Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // 28 // 29 // G4 Physics class: G4ChipsPionPlusElasticXS 29 // G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10 31 // The last update: M.V. Kossov, CERN/ITEP (Mo 31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10 32 // 32 // 33 // ------------------------------------------- 33 // ------------------------------------------------------------------------------- 34 // Short description: Interaction cross-sectio 34 // Short description: Interaction cross-sections for the elastic process. 35 // Class extracted from CHIPS and integrated i 35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski 36 // ------------------------------------------- 36 // ------------------------------------------------------------------------------- 37 37 38 38 39 #include "G4ChipsPionPlusElasticXS.hh" 39 #include "G4ChipsPionPlusElasticXS.hh" 40 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4DynamicParticle.hh" 41 #include "G4DynamicParticle.hh" 42 #include "G4ParticleDefinition.hh" 42 #include "G4ParticleDefinition.hh" 43 #include "G4PionPlus.hh" 43 #include "G4PionPlus.hh" 44 #include "G4Nucleus.hh" 44 #include "G4Nucleus.hh" 45 #include "G4ParticleTable.hh" 45 #include "G4ParticleTable.hh" 46 #include "G4NucleiProperties.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4IonTable.hh" 47 #include "G4IonTable.hh" 48 #include "G4Log.hh" 48 #include "G4Log.hh" 49 #include "G4Exp.hh" 49 #include "G4Exp.hh" 50 #include "G4Pow.hh" 50 #include "G4Pow.hh" 51 51 52 // factory 52 // factory 53 #include "G4CrossSectionFactory.hh" 53 #include "G4CrossSectionFactory.hh" 54 // 54 // 55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS 55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS); 56 56 57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElast 57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1) 58 { 58 { 59 lPMin=-8.; // Min tabulated logarithmMoment 59 lPMin=-8.; // Min tabulated logarithmMomentum(D) 60 lPMax= 8.; // Max tabulated logarithmMoment 60 lPMax= 8.; // Max tabulated logarithmMomentum(D) 61 dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTab 61 dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D) 62 onlyCS=true;// Flag toCalcul OnlyCS(not Si/B 62 onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L) 63 lastSIG=0.; // Last calculated cross section 63 lastSIG=0.; // Last calculated cross section (L) 64 lastLP=-10.;// Last log(mom_of IncidentHadro 64 lastLP=-10.;// Last log(mom_of IncidentHadron)(L) 65 lastTM=0.; // Last t_maximum 65 lastTM=0.; // Last t_maximum (L) 66 theSS=0.; // TheLastSqSlope of 1st difr.Ma 66 theSS=0.; // TheLastSqSlope of 1st difr.Max(L) 67 theS1=0.; // TheLastMantissa of 1st difr.M 67 theS1=0.; // TheLastMantissa of 1st difr.Max(L) 68 theB1=0.; // TheLastSlope of 1st difruct.M 68 theB1=0.; // TheLastSlope of 1st difruct.Max(L) 69 theS2=0.; // TheLastMantissa of 2nd difr.M 69 theS2=0.; // TheLastMantissa of 2nd difr.Max(L) 70 theB2=0.; // TheLastSlope of 2nd difruct.M 70 theB2=0.; // TheLastSlope of 2nd difruct.Max(L) 71 theS3=0.; // TheLastMantissa of 3d difr. M 71 theS3=0.; // TheLastMantissa of 3d difr. Max(L) 72 theB3=0.; // TheLastSlope of 3d difruct. M 72 theB3=0.; // TheLastSlope of 3d difruct. Max(L) 73 theS4=0.; // TheLastMantissa of 4th difr.M 73 theS4=0.; // TheLastMantissa of 4th difr.Max(L) 74 theB4=0.; // TheLastSlope of 4th difruct.M 74 theB4=0.; // TheLastSlope of 4th difruct.Max(L) 75 lastTZ=0; // Last atomic number of the tar 75 lastTZ=0; // Last atomic number of the target 76 lastTN=0; // Last # of neutrons in the tar 76 lastTN=0; // Last # of neutrons in the target 77 lastPIN=0.; // Last initialized max momentum 77 lastPIN=0.; // Last initialized max momentum 78 lastCST=0; // Elastic cross-section table 78 lastCST=0; // Elastic cross-section table 79 lastPAR=0; // ParametersForFunctionalCalcul 79 lastPAR=0; // ParametersForFunctionalCalculation 80 lastSST=0; // E-dep of SqaredSlope of 1st d 80 lastSST=0; // E-dep of SqaredSlope of 1st difMax 81 lastS1T=0; // E-dep of mantissa of 1st dif. 81 lastS1T=0; // E-dep of mantissa of 1st dif.Max 82 lastB1T=0; // E-dep of the slope of 1st dif 82 lastB1T=0; // E-dep of the slope of 1st difMax 83 lastS2T=0; // E-dep of mantissa of 2nd difr 83 lastS2T=0; // E-dep of mantissa of 2nd difrMax 84 lastB2T=0; // E-dep of the slope of 2nd dif 84 lastB2T=0; // E-dep of the slope of 2nd difMax 85 lastS3T=0; // E-dep of mantissa of 3d difr. 85 lastS3T=0; // E-dep of mantissa of 3d difr.Max 86 lastB3T=0; // E-dep of the slope of 3d difr 86 lastB3T=0; // E-dep of the slope of 3d difrMax 87 lastS4T=0; // E-dep of mantissa of 4th difr 87 lastS4T=0; // E-dep of mantissa of 4th difrMax 88 lastB4T=0; // E-dep of the slope of 4th dif 88 lastB4T=0; // E-dep of the slope of 4th difMax 89 lastN=0; // The last N of calculated nucl 89 lastN=0; // The last N of calculated nucleus 90 lastZ=0; // The last Z of calculated nucl 90 lastZ=0; // The last Z of calculated nucleus 91 lastP=0.; // LastUsed in cross section Mom 91 lastP=0.; // LastUsed in cross section Momentum 92 lastTH=0.; // Last threshold momentum 92 lastTH=0.; // Last threshold momentum 93 lastCS=0.; // Last value of the Cross Secti 93 lastCS=0.; // Last value of the Cross Section 94 lastI=0; // The last position in the DAMD 94 lastI=0; // The last position in the DAMDB 95 } 95 } 96 96 97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElas 97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElasticXS() 98 { 98 { 99 std::vector<G4double*>::iterator pos; 99 std::vector<G4double*>::iterator pos; 100 for (pos=CST.begin(); pos<CST.end(); pos++) 100 for (pos=CST.begin(); pos<CST.end(); pos++) 101 { delete [] *pos; } 101 { delete [] *pos; } 102 CST.clear(); 102 CST.clear(); 103 for (pos=PAR.begin(); pos<PAR.end(); pos++) 103 for (pos=PAR.begin(); pos<PAR.end(); pos++) 104 { delete [] *pos; } 104 { delete [] *pos; } 105 PAR.clear(); 105 PAR.clear(); 106 for (pos=SST.begin(); pos<SST.end(); pos++) 106 for (pos=SST.begin(); pos<SST.end(); pos++) 107 { delete [] *pos; } 107 { delete [] *pos; } 108 SST.clear(); 108 SST.clear(); 109 for (pos=S1T.begin(); pos<S1T.end(); pos++) 109 for (pos=S1T.begin(); pos<S1T.end(); pos++) 110 { delete [] *pos; } 110 { delete [] *pos; } 111 S1T.clear(); 111 S1T.clear(); 112 for (pos=B1T.begin(); pos<B1T.end(); pos++) 112 for (pos=B1T.begin(); pos<B1T.end(); pos++) 113 { delete [] *pos; } 113 { delete [] *pos; } 114 B1T.clear(); 114 B1T.clear(); 115 for (pos=S2T.begin(); pos<S2T.end(); pos++) 115 for (pos=S2T.begin(); pos<S2T.end(); pos++) 116 { delete [] *pos; } 116 { delete [] *pos; } 117 S2T.clear(); 117 S2T.clear(); 118 for (pos=B2T.begin(); pos<B2T.end(); pos++) 118 for (pos=B2T.begin(); pos<B2T.end(); pos++) 119 { delete [] *pos; } 119 { delete [] *pos; } 120 B2T.clear(); 120 B2T.clear(); 121 for (pos=S3T.begin(); pos<S3T.end(); pos++) 121 for (pos=S3T.begin(); pos<S3T.end(); pos++) 122 { delete [] *pos; } 122 { delete [] *pos; } 123 S3T.clear(); 123 S3T.clear(); 124 for (pos=B3T.begin(); pos<B3T.end(); pos++) 124 for (pos=B3T.begin(); pos<B3T.end(); pos++) 125 { delete [] *pos; } 125 { delete [] *pos; } 126 B3T.clear(); 126 B3T.clear(); 127 for (pos=S4T.begin(); pos<S4T.end(); pos++) 127 for (pos=S4T.begin(); pos<S4T.end(); pos++) 128 { delete [] *pos; } 128 { delete [] *pos; } 129 S4T.clear(); 129 S4T.clear(); 130 for (pos=B4T.begin(); pos<B4T.end(); pos++) 130 for (pos=B4T.begin(); pos<B4T.end(); pos++) 131 { delete [] *pos; } 131 { delete [] *pos; } 132 B4T.clear(); 132 B4T.clear(); 133 } 133 } 134 134 135 void 135 void 136 G4ChipsPionPlusElasticXS::CrossSectionDescript 136 G4ChipsPionPlusElasticXS::CrossSectionDescription(std::ostream& outFile) const 137 { 137 { 138 outFile << "G4ChipsPionPlusElasticXS provi 138 outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n" 139 << "section for pion+ nucleus scat 139 << "section for pion+ nucleus scattering as a function of incident\n" 140 << "momentum. The cross section is 140 << "momentum. The cross section is calculated using M. Kossov's\n" 141 << "CHIPS parameterization of cros 141 << "CHIPS parameterization of cross section data.\n"; 142 } 142 } 143 143 144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicab 144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 145 const G4Element*, 145 const G4Element*, 146 const G4Material*) 146 const G4Material*) 147 { 147 { 148 return true; 148 return true; 149 } 149 } 150 150 151 // The main member function giving the collisi 151 // The main member function giving the collision cross section (P is in IU, CS is in mb) 152 // Make pMom in independent units ! (Now it is 152 // Make pMom in independent units ! (Now it is MeV) 153 G4double G4ChipsPionPlusElasticXS::GetIsoCross 153 G4double G4ChipsPionPlusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 154 << 154 const G4Isotope*, 155 << 155 const G4Element*, 156 << 156 const G4Material*) >> 157 157 { 158 { 158 G4double pMom=Pt->GetTotalMomentum(); 159 G4double pMom=Pt->GetTotalMomentum(); 159 G4int tgN = A - tgZ; 160 G4int tgN = A - tgZ; 160 161 161 return GetChipsCrossSection(pMom, tgZ, tgN, 162 return GetChipsCrossSection(pMom, tgZ, tgN, 211); 162 } 163 } 163 164 164 G4double G4ChipsPionPlusElasticXS::GetChipsCro 165 G4double G4ChipsPionPlusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int) 165 { 166 { 166 G4double pEn=pMom; 167 G4double pEn=pMom; 167 G4bool fCS = false; 168 G4bool fCS = false; 168 onlyCS=fCS; 169 onlyCS=fCS; 169 170 170 G4bool in=false; // By def 171 G4bool in=false; // By default the isotope must be found in the AMDB 171 lastP = 0.; // New mo 172 lastP = 0.; // New momentum history (nothing to compare with) 172 lastN = tgN; // The la 173 lastN = tgN; // The last N of the calculated nucleus 173 lastZ = tgZ; // The la 174 lastZ = tgZ; // The last Z of the calculated nucleus 174 lastI = (G4int)colN.size(); // Size o << 175 lastI = colN.size(); // Size of the Associative Memory DB in the heap 175 if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 176 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB 176 { // The nu 177 { // The nucleus with projPDG is found in AMDB 177 if(colN[i]==tgN && colZ[i]==tgZ) // Isotop 178 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB 178 { 179 { 179 lastI=i; 180 lastI=i; 180 lastTH =colTH[i]; // Last T 181 lastTH =colTH[i]; // Last THreshold (A-dependent) 181 if(pEn<=lastTH) 182 if(pEn<=lastTH) 182 { 183 { 183 return 0.; // Energy 184 return 0.; // Energy is below the Threshold value 184 } 185 } 185 lastP =colP [i]; // Last M 186 lastP =colP [i]; // Last Momentum (A-dependent) 186 lastCS =colCS[i]; // Last C 187 lastCS =colCS[i]; // Last CrossSect (A-dependent) 187 // if(std::fabs(lastP/pMom-1.)<toleranc 188 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance) 188 if(lastP == pMom) // Do not 189 if(lastP == pMom) // Do not recalculate 189 { 190 { 190 CalculateCrossSection(fCS,-1,i,211,las 191 CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only 191 return lastCS*millibarn; // Use th 192 return lastCS*millibarn; // Use theLastCS 192 } 193 } 193 in = true; // This 194 in = true; // This is the case when the isotop is found in DB 194 // Momentum pMom is in IU ! @@ Units 195 // Momentum pMom is in IU ! @@ Units 195 lastCS=CalculateCrossSection(fCS,-1,i,21 196 lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update 196 if(lastCS<=0. && pEn>lastTH) // Corre 197 if(lastCS<=0. && pEn>lastTH) // Correct the threshold 197 { 198 { 198 lastTH=pEn; 199 lastTH=pEn; 199 } 200 } 200 break; // Go o 201 break; // Go out of the LOOP with found lastI 201 } 202 } 202 } // End of attampt to find the nucleus in D 203 } // End of attampt to find the nucleus in DB 203 if(!in) // This n 204 if(!in) // This nucleus has not been calculated previously 204 { 205 { 205 //!!The slave functions must provide cross 206 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 206 lastCS=CalculateCrossSection(fCS,0,lastI,2 207 lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create 207 if(lastCS<=0.) 208 if(lastCS<=0.) 208 { 209 { 209 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 210 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 210 if(pEn>lastTH) 211 if(pEn>lastTH) 211 { 212 { 212 lastTH=pEn; 213 lastTH=pEn; 213 } 214 } 214 } 215 } 215 colN.push_back(tgN); 216 colN.push_back(tgN); 216 colZ.push_back(tgZ); 217 colZ.push_back(tgZ); 217 colP.push_back(pMom); 218 colP.push_back(pMom); 218 colTH.push_back(lastTH); 219 colTH.push_back(lastTH); 219 colCS.push_back(lastCS); 220 colCS.push_back(lastCS); 220 return lastCS*millibarn; 221 return lastCS*millibarn; 221 } // End of creation of the new set of param 222 } // End of creation of the new set of parameters 222 else 223 else 223 { 224 { 224 colP[lastI]=pMom; 225 colP[lastI]=pMom; 225 colCS[lastI]=lastCS; 226 colCS[lastI]=lastCS; 226 } 227 } 227 return lastCS*millibarn; 228 return lastCS*millibarn; 228 } 229 } 229 230 230 // Calculation of total elastic cross section 231 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?) 231 // F=0 - create AMDB, F=-1 - read&update AMDB, 232 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB) 232 G4double G4ChipsPionPlusElasticXS::CalculateCr 233 G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I, 233 G 234 G4int PDG, G4int tgZ, G4int tgN, G4double pIU) 234 { 235 { 235 G4double pMom=pIU/GeV; // All 236 G4double pMom=pIU/GeV; // All calculations are in GeV 236 onlyCS=CS; // Fla 237 onlyCS=CS; // Flag to calculate only CS (not Si/Bi) 237 lastLP=G4Log(pMom); // Make a 238 lastLP=G4Log(pMom); // Make a logarithm of the momentum for calculation 238 if(F) // Thi 239 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE 239 { 240 { 240 if(F<0) // the 241 if(F<0) // the AMDB must be loded 241 { 242 { 242 lastPIN = PIN[I]; // Max 243 lastPIN = PIN[I]; // Max log(P) initialised for this table set 243 lastPAR = PAR[I]; // Poi 244 lastPAR = PAR[I]; // Pointer to the parameter set 244 lastCST = CST[I]; // Poi 245 lastCST = CST[I]; // Pointer to the total sross-section table 245 lastSST = SST[I]; // Poi 246 lastSST = SST[I]; // Pointer to the first squared slope 246 lastS1T = S1T[I]; // Poi 247 lastS1T = S1T[I]; // Pointer to the first mantissa 247 lastB1T = B1T[I]; // Poi 248 lastB1T = B1T[I]; // Pointer to the first slope 248 lastS2T = S2T[I]; // Poi 249 lastS2T = S2T[I]; // Pointer to the second mantissa 249 lastB2T = B2T[I]; // Poi 250 lastB2T = B2T[I]; // Pointer to the second slope 250 lastS3T = S3T[I]; // Poi 251 lastS3T = S3T[I]; // Pointer to the third mantissa 251 lastB3T = B3T[I]; // Poi 252 lastB3T = B3T[I]; // Pointer to the rhird slope 252 lastS4T = S4T[I]; // Poi 253 lastS4T = S4T[I]; // Pointer to the 4-th mantissa 253 lastB4T = B4T[I]; // Poi 254 lastB4T = B4T[I]; // Pointer to the 4-th slope 254 } 255 } 255 if(lastLP>lastPIN && lastLP<lPMax) 256 if(lastLP>lastPIN && lastLP<lPMax) 256 { 257 { 257 lastPIN=GetPTables(lastLP,lastPIN,PDG,tg 258 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs 258 PIN[I]=lastPIN; // Rem 259 PIN[I]=lastPIN; // Remember the new P-Limit of the tables 259 } 260 } 260 } 261 } 261 else // Thi 262 else // This isotope wasn't initialized => CREATE 262 { 263 { 263 lastPAR = new G4double[nPoints]; // All 264 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function 264 lastPAR[nLast]=0; // Ini 265 lastPAR[nLast]=0; // Initialization for VALGRIND 265 lastCST = new G4double[nPoints]; // All 266 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function 266 lastSST = new G4double[nPoints]; // All 267 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope 267 lastS1T = new G4double[nPoints]; // All 268 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa 268 lastB1T = new G4double[nPoints]; // All 269 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope 269 lastS2T = new G4double[nPoints]; // All 270 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa 270 lastB2T = new G4double[nPoints]; // All 271 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope 271 lastS3T = new G4double[nPoints]; // All 272 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa 272 lastB3T = new G4double[nPoints]; // All 273 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope 273 lastS4T = new G4double[nPoints]; // All 274 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa 274 lastB4T = new G4double[nPoints]; // All 275 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope 275 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ, 276 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables 276 PIN.push_back(lastPIN); // Fil 277 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB 277 PAR.push_back(lastPAR); // Fil 278 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB 278 CST.push_back(lastCST); // Fil 279 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB 279 SST.push_back(lastSST); // Fil 280 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB 280 S1T.push_back(lastS1T); // Fil 281 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB 281 B1T.push_back(lastB1T); // Fil 282 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB 282 S2T.push_back(lastS2T); // Fil 283 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB 283 B2T.push_back(lastB2T); // Fil 284 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB 284 S3T.push_back(lastS3T); // Fil 285 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB 285 B3T.push_back(lastB3T); // Fil 286 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB 286 S4T.push_back(lastS4T); // Fil 287 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB 287 B4T.push_back(lastB4T); // Fil 288 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB 288 } // End of creation/update of the new set o 289 } // End of creation/update of the new set of parameters and tables 289 // =-----------= NOW Update (if necessary) a 290 // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------= 290 if(lastLP>lastPIN && lastLP<lPMax) 291 if(lastLP>lastPIN && lastLP<lPMax) 291 { 292 { 292 lastPIN = GetPTables(lastLP,lastPIN,PDG,tg 293 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN); 293 } 294 } 294 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p 295 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2) 295 if(lastLP>lPMin && lastLP<=lastPIN) // Lin 296 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables 296 { 297 { 297 if(lastLP==lastPIN) 298 if(lastLP==lastPIN) 298 { 299 { 299 G4double shift=(lastLP-lPMin)/dlnP+.0000 300 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin 300 G4int blast=static_cast<int>(shift); 301 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0) 301 if(blast<0 || blast>=nLast) G4cout<<"G4Q 302 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl; 302 lastSIG = lastCST[blast]; 303 lastSIG = lastCST[blast]; 303 if(!onlyCS) // Ski 304 if(!onlyCS) // Skip the differential cross-section parameters 304 { 305 { 305 theSS = lastSST[blast]; 306 theSS = lastSST[blast]; 306 theS1 = lastS1T[blast]; 307 theS1 = lastS1T[blast]; 307 theB1 = lastB1T[blast]; 308 theB1 = lastB1T[blast]; 308 theS2 = lastS2T[blast]; 309 theS2 = lastS2T[blast]; 309 theB2 = lastB2T[blast]; 310 theB2 = lastB2T[blast]; 310 theS3 = lastS3T[blast]; 311 theS3 = lastS3T[blast]; 311 theB3 = lastB3T[blast]; 312 theB3 = lastB3T[blast]; 312 theS4 = lastS4T[blast]; 313 theS4 = lastS4T[blast]; 313 theB4 = lastB4T[blast]; 314 theB4 = lastB4T[blast]; 314 } 315 } 315 } 316 } 316 else 317 else 317 { 318 { 318 G4double shift=(lastLP-lPMin)/dlnP; 319 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table 319 G4int blast=static_cast<int>(shift); 320 G4int blast=static_cast<int>(shift); // the lower bin number 320 if(blast<0) blast=0; 321 if(blast<0) blast=0; 321 if(blast>=nLast) blast=nLast-1; 322 if(blast>=nLast) blast=nLast-1; // low edge of the last bin 322 shift-=blast; 323 shift-=blast; // step inside the unit bin 323 G4int lastL=blast+1; 324 G4int lastL=blast+1; // the upper bin number 324 G4double SIGL=lastCST[blast]; 325 G4double SIGL=lastCST[blast]; // the basic value of the cross-section 325 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL 326 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section 326 if(!onlyCS) // Ski 327 if(!onlyCS) // Skip the differential cross-section parameters 327 { 328 { 328 G4double SSTL=lastSST[blast]; 329 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope 329 theSS=SSTL+shift*(lastSST[lastL]-SSTL) 330 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope 330 G4double S1TL=lastS1T[blast]; 331 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa 331 theS1=S1TL+shift*(lastS1T[lastL]-S1TL) 332 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa 332 G4double B1TL=lastB1T[blast]; 333 G4double B1TL=lastB1T[blast]; // the low bin of the first slope 333 theB1=B1TL+shift*(lastB1T[lastL]-B1TL) 334 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope 334 G4double S2TL=lastS2T[blast]; 335 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa 335 theS2=S2TL+shift*(lastS2T[lastL]-S2TL) 336 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa 336 G4double B2TL=lastB2T[blast]; 337 G4double B2TL=lastB2T[blast]; // the low bin of the second slope 337 theB2=B2TL+shift*(lastB2T[lastL]-B2TL) 338 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope 338 G4double S3TL=lastS3T[blast]; 339 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa 339 theS3=S3TL+shift*(lastS3T[lastL]-S3TL) 340 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa 340 G4double B3TL=lastB3T[blast]; 341 G4double B3TL=lastB3T[blast]; // the low bin of the third slope 341 theB3=B3TL+shift*(lastB3T[lastL]-B3TL) 342 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope 342 G4double S4TL=lastS4T[blast]; 343 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa 343 theS4=S4TL+shift*(lastS4T[lastL]-S4TL) 344 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa 344 G4double B4TL=lastB4T[blast]; 345 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope 345 theB4=B4TL+shift*(lastB4T[lastL]-B4TL) 346 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope 346 } 347 } 347 } 348 } 348 } 349 } 349 else lastSIG=GetTabValues(lastLP, PDG, tgZ, 350 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table 350 if(lastSIG<0.) lastSIG = 0.; 351 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added 351 return lastSIG; 352 return lastSIG; 352 } 353 } 353 354 354 // It has parameter sets for all tZ/tN/PDG, us 355 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated 355 G4double G4ChipsPionPlusElasticXS::GetPTables( 356 G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG, 356 357 G4int tgZ, G4int tgN) 357 { 358 { 358 // @@ At present all nA==pA ---------> Each 359 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters 359 static const G4double pwd=2727; 360 static const G4double pwd=2727; 360 const G4int n_pippel=35; // #o 361 const G4int n_pippel=35; // #of parameters for pip_p-elastic (<nPoints=128) 361 // -0- -1- -2- - 362 // -0- -1- -2- -3- -4- -5- -6- -7--8--9--10-11-12--13- 362 G4double pipp_el[n_pippel]={1.27,13.,.0676,3 363 G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3., 363 3.4,.2,.17,.001, 364 3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6, 364 3.5e6,5.e-5,1.e1 365 3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.}; 365 // -14--15--16--17-- 366 // -14--15--16--17--18- -19--20- -21- -22- -23- -24- -25- 366 // -26- -27- -28 367 // -26- -27- -28- -29- -30- -31- -32- -33- -34- 367 if(PDG == 211) 368 if(PDG == 211) 368 { 369 { 369 // -- Total pp elastic cross section cs & 370 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) -- 370 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l 371 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom| 371 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d 372 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4); 372 // par(0) par(7) par(1) par(2) 373 // par(0) par(7) par(1) par(2) par(4) par(5) par(6) 373 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4 374 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp), 374 // par(8) par(9) par(10) par(11 375 // par(8) par(9) par(10) par(11) par(12)par(13) par(14) 375 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40 376 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp); 376 // par(15) par(16) par(17) par(18) pa 377 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23) 377 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); 378 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0. 378 // par(24) par(25) par(26) par(27) p 379 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31) 379 // 380 // 380 if(lastPAR[nLast]!=pwd) // A unique flag t 381 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition 381 { 382 { 382 if ( tgZ == 1 && tgN == 0 ) 383 if ( tgZ == 1 && tgN == 0 ) 383 { 384 { 384 for (G4int ip=0; ip<n_pippel; ip++) la 385 for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P 385 } 386 } 386 else 387 else 387 { 388 { 388 G4double a=tgZ+tgN; 389 G4double a=tgZ+tgN; 389 G4double sa=std::sqrt(a); 390 G4double sa=std::sqrt(a); 390 G4double ssa=std::sqrt(sa); 391 G4double ssa=std::sqrt(sa); 391 G4double asa=a*sa; 392 G4double asa=a*sa; 392 G4double a2=a*a; 393 G4double a2=a*a; 393 G4double a3=a2*a; 394 G4double a3=a2*a; 394 G4double a4=a3*a; 395 G4double a4=a3*a; 395 G4double a5=a4*a; 396 G4double a5=a4*a; 396 G4double a6=a4*a2; 397 G4double a6=a4*a2; 397 G4double a7=a6*a; 398 G4double a7=a6*a; 398 G4double a8=a7*a; 399 G4double a8=a7*a; 399 G4double a9=a8*a; 400 G4double a9=a8*a; 400 G4double a10=a5*a5; 401 G4double a10=a5*a5; 401 G4double a12=a6*a6; 402 G4double a12=a6*a6; 402 G4double a14=a7*a7; 403 G4double a14=a7*a7; 403 G4double a16=a8*a8; 404 G4double a16=a8*a8; 404 G4double a17=a16*a; 405 G4double a17=a16*a; 405 //G4double a20=a16*a4; 406 //G4double a20=a16*a4; 406 G4double a32=a16*a16; 407 G4double a32=a16*a16; 407 // Reaction cross-section parameters ( 408 // Reaction cross-section parameters (pel=peh_fit.f) 408 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a) 409 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1 409 lastPAR[1]=a/(1./4.4+1./a); 410 lastPAR[1]=a/(1./4.4+1./a); // p2 410 lastPAR[2]=.22/G4Pow::GetInstance()->p 411 lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33); // p3 411 lastPAR[3]=.5*a/(1.+3./a+1800./a8); 412 lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4 412 lastPAR[4]=3.E-4*G4Pow::GetInstance()- 413 lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2); // p5 413 lastPAR[5]=0.; 414 lastPAR[5]=0.; // p6 not used 414 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2) 415 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7 415 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./ 416 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8 416 lastPAR[8]=0.; 417 lastPAR[8]=0.; // p9 not used 417 // @@ the differential cross-section i 418 // @@ the differential cross-section is parameterized separately for A>6 & A<7 418 if(a<6.5) 419 if(a<6.5) 419 { 420 { 420 G4double a28=a16*a12; 421 G4double a28=a16*a12; 421 // The main pre-exponent (pel_s 422 // The main pre-exponent (pel_sg) 422 lastPAR[ 9]=4000*a; 423 lastPAR[ 9]=4000*a; // p1 423 lastPAR[10]=1.2e7*a8+380*a17; 424 lastPAR[10]=1.2e7*a8+380*a17; // p2 424 lastPAR[11]=.7/(1.+4.e-12*a16); 425 lastPAR[11]=.7/(1.+4.e-12*a16); // p3 425 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); 426 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4 426 lastPAR[13]=.28*a; 427 lastPAR[13]=.28*a; // p5 427 lastPAR[14]=1.2*a2+2.3; 428 lastPAR[14]=1.2*a2+2.3; // p6 428 lastPAR[15]=3.8/a; 429 lastPAR[15]=3.8/a; // p7 429 // The main slope (pel_s 430 // The main slope (pel_sl) 430 lastPAR[16]=.01/(1.+.0024*a5); 431 lastPAR[16]=.01/(1.+.0024*a5); // p1 431 lastPAR[17]=.2*a; 432 lastPAR[17]=.2*a; // p2 432 lastPAR[18]=9.e-7/(1.+.035*a5); 433 lastPAR[18]=9.e-7/(1.+.035*a5); // p3 433 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1 434 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4 434 // The main quadratic (pel_s 435 // The main quadratic (pel_sh) 435 lastPAR[20]=2.25*a3; 436 lastPAR[20]=2.25*a3; // p1 436 lastPAR[21]=18.; 437 lastPAR[21]=18.; // p2 437 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7) 438 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3 438 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1 439 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4 439 // The 1st max pre-exponent (pel_q 440 // The 1st max pre-exponent (pel_qq) 440 lastPAR[24]=1.e5/(a8+2.5e12/a16); 441 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1 441 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28 442 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2 442 lastPAR[26]=.0006*a3; 443 lastPAR[26]=.0006*a3; // p3 443 // The 1st max slope (pel_q 444 // The 1st max slope (pel_qs) 444 lastPAR[27]=10.+4.e-8*a12*a; 445 lastPAR[27]=10.+4.e-8*a12*a; // p1 445 lastPAR[28]=.114; 446 lastPAR[28]=.114; // p2 446 lastPAR[29]=.003; 447 lastPAR[29]=.003; // p3 447 lastPAR[30]=2.e-23; 448 lastPAR[30]=2.e-23; // p4 448 // The effective pre-exponent (pel_s 449 // The effective pre-exponent (pel_ss) 449 lastPAR[31]=1./(1.+.0001*a8); 450 lastPAR[31]=1./(1.+.0001*a8); // p1 450 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); 451 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2 451 lastPAR[33]=.03; 452 lastPAR[33]=.03; // p3 452 // The effective slope (pel_s 453 // The effective slope (pel_sb) 453 lastPAR[34]=a/2; 454 lastPAR[34]=a/2; // p1 454 lastPAR[35]=2.e-7*a4; 455 lastPAR[35]=2.e-7*a4; // p2 455 lastPAR[36]=4.; 456 lastPAR[36]=4.; // p3 456 lastPAR[37]=64./a3; 457 lastPAR[37]=64./a3; // p4 457 // The gloria pre-exponent (pel_u 458 // The gloria pre-exponent (pel_us) 458 lastPAR[38]=1.e8*G4Exp(.32*asa); 459 lastPAR[38]=1.e8*G4Exp(.32*asa); // p1 459 lastPAR[39]=20.*G4Exp(.45*asa); 460 lastPAR[39]=20.*G4Exp(.45*asa); // p2 460 lastPAR[40]=7.e3+2.4e6/a5; 461 lastPAR[40]=7.e3+2.4e6/a5; // p3 461 lastPAR[41]=2.5e5*G4Exp(.085*a3); 462 lastPAR[41]=2.5e5*G4Exp(.085*a3); // p4 462 lastPAR[42]=2.5*a; 463 lastPAR[42]=2.5*a; // p5 463 // The gloria slope (pel_u 464 // The gloria slope (pel_ub) 464 lastPAR[43]=920.+.03*a8*a3; 465 lastPAR[43]=920.+.03*a8*a3; // p1 465 lastPAR[44]=93.+.0023*a12; 466 lastPAR[44]=93.+.0023*a12; // p2 466 } 467 } 467 else 468 else 468 { 469 { 469 G4double p1a10=2.2e-28*a10; 470 G4double p1a10=2.2e-28*a10; 470 G4double r4a16=6.e14/a16; 471 G4double r4a16=6.e14/a16; 471 G4double s4a16=r4a16*r4a16; 472 G4double s4a16=r4a16*r4a16; 472 // a24 473 // a24 473 // a36 474 // a36 474 // The main pre-exponent (peh_s 475 // The main pre-exponent (peh_sg) 475 lastPAR[ 9]=4.5*G4Pow::GetInstance() 476 lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15); // p1 476 lastPAR[10]=.06*G4Pow::GetInstance() 477 lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6); // p2 477 lastPAR[11]=.6*a/(1.+2.e15/a16); 478 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3 478 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3 479 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4 479 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4 480 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5 480 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1. 481 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6 481 // The main slope (peh_s 482 // The main slope (peh_sl) 482 lastPAR[15]=400./a12+2.e-22*a9; 483 lastPAR[15]=400./a12+2.e-22*a9; // p1 483 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14 484 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2 484 lastPAR[17]=1000./a2+9.5*sa*ssa; 485 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3 485 lastPAR[18]=4.e-6*a*asa+1.e11/a16; 486 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4 486 lastPAR[19]=(120./a+.002*a2)/(1.+2.e 487 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5 487 lastPAR[20]=9.+100./a; 488 lastPAR[20]=9.+100./a; // p6 488 // The main quadratic (peh_s 489 // The main quadratic (peh_sh) 489 lastPAR[21]=.002*a3+3.e7/a6; 490 lastPAR[21]=.002*a3+3.e7/a6; // p1 490 lastPAR[22]=7.e-15*a4*asa; 491 lastPAR[22]=7.e-15*a4*asa; // p2 491 lastPAR[23]=9000./a4; 492 lastPAR[23]=9000./a4; // p3 492 // The 1st max pre-exponent (peh_q 493 // The 1st max pre-exponent (peh_qq) 493 lastPAR[24]=.0011*asa/(1.+3.e34/a32/ 494 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1 494 lastPAR[25]=1.e-5*a2+2.e14/a16; 495 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2 495 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1 496 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3 496 lastPAR[27]=.016*asa/(1.+5.e16/a16); 497 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4 497 // The 1st max slope (peh_q 498 // The 1st max slope (peh_qs) 498 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow:: 499 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1 499 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetIn 500 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11); // p2 500 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8) 501 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3 501 lastPAR[31]=100./asa; 502 lastPAR[31]=100./asa; // p4 502 // The 2nd max pre-exponent (peh_s 503 // The 2nd max pre-exponent (peh_ss) 503 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/ 504 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1 504 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); 505 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2 505 lastPAR[34]=1.3+3.e5/a4; 506 lastPAR[34]=1.3+3.e5/a4; // p3 506 lastPAR[35]=500./(a2+50.)+3; 507 lastPAR[35]=500./(a2+50.)+3; // p4 507 lastPAR[36]=1.e-9/a+s4a16*s4a16; 508 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5 508 // The 2nd max slope (peh_s 509 // The 2nd max slope (peh_sb) 509 lastPAR[37]=.4*asa+3.e-9*a6; 510 lastPAR[37]=.4*asa+3.e-9*a6; // p1 510 lastPAR[38]=.0005*a5; 511 lastPAR[38]=.0005*a5; // p2 511 lastPAR[39]=.002*a5; 512 lastPAR[39]=.002*a5; // p3 512 lastPAR[40]=10.; 513 lastPAR[40]=10.; // p4 513 // The effective pre-exponent (peh_u 514 // The effective pre-exponent (peh_us) 514 lastPAR[41]=.05+.005*a; 515 lastPAR[41]=.05+.005*a; // p1 515 lastPAR[42]=7.e-8/sa; 516 lastPAR[42]=7.e-8/sa; // p2 516 lastPAR[43]=.8*sa; 517 lastPAR[43]=.8*sa; // p3 517 lastPAR[44]=.02*sa; 518 lastPAR[44]=.02*sa; // p4 518 lastPAR[45]=1.e8/a3; 519 lastPAR[45]=1.e8/a3; // p5 519 lastPAR[46]=3.e32/(a32+1.e32); 520 lastPAR[46]=3.e32/(a32+1.e32); // p6 520 // The effective slope (peh_u 521 // The effective slope (peh_ub) 521 lastPAR[47]=24.; 522 lastPAR[47]=24.; // p1 522 lastPAR[48]=20./sa; 523 lastPAR[48]=20./sa; // p2 523 lastPAR[49]=7.e3*a/(sa+1.); 524 lastPAR[49]=7.e3*a/(sa+1.); // p3 524 lastPAR[50]=900.*sa/(1.+500./a3); 525 lastPAR[50]=900.*sa/(1.+500./a3); // p4 525 } 526 } 526 // Parameter for lowEnergyNeutrons 527 // Parameter for lowEnergyNeutrons 527 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18* 528 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16); 528 } 529 } 529 lastPAR[nLast]=pwd; 530 lastPAR[nLast]=pwd; 530 // and initialize the zero element of th 531 // and initialize the zero element of the table 531 G4double lp=lPMin; 532 G4double lp=lPMin; // ln(momentum) 532 G4bool memCS=onlyCS; 533 G4bool memCS=onlyCS; // ?? 533 onlyCS=false; 534 onlyCS=false; 534 lastCST[0]=GetTabValues(lp, PDG, tgZ, tg 535 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables 535 onlyCS=memCS; 536 onlyCS=memCS; 536 lastSST[0]=theSS; 537 lastSST[0]=theSS; 537 lastS1T[0]=theS1; 538 lastS1T[0]=theS1; 538 lastB1T[0]=theB1; 539 lastB1T[0]=theB1; 539 lastS2T[0]=theS2; 540 lastS2T[0]=theS2; 540 lastB2T[0]=theB2; 541 lastB2T[0]=theB2; 541 lastS3T[0]=theS3; 542 lastS3T[0]=theS3; 542 lastB3T[0]=theB3; 543 lastB3T[0]=theB3; 543 lastS4T[0]=theS4; 544 lastS4T[0]=theS4; 544 lastB4T[0]=theB4; 545 lastB4T[0]=theB4; 545 } 546 } 546 if(LP>ILP) 547 if(LP>ILP) 547 { 548 { 548 G4int ini = static_cast<int>((ILP-lPMin+ 549 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this 549 if(ini<0) ini=0; 550 if(ini<0) ini=0; 550 if(ini<nPoints) 551 if(ini<nPoints) 551 { 552 { 552 G4int fin = static_cast<int>((LP-lPMin 553 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization 553 if(fin>=nPoints) fin=nLast; 554 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization 554 if(fin>=ini) 555 if(fin>=ini) 555 { 556 { 556 G4double lp=0.; 557 G4double lp=0.; 557 for(G4int ip=ini; ip<=fin; ip++) 558 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3 558 { 559 { 559 lp=lPMin+ip*dlnP; 560 lp=lPMin+ip*dlnP; // ln(momentum) 560 G4bool memCS=onlyCS; 561 G4bool memCS=onlyCS; 561 onlyCS=false; 562 onlyCS=false; 562 lastCST[ip]=GetTabValues(lp, PDG, 563 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS) 563 onlyCS=memCS; 564 onlyCS=memCS; 564 lastSST[ip]=theSS; 565 lastSST[ip]=theSS; 565 lastS1T[ip]=theS1; 566 lastS1T[ip]=theS1; 566 lastB1T[ip]=theB1; 567 lastB1T[ip]=theB1; 567 lastS2T[ip]=theS2; 568 lastS2T[ip]=theS2; 568 lastB2T[ip]=theB2; 569 lastB2T[ip]=theB2; 569 lastS3T[ip]=theS3; 570 lastS3T[ip]=theS3; 570 lastB3T[ip]=theB3; 571 lastB3T[ip]=theB3; 571 lastS4T[ip]=theS4; 572 lastS4T[ip]=theS4; 572 lastB4T[ip]=theB4; 573 lastB4T[ip]=theB4; 573 } 574 } 574 return lp; 575 return lp; 575 } 576 } 576 else G4cout<<"*Warning*G4ChipsPionPlus 577 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG 577 <<", Z="<<tgZ<<", N="<<tgN< 578 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP 578 <<" > ILP="<<ILP<<" nothing 579 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl; 579 } 580 } 580 else G4cout<<"*Warning*G4ChipsPionPlusEl 581 else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z=" 581 <<tgZ<<", N="<<tgN<<", i="<<i 582 <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP 582 <<" > ILP="<<ILP<<", lPMax="< 583 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl; 583 } 584 } 584 } 585 } 585 else 586 else 586 { 587 { 587 // G4cout<<"*Error*G4ChipsPionPlusElasticX 588 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ 588 // <<", N="<<tgN<<", while it is def 589 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl; 589 // throw G4QException("G4ChipsPionPlusElas 590 // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented"); 590 G4ExceptionDescription ed; 591 G4ExceptionDescription ed; 591 ed << "PDG = " << PDG << ", Z = " << tgZ < 592 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 592 << ", while it is defined only for PDG= 593 << ", while it is defined only for PDG=211 (pi+)" << G4endl; 593 G4Exception("G4ChipsPionPlusElasticXS::Get 594 G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000", 594 FatalException, ed); 595 FatalException, ed); 595 } 596 } 596 return ILP; 597 return ILP; 597 } 598 } 598 599 599 // Returns Q2=-t in independent units (MeV^2) 600 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV) 600 G4double G4ChipsPionPlusElasticXS::GetExchange 601 G4double G4ChipsPionPlusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG) 601 { 602 { 602 static const G4double GeVSQ=gigaelectronvolt 603 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 603 static const G4double third=1./3.; 604 static const G4double third=1./3.; 604 static const G4double fifth=1./5.; 605 static const G4double fifth=1./5.; 605 static const G4double sevth=1./7.; 606 static const G4double sevth=1./7.; 606 if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPl 607 if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl; 607 if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusE 608 if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl; 608 if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor 609 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV) 609 G4double q2=0.; 610 G4double q2=0.; 610 if(tgZ==1 && tgN==0) // ===> 611 if(tgZ==1 && tgN==0) // ===> p+p=p+p 611 { 612 { 612 G4double E1=lastTM*theB1; 613 G4double E1=lastTM*theB1; 613 G4double R1=(1.-G4Exp(-E1)); 614 G4double R1=(1.-G4Exp(-E1)); 614 G4double E2=lastTM*theB2; 615 G4double E2=lastTM*theB2; 615 G4double R2=(1.-G4Exp(-E2*E2*E2)); 616 G4double R2=(1.-G4Exp(-E2*E2*E2)); 616 G4double E3=lastTM*theB3; 617 G4double E3=lastTM*theB3; 617 G4double R3=(1.-G4Exp(-E3)); 618 G4double R3=(1.-G4Exp(-E3)); 618 G4double I1=R1*theS1/theB1; 619 G4double I1=R1*theS1/theB1; 619 G4double I2=R2*theS2; 620 G4double I2=R2*theS2; 620 G4double I3=R3*theS3; 621 G4double I3=R3*theS3; 621 G4double I12=I1+I2; 622 G4double I12=I1+I2; 622 G4double rand=(I12+I3)*G4UniformRand(); 623 G4double rand=(I12+I3)*G4UniformRand(); 623 if (rand<I1 ) 624 if (rand<I1 ) 624 { 625 { 625 G4double ran=R1*G4UniformRand(); 626 G4double ran=R1*G4UniformRand(); 626 if(ran>1.) ran=1.; 627 if(ran>1.) ran=1.; 627 q2=-G4Log(1.-ran)/theB1; 628 q2=-G4Log(1.-ran)/theB1; 628 } 629 } 629 else if(rand<I12) 630 else if(rand<I12) 630 { 631 { 631 G4double ran=R2*G4UniformRand(); 632 G4double ran=R2*G4UniformRand(); 632 if(ran>1.) ran=1.; 633 if(ran>1.) ran=1.; 633 q2=-G4Log(1.-ran); 634 q2=-G4Log(1.-ran); 634 if(q2<0.) q2=0.; 635 if(q2<0.) q2=0.; 635 q2=G4Pow::GetInstance()->powA(q2,third)/ 636 q2=G4Pow::GetInstance()->powA(q2,third)/theB2; 636 } 637 } 637 else 638 else 638 { 639 { 639 G4double ran=R3*G4UniformRand(); 640 G4double ran=R3*G4UniformRand(); 640 if(ran>1.) ran=1.; 641 if(ran>1.) ran=1.; 641 q2=-G4Log(1.-ran)/theB3; 642 q2=-G4Log(1.-ran)/theB3; 642 } 643 } 643 } 644 } 644 else 645 else 645 { 646 { 646 G4double a=tgZ+tgN; 647 G4double a=tgZ+tgN; 647 G4double E1=lastTM*(theB1+lastTM*theSS); 648 G4double E1=lastTM*(theB1+lastTM*theSS); 648 G4double R1=(1.-G4Exp(-E1)); 649 G4double R1=(1.-G4Exp(-E1)); 649 G4double tss=theSS+theSS; // for future so 650 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check) 650 G4double tm2=lastTM*lastTM; 651 G4double tm2=lastTM*lastTM; 651 G4double E2=lastTM*tm2*theB2; 652 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st) 652 if(a>6.5)E2*=tm2; 653 if(a>6.5)E2*=tm2; // for heavy nuclei 653 G4double R2=(1.-G4Exp(-E2)); 654 G4double R2=(1.-G4Exp(-E2)); 654 G4double E3=lastTM*theB3; 655 G4double E3=lastTM*theB3; 655 if(a>6.5)E3*=tm2*tm2*tm2; 656 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA 656 G4double R3=(1.-G4Exp(-E3)); 657 G4double R3=(1.-G4Exp(-E3)); 657 G4double E4=lastTM*theB4; 658 G4double E4=lastTM*theB4; 658 G4double R4=(1.-G4Exp(-E4)); 659 G4double R4=(1.-G4Exp(-E4)); 659 G4double I1=R1*theS1; 660 G4double I1=R1*theS1; 660 G4double I2=R2*theS2; 661 G4double I2=R2*theS2; 661 G4double I3=R3*theS3; 662 G4double I3=R3*theS3; 662 G4double I4=R4*theS4; 663 G4double I4=R4*theS4; 663 G4double I12=I1+I2; 664 G4double I12=I1+I2; 664 G4double I13=I12+I3; 665 G4double I13=I12+I3; 665 G4double rand=(I13+I4)*G4UniformRand(); 666 G4double rand=(I13+I4)*G4UniformRand(); 666 if(rand<I1) 667 if(rand<I1) 667 { 668 { 668 G4double ran=R1*G4UniformRand(); 669 G4double ran=R1*G4UniformRand(); 669 if(ran>1.) ran=1.; 670 if(ran>1.) ran=1.; 670 q2=-G4Log(1.-ran)/theB1; 671 q2=-G4Log(1.-ran)/theB1; 671 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t 672 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss; 672 } 673 } 673 else if(rand<I12) 674 else if(rand<I12) 674 { 675 { 675 G4double ran=R2*G4UniformRand(); 676 G4double ran=R2*G4UniformRand(); 676 if(ran>1.) ran=1.; 677 if(ran>1.) ran=1.; 677 q2=-G4Log(1.-ran)/theB2; 678 q2=-G4Log(1.-ran)/theB2; 678 if(q2<0.) q2=0.; 679 if(q2<0.) q2=0.; 679 if(a<6.5) q2=G4Pow::GetInstance()->powA( 680 if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third); 680 else q2=G4Pow::GetInstance()->powA( 681 else q2=G4Pow::GetInstance()->powA(q2,fifth); 681 } 682 } 682 else if(rand<I13) 683 else if(rand<I13) 683 { 684 { 684 G4double ran=R3*G4UniformRand(); 685 G4double ran=R3*G4UniformRand(); 685 if(ran>1.) ran=1.; 686 if(ran>1.) ran=1.; 686 q2=-G4Log(1.-ran)/theB3; 687 q2=-G4Log(1.-ran)/theB3; 687 if(q2<0.) q2=0.; 688 if(q2<0.) q2=0.; 688 if(a>6.5) q2=G4Pow::GetInstance()->powA( 689 if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth); 689 } 690 } 690 else 691 else 691 { 692 { 692 G4double ran=R4*G4UniformRand(); 693 G4double ran=R4*G4UniformRand(); 693 if(ran>1.) ran=1.; 694 if(ran>1.) ran=1.; 694 q2=-G4Log(1.-ran)/theB4; 695 q2=-G4Log(1.-ran)/theB4; 695 if(a<6.5) q2=lastTM-q2; 696 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0) 696 } 697 } 697 } 698 } 698 if(q2<0.) q2=0.; 699 if(q2<0.) q2=0.; 699 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas 700 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl; 700 if(q2>lastTM) 701 if(q2>lastTM) 701 { 702 { 702 q2=lastTM; 703 q2=lastTM; 703 } 704 } 704 return q2*GeVSQ; 705 return q2*GeVSQ; 705 } 706 } 706 707 707 // Returns B in independent units (MeV^-2) (al 708 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT 708 G4double G4ChipsPionPlusElasticXS::GetSlope(G4 709 G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG) 709 { 710 { 710 static const G4double GeVSQ=gigaelectronvolt 711 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 711 if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusEl 712 if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl; 712 if(lastLP<-4.3) return 0.; // S-wav 713 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV) 713 if(PDG != 211) 714 if(PDG != 211) 714 { 715 { 715 // G4cout<<"*Error*G4ChipsPionPlusElasticX 716 // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ 716 // <<", N="<<tgN<<", while it is def 717 // <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl; 717 // throw G4QException("G4ChipsPionPlusElas 718 // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented"); 718 G4ExceptionDescription ed; 719 G4ExceptionDescription ed; 719 ed << "PDG = " << PDG << ", Z = " << tgZ < 720 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 720 << ", while it is defined only for PDG= 721 << ", while it is defined only for PDG=211 (pi-)" << G4endl; 721 G4Exception("G4ChipsPionPlusElasticXS::Get 722 G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000", 722 FatalException, ed); 723 FatalException, ed); 723 } 724 } 724 if(theB1<0.) theB1=0.; 725 if(theB1<0.) theB1=0.; 725 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4 726 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl; 726 return theB1/GeVSQ; 727 return theB1/GeVSQ; 727 } 728 } 728 729 729 // Returns half max(Q2=-t) in independent unit 730 // Returns half max(Q2=-t) in independent units (MeV^2) 730 G4double G4ChipsPionPlusElasticXS::GetHMaxT() 731 G4double G4ChipsPionPlusElasticXS::GetHMaxT() 731 { 732 { 732 static const G4double HGeVSQ=gigaelectronvol 733 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.; 733 return lastTM*HGeVSQ; 734 return lastTM*HGeVSQ; 734 } 735 } 735 736 736 // lastLP is used, so calculating tables, one 737 // lastLP is used, so calculating tables, one need to remember and then recover lastLP 737 G4double G4ChipsPionPlusElasticXS::GetTabValue 738 G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ, 738 739 G4int tgN) 739 { 740 { 740 if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlu 741 if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl; 741 742 742 //AR-24Apr2018 Switch to allow transuranic e 743 //AR-24Apr2018 Switch to allow transuranic elements 743 const G4bool isHeavyElementAllowed = true; 744 const G4bool isHeavyElementAllowed = true; 744 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> 745 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92)) 745 { 746 { 746 G4cout<<"*Warning*G4QPionPlusElCS::GetTabV 747 G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl; 747 return 0.; 748 return 0.; 748 } 749 } 749 G4int iZ=tgZ-1; // Z index 750 G4int iZ=tgZ-1; // Z index 750 if(iZ<0) 751 if(iZ<0) 751 { 752 { 752 iZ=0; // conversion of the neutron 753 iZ=0; // conversion of the neutron target to the proton target 753 tgZ=1; 754 tgZ=1; 754 tgN=0; 755 tgN=0; 755 } 756 } 756 G4double p=G4Exp(lp); // moment 757 G4double p=G4Exp(lp); // momentum 757 G4double sp=std::sqrt(p); // sqr 758 G4double sp=std::sqrt(p); // sqrt(p) 758 G4double p2=p*p; 759 G4double p2=p*p; 759 G4double p3=p2*p; 760 G4double p3=p2*p; 760 G4double p4=p2*p2; 761 G4double p4=p2*p2; 761 if ( tgZ == 1 && tgN == 0 ) // PiPlus+P 762 if ( tgZ == 1 && tgN == 0 ) // PiPlus+P 762 { 763 { 763 G4double dl2=lp-lastPAR[11]; 764 G4double dl2=lp-lastPAR[11]; 764 theSS=lastPAR[34]; 765 theSS=lastPAR[34]; 765 theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1 766 theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+ 766 (lastPAR[15]/p2+lastPAR[16]*p)/(p4+l 767 (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp); 767 theB1=lastPAR[18]*G4Pow::GetInstance()->po 768 theB1=lastPAR[18]*G4Pow::GetInstance()->powA(p,lastPAR[19])/(1.+lastPAR[20]/p3); 768 theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[ 769 theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p); 769 theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[ 770 theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 770 theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastP 771 theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]); 771 theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[ 772 theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 772 theS4=0.; 773 theS4=0.; 773 theB4=0.; 774 theB4=0.; 774 // Returns the total elastic pip-p cross-s 775 // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG) 775 G4double dl1=lp+lastPAR[0]; // lr 776 G4double dl1=lp+lastPAR[0]; // lr 776 G4double lr2=dl1*dl1; // lr2 777 G4double lr2=dl1*dl1; // lr2 777 G4double dl3=lp-lastPAR[3]; // ld 778 G4double dl3=lp-lastPAR[3]; // ld 778 G4double dl4=lp-lastPAR[4]; // lm 779 G4double dl4=lp-lastPAR[4]; // lm 779 return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2]) 780 return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+ 780 lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+l 781 lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]); 781 } 782 } 782 else 783 else 783 { 784 { 784 G4double p5=p4*p; 785 G4double p5=p4*p; 785 G4double p6=p5*p; 786 G4double p6=p5*p; 786 G4double p8=p6*p2; 787 G4double p8=p6*p2; 787 G4double p10=p8*p2; 788 G4double p10=p8*p2; 788 G4double p12=p10*p2; 789 G4double p12=p10*p2; 789 G4double p16=p8*p8; 790 G4double p16=p8*p8; 790 //G4double p24=p16*p8; 791 //G4double p24=p16*p8; 791 G4double dl=lp-5.; 792 G4double dl=lp-5.; 792 G4double a=tgZ+tgN; 793 G4double a=tgZ+tgN; 793 G4double pah=G4Pow::GetInstance()->powA(p, 794 G4double pah=G4Pow::GetInstance()->powA(p,a/2); 794 G4double pa=pah*pah; 795 G4double pa=pah*pah; 795 G4double pa2=pa*pa; 796 G4double pa2=pa*pa; 796 if(a<6.5) 797 if(a<6.5) 797 { 798 { 798 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+ 799 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+ 799 (lastPAR[13]*dl*dl+lastPAR[14])/(1 800 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2); 800 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l 801 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19]; 801 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la 802 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16); 802 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4) 803 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26]; 803 theB2=lastPAR[27]*G4Pow::GetInstance()-> 804 theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16); 804 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+ 805 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33]; 805 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la 806 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2); 806 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*las 807 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+ 807 lastPAR[40]/(1.+lastPAR[41]*G4 808 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42]))); 808 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4 809 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]); 809 } 810 } 810 else 811 else 811 { 812 { 812 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las 813 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+ 813 lastPAR[13]/(p5+lastPAR[14]/p16); 814 lastPAR[13]/(p5+lastPAR[14]/p16); 814 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la 815 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+ 815 lastPAR[17]/(1.+lastPAR[18]/p4); 816 lastPAR[17]/(1.+lastPAR[18]/p4); 816 theSS=lastPAR[21]/(p4/G4Pow::GetInstance 817 theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4); 817 theS2=lastPAR[24]/p4/(G4Pow::GetInstance 818 theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27]; 818 theB2=lastPAR[28]/G4Pow::GetInstance()-> 819 theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]); 819 theS3=lastPAR[32]/G4Pow::GetInstance()-> 820 theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+ 820 lastPAR[33]/(1.+lastPAR[34]/p6); 821 lastPAR[33]/(1.+lastPAR[34]/p6); 821 theB3=lastPAR[37]/p8+lastPAR[38]/p2+last 822 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8); 822 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1. 823 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+ 823 (lastPAR[43]+lastPAR[44]*dl*dl)/(1 824 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12); 824 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las 825 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5); 825 } 826 } 826 // Returns the total elastic (n/p)A cross- 827 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG) 827 // p1 p2 828 // p1 p2 p3 828 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l 829 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+ 829 lastPAR[3]/(p4+lastPAR[4]/p3)+lastP 830 lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4); 830 // p4 p5 831 // p4 p5 p7 p8 831 } 832 } 832 return 0.; 833 return 0.; 833 } // End of GetTableValues 834 } // End of GetTableValues 834 835 835 // Returns max -t=Q2 (GeV^2) for the momentum 836 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ) 836 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4 837 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN, 837 838 G4double pP) 838 { 839 { 839 static const G4double mPi= G4PionPlus::PionP 840 static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV 840 static const G4double mPi2= mPi*mPi; 841 static const G4double mPi2= mPi*mPi; 841 G4double pP2=pP*pP; 842 G4double pP2=pP*pP; // squared momentum of the projectile 842 if(tgZ || tgN>-1) 843 if(tgZ || tgN>-1) // ---> pipA 843 { 844 { 844 G4double mt=G4ParticleTable::GetParticleTa 845 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV 845 G4double dmt=mt+mt; 846 G4double dmt=mt+mt; 846 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+ 847 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds 847 return dmt*dmt*pP2/mds; 848 return dmt*dmt*pP2/mds; 848 } 849 } 849 else 850 else 850 { 851 { 851 G4ExceptionDescription ed; 852 G4ExceptionDescription ed; 852 ed << "PDG = " << PDG << ", Z = " << tgZ < 853 ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN 853 << ", while it is defined only for p pr 854 << ", while it is defined only for p projectiles & Z_target>0" << G4endl; 854 G4Exception("G4ChipsPionPlusElasticXS::Get 855 G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000", 855 FatalException, ed); 856 FatalException, ed); 856 return 0; 857 return 0; 857 } 858 } 858 } 859 } 859 860