Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc (Version 10.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 //                                                 28 //
 29 // G4 Physics class: G4ChipsPionPlusElasticXS      29 // G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21     30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
 31 // The last update: M.V. Kossov, CERN/ITEP (Mo     31 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
 32 //                                                 32 // 
 33 // -------------------------------------------     33 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sectio     34 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated i     35 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------     36 // -------------------------------------------------------------------------------
 37                                                    37 
 38                                                    38 
 39 #include "G4ChipsPionPlusElasticXS.hh"             39 #include "G4ChipsPionPlusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"                      40 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"                    41 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"                 42 #include "G4ParticleDefinition.hh"
 43 #include "G4PionPlus.hh"                           43 #include "G4PionPlus.hh"
 44 #include "G4Nucleus.hh"                            44 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"                      45 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"                   46 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"                           47 #include "G4IonTable.hh"
 48 #include "G4Log.hh"                                48 #include "G4Log.hh"
 49 #include "G4Exp.hh"                                49 #include "G4Exp.hh"
 50 #include "G4Pow.hh"                                50 #include "G4Pow.hh"
 51                                                    51 
 52 // factory                                         52 // factory
 53 #include "G4CrossSectionFactory.hh"                53 #include "G4CrossSectionFactory.hh"
 54 //                                                 54 //
 55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS     55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS);
 56                                                    56 
 57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElast     57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 58 {                                                  58 {
 59   lPMin=-8.;  // Min tabulated logarithmMoment     59   lPMin=-8.;  // Min tabulated logarithmMomentum(D)
 60   lPMax= 8.;  // Max tabulated logarithmMoment     60   lPMax= 8.;  // Max tabulated logarithmMomentum(D)
 61   dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTab     61   dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
 62   onlyCS=true;// Flag toCalcul OnlyCS(not Si/B     62   onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
 63   lastSIG=0.; // Last calculated cross section     63   lastSIG=0.; // Last calculated cross section  (L)
 64   lastLP=-10.;// Last log(mom_of IncidentHadro     64   lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
 65   lastTM=0.;  // Last t_maximum                    65   lastTM=0.;  // Last t_maximum                 (L)
 66   theSS=0.;   // TheLastSqSlope of 1st difr.Ma     66   theSS=0.;   // TheLastSqSlope of 1st difr.Max(L)
 67   theS1=0.;   // TheLastMantissa of 1st difr.M     67   theS1=0.;   // TheLastMantissa of 1st difr.Max(L)
 68   theB1=0.;   // TheLastSlope of 1st difruct.M     68   theB1=0.;   // TheLastSlope of 1st difruct.Max(L)
 69   theS2=0.;   // TheLastMantissa of 2nd difr.M     69   theS2=0.;   // TheLastMantissa of 2nd difr.Max(L)
 70   theB2=0.;   // TheLastSlope of 2nd difruct.M     70   theB2=0.;   // TheLastSlope of 2nd difruct.Max(L)
 71   theS3=0.;   // TheLastMantissa of 3d difr. M     71   theS3=0.;   // TheLastMantissa of 3d difr. Max(L)
 72   theB3=0.;   // TheLastSlope of 3d difruct. M     72   theB3=0.;   // TheLastSlope of 3d difruct. Max(L)
 73   theS4=0.;   // TheLastMantissa of 4th difr.M     73   theS4=0.;   // TheLastMantissa of 4th difr.Max(L)
 74   theB4=0.;   // TheLastSlope of 4th difruct.M     74   theB4=0.;   // TheLastSlope of 4th difruct.Max(L)
 75   lastTZ=0;   // Last atomic number of the tar     75   lastTZ=0;   // Last atomic number of the target
 76   lastTN=0;   // Last # of neutrons in the tar     76   lastTN=0;   // Last # of neutrons in the target
 77   lastPIN=0.; // Last initialized max momentum     77   lastPIN=0.; // Last initialized max momentum
 78   lastCST=0;  // Elastic cross-section table       78   lastCST=0;  // Elastic cross-section table
 79   lastPAR=0;  // ParametersForFunctionalCalcul     79   lastPAR=0;  // ParametersForFunctionalCalculation
 80   lastSST=0;  // E-dep of SqaredSlope of 1st d     80   lastSST=0;  // E-dep of SqaredSlope of 1st difMax
 81   lastS1T=0;  // E-dep of mantissa of 1st dif.     81   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 82   lastB1T=0;  // E-dep of the slope of 1st dif     82   lastB1T=0;  // E-dep of the slope of 1st difMax
 83   lastS2T=0;  // E-dep of mantissa of 2nd difr     83   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 84   lastB2T=0;  // E-dep of the slope of 2nd dif     84   lastB2T=0;  // E-dep of the slope of 2nd difMax
 85   lastS3T=0;  // E-dep of mantissa of 3d difr.     85   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 86   lastB3T=0;  // E-dep of the slope of 3d difr     86   lastB3T=0;  // E-dep of the slope of 3d difrMax
 87   lastS4T=0;  // E-dep of mantissa of 4th difr     87   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 88   lastB4T=0;  // E-dep of the slope of 4th dif     88   lastB4T=0;  // E-dep of the slope of 4th difMax
 89   lastN=0;    // The last N of calculated nucl     89   lastN=0;    // The last N of calculated nucleus
 90   lastZ=0;    // The last Z of calculated nucl     90   lastZ=0;    // The last Z of calculated nucleus
 91   lastP=0.;   // LastUsed in cross section Mom     91   lastP=0.;   // LastUsed in cross section Momentum
 92   lastTH=0.;  // Last threshold momentum           92   lastTH=0.;  // Last threshold momentum
 93   lastCS=0.;  // Last value of the Cross Secti     93   lastCS=0.;  // Last value of the Cross Section
 94   lastI=0;    // The last position in the DAMD     94   lastI=0;    // The last position in the DAMDB
 95 }                                                  95 }
 96                                                    96 
 97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElas     97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElasticXS()
 98 {                                                  98 {
 99   std::vector<G4double*>::iterator pos;            99   std::vector<G4double*>::iterator pos;
100   for (pos=CST.begin(); pos<CST.end(); pos++)     100   for (pos=CST.begin(); pos<CST.end(); pos++)
101   { delete [] *pos; }                             101   { delete [] *pos; }
102   CST.clear();                                    102   CST.clear();
103   for (pos=PAR.begin(); pos<PAR.end(); pos++)     103   for (pos=PAR.begin(); pos<PAR.end(); pos++)
104   { delete [] *pos; }                             104   { delete [] *pos; }
105   PAR.clear();                                    105   PAR.clear();
106   for (pos=SST.begin(); pos<SST.end(); pos++)     106   for (pos=SST.begin(); pos<SST.end(); pos++)
107   { delete [] *pos; }                             107   { delete [] *pos; }
108   SST.clear();                                    108   SST.clear();
109   for (pos=S1T.begin(); pos<S1T.end(); pos++)     109   for (pos=S1T.begin(); pos<S1T.end(); pos++)
110   { delete [] *pos; }                             110   { delete [] *pos; }
111   S1T.clear();                                    111   S1T.clear();
112   for (pos=B1T.begin(); pos<B1T.end(); pos++)     112   for (pos=B1T.begin(); pos<B1T.end(); pos++)
113   { delete [] *pos; }                             113   { delete [] *pos; }
114   B1T.clear();                                    114   B1T.clear();
115   for (pos=S2T.begin(); pos<S2T.end(); pos++)     115   for (pos=S2T.begin(); pos<S2T.end(); pos++)
116   { delete [] *pos; }                             116   { delete [] *pos; }
117   S2T.clear();                                    117   S2T.clear();
118   for (pos=B2T.begin(); pos<B2T.end(); pos++)     118   for (pos=B2T.begin(); pos<B2T.end(); pos++)
119   { delete [] *pos; }                             119   { delete [] *pos; }
120   B2T.clear();                                    120   B2T.clear();
121   for (pos=S3T.begin(); pos<S3T.end(); pos++)     121   for (pos=S3T.begin(); pos<S3T.end(); pos++)
122   { delete [] *pos; }                             122   { delete [] *pos; }
123   S3T.clear();                                    123   S3T.clear();
124   for (pos=B3T.begin(); pos<B3T.end(); pos++)     124   for (pos=B3T.begin(); pos<B3T.end(); pos++)
125   { delete [] *pos; }                             125   { delete [] *pos; }
126   B3T.clear();                                    126   B3T.clear();
127   for (pos=S4T.begin(); pos<S4T.end(); pos++)     127   for (pos=S4T.begin(); pos<S4T.end(); pos++)
128   { delete [] *pos; }                             128   { delete [] *pos; }
129   S4T.clear();                                    129   S4T.clear();
130   for (pos=B4T.begin(); pos<B4T.end(); pos++)     130   for (pos=B4T.begin(); pos<B4T.end(); pos++)
131   { delete [] *pos; }                             131   { delete [] *pos; }
132   B4T.clear();                                    132   B4T.clear();
133 }                                                 133 }
134                                                   134 
135 void                                              135 void
136 G4ChipsPionPlusElasticXS::CrossSectionDescript    136 G4ChipsPionPlusElasticXS::CrossSectionDescription(std::ostream& outFile) const
137 {                                                 137 {
138     outFile << "G4ChipsPionPlusElasticXS provi    138     outFile << "G4ChipsPionPlusElasticXS provides the elastic cross\n"
139             << "section for pion+ nucleus scat    139             << "section for pion+ nucleus scattering as a function of incident\n"
140             << "momentum. The cross section is    140             << "momentum. The cross section is calculated using M. Kossov's\n"
141             << "CHIPS parameterization of cros    141             << "CHIPS parameterization of cross section data.\n";
142 }                                                 142 }
143                                                   143 
144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicab    144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
145              const G4Element*,                    145              const G4Element*,
146              const G4Material*)                   146              const G4Material*)
147 {                                                 147 {
148   return true;                                    148   return true;
149 }                                                 149 }
150                                                   150 
151 // The main member function giving the collisi    151 // The main member function giving the collision cross section (P is in IU, CS is in mb)
152 // Make pMom in independent units ! (Now it is    152 // Make pMom in independent units ! (Now it is MeV)
153 G4double G4ChipsPionPlusElasticXS::GetIsoCross    153 G4double G4ChipsPionPlusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
154                                                << 154               const G4Isotope*,
155                                                << 155               const G4Element*,
156                                                << 156               const G4Material*)
                                                   >> 157 
157 {                                                 158 {
158   G4double pMom=Pt->GetTotalMomentum();           159   G4double pMom=Pt->GetTotalMomentum();
159   G4int tgN = A - tgZ;                            160   G4int tgN = A - tgZ;
160                                                   161   
161   return GetChipsCrossSection(pMom, tgZ, tgN,     162   return GetChipsCrossSection(pMom, tgZ, tgN, 211);
162 }                                                 163 }
163                                                   164 
164 G4double G4ChipsPionPlusElasticXS::GetChipsCro    165 G4double G4ChipsPionPlusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
165 {                                                 166 {
166   G4double pEn=pMom;                              167   G4double pEn=pMom;
167   G4bool fCS = false;                             168   G4bool fCS = false;
168   onlyCS=fCS;                                     169   onlyCS=fCS;
169                                                   170 
170   G4bool in=false;                   // By def    171   G4bool in=false;                   // By default the isotope must be found in the AMDB
171   lastP   = 0.;                      // New mo    172   lastP   = 0.;                      // New momentum history (nothing to compare with)
172   lastN   = tgN;                     // The la    173   lastN   = tgN;                     // The last N of the calculated nucleus
173   lastZ   = tgZ;                     // The la    174   lastZ   = tgZ;                     // The last Z of the calculated nucleus
174   lastI   = (G4int)colN.size();      // Size o << 175   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
175   if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 176   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
176   {                                  // The nu    177   {                                  // The nucleus with projPDG is found in AMDB
177     if(colN[i]==tgN && colZ[i]==tgZ) // Isotop    178     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
178     {                                             179     {
179       lastI=i;                                    180       lastI=i;
180       lastTH =colTH[i];              // Last T    181       lastTH =colTH[i];              // Last THreshold (A-dependent)
181       if(pEn<=lastTH)                             182       if(pEn<=lastTH)
182       {                                           183       {
183         return 0.;                   // Energy    184         return 0.;                   // Energy is below the Threshold value
184       }                                           185       }
185       lastP  =colP [i];              // Last M    186       lastP  =colP [i];              // Last Momentum  (A-dependent)
186       lastCS =colCS[i];              // Last C    187       lastCS =colCS[i];              // Last CrossSect (A-dependent)
187       //  if(std::fabs(lastP/pMom-1.)<toleranc    188       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
188       if(lastP == pMom)              // Do not    189       if(lastP == pMom)              // Do not recalculate
189       {                                           190       {
190         CalculateCrossSection(fCS,-1,i,211,las    191         CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
191         return lastCS*millibarn;     // Use th    192         return lastCS*millibarn;     // Use theLastCS
192       }                                           193       }
193       in = true;                       // This    194       in = true;                       // This is the case when the isotop is found in DB
194       // Momentum pMom is in IU ! @@ Units        195       // Momentum pMom is in IU ! @@ Units
195       lastCS=CalculateCrossSection(fCS,-1,i,21    196       lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
196       if(lastCS<=0. && pEn>lastTH)    // Corre    197       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
197       {                                           198       {
198         lastTH=pEn;                               199         lastTH=pEn;
199       }                                           200       }
200       break;                           // Go o    201       break;                           // Go out of the LOOP with found lastI
201     }                                             202     }
202   } // End of attampt to find the nucleus in D    203   } // End of attampt to find the nucleus in DB
203   if(!in)                            // This n    204   if(!in)                            // This nucleus has not been calculated previously
204   {                                               205   {
205     //!!The slave functions must provide cross    206     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
206     lastCS=CalculateCrossSection(fCS,0,lastI,2    207     lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
207     if(lastCS<=0.)                                208     if(lastCS<=0.)
208     {                                             209     {
209       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    210       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
210       if(pEn>lastTH)                              211       if(pEn>lastTH)
211       {                                           212       {
212         lastTH=pEn;                               213         lastTH=pEn;
213       }                                           214       }
214     }                                             215     }
215     colN.push_back(tgN);                          216     colN.push_back(tgN);
216     colZ.push_back(tgZ);                          217     colZ.push_back(tgZ);
217     colP.push_back(pMom);                         218     colP.push_back(pMom);
218     colTH.push_back(lastTH);                      219     colTH.push_back(lastTH);
219     colCS.push_back(lastCS);                      220     colCS.push_back(lastCS);
220     return lastCS*millibarn;                      221     return lastCS*millibarn;
221   } // End of creation of the new set of param    222   } // End of creation of the new set of parameters
222   else                                            223   else
223   {                                               224   {
224     colP[lastI]=pMom;                             225     colP[lastI]=pMom;
225     colCS[lastI]=lastCS;                          226     colCS[lastI]=lastCS;
226   }                                               227   }
227   return lastCS*millibarn;                        228   return lastCS*millibarn;
228 }                                                 229 }
229                                                   230 
230 // Calculation of total elastic cross section     231 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
231 // F=0 - create AMDB, F=-1 - read&update AMDB,    232 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
232 G4double G4ChipsPionPlusElasticXS::CalculateCr    233 G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
233                                              G    234                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
234 {                                                 235 {
235   G4double pMom=pIU/GeV;                // All    236   G4double pMom=pIU/GeV;                // All calculations are in GeV
236   onlyCS=CS;                            // Fla    237   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
237   lastLP=G4Log(pMom);                // Make a    238   lastLP=G4Log(pMom);                // Make a logarithm of the momentum for calculation
238   if(F)                                 // Thi    239   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
239   {                                               240   {
240     if(F<0)                             // the    241     if(F<0)                             // the AMDB must be loded
241     {                                             242     {
242       lastPIN = PIN[I];                 // Max    243       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
243       lastPAR = PAR[I];                 // Poi    244       lastPAR = PAR[I];                 // Pointer to the parameter set
244       lastCST = CST[I];                 // Poi    245       lastCST = CST[I];                 // Pointer to the total sross-section table
245       lastSST = SST[I];                 // Poi    246       lastSST = SST[I];                 // Pointer to the first squared slope
246       lastS1T = S1T[I];                 // Poi    247       lastS1T = S1T[I];                 // Pointer to the first mantissa
247       lastB1T = B1T[I];                 // Poi    248       lastB1T = B1T[I];                 // Pointer to the first slope
248       lastS2T = S2T[I];                 // Poi    249       lastS2T = S2T[I];                 // Pointer to the second mantissa
249       lastB2T = B2T[I];                 // Poi    250       lastB2T = B2T[I];                 // Pointer to the second slope
250       lastS3T = S3T[I];                 // Poi    251       lastS3T = S3T[I];                 // Pointer to the third mantissa
251       lastB3T = B3T[I];                 // Poi    252       lastB3T = B3T[I];                 // Pointer to the rhird slope
252       lastS4T = S4T[I];                 // Poi    253       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
253       lastB4T = B4T[I];                 // Poi    254       lastB4T = B4T[I];                 // Pointer to the 4-th slope
254     }                                             255     }
255     if(lastLP>lastPIN && lastLP<lPMax)            256     if(lastLP>lastPIN && lastLP<lPMax)
256     {                                             257     {
257       lastPIN=GetPTables(lastLP,lastPIN,PDG,tg    258       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
258       PIN[I]=lastPIN;                   // Rem    259       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
259     }                                             260     }
260   }                                               261   }
261   else                                  // Thi    262   else                                  // This isotope wasn't initialized => CREATE
262   {                                               263   {
263     lastPAR = new G4double[nPoints];    // All    264     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
264     lastPAR[nLast]=0;                   // Ini    265     lastPAR[nLast]=0;                   // Initialization for VALGRIND
265     lastCST = new G4double[nPoints];    // All    266     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
266     lastSST = new G4double[nPoints];    // All    267     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
267     lastS1T = new G4double[nPoints];    // All    268     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
268     lastB1T = new G4double[nPoints];    // All    269     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
269     lastS2T = new G4double[nPoints];    // All    270     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
270     lastB2T = new G4double[nPoints];    // All    271     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
271     lastS3T = new G4double[nPoints];    // All    272     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
272     lastB3T = new G4double[nPoints];    // All    273     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
273     lastS4T = new G4double[nPoints];    // All    274     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
274     lastB4T = new G4double[nPoints];    // All    275     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
275     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,    276     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
276     PIN.push_back(lastPIN);             // Fil    277     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
277     PAR.push_back(lastPAR);             // Fil    278     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
278     CST.push_back(lastCST);             // Fil    279     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
279     SST.push_back(lastSST);             // Fil    280     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
280     S1T.push_back(lastS1T);             // Fil    281     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
281     B1T.push_back(lastB1T);             // Fil    282     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
282     S2T.push_back(lastS2T);             // Fil    283     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
283     B2T.push_back(lastB2T);             // Fil    284     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
284     S3T.push_back(lastS3T);             // Fil    285     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
285     B3T.push_back(lastB3T);             // Fil    286     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
286     S4T.push_back(lastS4T);             // Fil    287     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
287     B4T.push_back(lastB4T);             // Fil    288     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
288   } // End of creation/update of the new set o    289   } // End of creation/update of the new set of parameters and tables
289   // =-----------= NOW Update (if necessary) a    290   // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
290   if(lastLP>lastPIN && lastLP<lPMax)              291   if(lastLP>lastPIN && lastLP<lPMax)
291   {                                               292   {
292     lastPIN = GetPTables(lastLP,lastPIN,PDG,tg    293     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
293   }                                               294   }
294   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p    295   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
295   if(lastLP>lPMin && lastLP<=lastPIN)   // Lin    296   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
296   {                                               297   {
297     if(lastLP==lastPIN)                           298     if(lastLP==lastPIN)
298     {                                             299     {
299       G4double shift=(lastLP-lPMin)/dlnP+.0000    300       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
300       G4int    blast=static_cast<int>(shift);     301       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
301       if(blast<0 || blast>=nLast) G4cout<<"G4Q    302       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
302       lastSIG = lastCST[blast];                   303       lastSIG = lastCST[blast];
303       if(!onlyCS)                       // Ski    304       if(!onlyCS)                       // Skip the differential cross-section parameters
304       {                                           305       {
305         theSS  = lastSST[blast];                  306         theSS  = lastSST[blast];
306         theS1  = lastS1T[blast];                  307         theS1  = lastS1T[blast];
307         theB1  = lastB1T[blast];                  308         theB1  = lastB1T[blast];
308         theS2  = lastS2T[blast];                  309         theS2  = lastS2T[blast];
309         theB2  = lastB2T[blast];                  310         theB2  = lastB2T[blast];
310         theS3  = lastS3T[blast];                  311         theS3  = lastS3T[blast];
311         theB3  = lastB3T[blast];                  312         theB3  = lastB3T[blast];
312         theS4  = lastS4T[blast];                  313         theS4  = lastS4T[blast];
313         theB4  = lastB4T[blast];                  314         theB4  = lastB4T[blast];
314       }                                           315       }
315     }                                             316     }
316     else                                          317     else
317     {                                             318     {
318       G4double shift=(lastLP-lPMin)/dlnP;         319       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
319       G4int    blast=static_cast<int>(shift);     320       G4int    blast=static_cast<int>(shift);    // the lower bin number
320       if(blast<0)   blast=0;                      321       if(blast<0)   blast=0;
321       if(blast>=nLast) blast=nLast-1;             322       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
322       shift-=blast;                               323       shift-=blast;                              // step inside the unit bin
323       G4int lastL=blast+1;                        324       G4int lastL=blast+1;                       // the upper bin number
324       G4double SIGL=lastCST[blast];               325       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
325       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL    326       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
326       if(!onlyCS)                       // Ski    327       if(!onlyCS)                       // Skip the differential cross-section parameters
327       {                                           328       {
328         G4double SSTL=lastSST[blast];             329         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
329         theSS=SSTL+shift*(lastSST[lastL]-SSTL)    330         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
330         G4double S1TL=lastS1T[blast];             331         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
331         theS1=S1TL+shift*(lastS1T[lastL]-S1TL)    332         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
332         G4double B1TL=lastB1T[blast];             333         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
333         theB1=B1TL+shift*(lastB1T[lastL]-B1TL)    334         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
334         G4double S2TL=lastS2T[blast];             335         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
335         theS2=S2TL+shift*(lastS2T[lastL]-S2TL)    336         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
336         G4double B2TL=lastB2T[blast];             337         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
337         theB2=B2TL+shift*(lastB2T[lastL]-B2TL)    338         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
338         G4double S3TL=lastS3T[blast];             339         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
339         theS3=S3TL+shift*(lastS3T[lastL]-S3TL)    340         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
340         G4double B3TL=lastB3T[blast];             341         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
341         theB3=B3TL+shift*(lastB3T[lastL]-B3TL)    342         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
342         G4double S4TL=lastS4T[blast];             343         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
343         theS4=S4TL+shift*(lastS4T[lastL]-S4TL)    344         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
344         G4double B4TL=lastB4T[blast];             345         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
345         theB4=B4TL+shift*(lastB4T[lastL]-B4TL)    346         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
346       }                                           347       }
347     }                                             348     }
348   }                                               349   }
349   else lastSIG=GetTabValues(lastLP, PDG, tgZ,     350   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
350   if(lastSIG<0.) lastSIG = 0.;                    351   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
351   return lastSIG;                                 352   return lastSIG;
352 }                                                 353 }
353                                                   354 
354 // It has parameter sets for all tZ/tN/PDG, us    355 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
355 G4double G4ChipsPionPlusElasticXS::GetPTables(    356 G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
356                                                   357                                                   G4int tgZ, G4int tgN)
357 {                                                 358 {
358   // @@ At present all nA==pA ---------> Each     359   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
359   static const G4double pwd=2727;                 360   static const G4double pwd=2727;
360   const G4int n_pippel=35;               // #o    361   const G4int n_pippel=35;               // #of parameters for pip_p-elastic (<nPoints=128)
361   //                           -0- -1-   -2- -    362   //                           -0- -1-   -2- -3- -4-  -5-   -6-  -7--8--9--10-11-12--13-
362   G4double pipp_el[n_pippel]={1.27,13.,.0676,3    363   G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
363                               3.4,.2,.17,.001,    364                               3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
364                               3.5e6,5.e-5,1.e1    365                               3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
365   //                         -14--15--16--17--    366   //                         -14--15--16--17--18- -19--20-  -21-  -22-  -23- -24- -25-
366   //                          -26-   -27-  -28    367   //                          -26-   -27-  -28-  -29- -30-  -31- -32- -33- -34-
367   if(PDG == 211)                                  368   if(PDG == 211)
368   {                                               369   {
369     // -- Total pp elastic cross section cs &     370     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
370     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l    371     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
371     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d    372     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
372     //   par(0)       par(7)     par(1) par(2)    373     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
373     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4    374     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
374     //     par(8) par(9) par(10)        par(11    375     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
375     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40    376     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
376     // par(15) par(16)  par(17)     par(18) pa    377     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
377     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10);     378     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
378     //  par(24) par(25)     par(26)  par(27) p    379     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
379     //                                            380     //
380     if(lastPAR[nLast]!=pwd) // A unique flag t    381     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
381     {                                             382     {
382       if ( tgZ == 1 && tgN == 0 )                 383       if ( tgZ == 1 && tgN == 0 )
383       {                                           384       {
384         for (G4int ip=0; ip<n_pippel; ip++) la    385         for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
385       }                                           386       }
386       else                                        387       else
387       {                                           388       {
388         G4double a=tgZ+tgN;                       389         G4double a=tgZ+tgN;
389         G4double sa=std::sqrt(a);                 390         G4double sa=std::sqrt(a);
390         G4double ssa=std::sqrt(sa);               391         G4double ssa=std::sqrt(sa);
391         G4double asa=a*sa;                        392         G4double asa=a*sa;
392         G4double a2=a*a;                          393         G4double a2=a*a;
393         G4double a3=a2*a;                         394         G4double a3=a2*a;
394         G4double a4=a3*a;                         395         G4double a4=a3*a;
395         G4double a5=a4*a;                         396         G4double a5=a4*a;
396         G4double a6=a4*a2;                        397         G4double a6=a4*a2;
397         G4double a7=a6*a;                         398         G4double a7=a6*a;
398         G4double a8=a7*a;                         399         G4double a8=a7*a;
399         G4double a9=a8*a;                         400         G4double a9=a8*a;
400         G4double a10=a5*a5;                       401         G4double a10=a5*a5;
401         G4double a12=a6*a6;                       402         G4double a12=a6*a6;
402         G4double a14=a7*a7;                       403         G4double a14=a7*a7;
403         G4double a16=a8*a8;                       404         G4double a16=a8*a8;
404         G4double a17=a16*a;                       405         G4double a17=a16*a;
405         //G4double a20=a16*a4;                    406         //G4double a20=a16*a4;
406         G4double a32=a16*a16;                     407         G4double a32=a16*a16;
407         // Reaction cross-section parameters (    408         // Reaction cross-section parameters (pel=peh_fit.f)
408         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a)    409         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
409         lastPAR[1]=a/(1./4.4+1./a);               410         lastPAR[1]=a/(1./4.4+1./a);                                          // p2
410         lastPAR[2]=.22/G4Pow::GetInstance()->p    411         lastPAR[2]=.22/G4Pow::GetInstance()->powA(a,.33);                                      // p3
411         lastPAR[3]=.5*a/(1.+3./a+1800./a8);       412         lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
412         lastPAR[4]=3.E-4*G4Pow::GetInstance()-    413         lastPAR[4]=3.E-4*G4Pow::GetInstance()->powA(a,.32)/(1.+14./a2);                        // p5
413         lastPAR[5]=0.;                            414         lastPAR[5]=0.;                                                       // p6 not used
414         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2)    415         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
415         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./    416         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
416         lastPAR[8]=0.;                            417         lastPAR[8]=0.;                                                       // p9 not used
417         // @@ the differential cross-section i    418         // @@ the differential cross-section is parameterized separately for A>6 & A<7
418         if(a<6.5)                                 419         if(a<6.5)
419         {                                         420         {
420           G4double a28=a16*a12;                   421           G4double a28=a16*a12;
421           // The main pre-exponent      (pel_s    422           // The main pre-exponent      (pel_sg)
422           lastPAR[ 9]=4000*a;                     423           lastPAR[ 9]=4000*a;                                // p1
423           lastPAR[10]=1.2e7*a8+380*a17;           424           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
424           lastPAR[11]=.7/(1.+4.e-12*a16);         425           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
425           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);     426           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
426           lastPAR[13]=.28*a;                      427           lastPAR[13]=.28*a;                                 // p5
427           lastPAR[14]=1.2*a2+2.3;                 428           lastPAR[14]=1.2*a2+2.3;                            // p6
428           lastPAR[15]=3.8/a;                      429           lastPAR[15]=3.8/a;                                 // p7
429           // The main slope             (pel_s    430           // The main slope             (pel_sl)
430           lastPAR[16]=.01/(1.+.0024*a5);          431           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
431           lastPAR[17]=.2*a;                       432           lastPAR[17]=.2*a;                                  // p2
432           lastPAR[18]=9.e-7/(1.+.035*a5);         433           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
433           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1    434           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
434           // The main quadratic         (pel_s    435           // The main quadratic         (pel_sh)
435           lastPAR[20]=2.25*a3;                    436           lastPAR[20]=2.25*a3;                               // p1
436           lastPAR[21]=18.;                        437           lastPAR[21]=18.;                                   // p2
437           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7)    438           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
438           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1    439           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
439           // The 1st max pre-exponent   (pel_q    440           // The 1st max pre-exponent   (pel_qq)
440           lastPAR[24]=1.e5/(a8+2.5e12/a16);       441           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
441           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28    442           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
442           lastPAR[26]=.0006*a3;                   443           lastPAR[26]=.0006*a3;                              // p3
443           // The 1st max slope          (pel_q    444           // The 1st max slope          (pel_qs)
444           lastPAR[27]=10.+4.e-8*a12*a;            445           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
445           lastPAR[28]=.114;                       446           lastPAR[28]=.114;                                  // p2
446           lastPAR[29]=.003;                       447           lastPAR[29]=.003;                                  // p3
447           lastPAR[30]=2.e-23;                     448           lastPAR[30]=2.e-23;                                // p4
448           // The effective pre-exponent (pel_s    449           // The effective pre-exponent (pel_ss)
449           lastPAR[31]=1./(1.+.0001*a8);           450           lastPAR[31]=1./(1.+.0001*a8);                      // p1
450           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);      451           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
451           lastPAR[33]=.03;                        452           lastPAR[33]=.03;                                   // p3
452           // The effective slope        (pel_s    453           // The effective slope        (pel_sb)
453           lastPAR[34]=a/2;                        454           lastPAR[34]=a/2;                                   // p1
454           lastPAR[35]=2.e-7*a4;                   455           lastPAR[35]=2.e-7*a4;                              // p2
455           lastPAR[36]=4.;                         456           lastPAR[36]=4.;                                    // p3
456           lastPAR[37]=64./a3;                     457           lastPAR[37]=64./a3;                                // p4
457           // The gloria pre-exponent    (pel_u    458           // The gloria pre-exponent    (pel_us)
458           lastPAR[38]=1.e8*G4Exp(.32*asa);        459           lastPAR[38]=1.e8*G4Exp(.32*asa);                // p1
459           lastPAR[39]=20.*G4Exp(.45*asa);         460           lastPAR[39]=20.*G4Exp(.45*asa);                 // p2
460           lastPAR[40]=7.e3+2.4e6/a5;              461           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
461           lastPAR[41]=2.5e5*G4Exp(.085*a3);       462           lastPAR[41]=2.5e5*G4Exp(.085*a3);               // p4
462           lastPAR[42]=2.5*a;                      463           lastPAR[42]=2.5*a;                                 // p5
463           // The gloria slope           (pel_u    464           // The gloria slope           (pel_ub)
464           lastPAR[43]=920.+.03*a8*a3;             465           lastPAR[43]=920.+.03*a8*a3;                        // p1
465           lastPAR[44]=93.+.0023*a12;              466           lastPAR[44]=93.+.0023*a12;                         // p2
466         }                                         467         }
467         else                                      468         else
468         {                                         469         {
469           G4double p1a10=2.2e-28*a10;             470           G4double p1a10=2.2e-28*a10;
470           G4double r4a16=6.e14/a16;               471           G4double r4a16=6.e14/a16;
471           G4double s4a16=r4a16*r4a16;             472           G4double s4a16=r4a16*r4a16;
472           // a24                                  473           // a24
473           // a36                                  474           // a36
474           // The main pre-exponent      (peh_s    475           // The main pre-exponent      (peh_sg)
475           lastPAR[ 9]=4.5*G4Pow::GetInstance()    476           lastPAR[ 9]=4.5*G4Pow::GetInstance()->powA(a,1.15);                  // p1
476           lastPAR[10]=.06*G4Pow::GetInstance()    477           lastPAR[10]=.06*G4Pow::GetInstance()->powA(a,.6);                    // p2
477           lastPAR[11]=.6*a/(1.+2.e15/a16);        478           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
478           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3    479           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
479           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4    480           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
480           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.    481           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
481           // The main slope             (peh_s    482           // The main slope             (peh_sl)
482           lastPAR[15]=400./a12+2.e-22*a9;         483           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
483           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14    484           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
484           lastPAR[17]=1000./a2+9.5*sa*ssa;        485           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
485           lastPAR[18]=4.e-6*a*asa+1.e11/a16;      486           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
486           lastPAR[19]=(120./a+.002*a2)/(1.+2.e    487           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
487           lastPAR[20]=9.+100./a;                  488           lastPAR[20]=9.+100./a;                             // p6
488           // The main quadratic         (peh_s    489           // The main quadratic         (peh_sh)
489           lastPAR[21]=.002*a3+3.e7/a6;            490           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
490           lastPAR[22]=7.e-15*a4*asa;              491           lastPAR[22]=7.e-15*a4*asa;                         // p2
491           lastPAR[23]=9000./a4;                   492           lastPAR[23]=9000./a4;                              // p3
492           // The 1st max pre-exponent   (peh_q    493           // The 1st max pre-exponent   (peh_qq)
493           lastPAR[24]=.0011*asa/(1.+3.e34/a32/    494           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
494           lastPAR[25]=1.e-5*a2+2.e14/a16;         495           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
495           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1    496           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
496           lastPAR[27]=.016*asa/(1.+5.e16/a16);    497           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
497           // The 1st max slope          (peh_q    498           // The 1st max slope          (peh_qs)
498           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::    499           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow::GetInstance()->powA(a-6.83,14)); // p1
499           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetIn    500           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetInstance()->powA(a,.11);           // p2
500           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8)    501           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
501           lastPAR[31]=100./asa;                   502           lastPAR[31]=100./asa;                              // p4
502           // The 2nd max pre-exponent   (peh_s    503           // The 2nd max pre-exponent   (peh_ss)
503           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/    504           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
504           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);     505           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
505           lastPAR[34]=1.3+3.e5/a4;                506           lastPAR[34]=1.3+3.e5/a4;                           // p3
506           lastPAR[35]=500./(a2+50.)+3;            507           lastPAR[35]=500./(a2+50.)+3;                       // p4
507           lastPAR[36]=1.e-9/a+s4a16*s4a16;        508           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
508           // The 2nd max slope          (peh_s    509           // The 2nd max slope          (peh_sb)
509           lastPAR[37]=.4*asa+3.e-9*a6;            510           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
510           lastPAR[38]=.0005*a5;                   511           lastPAR[38]=.0005*a5;                              // p2
511           lastPAR[39]=.002*a5;                    512           lastPAR[39]=.002*a5;                               // p3
512           lastPAR[40]=10.;                        513           lastPAR[40]=10.;                                   // p4
513           // The effective pre-exponent (peh_u    514           // The effective pre-exponent (peh_us)
514           lastPAR[41]=.05+.005*a;                 515           lastPAR[41]=.05+.005*a;                            // p1
515           lastPAR[42]=7.e-8/sa;                   516           lastPAR[42]=7.e-8/sa;                              // p2
516           lastPAR[43]=.8*sa;                      517           lastPAR[43]=.8*sa;                                 // p3
517           lastPAR[44]=.02*sa;                     518           lastPAR[44]=.02*sa;                                // p4
518           lastPAR[45]=1.e8/a3;                    519           lastPAR[45]=1.e8/a3;                               // p5
519           lastPAR[46]=3.e32/(a32+1.e32);          520           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
520           // The effective slope        (peh_u    521           // The effective slope        (peh_ub)
521           lastPAR[47]=24.;                        522           lastPAR[47]=24.;                                   // p1
522           lastPAR[48]=20./sa;                     523           lastPAR[48]=20./sa;                                // p2
523           lastPAR[49]=7.e3*a/(sa+1.);             524           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
524           lastPAR[50]=900.*sa/(1.+500./a3);       525           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
525         }                                         526         }
526         // Parameter for lowEnergyNeutrons        527         // Parameter for lowEnergyNeutrons
527         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*    528         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
528       }                                           529       }
529       lastPAR[nLast]=pwd;                         530       lastPAR[nLast]=pwd;
530       // and initialize the zero element of th    531       // and initialize the zero element of the table
531       G4double lp=lPMin;                          532       G4double lp=lPMin;                                      // ln(momentum)
532       G4bool memCS=onlyCS;                        533       G4bool memCS=onlyCS;                                    // ??
533       onlyCS=false;                               534       onlyCS=false;
534       lastCST[0]=GetTabValues(lp, PDG, tgZ, tg    535       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
535       onlyCS=memCS;                               536       onlyCS=memCS;
536       lastSST[0]=theSS;                           537       lastSST[0]=theSS;
537       lastS1T[0]=theS1;                           538       lastS1T[0]=theS1;
538       lastB1T[0]=theB1;                           539       lastB1T[0]=theB1;
539       lastS2T[0]=theS2;                           540       lastS2T[0]=theS2;
540       lastB2T[0]=theB2;                           541       lastB2T[0]=theB2;
541       lastS3T[0]=theS3;                           542       lastS3T[0]=theS3;
542       lastB3T[0]=theB3;                           543       lastB3T[0]=theB3;
543       lastS4T[0]=theS4;                           544       lastS4T[0]=theS4;
544       lastB4T[0]=theB4;                           545       lastB4T[0]=theB4;
545     }                                             546     }
546     if(LP>ILP)                                    547     if(LP>ILP)
547     {                                             548     {
548       G4int ini = static_cast<int>((ILP-lPMin+    549       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
549       if(ini<0) ini=0;                            550       if(ini<0) ini=0;
550       if(ini<nPoints)                             551       if(ini<nPoints)
551       {                                           552       {
552         G4int fin = static_cast<int>((LP-lPMin    553         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
553         if(fin>=nPoints) fin=nLast;               554         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
554         if(fin>=ini)                              555         if(fin>=ini)
555         {                                         556         {
556           G4double lp=0.;                         557           G4double lp=0.;
557           for(G4int ip=ini; ip<=fin; ip++)        558           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
558           {                                       559           {
559             lp=lPMin+ip*dlnP;                     560             lp=lPMin+ip*dlnP;                     // ln(momentum)
560             G4bool memCS=onlyCS;                  561             G4bool memCS=onlyCS;
561             onlyCS=false;                         562             onlyCS=false;
562             lastCST[ip]=GetTabValues(lp, PDG,     563             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
563             onlyCS=memCS;                         564             onlyCS=memCS;
564             lastSST[ip]=theSS;                    565             lastSST[ip]=theSS;
565             lastS1T[ip]=theS1;                    566             lastS1T[ip]=theS1;
566             lastB1T[ip]=theB1;                    567             lastB1T[ip]=theB1;
567             lastS2T[ip]=theS2;                    568             lastS2T[ip]=theS2;
568             lastB2T[ip]=theB2;                    569             lastB2T[ip]=theB2;
569             lastS3T[ip]=theS3;                    570             lastS3T[ip]=theS3;
570             lastB3T[ip]=theB3;                    571             lastB3T[ip]=theB3;
571             lastS4T[ip]=theS4;                    572             lastS4T[ip]=theS4;
572             lastB4T[ip]=theB4;                    573             lastB4T[ip]=theB4;
573           }                                       574           }
574           return lp;                              575           return lp;
575         }                                         576         }
576         else G4cout<<"*Warning*G4ChipsPionPlus    577         else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
577                    <<", Z="<<tgZ<<", N="<<tgN<    578                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
578                    <<" > ILP="<<ILP<<" nothing    579                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
579       }                                           580       }
580       else G4cout<<"*Warning*G4ChipsPionPlusEl    581       else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
581                  <<tgZ<<", N="<<tgN<<", i="<<i    582                  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
582                  <<" > ILP="<<ILP<<", lPMax="<    583                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
583     }                                             584     }
584   }                                               585   }
585   else                                            586   else
586   {                                               587   {
587     // G4cout<<"*Error*G4ChipsPionPlusElasticX    588     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
588     //       <<", N="<<tgN<<", while it is def    589     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
589     // throw G4QException("G4ChipsPionPlusElas    590     // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
590     G4ExceptionDescription ed;                    591     G4ExceptionDescription ed;
591     ed << "PDG = " << PDG << ", Z = " << tgZ <    592     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
592        << ", while it is defined only for PDG=    593        << ", while it is defined only for PDG=211 (pi+)" << G4endl;
593     G4Exception("G4ChipsPionPlusElasticXS::Get    594     G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
594                 FatalException, ed);              595                 FatalException, ed);
595   }                                               596   }
596   return ILP;                                     597   return ILP;
597 }                                                 598 }
598                                                   599 
599 // Returns Q2=-t in independent units (MeV^2)     600 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
600 G4double G4ChipsPionPlusElasticXS::GetExchange    601 G4double G4ChipsPionPlusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
601 {                                                 602 {
602   static const G4double GeVSQ=gigaelectronvolt    603   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
603   static const G4double third=1./3.;              604   static const G4double third=1./3.;
604   static const G4double fifth=1./5.;              605   static const G4double fifth=1./5.;
605   static const G4double sevth=1./7.;              606   static const G4double sevth=1./7.;
606   if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPl    607   if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
607   if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusE    608   if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
608   if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor    609   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
609   G4double q2=0.;                                 610   G4double q2=0.;
610   if(tgZ==1 && tgN==0)                // ===>     611   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
611   {                                               612   {
612     G4double E1=lastTM*theB1;                     613     G4double E1=lastTM*theB1;
613     G4double R1=(1.-G4Exp(-E1));                  614     G4double R1=(1.-G4Exp(-E1));
614     G4double E2=lastTM*theB2;                     615     G4double E2=lastTM*theB2;
615     G4double R2=(1.-G4Exp(-E2*E2*E2));            616     G4double R2=(1.-G4Exp(-E2*E2*E2));
616     G4double E3=lastTM*theB3;                     617     G4double E3=lastTM*theB3;
617     G4double R3=(1.-G4Exp(-E3));                  618     G4double R3=(1.-G4Exp(-E3));
618     G4double I1=R1*theS1/theB1;                   619     G4double I1=R1*theS1/theB1;
619     G4double I2=R2*theS2;                         620     G4double I2=R2*theS2;
620     G4double I3=R3*theS3;                         621     G4double I3=R3*theS3;
621     G4double I12=I1+I2;                           622     G4double I12=I1+I2;
622     G4double rand=(I12+I3)*G4UniformRand();       623     G4double rand=(I12+I3)*G4UniformRand();
623     if     (rand<I1 )                             624     if     (rand<I1 )
624     {                                             625     {
625       G4double ran=R1*G4UniformRand();            626       G4double ran=R1*G4UniformRand();
626       if(ran>1.) ran=1.;                          627       if(ran>1.) ran=1.;
627       q2=-G4Log(1.-ran)/theB1;                    628       q2=-G4Log(1.-ran)/theB1;
628     }                                             629     }
629     else if(rand<I12)                             630     else if(rand<I12)
630     {                                             631     {
631       G4double ran=R2*G4UniformRand();            632       G4double ran=R2*G4UniformRand();
632       if(ran>1.) ran=1.;                          633       if(ran>1.) ran=1.;
633       q2=-G4Log(1.-ran);                          634       q2=-G4Log(1.-ran);
634       if(q2<0.) q2=0.;                            635       if(q2<0.) q2=0.;
635       q2=G4Pow::GetInstance()->powA(q2,third)/    636       q2=G4Pow::GetInstance()->powA(q2,third)/theB2;
636     }                                             637     }
637     else                                          638     else
638     {                                             639     {
639       G4double ran=R3*G4UniformRand();            640       G4double ran=R3*G4UniformRand();
640       if(ran>1.) ran=1.;                          641       if(ran>1.) ran=1.;
641       q2=-G4Log(1.-ran)/theB3;                    642       q2=-G4Log(1.-ran)/theB3;
642     }                                             643     }
643   }                                               644   }
644   else                                            645   else
645   {                                               646   {
646     G4double a=tgZ+tgN;                           647     G4double a=tgZ+tgN;
647     G4double E1=lastTM*(theB1+lastTM*theSS);      648     G4double E1=lastTM*(theB1+lastTM*theSS);
648     G4double R1=(1.-G4Exp(-E1));                  649     G4double R1=(1.-G4Exp(-E1));
649     G4double tss=theSS+theSS; // for future so    650     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
650     G4double tm2=lastTM*lastTM;                   651     G4double tm2=lastTM*lastTM;
651     G4double E2=lastTM*tm2*theB2;                 652     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
652     if(a>6.5)E2*=tm2;                             653     if(a>6.5)E2*=tm2;                               // for heavy nuclei
653     G4double R2=(1.-G4Exp(-E2));                  654     G4double R2=(1.-G4Exp(-E2));
654     G4double E3=lastTM*theB3;                     655     G4double E3=lastTM*theB3;
655     if(a>6.5)E3*=tm2*tm2*tm2;                     656     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
656     G4double R3=(1.-G4Exp(-E3));                  657     G4double R3=(1.-G4Exp(-E3));
657     G4double E4=lastTM*theB4;                     658     G4double E4=lastTM*theB4;
658     G4double R4=(1.-G4Exp(-E4));                  659     G4double R4=(1.-G4Exp(-E4));
659     G4double I1=R1*theS1;                         660     G4double I1=R1*theS1;
660     G4double I2=R2*theS2;                         661     G4double I2=R2*theS2;
661     G4double I3=R3*theS3;                         662     G4double I3=R3*theS3;
662     G4double I4=R4*theS4;                         663     G4double I4=R4*theS4;
663     G4double I12=I1+I2;                           664     G4double I12=I1+I2;
664     G4double I13=I12+I3;                          665     G4double I13=I12+I3;
665     G4double rand=(I13+I4)*G4UniformRand();       666     G4double rand=(I13+I4)*G4UniformRand();
666     if(rand<I1)                                   667     if(rand<I1)
667     {                                             668     {
668       G4double ran=R1*G4UniformRand();            669       G4double ran=R1*G4UniformRand();
669       if(ran>1.) ran=1.;                          670       if(ran>1.) ran=1.;
670       q2=-G4Log(1.-ran)/theB1;                    671       q2=-G4Log(1.-ran)/theB1;
671       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t    672       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
672     }                                             673     }
673     else if(rand<I12)                             674     else if(rand<I12)
674     {                                             675     {
675       G4double ran=R2*G4UniformRand();            676       G4double ran=R2*G4UniformRand();
676       if(ran>1.) ran=1.;                          677       if(ran>1.) ran=1.;
677       q2=-G4Log(1.-ran)/theB2;                    678       q2=-G4Log(1.-ran)/theB2;
678       if(q2<0.) q2=0.;                            679       if(q2<0.) q2=0.;
679       if(a<6.5) q2=G4Pow::GetInstance()->powA(    680       if(a<6.5) q2=G4Pow::GetInstance()->powA(q2,third);
680       else      q2=G4Pow::GetInstance()->powA(    681       else      q2=G4Pow::GetInstance()->powA(q2,fifth);
681     }                                             682     }
682     else if(rand<I13)                             683     else if(rand<I13)
683     {                                             684     {
684       G4double ran=R3*G4UniformRand();            685       G4double ran=R3*G4UniformRand();
685       if(ran>1.) ran=1.;                          686       if(ran>1.) ran=1.;
686       q2=-G4Log(1.-ran)/theB3;                    687       q2=-G4Log(1.-ran)/theB3;
687       if(q2<0.) q2=0.;                            688       if(q2<0.) q2=0.;
688       if(a>6.5) q2=G4Pow::GetInstance()->powA(    689       if(a>6.5) q2=G4Pow::GetInstance()->powA(q2,sevth);
689     }                                             690     }
690     else                                          691     else
691     {                                             692     {
692       G4double ran=R4*G4UniformRand();            693       G4double ran=R4*G4UniformRand();
693       if(ran>1.) ran=1.;                          694       if(ran>1.) ran=1.;
694       q2=-G4Log(1.-ran)/theB4;                    695       q2=-G4Log(1.-ran)/theB4;
695       if(a<6.5) q2=lastTM-q2;                     696       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
696     }                                             697     }
697   }                                               698   }
698   if(q2<0.) q2=0.;                                699   if(q2<0.) q2=0.;
699   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas    700   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
700   if(q2>lastTM)                                   701   if(q2>lastTM)
701   {                                               702   {
702     q2=lastTM;                                    703     q2=lastTM;
703   }                                               704   }
704   return q2*GeVSQ;                                705   return q2*GeVSQ;
705 }                                                 706 }
706                                                   707 
707 // Returns B in independent units (MeV^-2) (al    708 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
708 G4double G4ChipsPionPlusElasticXS::GetSlope(G4    709 G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
709 {                                                 710 {
710   static const G4double GeVSQ=gigaelectronvolt    711   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
711   if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusEl    712   if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
712   if(lastLP<-4.3) return 0.;          // S-wav    713   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
713   if(PDG != 211)                                  714   if(PDG != 211)
714   {                                               715   {
715     // G4cout<<"*Error*G4ChipsPionPlusElasticX    716     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
716     //       <<", N="<<tgN<<", while it is def    717     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
717     // throw G4QException("G4ChipsPionPlusElas    718     // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
718     G4ExceptionDescription ed;                    719     G4ExceptionDescription ed;
719     ed << "PDG = " << PDG << ", Z = " << tgZ <    720     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
720        << ", while it is defined only for PDG=    721        << ", while it is defined only for PDG=211 (pi-)" << G4endl;
721     G4Exception("G4ChipsPionPlusElasticXS::Get    722     G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
722                 FatalException, ed);              723                 FatalException, ed);
723   }                                               724   }
724   if(theB1<0.) theB1=0.;                          725   if(theB1<0.) theB1=0.;
725   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4    726   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
726   return theB1/GeVSQ;                             727   return theB1/GeVSQ;
727 }                                                 728 }
728                                                   729 
729 // Returns half max(Q2=-t) in independent unit    730 // Returns half max(Q2=-t) in independent units (MeV^2)
730 G4double G4ChipsPionPlusElasticXS::GetHMaxT()     731 G4double G4ChipsPionPlusElasticXS::GetHMaxT()
731 {                                                 732 {
732   static const G4double HGeVSQ=gigaelectronvol    733   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
733   return lastTM*HGeVSQ;                           734   return lastTM*HGeVSQ;
734 }                                                 735 }
735                                                   736 
736 // lastLP is used, so calculating tables, one     737 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
737 G4double G4ChipsPionPlusElasticXS::GetTabValue    738 G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
738                                                   739                                                     G4int tgN)
739 {                                                 740 {
740   if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlu    741   if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
741                                                   742 
742   //AR-24Apr2018 Switch to allow transuranic e    743   //AR-24Apr2018 Switch to allow transuranic elements
743   const G4bool isHeavyElementAllowed = true;      744   const G4bool isHeavyElementAllowed = true;
744   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>    745   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
745   {                                               746   {
746     G4cout<<"*Warning*G4QPionPlusElCS::GetTabV    747     G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
747     return 0.;                                    748     return 0.;
748   }                                               749   }
749   G4int iZ=tgZ-1; // Z index                      750   G4int iZ=tgZ-1; // Z index
750   if(iZ<0)                                        751   if(iZ<0)
751   {                                               752   {
752     iZ=0;         // conversion of the neutron    753     iZ=0;         // conversion of the neutron target to the proton target
753     tgZ=1;                                        754     tgZ=1;
754     tgN=0;                                        755     tgN=0;
755   }                                               756   }
756   G4double p=G4Exp(lp);              // moment    757   G4double p=G4Exp(lp);              // momentum
757   G4double sp=std::sqrt(p);             // sqr    758   G4double sp=std::sqrt(p);             // sqrt(p)
758   G4double p2=p*p;                                759   G4double p2=p*p;
759   G4double p3=p2*p;                               760   G4double p3=p2*p;
760   G4double p4=p2*p2;                              761   G4double p4=p2*p2;
761   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P         762   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
762   {                                               763   {
763     G4double dl2=lp-lastPAR[11];                  764     G4double dl2=lp-lastPAR[11];
764     theSS=lastPAR[34];                            765     theSS=lastPAR[34];
765     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1    766     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
766           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+l    767           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
767     theB1=lastPAR[18]*G4Pow::GetInstance()->po    768     theB1=lastPAR[18]*G4Pow::GetInstance()->powA(p,lastPAR[19])/(1.+lastPAR[20]/p3);
768     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[    769     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
769     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[    770     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
770     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastP    771     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
771     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[    772     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
772     theS4=0.;                                     773     theS4=0.;
773     theB4=0.;                                     774     theB4=0.; 
774     // Returns the total elastic pip-p cross-s    775     // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
775     G4double dl1=lp+lastPAR[0];  // lr            776     G4double dl1=lp+lastPAR[0];  // lr
776     G4double lr2=dl1*dl1;        // lr2           777     G4double lr2=dl1*dl1;        // lr2
777     G4double dl3=lp-lastPAR[3];  // ld            778     G4double dl3=lp-lastPAR[3];  // ld
778     G4double dl4=lp-lastPAR[4];  // lm            779     G4double dl4=lp-lastPAR[4];  // lm
779     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])    780     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
780            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+l    781            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
781   }                                               782   }
782   else                                            783   else
783   {                                               784   {
784     G4double p5=p4*p;                             785     G4double p5=p4*p;
785     G4double p6=p5*p;                             786     G4double p6=p5*p;
786     G4double p8=p6*p2;                            787     G4double p8=p6*p2;
787     G4double p10=p8*p2;                           788     G4double p10=p8*p2;
788     G4double p12=p10*p2;                          789     G4double p12=p10*p2;
789     G4double p16=p8*p8;                           790     G4double p16=p8*p8;
790     //G4double p24=p16*p8;                        791     //G4double p24=p16*p8;
791     G4double dl=lp-5.;                            792     G4double dl=lp-5.;
792     G4double a=tgZ+tgN;                           793     G4double a=tgZ+tgN;
793     G4double pah=G4Pow::GetInstance()->powA(p,    794     G4double pah=G4Pow::GetInstance()->powA(p,a/2);
794     G4double pa=pah*pah;                          795     G4double pa=pah*pah;
795     G4double pa2=pa*pa;                           796     G4double pa2=pa*pa;
796     if(a<6.5)                                     797     if(a<6.5)
797     {                                             798     {
798       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+    799       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
799             (lastPAR[13]*dl*dl+lastPAR[14])/(1    800             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
800       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l    801       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
801       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la    802       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
802       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)    803       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
803       theB2=lastPAR[27]*G4Pow::GetInstance()->    804       theB2=lastPAR[27]*G4Pow::GetInstance()->powA(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
804       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+    805       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
805       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la    806       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
806       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*las    807       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*lastPAR[39])+
807                 lastPAR[40]/(1.+lastPAR[41]*G4    808                 lastPAR[40]/(1.+lastPAR[41]*G4Pow::GetInstance()->powA(p,lastPAR[42])));
808       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4    809       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
809     }                                             810     }
810     else                                          811     else
811     {                                             812     {
812       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las    813       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
813             lastPAR[13]/(p5+lastPAR[14]/p16);     814             lastPAR[13]/(p5+lastPAR[14]/p16);
814       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la    815       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/G4Pow::GetInstance()->powA(p,lastPAR[20]))+
815             lastPAR[17]/(1.+lastPAR[18]/p4);      816             lastPAR[17]/(1.+lastPAR[18]/p4);
816       theSS=lastPAR[21]/(p4/G4Pow::GetInstance    817       theSS=lastPAR[21]/(p4/G4Pow::GetInstance()->powA(p,lastPAR[23])+lastPAR[22]/p4);
817       theS2=lastPAR[24]/p4/(G4Pow::GetInstance    818       theS2=lastPAR[24]/p4/(G4Pow::GetInstance()->powA(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
818       theB2=lastPAR[28]/G4Pow::GetInstance()->    819       theB2=lastPAR[28]/G4Pow::GetInstance()->powA(p,lastPAR[29])+lastPAR[30]/G4Pow::GetInstance()->powA(p,lastPAR[31]);
819       theS3=lastPAR[32]/G4Pow::GetInstance()->    820       theS3=lastPAR[32]/G4Pow::GetInstance()->powA(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
820             lastPAR[33]/(1.+lastPAR[34]/p6);      821             lastPAR[33]/(1.+lastPAR[34]/p6);
821       theB3=lastPAR[37]/p8+lastPAR[38]/p2+last    822       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
822       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.    823       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
823             (lastPAR[43]+lastPAR[44]*dl*dl)/(1    824             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
824       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las    825       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
825     }                                             826     }
826     // Returns the total elastic (n/p)A cross-    827     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
827     //         p1               p2                828     //         p1               p2              p3
828     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l    829     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
829            lastPAR[3]/(p4+lastPAR[4]/p3)+lastP    830            lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
830     //        p4             p5                   831     //        p4             p5               p7           p8
831   }                                               832   }
832   return 0.;                                      833   return 0.;
833 } // End of GetTableValues                        834 } // End of GetTableValues
834                                                   835 
835 // Returns max -t=Q2 (GeV^2) for the momentum     836 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
836 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4    837 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
837                                                   838                                                 G4double pP)
838 {                                                 839 {
839   static const G4double mPi= G4PionPlus::PionP    840   static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
840   static const G4double mPi2= mPi*mPi;            841   static const G4double mPi2= mPi*mPi;
841   G4double pP2=pP*pP;                             842   G4double pP2=pP*pP;                                 // squared momentum of the projectile
842   if(tgZ || tgN>-1)                               843   if(tgZ || tgN>-1)                                   // ---> pipA
843   {                                               844   {
844     G4double mt=G4ParticleTable::GetParticleTa    845     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
845     G4double dmt=mt+mt;                           846     G4double dmt=mt+mt;
846     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+    847     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam mds
847     return dmt*dmt*pP2/mds;                       848     return dmt*dmt*pP2/mds;
848   }                                               849   }
849   else                                            850   else
850   {                                               851   {
851     G4ExceptionDescription ed;                    852     G4ExceptionDescription ed;
852     ed << "PDG = " << PDG << ", Z = " << tgZ <    853     ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
853        << ", while it is defined only for p pr    854        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
854     G4Exception("G4ChipsPionPlusElasticXS::Get    855     G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
855                 FatalException, ed);              856                 FatalException, ed);
856     return 0;                                     857     return 0;
857   }                                               858   }
858 }                                                 859 }
859                                                   860