Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsPionPlusElasticXS.cc (Version 10.1.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4ChipsPionPlusElasticXS.cc 88983 2015-03-17 10:24:43Z gcosmo $
 27 //                                                 28 //
 28 //                                                 29 //
 29 // G4 Physics class: G4ChipsPionPlusElasticXS      30 // G4 Physics class: G4ChipsPionPlusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21     31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
 31 // The last update: M.V. Kossov, CERN/ITEP (Mo     32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
 32 //                                                 33 // 
 33 // -------------------------------------------     34 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sectio     35 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated i     36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------     37 // -------------------------------------------------------------------------------
 37                                                    38 
 38                                                    39 
 39 #include "G4ChipsPionPlusElasticXS.hh"             40 #include "G4ChipsPionPlusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 43 #include "G4PionPlus.hh"                           44 #include "G4PionPlus.hh"
 44 #include "G4Nucleus.hh"                            45 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"                      46 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"                   47 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"                           48 #include "G4IonTable.hh"
 48 #include "G4Log.hh"                            << 
 49 #include "G4Exp.hh"                            << 
 50 #include "G4Pow.hh"                            << 
 51                                                    49 
 52 // factory                                         50 // factory
 53 #include "G4CrossSectionFactory.hh"                51 #include "G4CrossSectionFactory.hh"
 54 //                                                 52 //
 55 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS     53 G4_DECLARE_XS_FACTORY(G4ChipsPionPlusElasticXS);
 56                                                    54 
 57 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElast     55 G4ChipsPionPlusElasticXS::G4ChipsPionPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 58 {                                                  56 {
 59   lPMin=-8.;  // Min tabulated logarithmMoment     57   lPMin=-8.;  // Min tabulated logarithmMomentum(D)
 60   lPMax= 8.;  // Max tabulated logarithmMoment     58   lPMax= 8.;  // Max tabulated logarithmMomentum(D)
 61   dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTab     59   dlnP=(lPMax-lPMin)/nLast;// LogStep inTheTable(D)
 62   onlyCS=true;// Flag toCalcul OnlyCS(not Si/B     60   onlyCS=true;// Flag toCalcul OnlyCS(not Si/Bi)(L)
 63   lastSIG=0.; // Last calculated cross section     61   lastSIG=0.; // Last calculated cross section  (L)
 64   lastLP=-10.;// Last log(mom_of IncidentHadro     62   lastLP=-10.;// Last log(mom_of IncidentHadron)(L)
 65   lastTM=0.;  // Last t_maximum                    63   lastTM=0.;  // Last t_maximum                 (L)
 66   theSS=0.;   // TheLastSqSlope of 1st difr.Ma     64   theSS=0.;   // TheLastSqSlope of 1st difr.Max(L)
 67   theS1=0.;   // TheLastMantissa of 1st difr.M     65   theS1=0.;   // TheLastMantissa of 1st difr.Max(L)
 68   theB1=0.;   // TheLastSlope of 1st difruct.M     66   theB1=0.;   // TheLastSlope of 1st difruct.Max(L)
 69   theS2=0.;   // TheLastMantissa of 2nd difr.M     67   theS2=0.;   // TheLastMantissa of 2nd difr.Max(L)
 70   theB2=0.;   // TheLastSlope of 2nd difruct.M     68   theB2=0.;   // TheLastSlope of 2nd difruct.Max(L)
 71   theS3=0.;   // TheLastMantissa of 3d difr. M     69   theS3=0.;   // TheLastMantissa of 3d difr. Max(L)
 72   theB3=0.;   // TheLastSlope of 3d difruct. M     70   theB3=0.;   // TheLastSlope of 3d difruct. Max(L)
 73   theS4=0.;   // TheLastMantissa of 4th difr.M     71   theS4=0.;   // TheLastMantissa of 4th difr.Max(L)
 74   theB4=0.;   // TheLastSlope of 4th difruct.M     72   theB4=0.;   // TheLastSlope of 4th difruct.Max(L)
 75   lastTZ=0;   // Last atomic number of the tar     73   lastTZ=0;   // Last atomic number of the target
 76   lastTN=0;   // Last # of neutrons in the tar     74   lastTN=0;   // Last # of neutrons in the target
 77   lastPIN=0.; // Last initialized max momentum     75   lastPIN=0.; // Last initialized max momentum
 78   lastCST=0;  // Elastic cross-section table       76   lastCST=0;  // Elastic cross-section table
 79   lastPAR=0;  // ParametersForFunctionalCalcul     77   lastPAR=0;  // ParametersForFunctionalCalculation
 80   lastSST=0;  // E-dep of SqaredSlope of 1st d     78   lastSST=0;  // E-dep of SqaredSlope of 1st difMax
 81   lastS1T=0;  // E-dep of mantissa of 1st dif.     79   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 82   lastB1T=0;  // E-dep of the slope of 1st dif     80   lastB1T=0;  // E-dep of the slope of 1st difMax
 83   lastS2T=0;  // E-dep of mantissa of 2nd difr     81   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 84   lastB2T=0;  // E-dep of the slope of 2nd dif     82   lastB2T=0;  // E-dep of the slope of 2nd difMax
 85   lastS3T=0;  // E-dep of mantissa of 3d difr.     83   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 86   lastB3T=0;  // E-dep of the slope of 3d difr     84   lastB3T=0;  // E-dep of the slope of 3d difrMax
 87   lastS4T=0;  // E-dep of mantissa of 4th difr     85   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 88   lastB4T=0;  // E-dep of the slope of 4th dif     86   lastB4T=0;  // E-dep of the slope of 4th difMax
 89   lastN=0;    // The last N of calculated nucl     87   lastN=0;    // The last N of calculated nucleus
 90   lastZ=0;    // The last Z of calculated nucl     88   lastZ=0;    // The last Z of calculated nucleus
 91   lastP=0.;   // LastUsed in cross section Mom     89   lastP=0.;   // LastUsed in cross section Momentum
 92   lastTH=0.;  // Last threshold momentum           90   lastTH=0.;  // Last threshold momentum
 93   lastCS=0.;  // Last value of the Cross Secti     91   lastCS=0.;  // Last value of the Cross Section
 94   lastI=0;    // The last position in the DAMD     92   lastI=0;    // The last position in the DAMDB
 95 }                                                  93 }
 96                                                    94 
 97 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElas     95 G4ChipsPionPlusElasticXS::~G4ChipsPionPlusElasticXS()
 98 {                                                  96 {
 99   std::vector<G4double*>::iterator pos;            97   std::vector<G4double*>::iterator pos;
100   for (pos=CST.begin(); pos<CST.end(); pos++)      98   for (pos=CST.begin(); pos<CST.end(); pos++)
101   { delete [] *pos; }                              99   { delete [] *pos; }
102   CST.clear();                                    100   CST.clear();
103   for (pos=PAR.begin(); pos<PAR.end(); pos++)     101   for (pos=PAR.begin(); pos<PAR.end(); pos++)
104   { delete [] *pos; }                             102   { delete [] *pos; }
105   PAR.clear();                                    103   PAR.clear();
106   for (pos=SST.begin(); pos<SST.end(); pos++)     104   for (pos=SST.begin(); pos<SST.end(); pos++)
107   { delete [] *pos; }                             105   { delete [] *pos; }
108   SST.clear();                                    106   SST.clear();
109   for (pos=S1T.begin(); pos<S1T.end(); pos++)     107   for (pos=S1T.begin(); pos<S1T.end(); pos++)
110   { delete [] *pos; }                             108   { delete [] *pos; }
111   S1T.clear();                                    109   S1T.clear();
112   for (pos=B1T.begin(); pos<B1T.end(); pos++)     110   for (pos=B1T.begin(); pos<B1T.end(); pos++)
113   { delete [] *pos; }                             111   { delete [] *pos; }
114   B1T.clear();                                    112   B1T.clear();
115   for (pos=S2T.begin(); pos<S2T.end(); pos++)     113   for (pos=S2T.begin(); pos<S2T.end(); pos++)
116   { delete [] *pos; }                             114   { delete [] *pos; }
117   S2T.clear();                                    115   S2T.clear();
118   for (pos=B2T.begin(); pos<B2T.end(); pos++)     116   for (pos=B2T.begin(); pos<B2T.end(); pos++)
119   { delete [] *pos; }                             117   { delete [] *pos; }
120   B2T.clear();                                    118   B2T.clear();
121   for (pos=S3T.begin(); pos<S3T.end(); pos++)     119   for (pos=S3T.begin(); pos<S3T.end(); pos++)
122   { delete [] *pos; }                             120   { delete [] *pos; }
123   S3T.clear();                                    121   S3T.clear();
124   for (pos=B3T.begin(); pos<B3T.end(); pos++)     122   for (pos=B3T.begin(); pos<B3T.end(); pos++)
125   { delete [] *pos; }                             123   { delete [] *pos; }
126   B3T.clear();                                    124   B3T.clear();
127   for (pos=S4T.begin(); pos<S4T.end(); pos++)     125   for (pos=S4T.begin(); pos<S4T.end(); pos++)
128   { delete [] *pos; }                             126   { delete [] *pos; }
129   S4T.clear();                                    127   S4T.clear();
130   for (pos=B4T.begin(); pos<B4T.end(); pos++)     128   for (pos=B4T.begin(); pos<B4T.end(); pos++)
131   { delete [] *pos; }                             129   { delete [] *pos; }
132   B4T.clear();                                    130   B4T.clear();
133 }                                                 131 }
134                                                   132 
135 void                                           << 
136 G4ChipsPionPlusElasticXS::CrossSectionDescript << 
137 {                                              << 
138     outFile << "G4ChipsPionPlusElasticXS provi << 
139             << "section for pion+ nucleus scat << 
140             << "momentum. The cross section is << 
141             << "CHIPS parameterization of cros << 
142 }                                              << 
143                                                << 
144 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicab    133 G4bool G4ChipsPionPlusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
145              const G4Element*,                    134              const G4Element*,
146              const G4Material*)                   135              const G4Material*)
147 {                                                 136 {
148   return true;                                    137   return true;
149 }                                                 138 }
150                                                   139 
151 // The main member function giving the collisi    140 // The main member function giving the collision cross section (P is in IU, CS is in mb)
152 // Make pMom in independent units ! (Now it is    141 // Make pMom in independent units ! (Now it is MeV)
153 G4double G4ChipsPionPlusElasticXS::GetIsoCross    142 G4double G4ChipsPionPlusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
154                                                << 143               const G4Isotope*,
155                                                << 144               const G4Element*,
156                                                << 145               const G4Material*)
                                                   >> 146 
157 {                                                 147 {
158   G4double pMom=Pt->GetTotalMomentum();           148   G4double pMom=Pt->GetTotalMomentum();
159   G4int tgN = A - tgZ;                            149   G4int tgN = A - tgZ;
160                                                   150   
161   return GetChipsCrossSection(pMom, tgZ, tgN,     151   return GetChipsCrossSection(pMom, tgZ, tgN, 211);
162 }                                                 152 }
163                                                   153 
164 G4double G4ChipsPionPlusElasticXS::GetChipsCro    154 G4double G4ChipsPionPlusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
165 {                                                 155 {
166   G4double pEn=pMom;                              156   G4double pEn=pMom;
167   G4bool fCS = false;                             157   G4bool fCS = false;
168   onlyCS=fCS;                                     158   onlyCS=fCS;
169                                                   159 
170   G4bool in=false;                   // By def    160   G4bool in=false;                   // By default the isotope must be found in the AMDB
171   lastP   = 0.;                      // New mo    161   lastP   = 0.;                      // New momentum history (nothing to compare with)
172   lastN   = tgN;                     // The la    162   lastN   = tgN;                     // The last N of the calculated nucleus
173   lastZ   = tgZ;                     // The la    163   lastZ   = tgZ;                     // The last Z of the calculated nucleus
174   lastI   = (G4int)colN.size();      // Size o << 164   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
175   if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 165   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
176   {                                  // The nu    166   {                                  // The nucleus with projPDG is found in AMDB
177     if(colN[i]==tgN && colZ[i]==tgZ) // Isotop    167     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
178     {                                             168     {
179       lastI=i;                                    169       lastI=i;
180       lastTH =colTH[i];              // Last T    170       lastTH =colTH[i];              // Last THreshold (A-dependent)
181       if(pEn<=lastTH)                             171       if(pEn<=lastTH)
182       {                                           172       {
183         return 0.;                   // Energy    173         return 0.;                   // Energy is below the Threshold value
184       }                                           174       }
185       lastP  =colP [i];              // Last M    175       lastP  =colP [i];              // Last Momentum  (A-dependent)
186       lastCS =colCS[i];              // Last C    176       lastCS =colCS[i];              // Last CrossSect (A-dependent)
187       //  if(std::fabs(lastP/pMom-1.)<toleranc    177       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
188       if(lastP == pMom)              // Do not    178       if(lastP == pMom)              // Do not recalculate
189       {                                           179       {
190         CalculateCrossSection(fCS,-1,i,211,las    180         CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // Update param's only
191         return lastCS*millibarn;     // Use th    181         return lastCS*millibarn;     // Use theLastCS
192       }                                           182       }
193       in = true;                       // This    183       in = true;                       // This is the case when the isotop is found in DB
194       // Momentum pMom is in IU ! @@ Units        184       // Momentum pMom is in IU ! @@ Units
195       lastCS=CalculateCrossSection(fCS,-1,i,21    185       lastCS=CalculateCrossSection(fCS,-1,i,211,lastZ,lastN,pMom); // read & update
196       if(lastCS<=0. && pEn>lastTH)    // Corre    186       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
197       {                                           187       {
198         lastTH=pEn;                               188         lastTH=pEn;
199       }                                           189       }
200       break;                           // Go o    190       break;                           // Go out of the LOOP with found lastI
201     }                                             191     }
202   } // End of attampt to find the nucleus in D    192   } // End of attampt to find the nucleus in DB
203   if(!in)                            // This n    193   if(!in)                            // This nucleus has not been calculated previously
204   {                                               194   {
205     //!!The slave functions must provide cross    195     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
206     lastCS=CalculateCrossSection(fCS,0,lastI,2    196     lastCS=CalculateCrossSection(fCS,0,lastI,211,lastZ,lastN,pMom);//calculate&create
207     if(lastCS<=0.)                                197     if(lastCS<=0.)
208     {                                             198     {
209       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    199       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
210       if(pEn>lastTH)                              200       if(pEn>lastTH)
211       {                                           201       {
212         lastTH=pEn;                               202         lastTH=pEn;
213       }                                           203       }
214     }                                             204     }
215     colN.push_back(tgN);                          205     colN.push_back(tgN);
216     colZ.push_back(tgZ);                          206     colZ.push_back(tgZ);
217     colP.push_back(pMom);                         207     colP.push_back(pMom);
218     colTH.push_back(lastTH);                      208     colTH.push_back(lastTH);
219     colCS.push_back(lastCS);                      209     colCS.push_back(lastCS);
220     return lastCS*millibarn;                      210     return lastCS*millibarn;
221   } // End of creation of the new set of param    211   } // End of creation of the new set of parameters
222   else                                            212   else
223   {                                               213   {
224     colP[lastI]=pMom;                             214     colP[lastI]=pMom;
225     colCS[lastI]=lastCS;                          215     colCS[lastI]=lastCS;
226   }                                               216   }
227   return lastCS*millibarn;                        217   return lastCS*millibarn;
228 }                                                 218 }
229                                                   219 
230 // Calculation of total elastic cross section     220 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
231 // F=0 - create AMDB, F=-1 - read&update AMDB,    221 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
232 G4double G4ChipsPionPlusElasticXS::CalculateCr    222 G4double G4ChipsPionPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F, G4int I,
233                                              G    223                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
234 {                                                 224 {
235   G4double pMom=pIU/GeV;                // All    225   G4double pMom=pIU/GeV;                // All calculations are in GeV
236   onlyCS=CS;                            // Fla    226   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
237   lastLP=G4Log(pMom);                // Make a << 227   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
238   if(F)                                 // Thi    228   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
239   {                                               229   {
240     if(F<0)                             // the    230     if(F<0)                             // the AMDB must be loded
241     {                                             231     {
242       lastPIN = PIN[I];                 // Max    232       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
243       lastPAR = PAR[I];                 // Poi    233       lastPAR = PAR[I];                 // Pointer to the parameter set
244       lastCST = CST[I];                 // Poi    234       lastCST = CST[I];                 // Pointer to the total sross-section table
245       lastSST = SST[I];                 // Poi    235       lastSST = SST[I];                 // Pointer to the first squared slope
246       lastS1T = S1T[I];                 // Poi    236       lastS1T = S1T[I];                 // Pointer to the first mantissa
247       lastB1T = B1T[I];                 // Poi    237       lastB1T = B1T[I];                 // Pointer to the first slope
248       lastS2T = S2T[I];                 // Poi    238       lastS2T = S2T[I];                 // Pointer to the second mantissa
249       lastB2T = B2T[I];                 // Poi    239       lastB2T = B2T[I];                 // Pointer to the second slope
250       lastS3T = S3T[I];                 // Poi    240       lastS3T = S3T[I];                 // Pointer to the third mantissa
251       lastB3T = B3T[I];                 // Poi    241       lastB3T = B3T[I];                 // Pointer to the rhird slope
252       lastS4T = S4T[I];                 // Poi    242       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
253       lastB4T = B4T[I];                 // Poi    243       lastB4T = B4T[I];                 // Pointer to the 4-th slope
254     }                                             244     }
255     if(lastLP>lastPIN && lastLP<lPMax)            245     if(lastLP>lastPIN && lastLP<lPMax)
256     {                                             246     {
257       lastPIN=GetPTables(lastLP,lastPIN,PDG,tg    247       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
258       PIN[I]=lastPIN;                   // Rem    248       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
259     }                                             249     }
260   }                                               250   }
261   else                                  // Thi    251   else                                  // This isotope wasn't initialized => CREATE
262   {                                               252   {
263     lastPAR = new G4double[nPoints];    // All    253     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
264     lastPAR[nLast]=0;                   // Ini    254     lastPAR[nLast]=0;                   // Initialization for VALGRIND
265     lastCST = new G4double[nPoints];    // All    255     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
266     lastSST = new G4double[nPoints];    // All    256     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
267     lastS1T = new G4double[nPoints];    // All    257     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
268     lastB1T = new G4double[nPoints];    // All    258     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
269     lastS2T = new G4double[nPoints];    // All    259     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
270     lastB2T = new G4double[nPoints];    // All    260     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
271     lastS3T = new G4double[nPoints];    // All    261     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
272     lastB3T = new G4double[nPoints];    // All    262     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
273     lastS4T = new G4double[nPoints];    // All    263     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
274     lastB4T = new G4double[nPoints];    // All    264     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
275     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,    265     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
276     PIN.push_back(lastPIN);             // Fil    266     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
277     PAR.push_back(lastPAR);             // Fil    267     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
278     CST.push_back(lastCST);             // Fil    268     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
279     SST.push_back(lastSST);             // Fil    269     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
280     S1T.push_back(lastS1T);             // Fil    270     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
281     B1T.push_back(lastB1T);             // Fil    271     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
282     S2T.push_back(lastS2T);             // Fil    272     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
283     B2T.push_back(lastB2T);             // Fil    273     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
284     S3T.push_back(lastS3T);             // Fil    274     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
285     B3T.push_back(lastB3T);             // Fil    275     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
286     S4T.push_back(lastS4T);             // Fil    276     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
287     B4T.push_back(lastB4T);             // Fil    277     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
288   } // End of creation/update of the new set o    278   } // End of creation/update of the new set of parameters and tables
289   // =-----------= NOW Update (if necessary) a    279   // =-----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
290   if(lastLP>lastPIN && lastLP<lPMax)              280   if(lastLP>lastPIN && lastLP<lPMax)
291   {                                               281   {
292     lastPIN = GetPTables(lastLP,lastPIN,PDG,tg    282     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
293   }                                               283   }
294   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p    284   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
295   if(lastLP>lPMin && lastLP<=lastPIN)   // Lin    285   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
296   {                                               286   {
297     if(lastLP==lastPIN)                           287     if(lastLP==lastPIN)
298     {                                             288     {
299       G4double shift=(lastLP-lPMin)/dlnP+.0000    289       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
300       G4int    blast=static_cast<int>(shift);     290       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
301       if(blast<0 || blast>=nLast) G4cout<<"G4Q    291       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
302       lastSIG = lastCST[blast];                   292       lastSIG = lastCST[blast];
303       if(!onlyCS)                       // Ski    293       if(!onlyCS)                       // Skip the differential cross-section parameters
304       {                                           294       {
305         theSS  = lastSST[blast];                  295         theSS  = lastSST[blast];
306         theS1  = lastS1T[blast];                  296         theS1  = lastS1T[blast];
307         theB1  = lastB1T[blast];                  297         theB1  = lastB1T[blast];
308         theS2  = lastS2T[blast];                  298         theS2  = lastS2T[blast];
309         theB2  = lastB2T[blast];                  299         theB2  = lastB2T[blast];
310         theS3  = lastS3T[blast];                  300         theS3  = lastS3T[blast];
311         theB3  = lastB3T[blast];                  301         theB3  = lastB3T[blast];
312         theS4  = lastS4T[blast];                  302         theS4  = lastS4T[blast];
313         theB4  = lastB4T[blast];                  303         theB4  = lastB4T[blast];
314       }                                           304       }
315     }                                             305     }
316     else                                          306     else
317     {                                             307     {
318       G4double shift=(lastLP-lPMin)/dlnP;         308       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
319       G4int    blast=static_cast<int>(shift);     309       G4int    blast=static_cast<int>(shift);    // the lower bin number
320       if(blast<0)   blast=0;                      310       if(blast<0)   blast=0;
321       if(blast>=nLast) blast=nLast-1;             311       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
322       shift-=blast;                               312       shift-=blast;                              // step inside the unit bin
323       G4int lastL=blast+1;                        313       G4int lastL=blast+1;                       // the upper bin number
324       G4double SIGL=lastCST[blast];               314       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
325       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL    315       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
326       if(!onlyCS)                       // Ski    316       if(!onlyCS)                       // Skip the differential cross-section parameters
327       {                                           317       {
328         G4double SSTL=lastSST[blast];             318         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
329         theSS=SSTL+shift*(lastSST[lastL]-SSTL)    319         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
330         G4double S1TL=lastS1T[blast];             320         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
331         theS1=S1TL+shift*(lastS1T[lastL]-S1TL)    321         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
332         G4double B1TL=lastB1T[blast];             322         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
333         theB1=B1TL+shift*(lastB1T[lastL]-B1TL)    323         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
334         G4double S2TL=lastS2T[blast];             324         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
335         theS2=S2TL+shift*(lastS2T[lastL]-S2TL)    325         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
336         G4double B2TL=lastB2T[blast];             326         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
337         theB2=B2TL+shift*(lastB2T[lastL]-B2TL)    327         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
338         G4double S3TL=lastS3T[blast];             328         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
339         theS3=S3TL+shift*(lastS3T[lastL]-S3TL)    329         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
340         G4double B3TL=lastB3T[blast];             330         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
341         theB3=B3TL+shift*(lastB3T[lastL]-B3TL)    331         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
342         G4double S4TL=lastS4T[blast];             332         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
343         theS4=S4TL+shift*(lastS4T[lastL]-S4TL)    333         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
344         G4double B4TL=lastB4T[blast];             334         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
345         theB4=B4TL+shift*(lastB4T[lastL]-B4TL)    335         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
346       }                                           336       }
347     }                                             337     }
348   }                                               338   }
349   else lastSIG=GetTabValues(lastLP, PDG, tgZ,     339   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
350   if(lastSIG<0.) lastSIG = 0.;                    340   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
351   return lastSIG;                                 341   return lastSIG;
352 }                                                 342 }
353                                                   343 
354 // It has parameter sets for all tZ/tN/PDG, us    344 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
355 G4double G4ChipsPionPlusElasticXS::GetPTables(    345 G4double G4ChipsPionPlusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
356                                                   346                                                   G4int tgZ, G4int tgN)
357 {                                                 347 {
358   // @@ At present all nA==pA ---------> Each     348   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
359   static const G4double pwd=2727;                 349   static const G4double pwd=2727;
360   const G4int n_pippel=35;               // #o    350   const G4int n_pippel=35;               // #of parameters for pip_p-elastic (<nPoints=128)
361   //                           -0- -1-   -2- -    351   //                           -0- -1-   -2- -3- -4-  -5-   -6-  -7--8--9--10-11-12--13-
362   G4double pipp_el[n_pippel]={1.27,13.,.0676,3    352   G4double pipp_el[n_pippel]={1.27,13.,.0676,3.5,.32,.0576,.0557,2.4,6.,3.,.7,5.,74.,3.,
363                               3.4,.2,.17,.001,    353                               3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,
364                               3.5e6,5.e-5,1.e1    354                               3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
365   //                         -14--15--16--17--    355   //                         -14--15--16--17--18- -19--20-  -21-  -22-  -23- -24- -25-
366   //                          -26-   -27-  -28    356   //                          -26-   -27-  -28-  -29- -30-  -31- -32- -33- -34-
367   if(PDG == 211)                                  357   if(PDG == 211)
368   {                                               358   {
369     // -- Total pp elastic cross section cs &     359     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
370     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l    360     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
371     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d    361     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
372     //   par(0)       par(7)     par(1) par(2)    362     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
373     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4    363     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
374     //     par(8) par(9) par(10)        par(11    364     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
375     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40    365     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
376     // par(15) par(16)  par(17)     par(18) pa    366     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
377     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10);     367     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
378     //  par(24) par(25)     par(26)  par(27) p    368     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
379     //                                            369     //
380     if(lastPAR[nLast]!=pwd) // A unique flag t    370     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
381     {                                             371     {
382       if ( tgZ == 1 && tgN == 0 )                 372       if ( tgZ == 1 && tgN == 0 )
383       {                                           373       {
384         for (G4int ip=0; ip<n_pippel; ip++) la    374         for (G4int ip=0; ip<n_pippel; ip++) lastPAR[ip]=pipp_el[ip]; // PiPlus+P
385       }                                           375       }
386       else                                        376       else
387       {                                           377       {
388         G4double a=tgZ+tgN;                       378         G4double a=tgZ+tgN;
389         G4double sa=std::sqrt(a);                 379         G4double sa=std::sqrt(a);
390         G4double ssa=std::sqrt(sa);               380         G4double ssa=std::sqrt(sa);
391         G4double asa=a*sa;                        381         G4double asa=a*sa;
392         G4double a2=a*a;                          382         G4double a2=a*a;
393         G4double a3=a2*a;                         383         G4double a3=a2*a;
394         G4double a4=a3*a;                         384         G4double a4=a3*a;
395         G4double a5=a4*a;                         385         G4double a5=a4*a;
396         G4double a6=a4*a2;                        386         G4double a6=a4*a2;
397         G4double a7=a6*a;                         387         G4double a7=a6*a;
398         G4double a8=a7*a;                         388         G4double a8=a7*a;
399         G4double a9=a8*a;                         389         G4double a9=a8*a;
400         G4double a10=a5*a5;                       390         G4double a10=a5*a5;
401         G4double a12=a6*a6;                       391         G4double a12=a6*a6;
402         G4double a14=a7*a7;                       392         G4double a14=a7*a7;
403         G4double a16=a8*a8;                       393         G4double a16=a8*a8;
404         G4double a17=a16*a;                       394         G4double a17=a16*a;
405         //G4double a20=a16*a4;                    395         //G4double a20=a16*a4;
406         G4double a32=a16*a16;                     396         G4double a32=a16*a16;
407         // Reaction cross-section parameters (    397         // Reaction cross-section parameters (pel=peh_fit.f)
408         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a)    398         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
409         lastPAR[1]=a/(1./4.4+1./a);               399         lastPAR[1]=a/(1./4.4+1./a);                                          // p2
410         lastPAR[2]=.22/G4Pow::GetInstance()->p << 400         lastPAR[2]=.22/std::pow(a,.33);                                      // p3
411         lastPAR[3]=.5*a/(1.+3./a+1800./a8);       401         lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
412         lastPAR[4]=3.E-4*G4Pow::GetInstance()- << 402         lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2);                        // p5
413         lastPAR[5]=0.;                            403         lastPAR[5]=0.;                                                       // p6 not used
414         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2)    404         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
415         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./    405         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
416         lastPAR[8]=0.;                            406         lastPAR[8]=0.;                                                       // p9 not used
417         // @@ the differential cross-section i    407         // @@ the differential cross-section is parameterized separately for A>6 & A<7
418         if(a<6.5)                                 408         if(a<6.5)
419         {                                         409         {
420           G4double a28=a16*a12;                   410           G4double a28=a16*a12;
421           // The main pre-exponent      (pel_s    411           // The main pre-exponent      (pel_sg)
422           lastPAR[ 9]=4000*a;                     412           lastPAR[ 9]=4000*a;                                // p1
423           lastPAR[10]=1.2e7*a8+380*a17;           413           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
424           lastPAR[11]=.7/(1.+4.e-12*a16);         414           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
425           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);     415           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
426           lastPAR[13]=.28*a;                      416           lastPAR[13]=.28*a;                                 // p5
427           lastPAR[14]=1.2*a2+2.3;                 417           lastPAR[14]=1.2*a2+2.3;                            // p6
428           lastPAR[15]=3.8/a;                      418           lastPAR[15]=3.8/a;                                 // p7
429           // The main slope             (pel_s    419           // The main slope             (pel_sl)
430           lastPAR[16]=.01/(1.+.0024*a5);          420           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
431           lastPAR[17]=.2*a;                       421           lastPAR[17]=.2*a;                                  // p2
432           lastPAR[18]=9.e-7/(1.+.035*a5);         422           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
433           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1    423           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
434           // The main quadratic         (pel_s    424           // The main quadratic         (pel_sh)
435           lastPAR[20]=2.25*a3;                    425           lastPAR[20]=2.25*a3;                               // p1
436           lastPAR[21]=18.;                        426           lastPAR[21]=18.;                                   // p2
437           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7)    427           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
438           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1    428           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
439           // The 1st max pre-exponent   (pel_q    429           // The 1st max pre-exponent   (pel_qq)
440           lastPAR[24]=1.e5/(a8+2.5e12/a16);       430           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
441           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28    431           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
442           lastPAR[26]=.0006*a3;                   432           lastPAR[26]=.0006*a3;                              // p3
443           // The 1st max slope          (pel_q    433           // The 1st max slope          (pel_qs)
444           lastPAR[27]=10.+4.e-8*a12*a;            434           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
445           lastPAR[28]=.114;                       435           lastPAR[28]=.114;                                  // p2
446           lastPAR[29]=.003;                       436           lastPAR[29]=.003;                                  // p3
447           lastPAR[30]=2.e-23;                     437           lastPAR[30]=2.e-23;                                // p4
448           // The effective pre-exponent (pel_s    438           // The effective pre-exponent (pel_ss)
449           lastPAR[31]=1./(1.+.0001*a8);           439           lastPAR[31]=1./(1.+.0001*a8);                      // p1
450           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);      440           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
451           lastPAR[33]=.03;                        441           lastPAR[33]=.03;                                   // p3
452           // The effective slope        (pel_s    442           // The effective slope        (pel_sb)
453           lastPAR[34]=a/2;                        443           lastPAR[34]=a/2;                                   // p1
454           lastPAR[35]=2.e-7*a4;                   444           lastPAR[35]=2.e-7*a4;                              // p2
455           lastPAR[36]=4.;                         445           lastPAR[36]=4.;                                    // p3
456           lastPAR[37]=64./a3;                     446           lastPAR[37]=64./a3;                                // p4
457           // The gloria pre-exponent    (pel_u    447           // The gloria pre-exponent    (pel_us)
458           lastPAR[38]=1.e8*G4Exp(.32*asa);     << 448           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
459           lastPAR[39]=20.*G4Exp(.45*asa);      << 449           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
460           lastPAR[40]=7.e3+2.4e6/a5;              450           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
461           lastPAR[41]=2.5e5*G4Exp(.085*a3);    << 451           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
462           lastPAR[42]=2.5*a;                      452           lastPAR[42]=2.5*a;                                 // p5
463           // The gloria slope           (pel_u    453           // The gloria slope           (pel_ub)
464           lastPAR[43]=920.+.03*a8*a3;             454           lastPAR[43]=920.+.03*a8*a3;                        // p1
465           lastPAR[44]=93.+.0023*a12;              455           lastPAR[44]=93.+.0023*a12;                         // p2
466         }                                         456         }
467         else                                      457         else
468         {                                         458         {
469           G4double p1a10=2.2e-28*a10;             459           G4double p1a10=2.2e-28*a10;
470           G4double r4a16=6.e14/a16;               460           G4double r4a16=6.e14/a16;
471           G4double s4a16=r4a16*r4a16;             461           G4double s4a16=r4a16*r4a16;
472           // a24                                  462           // a24
473           // a36                                  463           // a36
474           // The main pre-exponent      (peh_s    464           // The main pre-exponent      (peh_sg)
475           lastPAR[ 9]=4.5*G4Pow::GetInstance() << 465           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
476           lastPAR[10]=.06*G4Pow::GetInstance() << 466           lastPAR[10]=.06*std::pow(a,.6);                    // p2
477           lastPAR[11]=.6*a/(1.+2.e15/a16);        467           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
478           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3    468           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
479           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4    469           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
480           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.    470           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
481           // The main slope             (peh_s    471           // The main slope             (peh_sl)
482           lastPAR[15]=400./a12+2.e-22*a9;         472           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
483           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14    473           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
484           lastPAR[17]=1000./a2+9.5*sa*ssa;        474           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
485           lastPAR[18]=4.e-6*a*asa+1.e11/a16;      475           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
486           lastPAR[19]=(120./a+.002*a2)/(1.+2.e    476           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
487           lastPAR[20]=9.+100./a;                  477           lastPAR[20]=9.+100./a;                             // p6
488           // The main quadratic         (peh_s    478           // The main quadratic         (peh_sh)
489           lastPAR[21]=.002*a3+3.e7/a6;            479           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
490           lastPAR[22]=7.e-15*a4*asa;              480           lastPAR[22]=7.e-15*a4*asa;                         // p2
491           lastPAR[23]=9000./a4;                   481           lastPAR[23]=9000./a4;                              // p3
492           // The 1st max pre-exponent   (peh_q    482           // The 1st max pre-exponent   (peh_qq)
493           lastPAR[24]=.0011*asa/(1.+3.e34/a32/    483           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
494           lastPAR[25]=1.e-5*a2+2.e14/a16;         484           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
495           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1    485           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
496           lastPAR[27]=.016*asa/(1.+5.e16/a16);    486           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
497           // The 1st max slope          (peh_q    487           // The 1st max slope          (peh_qs)
498           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow:: << 488           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
499           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetIn << 489           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
500           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8)    490           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
501           lastPAR[31]=100./asa;                   491           lastPAR[31]=100./asa;                              // p4
502           // The 2nd max pre-exponent   (peh_s    492           // The 2nd max pre-exponent   (peh_ss)
503           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/    493           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
504           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);     494           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
505           lastPAR[34]=1.3+3.e5/a4;                495           lastPAR[34]=1.3+3.e5/a4;                           // p3
506           lastPAR[35]=500./(a2+50.)+3;            496           lastPAR[35]=500./(a2+50.)+3;                       // p4
507           lastPAR[36]=1.e-9/a+s4a16*s4a16;        497           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
508           // The 2nd max slope          (peh_s    498           // The 2nd max slope          (peh_sb)
509           lastPAR[37]=.4*asa+3.e-9*a6;            499           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
510           lastPAR[38]=.0005*a5;                   500           lastPAR[38]=.0005*a5;                              // p2
511           lastPAR[39]=.002*a5;                    501           lastPAR[39]=.002*a5;                               // p3
512           lastPAR[40]=10.;                        502           lastPAR[40]=10.;                                   // p4
513           // The effective pre-exponent (peh_u    503           // The effective pre-exponent (peh_us)
514           lastPAR[41]=.05+.005*a;                 504           lastPAR[41]=.05+.005*a;                            // p1
515           lastPAR[42]=7.e-8/sa;                   505           lastPAR[42]=7.e-8/sa;                              // p2
516           lastPAR[43]=.8*sa;                      506           lastPAR[43]=.8*sa;                                 // p3
517           lastPAR[44]=.02*sa;                     507           lastPAR[44]=.02*sa;                                // p4
518           lastPAR[45]=1.e8/a3;                    508           lastPAR[45]=1.e8/a3;                               // p5
519           lastPAR[46]=3.e32/(a32+1.e32);          509           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
520           // The effective slope        (peh_u    510           // The effective slope        (peh_ub)
521           lastPAR[47]=24.;                        511           lastPAR[47]=24.;                                   // p1
522           lastPAR[48]=20./sa;                     512           lastPAR[48]=20./sa;                                // p2
523           lastPAR[49]=7.e3*a/(sa+1.);             513           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
524           lastPAR[50]=900.*sa/(1.+500./a3);       514           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
525         }                                         515         }
526         // Parameter for lowEnergyNeutrons        516         // Parameter for lowEnergyNeutrons
527         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*    517         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
528       }                                           518       }
529       lastPAR[nLast]=pwd;                         519       lastPAR[nLast]=pwd;
530       // and initialize the zero element of th    520       // and initialize the zero element of the table
531       G4double lp=lPMin;                          521       G4double lp=lPMin;                                      // ln(momentum)
532       G4bool memCS=onlyCS;                        522       G4bool memCS=onlyCS;                                    // ??
533       onlyCS=false;                               523       onlyCS=false;
534       lastCST[0]=GetTabValues(lp, PDG, tgZ, tg    524       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
535       onlyCS=memCS;                               525       onlyCS=memCS;
536       lastSST[0]=theSS;                           526       lastSST[0]=theSS;
537       lastS1T[0]=theS1;                           527       lastS1T[0]=theS1;
538       lastB1T[0]=theB1;                           528       lastB1T[0]=theB1;
539       lastS2T[0]=theS2;                           529       lastS2T[0]=theS2;
540       lastB2T[0]=theB2;                           530       lastB2T[0]=theB2;
541       lastS3T[0]=theS3;                           531       lastS3T[0]=theS3;
542       lastB3T[0]=theB3;                           532       lastB3T[0]=theB3;
543       lastS4T[0]=theS4;                           533       lastS4T[0]=theS4;
544       lastB4T[0]=theB4;                           534       lastB4T[0]=theB4;
545     }                                             535     }
546     if(LP>ILP)                                    536     if(LP>ILP)
547     {                                             537     {
548       G4int ini = static_cast<int>((ILP-lPMin+    538       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
549       if(ini<0) ini=0;                            539       if(ini<0) ini=0;
550       if(ini<nPoints)                             540       if(ini<nPoints)
551       {                                           541       {
552         G4int fin = static_cast<int>((LP-lPMin    542         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
553         if(fin>=nPoints) fin=nLast;               543         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
554         if(fin>=ini)                              544         if(fin>=ini)
555         {                                         545         {
556           G4double lp=0.;                         546           G4double lp=0.;
557           for(G4int ip=ini; ip<=fin; ip++)        547           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
558           {                                       548           {
559             lp=lPMin+ip*dlnP;                     549             lp=lPMin+ip*dlnP;                     // ln(momentum)
560             G4bool memCS=onlyCS;                  550             G4bool memCS=onlyCS;
561             onlyCS=false;                         551             onlyCS=false;
562             lastCST[ip]=GetTabValues(lp, PDG,     552             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
563             onlyCS=memCS;                         553             onlyCS=memCS;
564             lastSST[ip]=theSS;                    554             lastSST[ip]=theSS;
565             lastS1T[ip]=theS1;                    555             lastS1T[ip]=theS1;
566             lastB1T[ip]=theB1;                    556             lastB1T[ip]=theB1;
567             lastS2T[ip]=theS2;                    557             lastS2T[ip]=theS2;
568             lastB2T[ip]=theB2;                    558             lastB2T[ip]=theB2;
569             lastS3T[ip]=theS3;                    559             lastS3T[ip]=theS3;
570             lastB3T[ip]=theB3;                    560             lastB3T[ip]=theB3;
571             lastS4T[ip]=theS4;                    561             lastS4T[ip]=theS4;
572             lastB4T[ip]=theB4;                    562             lastB4T[ip]=theB4;
573           }                                       563           }
574           return lp;                              564           return lp;
575         }                                         565         }
576         else G4cout<<"*Warning*G4ChipsPionPlus    566         else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG
577                    <<", Z="<<tgZ<<", N="<<tgN<    567                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
578                    <<" > ILP="<<ILP<<" nothing    568                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
579       }                                           569       }
580       else G4cout<<"*Warning*G4ChipsPionPlusEl    570       else G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="
581                  <<tgZ<<", N="<<tgN<<", i="<<i    571                  <<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
582                  <<" > ILP="<<ILP<<", lPMax="<    572                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
583     }                                             573     }
584   }                                               574   }
585   else                                            575   else
586   {                                               576   {
587     // G4cout<<"*Error*G4ChipsPionPlusElasticX    577     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
588     //       <<", N="<<tgN<<", while it is def    578     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
589     // throw G4QException("G4ChipsPionPlusElas    579     // throw G4QException("G4ChipsPionPlusElasticXS::GetPTables:only pipA implemented");
590     G4ExceptionDescription ed;                    580     G4ExceptionDescription ed;
591     ed << "PDG = " << PDG << ", Z = " << tgZ <    581     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
592        << ", while it is defined only for PDG=    582        << ", while it is defined only for PDG=211 (pi+)" << G4endl;
593     G4Exception("G4ChipsPionPlusElasticXS::Get    583     G4Exception("G4ChipsPionPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
594                 FatalException, ed);              584                 FatalException, ed);
595   }                                               585   }
596   return ILP;                                     586   return ILP;
597 }                                                 587 }
598                                                   588 
599 // Returns Q2=-t in independent units (MeV^2)     589 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
600 G4double G4ChipsPionPlusElasticXS::GetExchange    590 G4double G4ChipsPionPlusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
601 {                                                 591 {
602   static const G4double GeVSQ=gigaelectronvolt    592   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
603   static const G4double third=1./3.;              593   static const G4double third=1./3.;
604   static const G4double fifth=1./5.;              594   static const G4double fifth=1./5.;
605   static const G4double sevth=1./7.;              595   static const G4double sevth=1./7.;
606   if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPl    596   if(PDG!= 211)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
607   if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusE    597   if(onlyCS)G4cout<<"*Warning*G4ChipsPionPlusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
608   if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor    598   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
609   G4double q2=0.;                                 599   G4double q2=0.;
610   if(tgZ==1 && tgN==0)                // ===>     600   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
611   {                                               601   {
612     G4double E1=lastTM*theB1;                     602     G4double E1=lastTM*theB1;
613     G4double R1=(1.-G4Exp(-E1));               << 603     G4double R1=(1.-std::exp(-E1));
614     G4double E2=lastTM*theB2;                     604     G4double E2=lastTM*theB2;
615     G4double R2=(1.-G4Exp(-E2*E2*E2));         << 605     G4double R2=(1.-std::exp(-E2*E2*E2));
616     G4double E3=lastTM*theB3;                     606     G4double E3=lastTM*theB3;
617     G4double R3=(1.-G4Exp(-E3));               << 607     G4double R3=(1.-std::exp(-E3));
618     G4double I1=R1*theS1/theB1;                   608     G4double I1=R1*theS1/theB1;
619     G4double I2=R2*theS2;                         609     G4double I2=R2*theS2;
620     G4double I3=R3*theS3;                         610     G4double I3=R3*theS3;
621     G4double I12=I1+I2;                           611     G4double I12=I1+I2;
622     G4double rand=(I12+I3)*G4UniformRand();       612     G4double rand=(I12+I3)*G4UniformRand();
623     if     (rand<I1 )                             613     if     (rand<I1 )
624     {                                             614     {
625       G4double ran=R1*G4UniformRand();            615       G4double ran=R1*G4UniformRand();
626       if(ran>1.) ran=1.;                          616       if(ran>1.) ran=1.;
627       q2=-G4Log(1.-ran)/theB1;                 << 617       q2=-std::log(1.-ran)/theB1;
628     }                                             618     }
629     else if(rand<I12)                             619     else if(rand<I12)
630     {                                             620     {
631       G4double ran=R2*G4UniformRand();            621       G4double ran=R2*G4UniformRand();
632       if(ran>1.) ran=1.;                          622       if(ran>1.) ran=1.;
633       q2=-G4Log(1.-ran);                       << 623       q2=-std::log(1.-ran);
634       if(q2<0.) q2=0.;                            624       if(q2<0.) q2=0.;
635       q2=G4Pow::GetInstance()->powA(q2,third)/ << 625       q2=std::pow(q2,third)/theB2;
636     }                                             626     }
637     else                                          627     else
638     {                                             628     {
639       G4double ran=R3*G4UniformRand();            629       G4double ran=R3*G4UniformRand();
640       if(ran>1.) ran=1.;                          630       if(ran>1.) ran=1.;
641       q2=-G4Log(1.-ran)/theB3;                 << 631       q2=-std::log(1.-ran)/theB3;
642     }                                             632     }
643   }                                               633   }
644   else                                            634   else
645   {                                               635   {
646     G4double a=tgZ+tgN;                           636     G4double a=tgZ+tgN;
647     G4double E1=lastTM*(theB1+lastTM*theSS);      637     G4double E1=lastTM*(theB1+lastTM*theSS);
648     G4double R1=(1.-G4Exp(-E1));               << 638     G4double R1=(1.-std::exp(-E1));
649     G4double tss=theSS+theSS; // for future so    639     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
650     G4double tm2=lastTM*lastTM;                   640     G4double tm2=lastTM*lastTM;
651     G4double E2=lastTM*tm2*theB2;                 641     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
652     if(a>6.5)E2*=tm2;                             642     if(a>6.5)E2*=tm2;                               // for heavy nuclei
653     G4double R2=(1.-G4Exp(-E2));               << 643     G4double R2=(1.-std::exp(-E2));
654     G4double E3=lastTM*theB3;                     644     G4double E3=lastTM*theB3;
655     if(a>6.5)E3*=tm2*tm2*tm2;                     645     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
656     G4double R3=(1.-G4Exp(-E3));               << 646     G4double R3=(1.-std::exp(-E3));
657     G4double E4=lastTM*theB4;                     647     G4double E4=lastTM*theB4;
658     G4double R4=(1.-G4Exp(-E4));               << 648     G4double R4=(1.-std::exp(-E4));
659     G4double I1=R1*theS1;                         649     G4double I1=R1*theS1;
660     G4double I2=R2*theS2;                         650     G4double I2=R2*theS2;
661     G4double I3=R3*theS3;                         651     G4double I3=R3*theS3;
662     G4double I4=R4*theS4;                         652     G4double I4=R4*theS4;
663     G4double I12=I1+I2;                           653     G4double I12=I1+I2;
664     G4double I13=I12+I3;                          654     G4double I13=I12+I3;
665     G4double rand=(I13+I4)*G4UniformRand();       655     G4double rand=(I13+I4)*G4UniformRand();
666     if(rand<I1)                                   656     if(rand<I1)
667     {                                             657     {
668       G4double ran=R1*G4UniformRand();            658       G4double ran=R1*G4UniformRand();
669       if(ran>1.) ran=1.;                          659       if(ran>1.) ran=1.;
670       q2=-G4Log(1.-ran)/theB1;                 << 660       q2=-std::log(1.-ran)/theB1;
671       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t    661       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
672     }                                             662     }
673     else if(rand<I12)                             663     else if(rand<I12)
674     {                                             664     {
675       G4double ran=R2*G4UniformRand();            665       G4double ran=R2*G4UniformRand();
676       if(ran>1.) ran=1.;                          666       if(ran>1.) ran=1.;
677       q2=-G4Log(1.-ran)/theB2;                 << 667       q2=-std::log(1.-ran)/theB2;
678       if(q2<0.) q2=0.;                            668       if(q2<0.) q2=0.;
679       if(a<6.5) q2=G4Pow::GetInstance()->powA( << 669       if(a<6.5) q2=std::pow(q2,third);
680       else      q2=G4Pow::GetInstance()->powA( << 670       else      q2=std::pow(q2,fifth);
681     }                                             671     }
682     else if(rand<I13)                             672     else if(rand<I13)
683     {                                             673     {
684       G4double ran=R3*G4UniformRand();            674       G4double ran=R3*G4UniformRand();
685       if(ran>1.) ran=1.;                          675       if(ran>1.) ran=1.;
686       q2=-G4Log(1.-ran)/theB3;                 << 676       q2=-std::log(1.-ran)/theB3;
687       if(q2<0.) q2=0.;                            677       if(q2<0.) q2=0.;
688       if(a>6.5) q2=G4Pow::GetInstance()->powA( << 678       if(a>6.5) q2=std::pow(q2,sevth);
689     }                                             679     }
690     else                                          680     else
691     {                                             681     {
692       G4double ran=R4*G4UniformRand();            682       G4double ran=R4*G4UniformRand();
693       if(ran>1.) ran=1.;                          683       if(ran>1.) ran=1.;
694       q2=-G4Log(1.-ran)/theB4;                 << 684       q2=-std::log(1.-ran)/theB4;
695       if(a<6.5) q2=lastTM-q2;                     685       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
696     }                                             686     }
697   }                                               687   }
698   if(q2<0.) q2=0.;                                688   if(q2<0.) q2=0.;
699   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas    689   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
700   if(q2>lastTM)                                   690   if(q2>lastTM)
701   {                                               691   {
702     q2=lastTM;                                    692     q2=lastTM;
703   }                                               693   }
704   return q2*GeVSQ;                                694   return q2*GeVSQ;
705 }                                                 695 }
706                                                   696 
707 // Returns B in independent units (MeV^-2) (al    697 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
708 G4double G4ChipsPionPlusElasticXS::GetSlope(G4    698 G4double G4ChipsPionPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
709 {                                                 699 {
710   static const G4double GeVSQ=gigaelectronvolt    700   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
711   if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusEl    701   if(onlyCS)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetSlope:onlyCS=true"<<G4endl;
712   if(lastLP<-4.3) return 0.;          // S-wav    702   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
713   if(PDG != 211)                                  703   if(PDG != 211)
714   {                                               704   {
715     // G4cout<<"*Error*G4ChipsPionPlusElasticX    705     // G4cout<<"*Error*G4ChipsPionPlusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
716     //       <<", N="<<tgN<<", while it is def    706     //       <<", N="<<tgN<<", while it is defined only for PDG=211"<<G4endl;
717     // throw G4QException("G4ChipsPionPlusElas    707     // throw G4QException("G4ChipsPionPlusElasticXS::GetSlope: pipA are implemented");
718     G4ExceptionDescription ed;                    708     G4ExceptionDescription ed;
719     ed << "PDG = " << PDG << ", Z = " << tgZ <    709     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
720        << ", while it is defined only for PDG=    710        << ", while it is defined only for PDG=211 (pi-)" << G4endl;
721     G4Exception("G4ChipsPionPlusElasticXS::Get    711     G4Exception("G4ChipsPionPlusElasticXS::GetSlope()", "HAD_CHPS_000",
722                 FatalException, ed);              712                 FatalException, ed);
723   }                                               713   }
724   if(theB1<0.) theB1=0.;                          714   if(theB1<0.) theB1=0.;
725   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4    715   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
726   return theB1/GeVSQ;                             716   return theB1/GeVSQ;
727 }                                                 717 }
728                                                   718 
729 // Returns half max(Q2=-t) in independent unit    719 // Returns half max(Q2=-t) in independent units (MeV^2)
730 G4double G4ChipsPionPlusElasticXS::GetHMaxT()     720 G4double G4ChipsPionPlusElasticXS::GetHMaxT()
731 {                                                 721 {
732   static const G4double HGeVSQ=gigaelectronvol    722   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
733   return lastTM*HGeVSQ;                           723   return lastTM*HGeVSQ;
734 }                                                 724 }
735                                                   725 
736 // lastLP is used, so calculating tables, one     726 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
737 G4double G4ChipsPionPlusElasticXS::GetTabValue    727 G4double G4ChipsPionPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
738                                                   728                                                     G4int tgN)
739 {                                                 729 {
740   if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlu    730   if(PDG!= 211)G4cout<<"Warning*G4ChipsPionPlusElasticXS::GetTabV:PDG="<<PDG<<G4endl;
741                                                << 731   if(tgZ<0 || tgZ>92)
742   //AR-24Apr2018 Switch to allow transuranic e << 
743   const G4bool isHeavyElementAllowed = true;   << 
744   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 
745   {                                               732   {
746     G4cout<<"*Warning*G4QPionPlusElCS::GetTabV    733     G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
747     return 0.;                                    734     return 0.;
748   }                                               735   }
749   G4int iZ=tgZ-1; // Z index                      736   G4int iZ=tgZ-1; // Z index
750   if(iZ<0)                                        737   if(iZ<0)
751   {                                               738   {
752     iZ=0;         // conversion of the neutron    739     iZ=0;         // conversion of the neutron target to the proton target
753     tgZ=1;                                        740     tgZ=1;
754     tgN=0;                                        741     tgN=0;
755   }                                               742   }
756   G4double p=G4Exp(lp);              // moment << 743   G4double p=std::exp(lp);              // momentum
757   G4double sp=std::sqrt(p);             // sqr    744   G4double sp=std::sqrt(p);             // sqrt(p)
758   G4double p2=p*p;                                745   G4double p2=p*p;
759   G4double p3=p2*p;                               746   G4double p3=p2*p;
760   G4double p4=p2*p2;                              747   G4double p4=p2*p2;
761   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P         748   if ( tgZ == 1 && tgN == 0 ) // PiPlus+P
762   {                                               749   {
763     G4double dl2=lp-lastPAR[11];                  750     G4double dl2=lp-lastPAR[11];
764     theSS=lastPAR[34];                            751     theSS=lastPAR[34];
765     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1    752     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
766           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+l    753           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
767     theB1=lastPAR[18]*G4Pow::GetInstance()->po << 754     theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
768     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[    755     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
769     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[    756     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
770     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastP    757     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
771     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[    758     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
772     theS4=0.;                                     759     theS4=0.;
773     theB4=0.;                                     760     theB4=0.; 
774     // Returns the total elastic pip-p cross-s    761     // Returns the total elastic pip-p cross-section (to avoid spoiling lastSIG)
775     G4double dl1=lp+lastPAR[0];  // lr            762     G4double dl1=lp+lastPAR[0];  // lr
776     G4double lr2=dl1*dl1;        // lr2           763     G4double lr2=dl1*dl1;        // lr2
777     G4double dl3=lp-lastPAR[3];  // ld            764     G4double dl3=lp-lastPAR[3];  // ld
778     G4double dl4=lp-lastPAR[4];  // lm            765     G4double dl4=lp-lastPAR[4];  // lm
779     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])    766     return lastPAR[1]/(lr2+lr2*lr2+lastPAR[2])+(lastPAR[6]*dl3*dl3+lastPAR[7]+
780            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+l    767            lastPAR[8]/sp)/(1.+lastPAR[9]/p4)+lastPAR[10]/(dl4*dl4+lastPAR[5]);
781   }                                               768   }
782   else                                            769   else
783   {                                               770   {
784     G4double p5=p4*p;                             771     G4double p5=p4*p;
785     G4double p6=p5*p;                             772     G4double p6=p5*p;
786     G4double p8=p6*p2;                            773     G4double p8=p6*p2;
787     G4double p10=p8*p2;                           774     G4double p10=p8*p2;
788     G4double p12=p10*p2;                          775     G4double p12=p10*p2;
789     G4double p16=p8*p8;                           776     G4double p16=p8*p8;
790     //G4double p24=p16*p8;                        777     //G4double p24=p16*p8;
791     G4double dl=lp-5.;                            778     G4double dl=lp-5.;
792     G4double a=tgZ+tgN;                           779     G4double a=tgZ+tgN;
793     G4double pah=G4Pow::GetInstance()->powA(p, << 780     G4double pah=std::pow(p,a/2);
794     G4double pa=pah*pah;                          781     G4double pa=pah*pah;
795     G4double pa2=pa*pa;                           782     G4double pa2=pa*pa;
796     if(a<6.5)                                     783     if(a<6.5)
797     {                                             784     {
798       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+    785       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
799             (lastPAR[13]*dl*dl+lastPAR[14])/(1    786             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
800       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l    787       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
801       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la    788       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
802       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)    789       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
803       theB2=lastPAR[27]*G4Pow::GetInstance()-> << 790       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
804       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+    791       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
805       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la    792       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
806       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*las << 793       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
807                 lastPAR[40]/(1.+lastPAR[41]*G4 << 794                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
808       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4    795       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
809     }                                             796     }
810     else                                          797     else
811     {                                             798     {
812       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las    799       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
813             lastPAR[13]/(p5+lastPAR[14]/p16);     800             lastPAR[13]/(p5+lastPAR[14]/p16);
814       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la << 801       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
815             lastPAR[17]/(1.+lastPAR[18]/p4);      802             lastPAR[17]/(1.+lastPAR[18]/p4);
816       theSS=lastPAR[21]/(p4/G4Pow::GetInstance << 803       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
817       theS2=lastPAR[24]/p4/(G4Pow::GetInstance << 804       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
818       theB2=lastPAR[28]/G4Pow::GetInstance()-> << 805       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
819       theS3=lastPAR[32]/G4Pow::GetInstance()-> << 806       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
820             lastPAR[33]/(1.+lastPAR[34]/p6);      807             lastPAR[33]/(1.+lastPAR[34]/p6);
821       theB3=lastPAR[37]/p8+lastPAR[38]/p2+last    808       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
822       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.    809       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
823             (lastPAR[43]+lastPAR[44]*dl*dl)/(1    810             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
824       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las    811       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
825     }                                             812     }
826     // Returns the total elastic (n/p)A cross-    813     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
827     //         p1               p2                814     //         p1               p2              p3
828     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l    815     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
829            lastPAR[3]/(p4+lastPAR[4]/p3)+lastP    816            lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
830     //        p4             p5                   817     //        p4             p5               p7           p8
831   }                                               818   }
832   return 0.;                                      819   return 0.;
833 } // End of GetTableValues                        820 } // End of GetTableValues
834                                                   821 
835 // Returns max -t=Q2 (GeV^2) for the momentum     822 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
836 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4    823 G4double G4ChipsPionPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
837                                                   824                                                 G4double pP)
838 {                                                 825 {
839   static const G4double mPi= G4PionPlus::PionP    826   static const G4double mPi= G4PionPlus::PionPlus()->GetPDGMass()*.001; // MeV to GeV
840   static const G4double mPi2= mPi*mPi;            827   static const G4double mPi2= mPi*mPi;
841   G4double pP2=pP*pP;                             828   G4double pP2=pP*pP;                                 // squared momentum of the projectile
842   if(tgZ || tgN>-1)                               829   if(tgZ || tgN>-1)                                   // ---> pipA
843   {                                               830   {
844     G4double mt=G4ParticleTable::GetParticleTa    831     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
845     G4double dmt=mt+mt;                           832     G4double dmt=mt+mt;
846     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+    833     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam mds
847     return dmt*dmt*pP2/mds;                       834     return dmt*dmt*pP2/mds;
848   }                                               835   }
849   else                                            836   else
850   {                                               837   {
851     G4ExceptionDescription ed;                    838     G4ExceptionDescription ed;
852     ed << "PDG = " << PDG << ", Z = " << tgZ <    839     ed << "PDG = " << PDG << ", Z = " << tgZ << ",N = " << tgN
853        << ", while it is defined only for p pr    840        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
854     G4Exception("G4ChipsPionPlusElasticXS::Get    841     G4Exception("G4ChipsPionPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
855                 FatalException, ed);              842                 FatalException, ed);
856     return 0;                                     843     return 0;
857   }                                               844   }
858 }                                                 845 }
859                                                   846