Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsPionMinusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsPionMinusElasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsPionMinusElasticXS.cc (Version 9.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id$
 27 //                                                 28 //
 28 //                                                 29 //
 29 // G4 Physics class: G4ChipsPionMinusElasticXS     30 // G4 Physics class: G4ChipsPionMinusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21     31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10
 31 // The last update: M.V. Kossov, CERN/ITEP (Mo     32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10
 32 //                                                 33 // 
 33 // -------------------------------------------     34 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sectio     35 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated i     36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------     37 // -------------------------------------------------------------------------------
 37 //                                                 38 //
 38                                                    39 
 39 #include "G4ChipsPionMinusElasticXS.hh"            40 #include "G4ChipsPionMinusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 43 #include "G4PionMinus.hh"                          44 #include "G4PionMinus.hh"
 44 #include "G4Nucleus.hh"                            45 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"                      46 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"                   47 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"                       << 
 48                                                << 
 49 #include "G4Log.hh"                            << 
 50 #include "G4Exp.hh"                            << 
 51 #include "G4Pow.hh"                            << 
 52                                                    48 
 53 // factory                                         49 // factory
 54 #include "G4CrossSectionFactory.hh"                50 #include "G4CrossSectionFactory.hh"
 55 //                                                 51 //
 56 G4_DECLARE_XS_FACTORY(G4ChipsPionMinusElasticX     52 G4_DECLARE_XS_FACTORY(G4ChipsPionMinusElasticXS);
 57                                                    53 
 58 G4ChipsPionMinusElasticXS::G4ChipsPionMinusEla     54 G4ChipsPionMinusElasticXS::G4ChipsPionMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 59 {                                                  55 {
 60   lPMin=-8.;  //Min tabulated logarithmMomentu     56   lPMin=-8.;  //Min tabulated logarithmMomentum(D)
 61   lPMax= 8.;  //Max tabulated logarithmMomentu     57   lPMax= 8.;  //Max tabulated logarithmMomentum(D)
 62   dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTabl     58   dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTable(D)
 63   onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi     59   onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi)(L)
 64   lastSIG=0.; //Last calculated cross section      60   lastSIG=0.; //Last calculated cross section  (L)
 65   lastLP=-10.;//Last log(mom_of IncidentHadron     61   lastLP=-10.;//Last log(mom_of IncidentHadron)(L)
 66   lastTM=0.;  //Last t_maximum                     62   lastTM=0.;  //Last t_maximum                 (L)
 67   theSS=0.;   //TheLastSqSlope of 1st difr.Max     63   theSS=0.;   //TheLastSqSlope of 1st difr.Max(L)
 68   theS1=0.;   //TheLastMantissa of 1st difr.Ma     64   theS1=0.;   //TheLastMantissa of 1st difr.Max(L)
 69   theB1=0.;   //TheLastSlope of 1st difruct.Ma     65   theB1=0.;   //TheLastSlope of 1st difruct.Max(L)
 70   theS2=0.;   //TheLastMantissa of 2nd difr.Ma     66   theS2=0.;   //TheLastMantissa of 2nd difr.Max(L)
 71   theB2=0.;   //TheLastSlope of 2nd difruct.Ma     67   theB2=0.;   //TheLastSlope of 2nd difruct.Max(L)
 72   theS3=0.;   //TheLastMantissa of 3d difr. Ma     68   theS3=0.;   //TheLastMantissa of 3d difr. Max(L)
 73   theB3=0.;   //TheLastSlope of 3d difruct. Ma     69   theB3=0.;   //TheLastSlope of 3d difruct. Max(L)
 74   theS4=0.;   //TheLastMantissa of 4th difr.Ma     70   theS4=0.;   //TheLastMantissa of 4th difr.Max(L)
 75   theB4=0.;   //TheLastSlope of 4th difruct.Ma     71   theB4=0.;   //TheLastSlope of 4th difruct.Max(L)
 76   lastTZ=0;   // Last atomic number of the tar     72   lastTZ=0;   // Last atomic number of the target
 77   lastTN=0;   // Last # of neutrons in the tar     73   lastTN=0;   // Last # of neutrons in the target
 78   lastPIN=0.; // Last initialized max momentum     74   lastPIN=0.; // Last initialized max momentum
 79   lastCST=0;  // Elastic cross-section table       75   lastCST=0;  // Elastic cross-section table
 80   lastPAR=0;  // Parameters ForFunctionCalcula     76   lastPAR=0;  // Parameters ForFunctionCalculation
 81   lastSST=0;  // E-dep of SqardSlope of 1st di     77   lastSST=0;  // E-dep of SqardSlope of 1st difMax
 82   lastS1T=0;  // E-dep of mantissa of 1st dif.     78   lastS1T=0;  // E-dep of mantissa of 1st dif.Max
 83   lastB1T=0;  // E-dep of the slope of 1st dif     79   lastB1T=0;  // E-dep of the slope of 1st difMax
 84   lastS2T=0;  // E-dep of mantissa of 2nd difr     80   lastS2T=0;  // E-dep of mantissa of 2nd difrMax
 85   lastB2T=0;  // E-dep of the slope of 2nd dif     81   lastB2T=0;  // E-dep of the slope of 2nd difMax
 86   lastS3T=0;  // E-dep of mantissa of 3d difr.     82   lastS3T=0;  // E-dep of mantissa of 3d difr.Max
 87   lastB3T=0;  // E-dep of the slope of 3d difr     83   lastB3T=0;  // E-dep of the slope of 3d difrMax
 88   lastS4T=0;  // E-dep of mantissa of 4th difr     84   lastS4T=0;  // E-dep of mantissa of 4th difrMax
 89   lastB4T=0;  // E-dep of the slope of 4th dif     85   lastB4T=0;  // E-dep of the slope of 4th difMax
 90   lastN=0;    // The last N of calculated nucl     86   lastN=0;    // The last N of calculated nucleus
 91   lastZ=0;    // The last Z of calculated nucl     87   lastZ=0;    // The last Z of calculated nucleus
 92   lastP=0.;   // LastUsed in CrossSection Mome     88   lastP=0.;   // LastUsed in CrossSection Momentum
 93   lastTH=0.;  // Last threshold momentum           89   lastTH=0.;  // Last threshold momentum
 94   lastCS=0.;  // Last value of the Cross Secti     90   lastCS=0.;  // Last value of the Cross Section
 95   lastI=0;    // The last position in the DAMD     91   lastI=0;    // The last position in the DAMDB
 96 }                                                  92 }
 97                                                    93 
 98 G4ChipsPionMinusElasticXS::~G4ChipsPionMinusEl     94 G4ChipsPionMinusElasticXS::~G4ChipsPionMinusElasticXS()
 99 {                                                  95 {  
100   std::vector<G4double*>::iterator pos;            96   std::vector<G4double*>::iterator pos;
101   for (pos=CST.begin(); pos<CST.end(); pos++)      97   for (pos=CST.begin(); pos<CST.end(); pos++)
102   { delete [] *pos; }                              98   { delete [] *pos; }
103   CST.clear();                                     99   CST.clear();
104   for (pos=PAR.begin(); pos<PAR.end(); pos++)     100   for (pos=PAR.begin(); pos<PAR.end(); pos++)
105   { delete [] *pos; }                             101   { delete [] *pos; }
106   PAR.clear();                                    102   PAR.clear();
107   for (pos=SST.begin(); pos<SST.end(); pos++)     103   for (pos=SST.begin(); pos<SST.end(); pos++)
108   { delete [] *pos; }                             104   { delete [] *pos; }
109   SST.clear();                                    105   SST.clear();
110   for (pos=S1T.begin(); pos<S1T.end(); pos++)     106   for (pos=S1T.begin(); pos<S1T.end(); pos++)
111   { delete [] *pos; }                             107   { delete [] *pos; }
112   S1T.clear();                                    108   S1T.clear();
113   for (pos=B1T.begin(); pos<B1T.end(); pos++)     109   for (pos=B1T.begin(); pos<B1T.end(); pos++)
114   { delete [] *pos; }                             110   { delete [] *pos; }
115   B1T.clear();                                    111   B1T.clear();
116   for (pos=S2T.begin(); pos<S2T.end(); pos++)     112   for (pos=S2T.begin(); pos<S2T.end(); pos++)
117   { delete [] *pos; }                             113   { delete [] *pos; }
118   S2T.clear();                                    114   S2T.clear();
119   for (pos=B2T.begin(); pos<B2T.end(); pos++)     115   for (pos=B2T.begin(); pos<B2T.end(); pos++)
120   { delete [] *pos; }                             116   { delete [] *pos; }
121   B2T.clear();                                    117   B2T.clear();
122   for (pos=S3T.begin(); pos<S3T.end(); pos++)     118   for (pos=S3T.begin(); pos<S3T.end(); pos++)
123   { delete [] *pos; }                             119   { delete [] *pos; }
124   S3T.clear();                                    120   S3T.clear();
125   for (pos=B3T.begin(); pos<B3T.end(); pos++)     121   for (pos=B3T.begin(); pos<B3T.end(); pos++)
126   { delete [] *pos; }                             122   { delete [] *pos; }
127   B3T.clear();                                    123   B3T.clear();
128   for (pos=S4T.begin(); pos<S4T.end(); pos++)     124   for (pos=S4T.begin(); pos<S4T.end(); pos++)
129   { delete [] *pos; }                             125   { delete [] *pos; }
130   S4T.clear();                                    126   S4T.clear();
131   for (pos=B4T.begin(); pos<B4T.end(); pos++)     127   for (pos=B4T.begin(); pos<B4T.end(); pos++)
132   { delete [] *pos; }                             128   { delete [] *pos; }
133   B4T.clear();                                    129   B4T.clear();
134 }                                                 130 }
135                                                   131 
136 void                                           << 
137 G4ChipsPionMinusElasticXS::CrossSectionDescrip << 
138 {                                              << 
139     outFile << "G4ChipsPionMinusElasticXS prov << 
140             << "section for pion- nucleus scat << 
141             << "momentum. The cross section is << 
142             << "CHIPS parameterization of cros << 
143 }                                              << 
144                                                   132 
145                                                << 133 G4bool G4ChipsPionMinusElasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int,    
146 G4bool G4ChipsPionMinusElasticXS::IsIsoApplica << 
147              const G4Element*,                    134              const G4Element*,
148              const G4Material*)                   135              const G4Material*)
149 {                                                 136 {
150   return true;                                 << 137   G4ParticleDefinition* particle = Pt->GetDefinition();
                                                   >> 138   if (particle == G4PionMinus::PionMinus()      ) return true;
                                                   >> 139   return false;
151 }                                                 140 }
152                                                   141 
153 // The main member function giving the collisi    142 // The main member function giving the collision cross section (P is in IU, CS is in mb)
154 // Make pMom in independent units ! (Now it is    143 // Make pMom in independent units ! (Now it is MeV)
155 G4double G4ChipsPionMinusElasticXS::GetIsoCros    144 G4double G4ChipsPionMinusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
156               const G4Isotope*,                   145               const G4Isotope*,
157               const G4Element*,                   146               const G4Element*,
158                    const G4Material*)             147                    const G4Material*)
159 {                                                 148 {
160   G4double pMom=Pt->GetTotalMomentum();           149   G4double pMom=Pt->GetTotalMomentum();
161   G4int tgN = A - tgZ;                            150   G4int tgN = A - tgZ;
162                                                   151 
163   return GetChipsCrossSection(pMom, tgZ, tgN,     152   return GetChipsCrossSection(pMom, tgZ, tgN, -212);
164 }                                                 153 }
165                                                   154 
166 G4double G4ChipsPionMinusElasticXS::GetChipsCr    155 G4double G4ChipsPionMinusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
167 {                                                 156 {
                                                   >> 157   static std::vector <G4int>    colN;  // Vector of N for calculated nuclei (isotops)
                                                   >> 158   static std::vector <G4int>    colZ;  // Vector of Z for calculated nuclei (isotops)
                                                   >> 159   static std::vector <G4double> colP;  // Vector of last momenta for the reaction
                                                   >> 160   static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction
                                                   >> 161   static std::vector <G4double> colCS; // Vector of last cross sections for the reaction
                                                   >> 162   // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
168                                                   163 
169   G4double pEn=pMom;                              164   G4double pEn=pMom;
170   G4bool fCS = false;                             165   G4bool fCS = false;
171   onlyCS=fCS;                                     166   onlyCS=fCS;
172                                                   167 
173   G4bool in=false;                   // By def    168   G4bool in=false;                   // By default the isotope must be found in the AMDB
174   lastP   = 0.;                      // New mo    169   lastP   = 0.;                      // New momentum history (nothing to compare with)
175   lastN   = tgN;                     // The la    170   lastN   = tgN;                     // The last N of the calculated nucleus
176   lastZ   = tgZ;                     // The la    171   lastZ   = tgZ;                     // The last Z of the calculated nucleus
177   lastI   = (G4int)colN.size();      // Size o << 172   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
178   if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 173   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
179   {                                  // The nu    174   {                                  // The nucleus with projPDG is found in AMDB
180     if(colN[i]==tgN && colZ[i]==tgZ) // Isotop    175     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
181     {                                             176     {
182       lastI=i;                                    177       lastI=i;
183       lastTH =colTH[i];              // Last T    178       lastTH =colTH[i];              // Last THreshold (A-dependent)
184       if(pEn<=lastTH)                             179       if(pEn<=lastTH)
185       {                                           180       {
186         return 0.;                   // Energy    181         return 0.;                   // Energy is below the Threshold value
187       }                                           182       }
188       lastP  =colP [i];              // Last M    183       lastP  =colP [i];              // Last Momentum  (A-dependent)
189       lastCS =colCS[i];              // Last C    184       lastCS =colCS[i];              // Last CrossSect (A-dependent)
190       //  if(std::fabs(lastP/pMom-1.)<toleranc    185       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
191       if(lastP == pMom)              // Do not    186       if(lastP == pMom)              // Do not recalculate
192       {                                           187       {
193         CalculateCrossSection(fCS,-1,i,-211,la    188         CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // Update param's only
194         return lastCS*millibarn;     // Use th    189         return lastCS*millibarn;     // Use theLastCS
195       }                                           190       }
196       in = true;                       // This    191       in = true;                       // This is the case when the isotop is found in DB
197       // Momentum pMom is in IU ! @@ Units        192       // Momentum pMom is in IU ! @@ Units
198       lastCS=CalculateCrossSection(fCS,-1,i,-2    193       lastCS=CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // read & update
199       if(lastCS<=0. && pEn>lastTH)    // Corre    194       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
200       {                                           195       {
201         lastTH=pEn;                               196         lastTH=pEn;
202       }                                           197       }
203       break;                           // Go o    198       break;                           // Go out of the LOOP with found lastI
204     }                                             199     }
205   } // End of attampt to find the nucleus in D    200   } // End of attampt to find the nucleus in DB
206   if(!in)                            // This n    201   if(!in)                            // This nucleus has not been calculated previously
207   {                                               202   {
208     //!!The slave functions must provide cross    203     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
209     lastCS=CalculateCrossSection(fCS,0,lastI,-    204     lastCS=CalculateCrossSection(fCS,0,lastI,-211,lastZ,lastN,pMom);//calculate&create
210     if(lastCS<=0.)                                205     if(lastCS<=0.)
211     {                                             206     {
212       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    207       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
213       if(pEn>lastTH)                              208       if(pEn>lastTH)
214       {                                           209       {
215         lastTH=pEn;                               210         lastTH=pEn;
216       }                                           211       }
217     }                                             212     }
218     colN.push_back(tgN);                          213     colN.push_back(tgN);
219     colZ.push_back(tgZ);                          214     colZ.push_back(tgZ);
220     colP.push_back(pMom);                         215     colP.push_back(pMom);
221     colTH.push_back(lastTH);                      216     colTH.push_back(lastTH);
222     colCS.push_back(lastCS);                      217     colCS.push_back(lastCS);
223     return lastCS*millibarn;                      218     return lastCS*millibarn;
224   } // End of creation of the new set of param    219   } // End of creation of the new set of parameters
225   else                                            220   else
226   {                                               221   {
227     colP[lastI]=pMom;                             222     colP[lastI]=pMom;
228     colCS[lastI]=lastCS;                          223     colCS[lastI]=lastCS;
229   }                                               224   }
230   return lastCS*millibarn;                        225   return lastCS*millibarn;
231 }                                                 226 }
232                                                   227 
233 // Calculation of total elastic cross section     228 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
234 // F=0 - create AMDB, F=-1 - read&update AMDB,    229 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
235 G4double G4ChipsPionMinusElasticXS::CalculateC    230 G4double G4ChipsPionMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,G4int I,
236                                              G    231                                              G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
237 {                                                 232 {
                                                   >> 233   // *** Begin of Associative Memory DB for acceleration of the cross section calculations
                                                   >> 234   static std::vector <G4double>  PIN;   // Vector of max initialized log(P) in the table
                                                   >> 235   // *** End of Static Definitions (Associative Memory Data Base) ***
238   G4double pMom=pIU/GeV;                // All    236   G4double pMom=pIU/GeV;                // All calculations are in GeV
239   onlyCS=CS;                            // Fla    237   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
240   lastLP=G4Log(pMom);                // Make a << 238   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
241   if(F)                                 // Thi    239   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
242   {                                               240   {
243     if(F<0)                             // the    241     if(F<0)                             // the AMDB must be loded
244     {                                             242     {
245       lastPIN = PIN[I];                 // Max    243       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
246       lastPAR = PAR[I];                 // Poi    244       lastPAR = PAR[I];                 // Pointer to the parameter set
247       lastCST = CST[I];                 // Poi    245       lastCST = CST[I];                 // Pointer to the total sross-section table
248       lastSST = SST[I];                 // Poi    246       lastSST = SST[I];                 // Pointer to the first squared slope
249       lastS1T = S1T[I];                 // Poi    247       lastS1T = S1T[I];                 // Pointer to the first mantissa
250       lastB1T = B1T[I];                 // Poi    248       lastB1T = B1T[I];                 // Pointer to the first slope
251       lastS2T = S2T[I];                 // Poi    249       lastS2T = S2T[I];                 // Pointer to the second mantissa
252       lastB2T = B2T[I];                 // Poi    250       lastB2T = B2T[I];                 // Pointer to the second slope
253       lastS3T = S3T[I];                 // Poi    251       lastS3T = S3T[I];                 // Pointer to the third mantissa
254       lastB3T = B3T[I];                 // Poi    252       lastB3T = B3T[I];                 // Pointer to the rhird slope
255       lastS4T = S4T[I];                 // Poi    253       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
256       lastB4T = B4T[I];                 // Poi    254       lastB4T = B4T[I];                 // Pointer to the 4-th slope
257     }                                             255     }
258     if(lastLP>lastPIN && lastLP<lPMax)            256     if(lastLP>lastPIN && lastLP<lPMax)
259     {                                             257     {
260       lastPIN=GetPTables(lastLP,lastPIN,PDG,tg    258       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
261       PIN[I]=lastPIN;                   // Rem    259       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
262     }                                             260     }
263   }                                               261   }
264   else                                  // Thi    262   else                                  // This isotope wasn't initialized => CREATE
265   {                                               263   {
266     lastPAR = new G4double[nPoints];    // All    264     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
267     lastPAR[nLast]=0;                   // Ini    265     lastPAR[nLast]=0;                   // Initialization for VALGRIND
268     lastCST = new G4double[nPoints];    // All    266     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
269     lastSST = new G4double[nPoints];    // All    267     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
270     lastS1T = new G4double[nPoints];    // All    268     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
271     lastB1T = new G4double[nPoints];    // All    269     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
272     lastS2T = new G4double[nPoints];    // All    270     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
273     lastB2T = new G4double[nPoints];    // All    271     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
274     lastS3T = new G4double[nPoints];    // All    272     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
275     lastB3T = new G4double[nPoints];    // All    273     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
276     lastS4T = new G4double[nPoints];    // All    274     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
277     lastB4T = new G4double[nPoints];    // All    275     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
278     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,    276     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
279     PIN.push_back(lastPIN);             // Fil    277     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
280     PAR.push_back(lastPAR);             // Fil    278     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
281     CST.push_back(lastCST);             // Fil    279     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
282     SST.push_back(lastSST);             // Fil    280     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
283     S1T.push_back(lastS1T);             // Fil    281     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
284     B1T.push_back(lastB1T);             // Fil    282     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
285     S2T.push_back(lastS2T);             // Fil    283     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
286     B2T.push_back(lastB2T);             // Fil    284     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
287     S3T.push_back(lastS3T);             // Fil    285     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
288     B3T.push_back(lastB3T);             // Fil    286     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
289     S4T.push_back(lastS4T);             // Fil    287     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
290     B4T.push_back(lastB4T);             // Fil    288     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
291   } // End of creation/update of the new set o    289   } // End of creation/update of the new set of parameters and tables
292   // =----------= NOW Update (if necessary) an    290   // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
293   if(lastLP>lastPIN && lastLP<lPMax)              291   if(lastLP>lastPIN && lastLP<lPMax)
294   {                                               292   {
295     lastPIN = GetPTables(lastLP,lastPIN,PDG,tg    293     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
296   }                                               294   }
297   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p    295   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
298   if(lastLP>lPMin && lastLP<=lastPIN)   // Lin    296   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
299   {                                               297   {
300     if(lastLP==lastPIN)                           298     if(lastLP==lastPIN)
301     {                                             299     {
302       G4double shift=(lastLP-lPMin)/dlnP+.0000    300       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
303       G4int    blast=static_cast<int>(shift);     301       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
304       if(blast<0 || blast>=nLast) G4cout<<"G4Q    302       if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl;
305       lastSIG = lastCST[blast];                   303       lastSIG = lastCST[blast];
306       if(!onlyCS)                       // Ski    304       if(!onlyCS)                       // Skip the differential cross-section parameters
307       {                                           305       {
308         theSS  = lastSST[blast];                  306         theSS  = lastSST[blast];
309         theS1  = lastS1T[blast];                  307         theS1  = lastS1T[blast];
310         theB1  = lastB1T[blast];                  308         theB1  = lastB1T[blast];
311         theS2  = lastS2T[blast];                  309         theS2  = lastS2T[blast];
312         theB2  = lastB2T[blast];                  310         theB2  = lastB2T[blast];
313         theS3  = lastS3T[blast];                  311         theS3  = lastS3T[blast];
314         theB3  = lastB3T[blast];                  312         theB3  = lastB3T[blast];
315         theS4  = lastS4T[blast];                  313         theS4  = lastS4T[blast];
316         theB4  = lastB4T[blast];                  314         theB4  = lastB4T[blast];
317       }                                           315       }
318     }                                             316     }
319     else                                          317     else
320     {                                             318     {
321       G4double shift=(lastLP-lPMin)/dlnP;         319       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
322       G4int    blast=static_cast<int>(shift);     320       G4int    blast=static_cast<int>(shift);    // the lower bin number
323       if(blast<0)   blast=0;                      321       if(blast<0)   blast=0;
324       if(blast>=nLast) blast=nLast-1;             322       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
325       shift-=blast;                               323       shift-=blast;                              // step inside the unit bin
326       G4int lastL=blast+1;                        324       G4int lastL=blast+1;                       // the upper bin number
327       G4double SIGL=lastCST[blast];               325       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
328       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL    326       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
329       if(!onlyCS)                       // Ski    327       if(!onlyCS)                       // Skip the differential cross-section parameters
330       {                                           328       {
331         G4double SSTL=lastSST[blast];             329         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
332         theSS=SSTL+shift*(lastSST[lastL]-SSTL)    330         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
333         G4double S1TL=lastS1T[blast];             331         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
334         theS1=S1TL+shift*(lastS1T[lastL]-S1TL)    332         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
335         G4double B1TL=lastB1T[blast];             333         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
336         theB1=B1TL+shift*(lastB1T[lastL]-B1TL)    334         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
337         G4double S2TL=lastS2T[blast];             335         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
338         theS2=S2TL+shift*(lastS2T[lastL]-S2TL)    336         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
339         G4double B2TL=lastB2T[blast];             337         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
340         theB2=B2TL+shift*(lastB2T[lastL]-B2TL)    338         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
341         G4double S3TL=lastS3T[blast];             339         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
342         theS3=S3TL+shift*(lastS3T[lastL]-S3TL)    340         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
343         G4double B3TL=lastB3T[blast];             341         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
344         theB3=B3TL+shift*(lastB3T[lastL]-B3TL)    342         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
345         G4double S4TL=lastS4T[blast];             343         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
346         theS4=S4TL+shift*(lastS4T[lastL]-S4TL)    344         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
347         G4double B4TL=lastB4T[blast];             345         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
348         theB4=B4TL+shift*(lastB4T[lastL]-B4TL)    346         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
349       }                                           347       }
350     }                                             348     }
351   }                                               349   }
352   else lastSIG=GetTabValues(lastLP, PDG, tgZ,     350   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
353   if(lastSIG<0.) lastSIG = 0.;                    351   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
354   return lastSIG;                                 352   return lastSIG;
355 }                                                 353 }
356                                                   354 
357 // It has parameter sets for all tZ/tN/PDG, us    355 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
358 G4double G4ChipsPionMinusElasticXS::GetPTables    356 G4double G4ChipsPionMinusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG,
359                                                   357                                                   G4int tgZ, G4int tgN)
360 {                                                 358 {
361   // @@ At present all nA==pA ---------> Each     359   // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
362   static const G4double pwd=2727;                 360   static const G4double pwd=2727;
363   const G4int n_pimpel=38;                // #    361   const G4int n_pimpel=38;                // #of parameters for pp-elastic (<nPoints=128)
364   //                           -0-  -1-   -2-     362   //                           -0-  -1-   -2- -3- -4- -5-  -6-  -7-   -8-  -9--10-11-12-
365   G4double pimp_el[n_pimpel]={1.27,1.53,.0676,    363   G4double pimp_el[n_pimpel]={1.27,1.53,.0676,3.5,.36,.04,.017,.0025,.0557,2.4,7.,.7,.6,
366                               .05,5.,74.,3.,3.    364                               .05,5.,74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,
367                               .46,1.2e6,3.5e6,    365                               .46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
368   //                         -13-14--15--16--1    366   //                         -13-14--15--16--17-18--19--20--21- -22- -23- -24-  -25- -26-
369   //                          -27--28-  -29-      367   //                          -27--28-  -29-   -30-  -31- -32-  -33-  -34- -35- -36- -37-
370   if(PDG ==-211)                                  368   if(PDG ==-211)
371   {                                               369   {
372     // -- Total pp elastic cross section cs &     370     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
373     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l    371     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
374     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d    372     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
375     //   par(0)       par(7)     par(1) par(2)    373     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
376     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4    374     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
377     //     par(8) par(9) par(10)        par(11    375     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
378     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40    376     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
379     // par(15) par(16)  par(17)     par(18) pa    377     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
380     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10);     378     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
381     //  par(24) par(25)     par(26)  par(27) p    379     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
382     //                                            380     //
383     if(lastPAR[nLast]!=pwd) // A unique flag t    381     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
384     {                                             382     {
385       if ( tgZ == 1 && tgN == 0 )                 383       if ( tgZ == 1 && tgN == 0 )
386       {                                           384       {
387         for (G4int ip=0; ip<n_pimpel; ip++) la    385         for (G4int ip=0; ip<n_pimpel; ip++) lastPAR[ip]=pimp_el[ip]; // PiMinus+P
388       }                                           386       }
389       else                                        387       else
390       {                                           388       {
391         G4double a=tgZ+tgN;                       389         G4double a=tgZ+tgN;
392         G4double sa=std::sqrt(a);                 390         G4double sa=std::sqrt(a);
393         G4double ssa=std::sqrt(sa);               391         G4double ssa=std::sqrt(sa);
394         G4double asa=a*sa;                        392         G4double asa=a*sa;
395         G4double a2=a*a;                          393         G4double a2=a*a;
396         G4double a3=a2*a;                         394         G4double a3=a2*a;
397         G4double a4=a3*a;                         395         G4double a4=a3*a;
398         G4double a5=a4*a;                         396         G4double a5=a4*a;
399         G4double a6=a4*a2;                        397         G4double a6=a4*a2;
400         G4double a7=a6*a;                         398         G4double a7=a6*a;
401         G4double a8=a7*a;                         399         G4double a8=a7*a;
402         G4double a9=a8*a;                         400         G4double a9=a8*a;
403         G4double a10=a5*a5;                       401         G4double a10=a5*a5;
404         G4double a12=a6*a6;                       402         G4double a12=a6*a6;
405         G4double a14=a7*a7;                       403         G4double a14=a7*a7;
406         G4double a16=a8*a8;                       404         G4double a16=a8*a8;
407         G4double a17=a16*a;                       405         G4double a17=a16*a;
408         //G4double a20=a16*a4;                    406         //G4double a20=a16*a4;
409         G4double a32=a16*a16;                     407         G4double a32=a16*a16;
410         // Reaction cross-section parameters (    408         // Reaction cross-section parameters (pel=peh_fit.f)
411         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a)    409         lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a);                              // p1
412         lastPAR[1]=a/(1./4.4+1./a);               410         lastPAR[1]=a/(1./4.4+1./a);                                          // p2
413         lastPAR[2]=.22/G4Pow::GetInstance()->p << 411         lastPAR[2]=.22/std::pow(a,.33);                                      // p3
414         lastPAR[3]=.5*a/(1.+3./a+1800./a8);       412         lastPAR[3]=.5*a/(1.+3./a+1800./a8);                                  // p4
415         lastPAR[4]=3.E-4*G4Pow::GetInstance()- << 413         lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2);                        // p5
416         lastPAR[5]=0.;                            414         lastPAR[5]=0.;                                                       // p6 not used
417         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2)    415         lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2);                              // p7
418         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./    416         lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4);                           // p8
419         lastPAR[8]=0.;                            417         lastPAR[8]=0.;                                                       // p9 not used
420         // @@ the differential cross-section i    418         // @@ the differential cross-section is parameterized separately for A>6 & A<7
421         if(a<6.5)                                 419         if(a<6.5)
422         {                                         420         {
423           G4double a28=a16*a12;                   421           G4double a28=a16*a12;
424           // The main pre-exponent      (pel_s    422           // The main pre-exponent      (pel_sg)
425           lastPAR[ 9]=4000*a;                     423           lastPAR[ 9]=4000*a;                                // p1
426           lastPAR[10]=1.2e7*a8+380*a17;           424           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
427           lastPAR[11]=.7/(1.+4.e-12*a16);         425           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
428           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);     426           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
429           lastPAR[13]=.28*a;                      427           lastPAR[13]=.28*a;                                 // p5
430           lastPAR[14]=1.2*a2+2.3;                 428           lastPAR[14]=1.2*a2+2.3;                            // p6
431           lastPAR[15]=3.8/a;                      429           lastPAR[15]=3.8/a;                                 // p7
432           // The main slope             (pel_s    430           // The main slope             (pel_sl)
433           lastPAR[16]=.01/(1.+.0024*a5);          431           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
434           lastPAR[17]=.2*a;                       432           lastPAR[17]=.2*a;                                  // p2
435           lastPAR[18]=9.e-7/(1.+.035*a5);         433           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
436           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1    434           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
437           // The main quadratic         (pel_s    435           // The main quadratic         (pel_sh)
438           lastPAR[20]=2.25*a3;                    436           lastPAR[20]=2.25*a3;                               // p1
439           lastPAR[21]=18.;                        437           lastPAR[21]=18.;                                   // p2
440           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7)    438           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
441           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1    439           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
442           // The 1st max pre-exponent   (pel_q    440           // The 1st max pre-exponent   (pel_qq)
443           lastPAR[24]=1.e5/(a8+2.5e12/a16);       441           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
444           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28    442           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
445           lastPAR[26]=.0006*a3;                   443           lastPAR[26]=.0006*a3;                              // p3
446           // The 1st max slope          (pel_q    444           // The 1st max slope          (pel_qs)
447           lastPAR[27]=10.+4.e-8*a12*a;            445           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
448           lastPAR[28]=.114;                       446           lastPAR[28]=.114;                                  // p2
449           lastPAR[29]=.003;                       447           lastPAR[29]=.003;                                  // p3
450           lastPAR[30]=2.e-23;                     448           lastPAR[30]=2.e-23;                                // p4
451           // The effective pre-exponent (pel_s    449           // The effective pre-exponent (pel_ss)
452           lastPAR[31]=1./(1.+.0001*a8);           450           lastPAR[31]=1./(1.+.0001*a8);                      // p1
453           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);      451           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
454           lastPAR[33]=.03;                        452           lastPAR[33]=.03;                                   // p3
455           // The effective slope        (pel_s    453           // The effective slope        (pel_sb)
456           lastPAR[34]=a/2;                        454           lastPAR[34]=a/2;                                   // p1
457           lastPAR[35]=2.e-7*a4;                   455           lastPAR[35]=2.e-7*a4;                              // p2
458           lastPAR[36]=4.;                         456           lastPAR[36]=4.;                                    // p3
459           lastPAR[37]=64./a3;                     457           lastPAR[37]=64./a3;                                // p4
460           // The gloria pre-exponent    (pel_u    458           // The gloria pre-exponent    (pel_us)
461           lastPAR[38]=1.e8*G4Exp(.32*asa);     << 459           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
462           lastPAR[39]=20.*G4Exp(.45*asa);      << 460           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
463           lastPAR[40]=7.e3+2.4e6/a5;              461           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
464           lastPAR[41]=2.5e5*G4Exp(.085*a3);    << 462           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
465           lastPAR[42]=2.5*a;                      463           lastPAR[42]=2.5*a;                                 // p5
466           // The gloria slope           (pel_u    464           // The gloria slope           (pel_ub)
467           lastPAR[43]=920.+.03*a8*a3;             465           lastPAR[43]=920.+.03*a8*a3;                        // p1
468           lastPAR[44]=93.+.0023*a12;              466           lastPAR[44]=93.+.0023*a12;                         // p2
469         }                                         467         }
470         else                                      468         else
471         {                                         469         {
472           G4double p1a10=2.2e-28*a10;             470           G4double p1a10=2.2e-28*a10;
473           G4double r4a16=6.e14/a16;               471           G4double r4a16=6.e14/a16;
474           G4double s4a16=r4a16*r4a16;             472           G4double s4a16=r4a16*r4a16;
475           // a24                                  473           // a24
476           // a36                                  474           // a36
477           // The main pre-exponent      (peh_s    475           // The main pre-exponent      (peh_sg)
478           lastPAR[ 9]=4.5*G4Pow::GetInstance() << 476           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
479           lastPAR[10]=.06*G4Pow::GetInstance() << 477           lastPAR[10]=.06*std::pow(a,.6);                    // p2
480           lastPAR[11]=.6*a/(1.+2.e15/a16);        478           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
481           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3    479           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
482           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4    480           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
483           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.    481           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
484           // The main slope             (peh_s    482           // The main slope             (peh_sl)
485           lastPAR[15]=400./a12+2.e-22*a9;         483           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
486           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14    484           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
487           lastPAR[17]=1000./a2+9.5*sa*ssa;        485           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
488           lastPAR[18]=4.e-6*a*asa+1.e11/a16;      486           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
489           lastPAR[19]=(120./a+.002*a2)/(1.+2.e    487           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
490           lastPAR[20]=9.+100./a;                  488           lastPAR[20]=9.+100./a;                             // p6
491           // The main quadratic         (peh_s    489           // The main quadratic         (peh_sh)
492           lastPAR[21]=.002*a3+3.e7/a6;            490           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
493           lastPAR[22]=7.e-15*a4*asa;              491           lastPAR[22]=7.e-15*a4*asa;                         // p2
494           lastPAR[23]=9000./a4;                   492           lastPAR[23]=9000./a4;                              // p3
495           // The 1st max pre-exponent   (peh_q    493           // The 1st max pre-exponent   (peh_qq)
496           lastPAR[24]=.0011*asa/(1.+3.e34/a32/    494           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
497           lastPAR[25]=1.e-5*a2+2.e14/a16;         495           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
498           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1    496           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
499           lastPAR[27]=.016*asa/(1.+5.e16/a16);    497           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
500           // The 1st max slope          (peh_q    498           // The 1st max slope          (peh_qs)
501           lastPAR[28]=.002*a4/(1.+7.e7/G4Pow:: << 499           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
502           lastPAR[29]=2.e6/a6+7.2/G4Pow::GetIn << 500           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
503           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8)    501           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
504           lastPAR[31]=100./asa;                   502           lastPAR[31]=100./asa;                              // p4
505           // The 2nd max pre-exponent   (peh_s    503           // The 2nd max pre-exponent   (peh_ss)
506           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/    504           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
507           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);     505           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
508           lastPAR[34]=1.3+3.e5/a4;                506           lastPAR[34]=1.3+3.e5/a4;                           // p3
509           lastPAR[35]=500./(a2+50.)+3;            507           lastPAR[35]=500./(a2+50.)+3;                       // p4
510           lastPAR[36]=1.e-9/a+s4a16*s4a16;        508           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
511           // The 2nd max slope          (peh_s    509           // The 2nd max slope          (peh_sb)
512           lastPAR[37]=.4*asa+3.e-9*a6;            510           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
513           lastPAR[38]=.0005*a5;                   511           lastPAR[38]=.0005*a5;                              // p2
514           lastPAR[39]=.002*a5;                    512           lastPAR[39]=.002*a5;                               // p3
515           lastPAR[40]=10.;                        513           lastPAR[40]=10.;                                   // p4
516           // The effective pre-exponent (peh_u    514           // The effective pre-exponent (peh_us)
517           lastPAR[41]=.05+.005*a;                 515           lastPAR[41]=.05+.005*a;                            // p1
518           lastPAR[42]=7.e-8/sa;                   516           lastPAR[42]=7.e-8/sa;                              // p2
519           lastPAR[43]=.8*sa;                      517           lastPAR[43]=.8*sa;                                 // p3
520           lastPAR[44]=.02*sa;                     518           lastPAR[44]=.02*sa;                                // p4
521           lastPAR[45]=1.e8/a3;                    519           lastPAR[45]=1.e8/a3;                               // p5
522           lastPAR[46]=3.e32/(a32+1.e32);          520           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
523           // The effective slope        (peh_u    521           // The effective slope        (peh_ub)
524           lastPAR[47]=24.;                        522           lastPAR[47]=24.;                                   // p1
525           lastPAR[48]=20./sa;                     523           lastPAR[48]=20./sa;                                // p2
526           lastPAR[49]=7.e3*a/(sa+1.);             524           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
527           lastPAR[50]=900.*sa/(1.+500./a3);       525           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
528         }                                         526         }
529         // Parameter for lowEnergyNeutrons        527         // Parameter for lowEnergyNeutrons
530         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*    528         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
531       }                                           529       }
532       lastPAR[nLast]=pwd;                         530       lastPAR[nLast]=pwd;
533       // and initialize the zero element of th    531       // and initialize the zero element of the table
534       G4double lp=lPMin;                          532       G4double lp=lPMin;                                      // ln(momentum)
535       G4bool memCS=onlyCS;                        533       G4bool memCS=onlyCS;                                    // ??
536       onlyCS=false;                               534       onlyCS=false;
537       lastCST[0]=GetTabValues(lp, PDG, tgZ, tg    535       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
538       onlyCS=memCS;                               536       onlyCS=memCS;
539       lastSST[0]=theSS;                           537       lastSST[0]=theSS;
540       lastS1T[0]=theS1;                           538       lastS1T[0]=theS1;
541       lastB1T[0]=theB1;                           539       lastB1T[0]=theB1;
542       lastS2T[0]=theS2;                           540       lastS2T[0]=theS2;
543       lastB2T[0]=theB2;                           541       lastB2T[0]=theB2;
544       lastS3T[0]=theS3;                           542       lastS3T[0]=theS3;
545       lastB3T[0]=theB3;                           543       lastB3T[0]=theB3;
546       lastS4T[0]=theS4;                           544       lastS4T[0]=theS4;
547       lastB4T[0]=theB4;                           545       lastB4T[0]=theB4;
548     }                                             546     }
549     if(LP>ILP)                                    547     if(LP>ILP)
550     {                                             548     {
551       G4int ini = static_cast<int>((ILP-lPMin+    549       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
552       if(ini<0) ini=0;                            550       if(ini<0) ini=0;
553       if(ini<nPoints)                             551       if(ini<nPoints)
554       {                                           552       {
555         G4int fin = static_cast<int>((LP-lPMin    553         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
556         if(fin>=nPoints) fin=nLast;               554         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
557         if(fin>=ini)                              555         if(fin>=ini)
558         {                                         556         {
559           G4double lp=0.;                         557           G4double lp=0.;
560           for(G4int ip=ini; ip<=fin; ip++)        558           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
561           {                                       559           {
562             lp=lPMin+ip*dlnP;                     560             lp=lPMin+ip*dlnP;                     // ln(momentum)
563             G4bool memCS=onlyCS;                  561             G4bool memCS=onlyCS;
564             onlyCS=false;                         562             onlyCS=false;
565             lastCST[ip]=GetTabValues(lp, PDG,     563             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
566             onlyCS=memCS;                         564             onlyCS=memCS;
567             lastSST[ip]=theSS;                    565             lastSST[ip]=theSS;
568             lastS1T[ip]=theS1;                    566             lastS1T[ip]=theS1;
569             lastB1T[ip]=theB1;                    567             lastB1T[ip]=theB1;
570             lastS2T[ip]=theS2;                    568             lastS2T[ip]=theS2;
571             lastB2T[ip]=theB2;                    569             lastB2T[ip]=theB2;
572             lastS3T[ip]=theS3;                    570             lastS3T[ip]=theS3;
573             lastB3T[ip]=theB3;                    571             lastB3T[ip]=theB3;
574             lastS4T[ip]=theS4;                    572             lastS4T[ip]=theS4;
575             lastB4T[ip]=theB4;                    573             lastB4T[ip]=theB4;
576           }                                       574           }
577           return lp;                              575           return lp;
578         }                                         576         }
579         else G4cout<<"*Warning*G4ChipsPionMinu    577         else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
580                    <<", Z="<<tgZ<<", N="<<tgN<    578                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
581                    <<" > ILP="<<ILP<<" nothing    579                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
582       }                                           580       }
583       else G4cout<<"*Warning*G4ChipsPionMinusE    581       else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG
584                  <<", Z="<<tgZ<<", N="<<tgN<<"    582                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
585                  <<" > ILP="<<ILP<<", lPMax="<    583                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
586     }                                             584     }
587   }                                               585   }
588   else                                            586   else
589   {                                               587   {
590     // G4cout<<"*Error*G4ChipsPionMinusElastic    588     // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
591     //       <<", N="<<tgN<<", while it is def    589     //       <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
592     // throw G4QException("G4ChipsPionMinusEla    590     // throw G4QException("G4ChipsPionMinusElasticXS::GetPTables:onlyPipA implemented");
593     G4ExceptionDescription ed;                    591     G4ExceptionDescription ed;
594     ed << "PDG = " << PDG << ", Z = " << tgZ <    592     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
595        << ", while it is defined only for PDG=    593        << ", while it is defined only for PDG=-211 (pi-)" << G4endl;
596     G4Exception("G4ChipsPionMinusElasticXS::Ge    594     G4Exception("G4ChipsPionMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
597                 FatalException, ed);              595                 FatalException, ed);
598   }                                               596   }
599   return ILP;                                     597   return ILP;
600 }                                                 598 }
601                                                   599 
602 // Returns Q2=-t in independent units (MeV^2)     600 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
603 G4double G4ChipsPionMinusElasticXS::GetExchang    601 G4double G4ChipsPionMinusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
604 {                                                 602 {
605   static const G4double GeVSQ=gigaelectronvolt    603   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
606   static const G4double third=1./3.;              604   static const G4double third=1./3.;
607   static const G4double fifth=1./5.;              605   static const G4double fifth=1./5.;
608   static const G4double sevth=1./7.;              606   static const G4double sevth=1./7.;
609   if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMin    607   if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExT:PDG="<<PDG<<G4endl;
610   if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusE    608   if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExchanT:onlyCS=1"<<G4endl;
611   if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor    609   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
612   G4double q2=0.;                                 610   G4double q2=0.;
613   if(tgZ==1 && tgN==0)                // ===>     611   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
614   {                                               612   {
615     G4double E1=lastTM*theB1;                     613     G4double E1=lastTM*theB1;
616     G4double R1=(1.-G4Exp(-E1));               << 614     G4double R1=(1.-std::exp(-E1));
617     G4double E2=lastTM*theB2;                     615     G4double E2=lastTM*theB2;
618     G4double R2=(1.-G4Exp(-E2*E2*E2));         << 616     G4double R2=(1.-std::exp(-E2*E2*E2));
619     G4double E3=lastTM*theB3;                     617     G4double E3=lastTM*theB3;
620     G4double R3=(1.-G4Exp(-E3));               << 618     G4double R3=(1.-std::exp(-E3));
621     G4double I1=R1*theS1/theB1;                   619     G4double I1=R1*theS1/theB1;
622     G4double I2=R2*theS2;                         620     G4double I2=R2*theS2;
623     G4double I3=R3*theS3;                         621     G4double I3=R3*theS3;
624     G4double I12=I1+I2;                           622     G4double I12=I1+I2;
625     G4double rand=(I12+I3)*G4UniformRand();       623     G4double rand=(I12+I3)*G4UniformRand();
626     if     (rand<I1 )                             624     if     (rand<I1 )
627     {                                             625     {
628       G4double ran=R1*G4UniformRand();            626       G4double ran=R1*G4UniformRand();
629       if(ran>1.) ran=1.;                          627       if(ran>1.) ran=1.;
630       q2=-G4Log(1.-ran)/theB1;                 << 628       q2=-std::log(1.-ran)/theB1;
631     }                                             629     }
632     else if(rand<I12)                             630     else if(rand<I12)
633     {                                             631     {
634       G4double ran=R2*G4UniformRand();            632       G4double ran=R2*G4UniformRand();
635       if(ran>1.) ran=1.;                          633       if(ran>1.) ran=1.;
636       q2=-G4Log(1.-ran);                       << 634       q2=-std::log(1.-ran);
637       if(q2<0.) q2=0.;                            635       if(q2<0.) q2=0.;
638       q2=G4Pow::GetInstance()->powA(q2,third)/ << 636       q2=std::pow(q2,third)/theB2;
639     }                                             637     }
640     else                                          638     else
641     {                                             639     {
642       G4double ran=R3*G4UniformRand();            640       G4double ran=R3*G4UniformRand();
643       if(ran>1.) ran=1.;                          641       if(ran>1.) ran=1.;
644       q2=-G4Log(1.-ran)/theB3;                 << 642       q2=-std::log(1.-ran)/theB3;
645     }                                             643     }
646   }                                               644   }
647   else                                            645   else
648   {                                               646   {
649     G4double a=tgZ+tgN;                           647     G4double a=tgZ+tgN;
650     G4double E1=lastTM*(theB1+lastTM*theSS);      648     G4double E1=lastTM*(theB1+lastTM*theSS);
651     G4double R1=(1.-G4Exp(-E1));               << 649     G4double R1=(1.-std::exp(-E1));
652     G4double tss=theSS+theSS; // for future so    650     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
653     G4double tm2=lastTM*lastTM;                   651     G4double tm2=lastTM*lastTM;
654     G4double E2=lastTM*tm2*theB2;                 652     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
655     if(a>6.5)E2*=tm2;                             653     if(a>6.5)E2*=tm2;                               // for heavy nuclei
656     G4double R2=(1.-G4Exp(-E2));               << 654     G4double R2=(1.-std::exp(-E2));
657     G4double E3=lastTM*theB3;                     655     G4double E3=lastTM*theB3;
658     if(a>6.5)E3*=tm2*tm2*tm2;                     656     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
659     G4double R3=(1.-G4Exp(-E3));               << 657     G4double R3=(1.-std::exp(-E3));
660     G4double E4=lastTM*theB4;                     658     G4double E4=lastTM*theB4;
661     G4double R4=(1.-G4Exp(-E4));               << 659     G4double R4=(1.-std::exp(-E4));
662     G4double I1=R1*theS1;                         660     G4double I1=R1*theS1;
663     G4double I2=R2*theS2;                         661     G4double I2=R2*theS2;
664     G4double I3=R3*theS3;                         662     G4double I3=R3*theS3;
665     G4double I4=R4*theS4;                         663     G4double I4=R4*theS4;
666     G4double I12=I1+I2;                           664     G4double I12=I1+I2;
667     G4double I13=I12+I3;                          665     G4double I13=I12+I3;
668     G4double rand=(I13+I4)*G4UniformRand();       666     G4double rand=(I13+I4)*G4UniformRand();
669     if(rand<I1)                                   667     if(rand<I1)
670     {                                             668     {
671       G4double ran=R1*G4UniformRand();            669       G4double ran=R1*G4UniformRand();
672       if(ran>1.) ran=1.;                          670       if(ran>1.) ran=1.;
673       q2=-G4Log(1.-ran)/theB1;                 << 671       q2=-std::log(1.-ran)/theB1;
674       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t    672       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
675     }                                             673     }
676     else if(rand<I12)                             674     else if(rand<I12)
677     {                                             675     {
678       G4double ran=R2*G4UniformRand();            676       G4double ran=R2*G4UniformRand();
679       if(ran>1.) ran=1.;                          677       if(ran>1.) ran=1.;
680       q2=-G4Log(1.-ran)/theB2;                 << 678       q2=-std::log(1.-ran)/theB2;
681       if(q2<0.) q2=0.;                            679       if(q2<0.) q2=0.;
682       if(a<6.5) q2=G4Pow::GetInstance()->powA( << 680       if(a<6.5) q2=std::pow(q2,third);
683       else      q2=G4Pow::GetInstance()->powA( << 681       else      q2=std::pow(q2,fifth);
684     }                                             682     }
685     else if(rand<I13)                             683     else if(rand<I13)
686     {                                             684     {
687       G4double ran=R3*G4UniformRand();            685       G4double ran=R3*G4UniformRand();
688       if(ran>1.) ran=1.;                          686       if(ran>1.) ran=1.;
689       q2=-G4Log(1.-ran)/theB3;                 << 687       q2=-std::log(1.-ran)/theB3;
690       if(q2<0.) q2=0.;                            688       if(q2<0.) q2=0.;
691       if(a>6.5) q2=G4Pow::GetInstance()->powA( << 689       if(a>6.5) q2=std::pow(q2,sevth);
692     }                                             690     }
693     else                                          691     else
694     {                                             692     {
695       G4double ran=R4*G4UniformRand();            693       G4double ran=R4*G4UniformRand();
696       if(ran>1.) ran=1.;                          694       if(ran>1.) ran=1.;
697       q2=-G4Log(1.-ran)/theB4;                 << 695       q2=-std::log(1.-ran)/theB4;
698       if(a<6.5) q2=lastTM-q2;                     696       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
699     }                                             697     }
700   }                                               698   }
701   if(q2<0.) q2=0.;                                699   if(q2<0.) q2=0.;
702   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas    700   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl;
703   if(q2>lastTM)                                   701   if(q2>lastTM)
704   {                                               702   {
705     q2=lastTM;                                    703     q2=lastTM;
706   }                                               704   }
707   return q2*GeVSQ;                                705   return q2*GeVSQ;
708 }                                                 706 }
709                                                   707 
710 // Returns B in independent units (MeV^-2) (al    708 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
711 G4double G4ChipsPionMinusElasticXS::GetSlope(G    709 G4double G4ChipsPionMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
712 {                                                 710 {
713   static const G4double GeVSQ=gigaelectronvolt    711   static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
714   if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusE    712   if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetSlope:onlCS=true"<<G4endl;
715   if(lastLP<-4.3) return 0.;          // S-wav    713   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
716   if(PDG !=-211)                                  714   if(PDG !=-211)
717   {                                               715   {
718     // G4cout<<"*Error*G4ChipsPionMinusElastic    716     // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
719     //       <<", N="<<tgN<<", while it is def    717     //       <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl;
720     // throw G4QException("G4ChipsPionMinusEla    718     // throw G4QException("G4ChipsPionMinusElasticXS::GetSlope: pipA are implemented");
721     G4ExceptionDescription ed;                    719     G4ExceptionDescription ed;
722     ed << "PDG = " << PDG << ", Z = " << tgZ <    720     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
723        << ", while it is defined only for PDG=    721        << ", while it is defined only for PDG=-211" << G4endl;
724     G4Exception("G4ChipsPionMinusElasticXS::Ge    722     G4Exception("G4ChipsPionMinusElasticXS::GetSlope()", "HAD_CHPS_0000", 
725                 FatalException, ed);              723                 FatalException, ed);
726   }                                               724   }
727   if(theB1<0.) theB1=0.;                          725   if(theB1<0.) theB1=0.;
728   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4    726   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl;
729   return theB1/GeVSQ;                             727   return theB1/GeVSQ;
730 }                                                 728 }
731                                                   729 
732 // Returns half max(Q2=-t) in independent unit    730 // Returns half max(Q2=-t) in independent units (MeV^2)
733 G4double G4ChipsPionMinusElasticXS::GetHMaxT()    731 G4double G4ChipsPionMinusElasticXS::GetHMaxT()
734 {                                                 732 {
735   static const G4double HGeVSQ=gigaelectronvol    733   static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
736   return lastTM*HGeVSQ;                           734   return lastTM*HGeVSQ;
737 }                                                 735 }
738                                                   736 
739 // lastLP is used, so calculating tables, one     737 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
740 G4double G4ChipsPionMinusElasticXS::GetTabValu    738 G4double G4ChipsPionMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
741                                                   739                                                     G4int tgN)
742 {                                                 740 {
743   if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinus    741   if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinusElasticXS::GetTabV: PDG="<<PDG<<G4endl;
744                                                << 742   if(tgZ<0 || tgZ>92)
745   //AR-24Apr2018 Switch to allow transuranic e << 
746   const G4bool isHeavyElementAllowed = true;   << 
747   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 
748   {                                               743   {
749     G4cout<<"*Warning*G4QPionPlusElCS::GetTabV    744     G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl;
750     return 0.;                                    745     return 0.;
751   }                                               746   }
752   G4int iZ=tgZ-1; // Z index                      747   G4int iZ=tgZ-1; // Z index
753   if(iZ<0)                                        748   if(iZ<0)
754   {                                               749   {
755     iZ=0;         // conversion of the neutron    750     iZ=0;         // conversion of the neutron target to the proton target
756     tgZ=1;                                        751     tgZ=1;
757     tgN=0;                                        752     tgN=0;
758   }                                               753   }
759   G4double p=G4Exp(lp);              // moment << 754   G4double p=std::exp(lp);              // momentum
760   G4double sp=std::sqrt(p);             // sqr    755   G4double sp=std::sqrt(p);             // sqrt(p)
761   G4double p2=p*p;                                756   G4double p2=p*p;            
762   G4double p3=p2*p;                               757   G4double p3=p2*p;
763   G4double p4=p3*p;                               758   G4double p4=p3*p;
764   if ( tgZ == 1 && tgN == 0 ) // PiMin+P          759   if ( tgZ == 1 && tgN == 0 ) // PiMin+P
765   {                                               760   {
766     G4double dl2=lp-lastPAR[14];                  761     G4double dl2=lp-lastPAR[14];
767     theSS=lastPAR[37];                            762     theSS=lastPAR[37];
768     theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1    763     theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1.+lastPAR[17]/p4/p)+
769           (lastPAR[18]/p2+lastPAR[19]*p)/(p4+l    764           (lastPAR[18]/p2+lastPAR[19]*p)/(p4+lastPAR[20]*sp);
770     theB1=lastPAR[21]*G4Pow::GetInstance()->po << 765     theB1=lastPAR[21]*std::pow(p,lastPAR[22])/(1.+lastPAR[23]/p3);
771     theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[    766     theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]*p);
772     theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[    767     theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[29]/sp); 
773     theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastP    768     theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastPAR[32]*p2+lastPAR[33]);
774     theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[    769     theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[36]); 
775     theS4=0.;                                     770     theS4=0.;
776     theB4=0.;                                     771     theB4=0.; 
777     // Returns the total elastic pim-p cross-s    772     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
778     G4double lr=lp+lastPAR[0];  // lr             773     G4double lr=lp+lastPAR[0];  // lr
779     G4double ld=lp-lastPAR[14];                   774     G4double ld=lp-lastPAR[14];
780     G4double dl3=lp+lastPAR[4]; // lm             775     G4double dl3=lp+lastPAR[4]; // lm
781     G4double dl4=lp-lastPAR[6]; // lh             776     G4double dl4=lp-lastPAR[6]; // lh
782 //G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastP    777 //G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastPAR[6] "<<lastPAR[6]<<" lastPAR[7] "<<lastPAR[7]<<G4endl;
783     return lastPAR[1]/(lr*lr+lastPAR[2])+         778     return lastPAR[1]/(lr*lr+lastPAR[2])+
784            (lastPAR[8]*ld*ld+lastPAR[9]+lastPA    779            (lastPAR[8]*ld*ld+lastPAR[9]+lastPAR[10]/sp)/(1.+lastPAR[11]/p4)+
785            lastPAR[12]/(dl3*dl3+lastPAR[5])+la    780            lastPAR[12]/(dl3*dl3+lastPAR[5])+lastPAR[13]/(dl4*dl4+lastPAR[7]);
786   }                                               781   }
787   else                                            782   else
788   {                                               783   {
789     G4double p5=p4*p;                             784     G4double p5=p4*p;
790     G4double p6=p5*p;                             785     G4double p6=p5*p;
791     G4double p8=p6*p2;                            786     G4double p8=p6*p2;
792     G4double p10=p8*p2;                           787     G4double p10=p8*p2;
793     G4double p12=p10*p2;                          788     G4double p12=p10*p2;
794     G4double p16=p8*p8;                           789     G4double p16=p8*p8;
795     //G4double p24=p16*p8;                        790     //G4double p24=p16*p8;
796     G4double dl=lp-5.;                            791     G4double dl=lp-5.;
797     G4double a=tgZ+tgN;                           792     G4double a=tgZ+tgN;
798     G4double pah=G4Pow::GetInstance()->powA(p, << 793     G4double pah=std::pow(p,a/2);
799     G4double pa=pah*pah;                          794     G4double pa=pah*pah;
800     G4double pa2=pa*pa;                           795     G4double pa2=pa*pa;
801     if(a<6.5)                                     796     if(a<6.5)
802     {                                             797     {
803       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+    798       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
804             (lastPAR[13]*dl*dl+lastPAR[14])/(1    799             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
805       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l    800       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
806       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la    801       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
807       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)    802       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
808       theB2=lastPAR[27]*G4Pow::GetInstance()-> << 803       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
809       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+    804       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
810       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la    805       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
811       theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*las << 806       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
812                 lastPAR[40]/(1.+lastPAR[41]*G4 << 807                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
813       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4    808       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
814     }                                             809     }
815     else                                          810     else
816     {                                             811     {
817       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las    812       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
818             lastPAR[13]/(p5+lastPAR[14]/p16);     813             lastPAR[13]/(p5+lastPAR[14]/p16);
819       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la << 814       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
820             lastPAR[17]/(1.+lastPAR[18]/p4);      815             lastPAR[17]/(1.+lastPAR[18]/p4);
821       theSS=lastPAR[21]/(p4/G4Pow::GetInstance << 816       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
822       theS2=lastPAR[24]/p4/(G4Pow::GetInstance << 817       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
823       theB2=lastPAR[28]/G4Pow::GetInstance()-> << 818       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
824       theS3=lastPAR[32]/G4Pow::GetInstance()-> << 819       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
825             lastPAR[33]/(1.+lastPAR[34]/p6);      820             lastPAR[33]/(1.+lastPAR[34]/p6);
826       theB3=lastPAR[37]/p8+lastPAR[38]/p2+last    821       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
827       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.    822       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
828             (lastPAR[43]+lastPAR[44]*dl*dl)/(1    823             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
829       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las    824       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
830     }                                             825     }
831     // Returns the total elastic (n/p)A cross-    826     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
832     //         p1               p2                827     //         p1               p2              p3
833     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l    828     return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+
834            lastPAR[3]/(p4+lastPAR[4]/p3)+lastP    829            lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4);
835     //        p4             p5                   830     //        p4             p5               p7           p8
836   }                                               831   }
837   return 0.;                                      832   return 0.;
838 } // End of GetTableValues                        833 } // End of GetTableValues
839                                                   834 
840 // Returns max -t=Q2 (GeV^2) for the momentum     835 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
841 G4double G4ChipsPionMinusElasticXS::GetQ2max(G    836 G4double G4ChipsPionMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
842                                                   837                                                 G4double pP)
843 {                                                 838 {
844   static const G4double mPi= G4PionMinus::Pion    839   static const G4double mPi= G4PionMinus::PionMinus()->GetPDGMass()*.001; // MeV to GeV
845   static const G4double mPi2= mPi*mPi;            840   static const G4double mPi2= mPi*mPi;
846                                                   841 
847   G4double pP2=pP*pP;                             842   G4double pP2=pP*pP;                                 // squared momentum of the projectile
848   if(tgZ || tgN>-1)                               843   if(tgZ || tgN>-1)                                   // ---> pipA
849   {                                               844   {
850     G4double mt=G4ParticleTable::GetParticleTa << 845     G4double mt=G4ParticleTable::GetParticleTable()->FindIon(tgZ,tgZ+tgN,0,tgZ)->GetPDGMass()*.001; // Target mass in GeV
851                                                   846 
852     G4double dmt=mt+mt;                           847     G4double dmt=mt+mt;
853     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+    848     G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt;    // Mondelstam mds
854     return dmt*dmt*pP2/mds;                       849     return dmt*dmt*pP2/mds;
855   }                                               850   }
856   else                                            851   else
857   {                                               852   {
858     G4ExceptionDescription ed;                    853     G4ExceptionDescription ed;
859     ed << "PDG = " << PDG << ",Z = " << tgZ <<    854     ed << "PDG = " << PDG << ",Z = " << tgZ << ",N = " << tgN
860        << ", while it is defined only for p pr    855        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
861     G4Exception("G4ChipsPionMinusElasticXS::Ge    856     G4Exception("G4ChipsPionMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
862                 FatalException, ed);              857                 FatalException, ed);
863     return 0;                                     858     return 0;
864   }                                               859   }
865 }                                                 860 }
866                                                   861