] *pos; } 141 { delete [] *pos; } 141 B4T.clear(); 142 B4T.clear(); 142 143 143 } 144 } 144 145 145 void 146 void 146 G4ChipsProtonElasticXS::CrossSectionDescriptio 147 G4ChipsProtonElasticXS::CrossSectionDescription(std::ostream& outFile) const 147 { 148 { 148 outFile << "G4ChipsProtonElasticXS provide 149 outFile << "G4ChipsProtonElasticXS provides the elastic cross\n" 149 << "section for proton nucleus sca 150 << "section for proton nucleus scattering as a function of incident\n" 150 << "momentum. The cross section is 151 << "momentum. The cross section is calculated using M. Kossov's\n" 151 << "CHIPS parameterization of cros 152 << "CHIPS parameterization of cross section data.\n"; 152 } 153 } 153 154 154 G4bool G4ChipsProtonElasticXS::IsIsoApplicable 155 G4bool G4ChipsProtonElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 155 const G4Element*, 156 const G4Element*, 156 const G4Material*) 157 const G4Material*) 157 { 158 { 158 return true; 159 return true; 159 } 160 } 160 161 161 162 162 G4double G4ChipsProtonElasticXS::GetIsoCrossSe 163 G4double G4ChipsProtonElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 163 const G4Isotope*, 164 const G4Isotope*, 164 const G4Element*, 165 const G4Element*, 165 const G4Material*) 166 const G4Material*) 166 { 167 { 167 G4double pMom=Pt->GetTotalMomentum(); 168 G4double pMom=Pt->GetTotalMomentum(); 168 G4int tgN = A - tgZ; 169 G4int tgN = A - tgZ; 169 170 170 return GetChipsCrossSection(pMom, tgZ, tgN, 171 return GetChipsCrossSection(pMom, tgZ, tgN, 2212); 171 } 172 } 172 173 173 174 174 // The main member function giving the collisi 175 // The main member function giving the collision cross section (P is in IU, CS is in mb) 175 // Make pMom in independent units ! (Now it is 176 // Make pMom in independent units ! (Now it is MeV) 176 G4double G4ChipsProtonElasticXS::GetChipsCross 177 G4double G4ChipsProtonElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int) 177 { 178 { 178 179 179 G4double pEn=pMom; 180 G4double pEn=pMom; 180 onlyCS=false; 181 onlyCS=false; 181 182 182 G4bool in=false; // By def 183 G4bool in=false; // By default the isotope must be found in the AMDB 183 lastP = 0.; // New mo 184 lastP = 0.; // New momentum history (nothing to compare with) 184 lastN = tgN; // The la 185 lastN = tgN; // The last N of the calculated nucleus 185 lastZ = tgZ; // The la 186 lastZ = tgZ; // The last Z of the calculated nucleus 186 lastI = (G4int)colN.size(); // Size o << 187 lastI = colN.size(); // Size of the Associative Memory DB in the heap 187 if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 188 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB 188 { // The nu 189 { // The nucleus with projPDG is found in AMDB 189 if(colN[i]==tgN && colZ[i]==tgZ) // Isotop 190 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB 190 { 191 { 191 lastI=i; 192 lastI=i; 192 lastTH =colTH[i]; // Last T 193 lastTH =colTH[i]; // Last THreshold (A-dependent) 193 if(pEn<=lastTH) 194 if(pEn<=lastTH) 194 { 195 { 195 return 0.; // Energy 196 return 0.; // Energy is below the Threshold value 196 } 197 } 197 lastP =colP [i]; // Last M 198 lastP =colP [i]; // Last Momentum (A-dependent) 198 lastCS =colCS[i]; // Last C 199 lastCS =colCS[i]; // Last CrossSect (A-dependent) 199 if(lastP == pMom) // Do not 200 if(lastP == pMom) // Do not recalculate 200 { 201 { 201 CalculateCrossSection(onlyCS,-1,i,2212 202 CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // Update param's only 202 return lastCS*millibarn; // Use th 203 return lastCS*millibarn; // Use theLastCS 203 } 204 } 204 in = true; // This 205 in = true; // This is the case when the isotop is found in DB 205 // Momentum pMom is in IU ! @@ Units 206 // Momentum pMom is in IU ! @@ Units 206 lastCS=CalculateCrossSection(onlyCS,-1,i 207 lastCS=CalculateCrossSection(onlyCS,-1,i,2212,lastZ,lastN,pMom); // read & update 207 if(lastCS<=0. && pEn>lastTH) // Corre 208 if(lastCS<=0. && pEn>lastTH) // Correct the threshold 208 { 209 { 209 lastTH=pEn; 210 lastTH=pEn; 210 } 211 } 211 break; // Go o 212 break; // Go out of the LOOP with found lastI 212 } 213 } 213 } // End of attampt to find the nucleus in D 214 } // End of attampt to find the nucleus in DB 214 if(!in) // This n 215 if(!in) // This nucleus has not been calculated previously 215 { 216 { 216 //!!The slave functions must provide cross 217 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 217 lastCS=CalculateCrossSection(onlyCS,0,last 218 lastCS=CalculateCrossSection(onlyCS,0,lastI,2212,lastZ,lastN,pMom);//calculate&create 218 if(lastCS<=0.) 219 if(lastCS<=0.) 219 { 220 { 220 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 221 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 221 if(pEn>lastTH) 222 if(pEn>lastTH) 222 { 223 { 223 lastTH=pEn; 224 lastTH=pEn; 224 } 225 } 225 } 226 } 226 colN.push_back(tgN); 227 colN.push_back(tgN); 227 colZ.push_back(tgZ); 228 colZ.push_back(tgZ); 228 colP.push_back(pMom); 229 colP.push_back(pMom); 229 colTH.push_back(lastTH); 230 colTH.push_back(lastTH); 230 colCS.push_back(lastCS); 231 colCS.push_back(lastCS); 231 return lastCS*millibarn; 232 return lastCS*millibarn; 232 } // End of creation of the new set of param 233 } // End of creation of the new set of parameters 233 else 234 else 234 { 235 { 235 colP[lastI]=pMom; 236 colP[lastI]=pMom; 236 colCS[lastI]=lastCS; 237 colCS[lastI]=lastCS; 237 } 238 } 238 return lastCS*millibarn; 239 return lastCS*millibarn; 239 } 240 } 240 241 241 // Calculation of total elastic cross section 242 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?) 242 // F=0 - create AMDB, F=-1 - read&update AMDB, 243 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB) 243 G4double G4ChipsProtonElasticXS::CalculateCros 244 G4double G4ChipsProtonElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I, 244 G 245 G4int PDG, G4int tgZ, G4int tgN, G4double pIU) 245 { 246 { 246 G4double pMom=pIU/GeV; // All 247 G4double pMom=pIU/GeV; // All calculations are in GeV 247 onlyCS=CS; // Fla 248 onlyCS=CS; // Flag to calculate only CS (not Si/Bi) 248 lastLP=std::log(pMom); // Mak 249 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation 249 if(F) // Thi 250 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE 250 { 251 { 251 if(F<0) // the 252 if(F<0) // the AMDB must be loded 252 { 253 { 253 lastPIN = PIN[I]; // Max 254 lastPIN = PIN[I]; // Max log(P) initialised for this table set 254 lastPAR = PAR[I]; // Poi 255 lastPAR = PAR[I]; // Pointer to the parameter set 255 lastCST = CST[I]; // Poi 256 lastCST = CST[I]; // Pointer to the total sross-section table 256 lastSST = SST[I]; // Poi 257 lastSST = SST[I]; // Pointer to the first squared slope 257 lastS1T = S1T[I]; // Poi 258 lastS1T = S1T[I]; // Pointer to the first mantissa 258 lastB1T = B1T[I]; // Poi 259 lastB1T = B1T[I]; // Pointer to the first slope 259 lastS2T = S2T[I]; // Poi 260 lastS2T = S2T[I]; // Pointer to the second mantissa 260 lastB2T = B2T[I]; // Poi 261 lastB2T = B2T[I]; // Pointer to the second slope 261 lastS3T = S3T[I]; // Poi 262 lastS3T = S3T[I]; // Pointer to the third mantissa 262 lastB3T = B3T[I]; // Poi 263 lastB3T = B3T[I]; // Pointer to the rhird slope 263 lastS4T = S4T[I]; // Poi 264 lastS4T = S4T[I]; // Pointer to the 4-th mantissa 264 lastB4T = B4T[I]; // Poi 265 lastB4T = B4T[I]; // Pointer to the 4-th slope 265 } 266 } 266 if(lastLP>lastPIN && lastLP<lPMax) 267 if(lastLP>lastPIN && lastLP<lPMax) 267 { 268 { 268 lastPIN=GetPTables(lastLP,lastPIN,PDG,tg 269 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs 269 PIN[I]=lastPIN; // Rem 270 PIN[I]=lastPIN; // Remember the new P-Limit of the tables 270 } 271 } 271 } 272 } 272 else // Thi 273 else // This isotope wasn't initialized => CREATE 273 { 274 { 274 lastPAR = new G4double[nPoints]; // All 275 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function 275 lastPAR[nLast]=0; // Ini 276 lastPAR[nLast]=0; // Initialization for VALGRIND 276 lastCST = new G4double[nPoints]; // All 277 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function 277 lastSST = new G4double[nPoints]; // All 278 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope 278 lastS1T = new G4double[nPoints]; // All 279 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa 279 lastB1T = new G4double[nPoints]; // All 280 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope 280 lastS2T = new G4double[nPoints]; // All 281 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa 281 lastB2T = new G4double[nPoints]; // All 282 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope 282 lastS3T = new G4double[nPoints]; // All 283 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa 283 lastB3T = new G4double[nPoints]; // All 284 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope 284 lastS4T = new G4double[nPoints]; // All 285 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa 285 lastB4T = new G4double[nPoints]; // All 286 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope 286 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ, 287 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables 287 PIN.push_back(lastPIN); // Fil 288 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB 288 PAR.push_back(lastPAR); // Fil 289 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB 289 CST.push_back(lastCST); // Fil 290 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB 290 SST.push_back(lastSST); // Fil 291 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB 291 S1T.push_back(lastS1T); // Fil 292 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB 292 B1T.push_back(lastB1T); // Fil 293 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB 293 S2T.push_back(lastS2T); // Fil 294 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB 294 B2T.push_back(lastB2T); // Fil 295 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB 295 S3T.push_back(lastS3T); // Fil 296 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB 296 B3T.push_back(lastB3T); // Fil 297 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB 297 S4T.push_back(lastS4T); // Fil 298 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB 298 B4T.push_back(lastB4T); // Fil 299 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB 299 } // End of creation/update of the new set o 300 } // End of creation/update of the new set of parameters and tables 300 // =--------= NOW Update (if necessary) and 301 // =--------= NOW Update (if necessary) and Calculate the Cross Section =------------= 301 if(lastLP>lastPIN && lastLP<lPMax) 302 if(lastLP>lastPIN && lastLP<lPMax) 302 { 303 { 303 lastPIN = GetPTables(lastLP,lastPIN,PDG,tg 304 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN); 304 } 305 } 305 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p 306 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2) 306 if(lastLP>lPMin && lastLP<=lastPIN) // Lin 307 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables 307 { 308 { 308 if(lastLP==lastPIN) 309 if(lastLP==lastPIN) 309 { 310 { 310 G4double shift=(lastLP-lPMin)/dlnP+.0000 311 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin 311 G4int blast=static_cast<int>(shift); 312 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0) 312 if(blast<0 || blast>=nLast) G4cout<<"G4Q 313 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl; 313 lastSIG = lastCST[blast]; 314 lastSIG = lastCST[blast]; 314 if(!onlyCS) // Ski 315 if(!onlyCS) // Skip the differential cross-section parameters 315 { 316 { 316 theSS = lastSST[blast]; 317 theSS = lastSST[blast]; 317 theS1 = lastS1T[blast]; 318 theS1 = lastS1T[blast]; 318 theB1 = lastB1T[blast]; 319 theB1 = lastB1T[blast]; 319 theS2 = lastS2T[blast]; 320 theS2 = lastS2T[blast]; 320 theB2 = lastB2T[blast]; 321 theB2 = lastB2T[blast]; 321 theS3 = lastS3T[blast]; 322 theS3 = lastS3T[blast]; 322 theB3 = lastB3T[blast]; 323 theB3 = lastB3T[blast]; 323 theS4 = lastS4T[blast]; 324 theS4 = lastS4T[blast]; 324 theB4 = lastB4T[blast]; 325 theB4 = lastB4T[blast]; 325 } 326 } 326 } 327 } 327 else 328 else 328 { 329 { 329 G4double shift=(lastLP-lPMin)/dlnP; 330 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table 330 G4int blast=static_cast<int>(shift); 331 G4int blast=static_cast<int>(shift); // the lower bin number 331 if(blast<0) blast=0; 332 if(blast<0) blast=0; 332 if(blast>=nLast) blast=nLast-1; 333 if(blast>=nLast) blast=nLast-1; // low edge of the last bin 333 shift-=blast; 334 shift-=blast; // step inside the unit bin 334 G4int lastL=blast+1; 335 G4int lastL=blast+1; // the upper bin number 335 G4double SIGL=lastCST[blast]; 336 G4double SIGL=lastCST[blast]; // the basic value of the cross-section 336 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL 337 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section 337 if(!onlyCS) // Ski 338 if(!onlyCS) // Skip the differential cross-section parameters 338 { 339 { 339 G4double SSTL=lastSST[blast]; 340 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope 340 theSS=SSTL+shift*(lastSST[lastL]-SSTL) 341 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope 341 G4double S1TL=lastS1T[blast]; 342 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa 342 theS1=S1TL+shift*(lastS1T[lastL]-S1TL) 343 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa 343 G4double B1TL=lastB1T[blast]; 344 G4double B1TL=lastB1T[blast]; // the low bin of the first slope 344 theB1=B1TL+shift*(lastB1T[lastL]-B1TL) 345 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope 345 G4double S2TL=lastS2T[blast]; 346 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa 346 theS2=S2TL+shift*(lastS2T[lastL]-S2TL) 347 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa 347 G4double B2TL=lastB2T[blast]; 348 G4double B2TL=lastB2T[blast]; // the low bin of the second slope 348 theB2=B2TL+shift*(lastB2T[lastL]-B2TL) 349 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope 349 G4double S3TL=lastS3T[blast]; 350 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa 350 theS3=S3TL+shift*(lastS3T[lastL]-S3TL) 351 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa 351 G4double B3TL=lastB3T[blast]; 352 G4double B3TL=lastB3T[blast]; // the low bin of the third slope 352 theB3=B3TL+shift*(lastB3T[lastL]-B3TL) 353 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope 353 G4double S4TL=lastS4T[blast]; 354 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa 354 theS4=S4TL+shift*(lastS4T[lastL]-S4TL) 355 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa 355 G4double B4TL=lastB4T[blast]; 356 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope 356 theB4=B4TL+shift*(lastB4T[lastL]-B4TL) 357 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope 357 } 358 } 358 } 359 } 359 } 360 } 360 else lastSIG=GetTabValues(lastLP, PDG, tgZ, 361 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table 361 if(lastSIG<0.) lastSIG = 0.; 362 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added 362 return lastSIG; 363 return lastSIG; 363 } 364 } 364 365 365 // It has parameter sets for all tZ/tN/PDG, us 366 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated 366 G4double G4ChipsProtonElasticXS::GetPTables(G4 367 G4double G4ChipsProtonElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG, 367 368 G4int tgZ, G4int tgN) 368 { 369 { 369 // @@ At present all nA==pA ---------> Each 370 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters 370 static const G4double pwd=2727; 371 static const G4double pwd=2727; 371 const G4int n_npel=24; // #of 372 const G4int n_npel=24; // #of parameters for np-elastic (<nPoints=128) 372 const G4int n_ppel=32; // #of 373 const G4int n_ppel=32; // #of parameters for pp-elastic (<nPoints=128) 373 // -0- -1- -2- -3- -4- 374 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10--11--12--13- -14- 374 G4double np_el[n_npel]={12.,.05,.0001,5.,.35 375 G4double np_el[n_npel]={12.,.05,.0001,5.,.35,6.75,.14,19.,.6,6.75,.14,13.,.14,.6,.00013, 375 75.,.001,7.2,4.32,.0 376 75.,.001,7.2,4.32,.012,2.5,0.0,12.,.34}; 376 // -15--16--17- -18- -1 377 // -15--16--17- -18- -19--20--21--22--23- 377 // -0- -1- -2- -3- 378 // -0- -1- -2- -3- -4- -5- -6- -7- -8--9--10--11--12--13- 378 G4double pp_el[n_ppel]={2.865,18.9,.6461,3., 379 G4double pp_el[n_ppel]={2.865,18.9,.6461,3.,9.,.425,.4276,.0022,5.,74.,3.,3.4,.2,.17, 379 .001,8.,.055,3.64,5. 380 .001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,5.e-5,1.e10, 380 8.5e8,1.e10,1.1,3.4e 381 8.5e8,1.e10,1.1,3.4e6,6.8e6,0.}; 381 // -14--15- -16- -17- - 382 // -14--15- -16- -17- -18- -19- -20- -21- -22- -23- -24- -25- 382 // -26- -27- -28- -29 383 // -26- -27- -28- -29- -30- -31- 383 if(PDG==2212) 384 if(PDG==2212) 384 { 385 { 385 // -- Total pp elastic cross section cs & 386 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) -- 386 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l 387 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom| 387 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d 388 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4); 388 // par(0) par(7) par(1) par(2) 389 // par(0) par(7) par(1) par(2) par(4) par(5) par(6) 389 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4 390 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp), 390 // par(8) par(9) par(10) par(11 391 // par(8) par(9) par(10) par(11) par(12)par(13) par(14) 391 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40 392 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp); 392 // par(15) par(16) par(17) par(18) pa 393 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23) 393 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); 394 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0. 394 // par(24) par(25) par(26) par(27) p 395 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31) 395 // 396 // 396 if(lastPAR[nLast]!=pwd) // A unique flag t 397 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition 397 { 398 { 398 if ( tgZ == 0 && tgN == 1 ) 399 if ( tgZ == 0 && tgN == 1 ) 399 { 400 { 400 for (G4int ip=0; ip<n_npel; ip++) last 401 for (G4int ip=0; ip<n_npel; ip++) lastPAR[ip]=np_el[ip]; // pn 401 402 402 } 403 } 403 else if ( tgZ == 1 && tgN == 0 ) 404 else if ( tgZ == 1 && tgN == 0 ) 404 { 405 { 405 for (G4int ip=0; ip<n_ppel; ip++) last 406 for (G4int ip=0; ip<n_ppel; ip++) lastPAR[ip]=pp_el[ip]; // pp 406 } 407 } 407 else 408 else 408 { 409 { 409 G4double a=tgZ+tgN; 410 G4double a=tgZ+tgN; 410 G4double sa=std::sqrt(a); 411 G4double sa=std::sqrt(a); 411 G4double ssa=std::sqrt(sa); 412 G4double ssa=std::sqrt(sa); 412 G4double asa=a*sa; 413 G4double asa=a*sa; 413 G4double a2=a*a; 414 G4double a2=a*a; 414 G4double a3=a2*a; 415 G4double a3=a2*a; 415 G4double a4=a3*a; 416 G4double a4=a3*a; 416 G4double a5=a4*a; 417 G4double a5=a4*a; 417 G4double a6=a4*a2; 418 G4double a6=a4*a2; 418 G4double a7=a6*a; 419 G4double a7=a6*a; 419 G4double a8=a7*a; 420 G4double a8=a7*a; 420 G4double a9=a8*a; 421 G4double a9=a8*a; 421 G4double a10=a5*a5; 422 G4double a10=a5*a5; 422 G4double a12=a6*a6; 423 G4double a12=a6*a6; 423 G4double a14=a7*a7; 424 G4double a14=a7*a7; 424 G4double a16=a8*a8; 425 G4double a16=a8*a8; 425 G4double a17=a16*a; 426 G4double a17=a16*a; 426 G4double a20=a16*a4; 427 G4double a20=a16*a4; 427 G4double a32=a16*a16; 428 G4double a32=a16*a16; 428 // Reaction cross-section parameters ( 429 // Reaction cross-section parameters (pel=peh_fit.f) 429 lastPAR[0]=5./(1.+22./asa); 430 lastPAR[0]=5./(1.+22./asa); // p1 430 lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3. 431 lastPAR[1]=4.8*std::pow(a,1.14)/(1.+3.6/a3); // p2 431 lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/( 432 lastPAR[2]=1./(1.+4.E-3*a4)+2.E-6*a3/(1.+1.3E-6*a3); // p3 432 lastPAR[3]=1.3*a; 433 lastPAR[3]=1.3*a; // p4 433 lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4); 434 lastPAR[4]=3.E-8*a3/(1.+4.E-7*a4); // p5 434 lastPAR[5]=.07*asa/(1.+.009*a2); 435 lastPAR[5]=.07*asa/(1.+.009*a2); // p6 435 lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2. 436 lastPAR[6]=(3.+3.E-16*a20)/(1.+a20*(2.E-16/a+3.E-19*a)); // p7 (11) 436 lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E 437 lastPAR[7]=(5.E-9*a4*sa+.27/a)/(1.+5.E16/a20)/(1.+6.E-9*a4)+.015/a2; // p8 437 lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a1 438 lastPAR[8]=(.001*a+.07/a)/(1.+5.E13/a16+5.E-7*a3)+.0003/sa; // p9 (10) 438 // @@ the differential cross-section i 439 // @@ the differential cross-section is parameterized separately for A>6 & A<7 439 if(a<6.5) 440 if(a<6.5) 440 { 441 { 441 G4double a28=a16*a12; 442 G4double a28=a16*a12; 442 // The main pre-exponent (pel_s 443 // The main pre-exponent (pel_sg) 443 lastPAR[ 9]=4000*a; 444 lastPAR[ 9]=4000*a; // p1 444 lastPAR[10]=1.2e7*a8+380*a17; 445 lastPAR[10]=1.2e7*a8+380*a17; // p2 445 lastPAR[11]=.7/(1.+4.e-12*a16); 446 lastPAR[11]=.7/(1.+4.e-12*a16); // p3 446 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); 447 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4 447 lastPAR[13]=.28*a; 448 lastPAR[13]=.28*a; // p5 448 lastPAR[14]=1.2*a2+2.3; 449 lastPAR[14]=1.2*a2+2.3; // p6 449 lastPAR[15]=3.8/a; 450 lastPAR[15]=3.8/a; // p7 450 // The main slope (pel_s 451 // The main slope (pel_sl) 451 lastPAR[16]=.01/(1.+.0024*a5); 452 lastPAR[16]=.01/(1.+.0024*a5); // p1 452 lastPAR[17]=.2*a; 453 lastPAR[17]=.2*a; // p2 453 lastPAR[18]=9.e-7/(1.+.035*a5); 454 lastPAR[18]=9.e-7/(1.+.035*a5); // p3 454 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1 455 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4 455 // The main quadratic (pel_s 456 // The main quadratic (pel_sh) 456 lastPAR[20]=2.25*a3; 457 lastPAR[20]=2.25*a3; // p1 457 lastPAR[21]=18.; 458 lastPAR[21]=18.; // p2 458 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7) 459 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3 459 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1 460 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4 460 // The 1st max pre-exponent (pel_q 461 // The 1st max pre-exponent (pel_qq) 461 lastPAR[24]=1.e5/(a8+2.5e12/a16); 462 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1 462 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28 463 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2 463 lastPAR[26]=.0006*a3; 464 lastPAR[26]=.0006*a3; // p3 464 // The 1st max slope (pel_q 465 // The 1st max slope (pel_qs) 465 lastPAR[27]=10.+4.e-8*a12*a; 466 lastPAR[27]=10.+4.e-8*a12*a; // p1 466 lastPAR[28]=.114; 467 lastPAR[28]=.114; // p2 467 lastPAR[29]=.003; 468 lastPAR[29]=.003; // p3 468 lastPAR[30]=2.e-23; 469 lastPAR[30]=2.e-23; // p4 469 // The effective pre-exponent (pel_s 470 // The effective pre-exponent (pel_ss) 470 lastPAR[31]=1./(1.+.0001*a8); 471 lastPAR[31]=1./(1.+.0001*a8); // p1 471 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); 472 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2 472 lastPAR[33]=.03; 473 lastPAR[33]=.03; // p3 473 // The effective slope (pel_s 474 // The effective slope (pel_sb) 474 lastPAR[34]=a/2; 475 lastPAR[34]=a/2; // p1 475 lastPAR[35]=2.e-7*a4; 476 lastPAR[35]=2.e-7*a4; // p2 476 lastPAR[36]=4.; 477 lastPAR[36]=4.; // p3 477 lastPAR[37]=64./a3; 478 lastPAR[37]=64./a3; // p4 478 // The gloria pre-exponent (pel_u 479 // The gloria pre-exponent (pel_us) 479 lastPAR[38]=1.e8*std::exp(.32*asa); 480 lastPAR[38]=1.e8*std::exp(.32*asa); // p1 480 lastPAR[39]=20.*std::exp(.45*asa); 481 lastPAR[39]=20.*std::exp(.45*asa); // p2 481 lastPAR[40]=7.e3+2.4e6/a5; 482 lastPAR[40]=7.e3+2.4e6/a5; // p3 482 lastPAR[41]=2.5e5*std::exp(.085*a3); 483 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4 483 lastPAR[42]=2.5*a; 484 lastPAR[42]=2.5*a; // p5 484 // The gloria slope (pel_u 485 // The gloria slope (pel_ub) 485 lastPAR[43]=920.+.03*a8*a3; 486 lastPAR[43]=920.+.03*a8*a3; // p1 486 lastPAR[44]=93.+.0023*a12; 487 lastPAR[44]=93.+.0023*a12; // p2 487 } 488 } 488 else 489 else 489 { 490 { 490 G4double p1a10=2.2e-28*a10; 491 G4double p1a10=2.2e-28*a10; 491 G4double r4a16=6.e14/a16; 492 G4double r4a16=6.e14/a16; 492 G4double s4a16=r4a16*r4a16; 493 G4double s4a16=r4a16*r4a16; 493 // a24 494 // a24 494 // a36 495 // a36 495 // The main pre-exponent (peh_s 496 // The main pre-exponent (peh_sg) 496 lastPAR[ 9]=4.5*std::pow(a,1.15); 497 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1 497 lastPAR[10]=.06*std::pow(a,.6); 498 lastPAR[10]=.06*std::pow(a,.6); // p2 498 lastPAR[11]=.6*a/(1.+2.e15/a16); 499 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3 499 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3 500 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4 500 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4 501 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5 501 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1. 502 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6 502 // The main slope (peh_s 503 // The main slope (peh_sl) 503 lastPAR[15]=400./a12+2.e-22*a9; 504 lastPAR[15]=400./a12+2.e-22*a9; // p1 504 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14 505 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2 505 lastPAR[17]=1000./a2+9.5*sa*ssa; 506 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3 506 lastPAR[18]=4.e-6*a*asa+1.e11/a16; 507 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4 507 lastPAR[19]=(120./a+.002*a2)/(1.+2.e 508 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5 508 lastPAR[20]=9.+100./a; 509 lastPAR[20]=9.+100./a; // p6 509 // The main quadratic (peh_s 510 // The main quadratic (peh_sh) 510 lastPAR[21]=.002*a3+3.e7/a6; 511 lastPAR[21]=.002*a3+3.e7/a6; // p1 511 lastPAR[22]=7.e-15*a4*asa; 512 lastPAR[22]=7.e-15*a4*asa; // p2 512 lastPAR[23]=9000./a4; 513 lastPAR[23]=9000./a4; // p3 513 // The 1st max pre-exponent (peh_q 514 // The 1st max pre-exponent (peh_qq) 514 lastPAR[24]=.0011*asa/(1.+3.e34/a32/ 515 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1 515 lastPAR[25]=1.e-5*a2+2.e14/a16; 516 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2 516 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1 517 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3 517 lastPAR[27]=.016*asa/(1.+5.e16/a16); 518 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4 518 // The 1st max slope (peh_q 519 // The 1st max slope (peh_qs) 519 lastPAR[28]=.002*a4/(1.+7.e7/std::po 520 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1 520 lastPAR[29]=2.e6/a6+7.2/std::pow(a,. 521 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2 521 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8) 522 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3 522 lastPAR[31]=100./asa; 523 lastPAR[31]=100./asa; // p4 523 // The 2nd max pre-exponent (peh_s 524 // The 2nd max pre-exponent (peh_ss) 524 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/ 525 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1 525 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); 526 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2 526 lastPAR[34]=1.3+3.e5/a4; 527 lastPAR[34]=1.3+3.e5/a4; // p3 527 lastPAR[35]=500./(a2+50.)+3; 528 lastPAR[35]=500./(a2+50.)+3; // p4 528 lastPAR[36]=1.e-9/a+s4a16*s4a16; 529 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5 529 // The 2nd max slope (peh_s 530 // The 2nd max slope (peh_sb) 530 lastPAR[37]=.4*asa+3.e-9*a6; 531 lastPAR[37]=.4*asa+3.e-9*a6; // p1 531 lastPAR[38]=.0005*a5; 532 lastPAR[38]=.0005*a5; // p2 532 lastPAR[39]=.002*a5; 533 lastPAR[39]=.002*a5; // p3 533 lastPAR[40]=10.; 534 lastPAR[40]=10.; // p4 534 // The effective pre-exponent (peh_u 535 // The effective pre-exponent (peh_us) 535 lastPAR[41]=.05+.005*a; 536 lastPAR[41]=.05+.005*a; // p1 536 lastPAR[42]=7.e-8/sa; 537 lastPAR[42]=7.e-8/sa; // p2 537 lastPAR[43]=.8*sa; 538 lastPAR[43]=.8*sa; // p3 538 lastPAR[44]=.02*sa; 539 lastPAR[44]=.02*sa; // p4 539 lastPAR[45]=1.e8/a3; 540 lastPAR[45]=1.e8/a3; // p5 540 lastPAR[46]=3.e32/(a32+1.e32); 541 lastPAR[46]=3.e32/(a32+1.e32); // p6 541 // The effective slope (peh_u 542 // The effective slope (peh_ub) 542 lastPAR[47]=24.; 543 lastPAR[47]=24.; // p1 543 lastPAR[48]=20./sa; 544 lastPAR[48]=20./sa; // p2 544 lastPAR[49]=7.e3*a/(sa+1.); 545 lastPAR[49]=7.e3*a/(sa+1.); // p3 545 lastPAR[50]=900.*sa/(1.+500./a3); 546 lastPAR[50]=900.*sa/(1.+500./a3); // p4 546 } 547 } 547 // Parameter for lowEnergyNeutrons 548 // Parameter for lowEnergyNeutrons 548 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18* 549 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16); 549 } 550 } 550 lastPAR[nLast]=pwd; 551 lastPAR[nLast]=pwd; 551 // and initialize the zero element of th 552 // and initialize the zero element of the table 552 G4double lp=lPMin; 553 G4double lp=lPMin; // ln(momentum) 553 G4bool memCS=onlyCS; 554 G4bool memCS=onlyCS; // ?? 554 onlyCS=false; 555 onlyCS=false; 555 lastCST[0]=GetTabValues(lp, PDG, tgZ, tg 556 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables 556 onlyCS=memCS; 557 onlyCS=memCS; 557 lastSST[0]=theSS; 558 lastSST[0]=theSS; 558 lastS1T[0]=theS1; 559 lastS1T[0]=theS1; 559 lastB1T[0]=theB1; 560 lastB1T[0]=theB1; 560 lastS2T[0]=theS2; 561 lastS2T[0]=theS2; 561 lastB2T[0]=theB2; 562 lastB2T[0]=theB2; 562 lastS3T[0]=theS3; 563 lastS3T[0]=theS3; 563 lastB3T[0]=theB3; 564 lastB3T[0]=theB3; 564 lastS4T[0]=theS4; 565 lastS4T[0]=theS4; 565 lastB4T[0]=theB4; 566 lastB4T[0]=theB4; 566 } 567 } 567 if(LP>ILP) 568 if(LP>ILP) 568 { 569 { 569 G4int ini = static_cast<int>((ILP-lPMin+ 570 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this 570 if(ini<0) ini=0; 571 if(ini<0) ini=0; 571 if(ini<nPoints) 572 if(ini<nPoints) 572 { 573 { 573 G4int fin = static_cast<int>((LP-lPMin 574 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization 574 if(fin>=nPoints) fin=nLast; 575 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization 575 if(fin>=ini) 576 if(fin>=ini) 576 { 577 { 577 G4double lp=0.; 578 G4double lp=0.; 578 for(G4int ip=ini; ip<=fin; ip++) 579 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3 579 { 580 { 580 lp=lPMin+ip*dlnP; 581 lp=lPMin+ip*dlnP; // ln(momentum) 581 G4bool memCS=onlyCS; 582 G4bool memCS=onlyCS; 582 onlyCS=false; 583 onlyCS=false; 583 lastCST[ip]=GetTabValues(lp, PDG, 584 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS) 584 onlyCS=memCS; 585 onlyCS=memCS; 585 lastSST[ip]=theSS; 586 lastSST[ip]=theSS; 586 lastS1T[ip]=theS1; 587 lastS1T[ip]=theS1; 587 lastB1T[ip]=theB1; 588 lastB1T[ip]=theB1; 588 lastS2T[ip]=theS2; 589 lastS2T[ip]=theS2; 589 lastB2T[ip]=theB2; 590 lastB2T[ip]=theB2; 590 lastS3T[ip]=theS3; 591 lastS3T[ip]=theS3; 591 lastB3T[ip]=theB3; 592 lastB3T[ip]=theB3; 592 lastS4T[ip]=theS4; 593 lastS4T[ip]=theS4; 593 lastB4T[ip]=theB4; 594 lastB4T[ip]=theB4; 594 } 595 } 595 return lp; 596 return lp; 596 } 597 } 597 else G4cout<<"*Warning*G4ChipsProtonEl 598 else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z=" 598 <<tgZ<<", N="<<tgN<<", i="< 599 <<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP<<" > ILP=" 599 <<ILP<<" nothing is done!"< 600 <<ILP<<" nothing is done!"<<G4endl; 600 } 601 } 601 else G4cout<<"*Warning*G4ChipsProtonElas 602 else G4cout<<"*Warning*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z=" 602 <<tgZ<<", N="<<tgN<<", i="<<i 603 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP 603 <<" > ILP="<<ILP<<", lPMax="< 604 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl; 604 } 605 } 605 } 606 } 606 else 607 else 607 { 608 { 608 // G4cout<<"*Error*G4ChipsProtonElasticXS: 609 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ 609 // <<", N="<<tgN<<", while it is def 610 // <<", N="<<tgN<<", while it is defined only for PDG=2212"<<G4endl; 610 // throw G4QException("G4ChipsProtonElasti 611 // throw G4QException("G4ChipsProtonElasticXS::GetPTables: only pA're implemented"); 611 G4ExceptionDescription ed; 612 G4ExceptionDescription ed; 612 ed << "PDG = " << PDG << ", Z = " << tgZ < 613 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 613 << ", while it is defined only for PDG= 614 << ", while it is defined only for PDG=2212 (p)" << G4endl; 614 G4Exception("G4ChipsProtonElasticXS::GetPT 615 G4Exception("G4ChipsProtonElasticXS::GetPTables()", "HAD_CHPS_0000", 615 FatalException, ed); 616 FatalException, ed); 616 } 617 } 617 return ILP; 618 return ILP; 618 } 619 } 619 620 620 // Returns Q2=-t in independent units (MeV^2) 621 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV) 621 G4double G4ChipsProtonElasticXS::GetExchangeT( 622 G4double G4ChipsProtonElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG) 622 { 623 { 623 static const G4double GeVSQ=gigaelectronvolt 624 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 624 static const G4double third=1./3.; 625 static const G4double third=1./3.; 625 static const G4double fifth=1./5.; 626 static const G4double fifth=1./5.; 626 static const G4double sevth=1./7.; 627 static const G4double sevth=1./7.; 627 if(PDG!=2212) G4cout<<"**Warning*G4ChipsProt 628 if(PDG!=2212) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExT:PDG="<<PDG<<G4endl; 628 if(onlyCS) G4cout<<"**Warning*G4ChipsProtonE 629 if(onlyCS) G4cout<<"**Warning*G4ChipsProtonElasticXS::GetExchanT:onlyCS=1"<<G4endl; 629 if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor 630 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV) 630 G4double q2=0.; 631 G4double q2=0.; 631 if(tgZ==1 && tgN==0) // ===> 632 if(tgZ==1 && tgN==0) // ===> p+p=p+p 632 { 633 { 633 G4double E1=lastTM*theB1; 634 G4double E1=lastTM*theB1; 634 G4double R1=(1.-std::exp(-E1)); 635 G4double R1=(1.-std::exp(-E1)); 635 G4double E2=lastTM*theB2; 636 G4double E2=lastTM*theB2; 636 G4double R2=(1.-std::exp(-E2*E2*E2)); 637 G4double R2=(1.-std::exp(-E2*E2*E2)); 637 G4double E3=lastTM*theB3; 638 G4double E3=lastTM*theB3; 638 G4double R3=(1.-std::exp(-E3)); 639 G4double R3=(1.-std::exp(-E3)); 639 G4double I1=R1*theS1/theB1; 640 G4double I1=R1*theS1/theB1; 640 G4double I2=R2*theS2; 641 G4double I2=R2*theS2; 641 G4double I3=R3*theS3; 642 G4double I3=R3*theS3; 642 G4double I12=I1+I2; 643 G4double I12=I1+I2; 643 G4double rand=(I12+I3)*G4UniformRand(); 644 G4double rand=(I12+I3)*G4UniformRand(); 644 if (rand<I1 ) 645 if (rand<I1 ) 645 { 646 { 646 G4double ran=R1*G4UniformRand(); 647 G4double ran=R1*G4UniformRand(); 647 if(ran>1.) ran=1.; 648 if(ran>1.) ran=1.; 648 q2=-std::log(1.-ran)/theB1; 649 q2=-std::log(1.-ran)/theB1; 649 } 650 } 650 else if(rand<I12) 651 else if(rand<I12) 651 { 652 { 652 G4double ran=R2*G4UniformRand(); 653 G4double ran=R2*G4UniformRand(); 653 if(ran>1.) ran=1.; 654 if(ran>1.) ran=1.; 654 q2=-std::log(1.-ran); 655 q2=-std::log(1.-ran); 655 if(q2<0.) q2=0.; 656 if(q2<0.) q2=0.; 656 q2=std::pow(q2,third)/theB2; 657 q2=std::pow(q2,third)/theB2; 657 } 658 } 658 else 659 else 659 { 660 { 660 G4double ran=R3*G4UniformRand(); 661 G4double ran=R3*G4UniformRand(); 661 if(ran>1.) ran=1.; 662 if(ran>1.) ran=1.; 662 q2=-std::log(1.-ran)/theB3; 663 q2=-std::log(1.-ran)/theB3; 663 } 664 } 664 } 665 } 665 else 666 else 666 { 667 { 667 G4double a=tgZ+tgN; 668 G4double a=tgZ+tgN; 668 G4double E1=lastTM*(theB1+lastTM*theSS); 669 G4double E1=lastTM*(theB1+lastTM*theSS); 669 G4double R1=(1.-std::exp(-E1)); 670 G4double R1=(1.-std::exp(-E1)); 670 G4double tss=theSS+theSS; // for future so 671 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check) 671 G4double tm2=lastTM*lastTM; 672 G4double tm2=lastTM*lastTM; 672 G4double E2=lastTM*tm2*theB2; 673 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st) 673 if(a>6.5)E2*=tm2; 674 if(a>6.5)E2*=tm2; // for heavy nuclei 674 G4double R2=(1.-std::exp(-E2)); 675 G4double R2=(1.-std::exp(-E2)); 675 G4double E3=lastTM*theB3; 676 G4double E3=lastTM*theB3; 676 if(a>6.5)E3*=tm2*tm2*tm2; 677 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA 677 G4double R3=(1.-std::exp(-E3)); 678 G4double R3=(1.-std::exp(-E3)); 678 G4double E4=lastTM*theB4; 679 G4double E4=lastTM*theB4; 679 G4double R4=(1.-std::exp(-E4)); 680 G4double R4=(1.-std::exp(-E4)); 680 G4double I1=R1*theS1; 681 G4double I1=R1*theS1; 681 G4double I2=R2*theS2; 682 G4double I2=R2*theS2; 682 G4double I3=R3*theS3; 683 G4double I3=R3*theS3; 683 G4double I4=R4*theS4; 684 G4double I4=R4*theS4; 684 G4double I12=I1+I2; 685 G4double I12=I1+I2; 685 G4double I13=I12+I3; 686 G4double I13=I12+I3; 686 G4double rand=(I13+I4)*G4UniformRand(); 687 G4double rand=(I13+I4)*G4UniformRand(); 687 if(rand<I1) 688 if(rand<I1) 688 { 689 { 689 G4double ran=R1*G4UniformRand(); 690 G4double ran=R1*G4UniformRand(); 690 if(ran>1.) ran=1.; 691 if(ran>1.) ran=1.; 691 q2=-std::log(1.-ran)/theB1; 692 q2=-std::log(1.-ran)/theB1; 692 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t 693 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss; 693 } 694 } 694 else if(rand<I12) 695 else if(rand<I12) 695 { 696 { 696 G4double ran=R2*G4UniformRand(); 697 G4double ran=R2*G4UniformRand(); 697 if(ran>1.) ran=1.; 698 if(ran>1.) ran=1.; 698 q2=-std::log(1.-ran)/theB2; 699 q2=-std::log(1.-ran)/theB2; 699 if(q2<0.) q2=0.; 700 if(q2<0.) q2=0.; 700 if(a<6.5) q2=std::pow(q2,third); 701 if(a<6.5) q2=std::pow(q2,third); 701 else q2=std::pow(q2,fifth); 702 else q2=std::pow(q2,fifth); 702 } 703 } 703 else if(rand<I13) 704 else if(rand<I13) 704 { 705 { 705 G4double ran=R3*G4UniformRand(); 706 G4double ran=R3*G4UniformRand(); 706 if(ran>1.) ran=1.; 707 if(ran>1.) ran=1.; 707 q2=-std::log(1.-ran)/theB3; 708 q2=-std::log(1.-ran)/theB3; 708 if(q2<0.) q2=0.; 709 if(q2<0.) q2=0.; 709 if(a>6.5) q2=std::pow(q2,sevth); 710 if(a>6.5) q2=std::pow(q2,sevth); 710 } 711 } 711 else 712 else 712 { 713 { 713 G4double ran=R4*G4UniformRand(); 714 G4double ran=R4*G4UniformRand(); 714 if(ran>1.) ran=1.; 715 if(ran>1.) ran=1.; 715 q2=-std::log(1.-ran)/theB4; 716 q2=-std::log(1.-ran)/theB4; 716 if(a<6.5) q2=lastTM-q2; 717 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0) 717 } 718 } 718 } 719 } 719 if(q2<0.) q2=0.; 720 if(q2<0.) q2=0.; 720 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas 721 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl; 721 if(q2>lastTM) 722 if(q2>lastTM) 722 { 723 { 723 q2=lastTM; 724 q2=lastTM; 724 } 725 } 725 return q2*GeVSQ; 726 return q2*GeVSQ; 726 } 727 } 727 728 728 // Returns B in independent units (MeV^-2) (al 729 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT 729 G4double G4ChipsProtonElasticXS::GetSlope(G4in 730 G4double G4ChipsProtonElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG) 730 { 731 { 731 static const G4double GeVSQ=gigaelectronvolt 732 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 732 if(onlyCS) G4cout<<"*Warning*G4ChipsProtonEl 733 if(onlyCS) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetSlope:onlyCS=true"<<G4endl; 733 if(lastLP<-4.3) return 0.; // S-wav 734 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV) 734 if(PDG!=2212) 735 if(PDG!=2212) 735 { 736 { 736 // G4cout<<"*Error*G4ChipsProtonElasticXS: 737 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ<<", N=" 737 // <<tgN<<", while it is defined onl 738 // <<tgN<<", while it is defined only for PDG=2212"<<G4endl; 738 // throw G4QException("G4ChipsProtonElasti 739 // throw G4QException("G4ChipsProtonElasticXS::GetSlope: pA are implemented"); 739 G4ExceptionDescription ed; 740 G4ExceptionDescription ed; 740 ed << "PDG = " << PDG << ", Z = " << tgZ < 741 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 741 << ", while it is defined only for PDG= 742 << ", while it is defined only for PDG=2212 (p)" << G4endl; 742 G4Exception("G4ChipsProtonElasticXS::GetSl 743 G4Exception("G4ChipsProtonElasticXS::GetSlope()", "HAD_CHPS_0000", 743 FatalException, ed); 744 FatalException, ed); 744 } 745 } 745 if(theB1<0.) theB1=0.; 746 if(theB1<0.) theB1=0.; 746 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4 747 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl; 747 return theB1/GeVSQ; 748 return theB1/GeVSQ; 748 } 749 } 749 750 750 // Returns half max(Q2=-t) in independent unit 751 // Returns half max(Q2=-t) in independent units (MeV^2) 751 G4double G4ChipsProtonElasticXS::GetHMaxT() 752 G4double G4ChipsProtonElasticXS::GetHMaxT() 752 { 753 { 753 static const G4double HGeVSQ=gigaelectronvol 754 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.; 754 return lastTM*HGeVSQ; 755 return lastTM*HGeVSQ; 755 } 756 } 756 757 757 // lastLP is used, so calculating tables, one 758 // lastLP is used, so calculating tables, one need to remember and then recover lastLP 758 G4double G4ChipsProtonElasticXS::GetTabValues( 759 G4double G4ChipsProtonElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ, 759 760 G4int tgN) 760 { 761 { 761 if(PDG!=2212) G4cout<<"*Warning*G4ChipsProto 762 if(PDG!=2212) G4cout<<"*Warning*G4ChipsProtonElasticXS::GetTabV:PDG="<<PDG<<G4endl; 762 << 763 if(tgZ<0 || tgZ>92) 763 //AR-24Apr2018 Switch to allow transuranic e << 764 const G4bool isHeavyElementAllowed = true; << 765 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 766 { 764 { 767 G4cout<<"*Warning*G4QProtonElCS::GetTabVal 765 G4cout<<"*Warning*G4QProtonElCS::GetTabValue: (1-92) No isotopes for Z="<<tgZ<<G4endl; 768 return 0.; 766 return 0.; 769 } 767 } 770 G4int iZ=tgZ-1; // Z index 768 G4int iZ=tgZ-1; // Z index 771 if(iZ<0) 769 if(iZ<0) 772 { 770 { 773 iZ=0; // conversion of the neutron 771 iZ=0; // conversion of the neutron target to the proton target 774 tgZ=1; 772 tgZ=1; 775 tgN=0; 773 tgN=0; 776 } 774 } 777 G4double p=std::exp(lp); // mom 775 G4double p=std::exp(lp); // momentum 778 G4double sp=std::sqrt(p); // sqr 776 G4double sp=std::sqrt(p); // sqrt(p) 779 G4double p2=p*p; 777 G4double p2=p*p; 780 G4double p3=p2*p; 778 G4double p3=p2*p; 781 G4double p4=p3*p; 779 G4double p4=p3*p; 782 if ( tgZ == 1 && tgN == 0 ) // pp/nn 780 if ( tgZ == 1 && tgN == 0 ) // pp/nn 783 { 781 { 784 G4double p2s=p2*sp; 782 G4double p2s=p2*sp; 785 G4double dl2=lp-lastPAR[8]; 783 G4double dl2=lp-lastPAR[8]; 786 theSS=lastPAR[31]; 784 theSS=lastPAR[31]; 787 theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1. 785 theS1=(lastPAR[9]+lastPAR[10]*dl2*dl2)/(1.+lastPAR[11]/p4/p)+ 788 (lastPAR[12]/p2+lastPAR[13]*p)/(p4+l 786 (lastPAR[12]/p2+lastPAR[13]*p)/(p4+lastPAR[14]*sp); 789 theB1=lastPAR[15]*std::pow(p,lastPAR[16])/ 787 theB1=lastPAR[15]*std::pow(p,lastPAR[16])/(1.+lastPAR[17]/p3); 790 theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[ 788 theS2=lastPAR[18]+lastPAR[19]/(p4+lastPAR[20]*p); 791 theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[ 789 theB2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]/sp); 792 theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastP 790 theS3=lastPAR[24]+lastPAR[25]/(p4*p4+lastPAR[26]*p2+lastPAR[27]); 793 theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[ 791 theB3=lastPAR[28]+lastPAR[29]/(p4+lastPAR[30]); 794 theS4=0.; 792 theS4=0.; 795 theB4=0.; 793 theB4=0.; 796 // Returns the total elastic pp cross-sect 794 // Returns the total elastic pp cross-section (to avoid spoiling lastSIG) 797 G4double dl1=lp-lastPAR[3]; 795 G4double dl1=lp-lastPAR[3]; 798 return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+ 796 return lastPAR[0]/p2s/(1.+lastPAR[7]/p2s)+(lastPAR[1]+lastPAR[2]*dl1*dl1+lastPAR[4]/p) 799 797 /(1.+lastPAR[5]*lp)/(1.+lastPAR[6]/p4); 800 } 798 } 801 else 799 else 802 { 800 { 803 G4double p5=p4*p; 801 G4double p5=p4*p; 804 G4double p6=p5*p; 802 G4double p6=p5*p; 805 G4double p8=p6*p2; 803 G4double p8=p6*p2; 806 G4double p10=p8*p2; 804 G4double p10=p8*p2; 807 G4double p12=p10*p2; 805 G4double p12=p10*p2; 808 G4double p16=p8*p8; 806 G4double p16=p8*p8; 809 //G4double p24=p16*p8; 807 //G4double p24=p16*p8; 810 G4double dl=lp-5.; 808 G4double dl=lp-5.; 811 G4double a=tgZ+tgN; 809 G4double a=tgZ+tgN; 812 if(a<6.5) 810 if(a<6.5) 813 { 811 { 814 G4double pah=std::pow(p,a/2); 812 G4double pah=std::pow(p,a/2); 815 G4double pa=pah*pah; 813 G4double pa=pah*pah; 816 G4double pa2=pa*pa; 814 G4double pa2=pa*pa; 817 815 818 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+ 816 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+ 819 (lastPAR[13]*dl*dl+lastPAR[14])/(1 817 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2); 820 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l 818 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19]; 821 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la 819 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16); 822 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4) 820 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26]; 823 theB2=lastPAR[27]*std::pow(p,lastPAR[28] 821 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16); 824 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+ 822 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33]; 825 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la 823 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2); 826 theS4=p2*(pah*lastPAR[38]*std::exp(-pah* 824 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+ 827 lastPAR[40]/(1.+lastPAR[41]*st 825 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42]))); 828 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4 826 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]); 829 } 827 } 830 else 828 else 831 { 829 { 832 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las 830 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+ 833 lastPAR[13]/(p5+lastPAR[14]/p16); 831 lastPAR[13]/(p5+lastPAR[14]/p16); 834 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la 832 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+ 835 lastPAR[17]/(1.+lastPAR[18]/p4); 833 lastPAR[17]/(1.+lastPAR[18]/p4); 836 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR 834 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4); 837 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR 835 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27]; 838 theB2=lastPAR[28]/std::pow(p,lastPAR[29] 836 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]); 839 theS3=lastPAR[32]/std::pow(p,lastPAR[35] 837 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+ 840 lastPAR[33]/(1.+lastPAR[34]/p6); 838 lastPAR[33]/(1.+lastPAR[34]/p6); 841 theB3=lastPAR[37]/p8+lastPAR[38]/p2+last 839 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8); 842 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1. 840 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+ 843 (lastPAR[43]+lastPAR[44]*dl*dl)/(1 841 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12); 844 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las 842 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5); 845 } 843 } 846 // Returns the total elastic (n/p)A cross- 844 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG) 847 // p1 p2 845 // p1 p2 p3 p6 848 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l 846 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p+lastPAR[5]/p6)+ 849 lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/ 847 lastPAR[3]/(p3+lastPAR[4]/p3)+lastPAR[7]/(p4+std::pow((lastPAR[8]/p),lastPAR[6])); 850 // p4 p5 p8 848 // p4 p5 p8 p9 p7 851 } 849 } 852 return 0.; 850 return 0.; 853 } // End of GetTableValues 851 } // End of GetTableValues 854 852 855 // Returns max -t=Q2 (GeV^2) for the momentum 853 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ) 856 G4double G4ChipsProtonElasticXS::GetQ2max(G4in 854 G4double G4ChipsProtonElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN, 857 855 G4double pP) 858 { 856 { 859 857 860 G4double pP2=pP*pP; 858 G4double pP2=pP*pP; // squared momentum of the projectile 861 if(tgZ==1 && tgN==0) 859 if(tgZ==1 && tgN==0) 862 { 860 { 863 G4double tMid=std::sqrt(pP2+mProt2)*mProt- 861 G4double tMid=std::sqrt(pP2+mProt2)*mProt-mProt2; // CMS 90deg value of -t=Q2 (GeV^2) 864 return tMid+tMid; 862 return tMid+tMid; 865 } 863 } 866 else if(tgZ || tgN) 864 else if(tgZ || tgN) // ---> pA 867 { 865 { 868 G4double mt=G4ParticleTable::GetParticleTa 866 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV 869 G4double dmt=mt+mt; 867 G4double dmt=mt+mt; 870 G4double mds=dmt*std::sqrt(pP2+mProt2)+mPr 868 G4double mds=dmt*std::sqrt(pP2+mProt2)+mProt2+mt*mt;// Mondelstam mds 871 return dmt*dmt*pP2/mds; 869 return dmt*dmt*pP2/mds; 872 } 870 } 873 else 871 else 874 { 872 { 875 // G4cout<<"*Error*G4ChipsProtonElasticXS: 873 // G4cout<<"*Error*G4ChipsProtonElasticXS::GetQ2max: PDG="<<PDG<<", Z="<<tgZ<<", N=" 876 // <<tgN<<", while it is defined onl 874 // <<tgN<<", while it is defined only for p projectiles & Z_target>0"<<G4endl; 877 // throw G4QException("G4ChipsProtonElasti 875 // throw G4QException("G4ChipsProtonElasticXS::GetQ2max: only pA are implemented"); 878 G4ExceptionDescription ed; 876 G4ExceptionDescription ed; 879 ed << "PDG = " << PDG << ", Z = " << tgZ < 877 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 880 << ", while it is defined only for p pr 878 << ", while it is defined only for p projectiles & Z_target>0" << G4endl; 881 G4Exception("G4ChipsProtonElasticXS::GetQ2 879 G4Exception("G4ChipsProtonElasticXS::GetQ2max()", "HAD_CHPS_0000", 882 FatalException, ed); 880 FatalException, ed); 883 return 0; 881 return 0; 884 } 882 } 885 } 883 } 886 884