Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4ChipsPionMinusElasticXS.cc 70680 2013-06-04 07:51:03Z gcosmo $ 27 // 28 // 28 // 29 // 29 // G4 Physics class: G4ChipsPionMinusElasticXS 30 // G4 Physics class: G4ChipsPionMinusElasticXS for pA elastic cross sections 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 21-Jan-10 31 // The last update: M.V. Kossov, CERN/ITEP (Mo 32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 21-Jan-10 32 // 33 // 33 // ------------------------------------------- 34 // ------------------------------------------------------------------------------- 34 // Short description: Interaction cross-sectio 35 // Short description: Interaction cross-sections for the elastic process. 35 // Class extracted from CHIPS and integrated i 36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski 36 // ------------------------------------------- 37 // ------------------------------------------------------------------------------- 37 // 38 // 38 39 39 #include "G4ChipsPionMinusElasticXS.hh" 40 #include "G4ChipsPionMinusElasticXS.hh" 40 #include "G4SystemOfUnits.hh" 41 #include "G4SystemOfUnits.hh" 41 #include "G4DynamicParticle.hh" 42 #include "G4DynamicParticle.hh" 42 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4PionMinus.hh" 44 #include "G4PionMinus.hh" 44 #include "G4Nucleus.hh" 45 #include "G4Nucleus.hh" 45 #include "G4ParticleTable.hh" 46 #include "G4ParticleTable.hh" 46 #include "G4NucleiProperties.hh" 47 #include "G4NucleiProperties.hh" 47 #include "G4IonTable.hh" 48 #include "G4IonTable.hh" 48 49 49 #include "G4Log.hh" << 50 #include "G4Exp.hh" << 51 #include "G4Pow.hh" << 52 << 53 // factory 50 // factory 54 #include "G4CrossSectionFactory.hh" 51 #include "G4CrossSectionFactory.hh" 55 // 52 // 56 G4_DECLARE_XS_FACTORY(G4ChipsPionMinusElasticX 53 G4_DECLARE_XS_FACTORY(G4ChipsPionMinusElasticXS); 57 54 58 G4ChipsPionMinusElasticXS::G4ChipsPionMinusEla 55 G4ChipsPionMinusElasticXS::G4ChipsPionMinusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1) 59 { 56 { 60 lPMin=-8.; //Min tabulated logarithmMomentu 57 lPMin=-8.; //Min tabulated logarithmMomentum(D) 61 lPMax= 8.; //Max tabulated logarithmMomentu 58 lPMax= 8.; //Max tabulated logarithmMomentum(D) 62 dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTabl 59 dlnP=(lPMax-lPMin)/nLast;//LogStep inTheTable(D) 63 onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi 60 onlyCS=true;//Flag toCalcul OnlyCS(not Si/Bi)(L) 64 lastSIG=0.; //Last calculated cross section 61 lastSIG=0.; //Last calculated cross section (L) 65 lastLP=-10.;//Last log(mom_of IncidentHadron 62 lastLP=-10.;//Last log(mom_of IncidentHadron)(L) 66 lastTM=0.; //Last t_maximum 63 lastTM=0.; //Last t_maximum (L) 67 theSS=0.; //TheLastSqSlope of 1st difr.Max 64 theSS=0.; //TheLastSqSlope of 1st difr.Max(L) 68 theS1=0.; //TheLastMantissa of 1st difr.Ma 65 theS1=0.; //TheLastMantissa of 1st difr.Max(L) 69 theB1=0.; //TheLastSlope of 1st difruct.Ma 66 theB1=0.; //TheLastSlope of 1st difruct.Max(L) 70 theS2=0.; //TheLastMantissa of 2nd difr.Ma 67 theS2=0.; //TheLastMantissa of 2nd difr.Max(L) 71 theB2=0.; //TheLastSlope of 2nd difruct.Ma 68 theB2=0.; //TheLastSlope of 2nd difruct.Max(L) 72 theS3=0.; //TheLastMantissa of 3d difr. Ma 69 theS3=0.; //TheLastMantissa of 3d difr. Max(L) 73 theB3=0.; //TheLastSlope of 3d difruct. Ma 70 theB3=0.; //TheLastSlope of 3d difruct. Max(L) 74 theS4=0.; //TheLastMantissa of 4th difr.Ma 71 theS4=0.; //TheLastMantissa of 4th difr.Max(L) 75 theB4=0.; //TheLastSlope of 4th difruct.Ma 72 theB4=0.; //TheLastSlope of 4th difruct.Max(L) 76 lastTZ=0; // Last atomic number of the tar 73 lastTZ=0; // Last atomic number of the target 77 lastTN=0; // Last # of neutrons in the tar 74 lastTN=0; // Last # of neutrons in the target 78 lastPIN=0.; // Last initialized max momentum 75 lastPIN=0.; // Last initialized max momentum 79 lastCST=0; // Elastic cross-section table 76 lastCST=0; // Elastic cross-section table 80 lastPAR=0; // Parameters ForFunctionCalcula 77 lastPAR=0; // Parameters ForFunctionCalculation 81 lastSST=0; // E-dep of SqardSlope of 1st di 78 lastSST=0; // E-dep of SqardSlope of 1st difMax 82 lastS1T=0; // E-dep of mantissa of 1st dif. 79 lastS1T=0; // E-dep of mantissa of 1st dif.Max 83 lastB1T=0; // E-dep of the slope of 1st dif 80 lastB1T=0; // E-dep of the slope of 1st difMax 84 lastS2T=0; // E-dep of mantissa of 2nd difr 81 lastS2T=0; // E-dep of mantissa of 2nd difrMax 85 lastB2T=0; // E-dep of the slope of 2nd dif 82 lastB2T=0; // E-dep of the slope of 2nd difMax 86 lastS3T=0; // E-dep of mantissa of 3d difr. 83 lastS3T=0; // E-dep of mantissa of 3d difr.Max 87 lastB3T=0; // E-dep of the slope of 3d difr 84 lastB3T=0; // E-dep of the slope of 3d difrMax 88 lastS4T=0; // E-dep of mantissa of 4th difr 85 lastS4T=0; // E-dep of mantissa of 4th difrMax 89 lastB4T=0; // E-dep of the slope of 4th dif 86 lastB4T=0; // E-dep of the slope of 4th difMax 90 lastN=0; // The last N of calculated nucl 87 lastN=0; // The last N of calculated nucleus 91 lastZ=0; // The last Z of calculated nucl 88 lastZ=0; // The last Z of calculated nucleus 92 lastP=0.; // LastUsed in CrossSection Mome 89 lastP=0.; // LastUsed in CrossSection Momentum 93 lastTH=0.; // Last threshold momentum 90 lastTH=0.; // Last threshold momentum 94 lastCS=0.; // Last value of the Cross Secti 91 lastCS=0.; // Last value of the Cross Section 95 lastI=0; // The last position in the DAMD 92 lastI=0; // The last position in the DAMDB 96 } 93 } 97 94 98 G4ChipsPionMinusElasticXS::~G4ChipsPionMinusEl 95 G4ChipsPionMinusElasticXS::~G4ChipsPionMinusElasticXS() 99 { 96 { 100 std::vector<G4double*>::iterator pos; 97 std::vector<G4double*>::iterator pos; 101 for (pos=CST.begin(); pos<CST.end(); pos++) 98 for (pos=CST.begin(); pos<CST.end(); pos++) 102 { delete [] *pos; } 99 { delete [] *pos; } 103 CST.clear(); 100 CST.clear(); 104 for (pos=PAR.begin(); pos<PAR.end(); pos++) 101 for (pos=PAR.begin(); pos<PAR.end(); pos++) 105 { delete [] *pos; } 102 { delete [] *pos; } 106 PAR.clear(); 103 PAR.clear(); 107 for (pos=SST.begin(); pos<SST.end(); pos++) 104 for (pos=SST.begin(); pos<SST.end(); pos++) 108 { delete [] *pos; } 105 { delete [] *pos; } 109 SST.clear(); 106 SST.clear(); 110 for (pos=S1T.begin(); pos<S1T.end(); pos++) 107 for (pos=S1T.begin(); pos<S1T.end(); pos++) 111 { delete [] *pos; } 108 { delete [] *pos; } 112 S1T.clear(); 109 S1T.clear(); 113 for (pos=B1T.begin(); pos<B1T.end(); pos++) 110 for (pos=B1T.begin(); pos<B1T.end(); pos++) 114 { delete [] *pos; } 111 { delete [] *pos; } 115 B1T.clear(); 112 B1T.clear(); 116 for (pos=S2T.begin(); pos<S2T.end(); pos++) 113 for (pos=S2T.begin(); pos<S2T.end(); pos++) 117 { delete [] *pos; } 114 { delete [] *pos; } 118 S2T.clear(); 115 S2T.clear(); 119 for (pos=B2T.begin(); pos<B2T.end(); pos++) 116 for (pos=B2T.begin(); pos<B2T.end(); pos++) 120 { delete [] *pos; } 117 { delete [] *pos; } 121 B2T.clear(); 118 B2T.clear(); 122 for (pos=S3T.begin(); pos<S3T.end(); pos++) 119 for (pos=S3T.begin(); pos<S3T.end(); pos++) 123 { delete [] *pos; } 120 { delete [] *pos; } 124 S3T.clear(); 121 S3T.clear(); 125 for (pos=B3T.begin(); pos<B3T.end(); pos++) 122 for (pos=B3T.begin(); pos<B3T.end(); pos++) 126 { delete [] *pos; } 123 { delete [] *pos; } 127 B3T.clear(); 124 B3T.clear(); 128 for (pos=S4T.begin(); pos<S4T.end(); pos++) 125 for (pos=S4T.begin(); pos<S4T.end(); pos++) 129 { delete [] *pos; } 126 { delete [] *pos; } 130 S4T.clear(); 127 S4T.clear(); 131 for (pos=B4T.begin(); pos<B4T.end(); pos++) 128 for (pos=B4T.begin(); pos<B4T.end(); pos++) 132 { delete [] *pos; } 129 { delete [] *pos; } 133 B4T.clear(); 130 B4T.clear(); 134 } 131 } 135 132 136 void << 137 G4ChipsPionMinusElasticXS::CrossSectionDescrip << 138 { << 139 outFile << "G4ChipsPionMinusElasticXS prov << 140 << "section for pion- nucleus scat << 141 << "momentum. The cross section is << 142 << "CHIPS parameterization of cros << 143 } << 144 133 145 << 134 G4bool G4ChipsPionMinusElasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int, 146 G4bool G4ChipsPionMinusElasticXS::IsIsoApplica << 147 const G4Element*, 135 const G4Element*, 148 const G4Material*) 136 const G4Material*) 149 { 137 { 150 return true; << 138 G4ParticleDefinition* particle = Pt->GetDefinition(); >> 139 if (particle == G4PionMinus::PionMinus() ) return true; >> 140 return false; 151 } 141 } 152 142 153 // The main member function giving the collisi 143 // The main member function giving the collision cross section (P is in IU, CS is in mb) 154 // Make pMom in independent units ! (Now it is 144 // Make pMom in independent units ! (Now it is MeV) 155 G4double G4ChipsPionMinusElasticXS::GetIsoCros 145 G4double G4ChipsPionMinusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 156 const G4Isotope*, 146 const G4Isotope*, 157 const G4Element*, 147 const G4Element*, 158 const G4Material*) 148 const G4Material*) 159 { 149 { 160 G4double pMom=Pt->GetTotalMomentum(); 150 G4double pMom=Pt->GetTotalMomentum(); 161 G4int tgN = A - tgZ; 151 G4int tgN = A - tgZ; 162 152 163 return GetChipsCrossSection(pMom, tgZ, tgN, 153 return GetChipsCrossSection(pMom, tgZ, tgN, -212); 164 } 154 } 165 155 166 G4double G4ChipsPionMinusElasticXS::GetChipsCr 156 G4double G4ChipsPionMinusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int) 167 { 157 { >> 158 static G4ThreadLocal std::vector <G4int> *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colN = *colN_G4MT_TLS_; // Vector of N for calculated nuclei (isotops) >> 159 static G4ThreadLocal std::vector <G4int> *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new std::vector <G4int> ; std::vector <G4int> &colZ = *colZ_G4MT_TLS_; // Vector of Z for calculated nuclei (isotops) >> 160 static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colP = *colP_G4MT_TLS_; // Vector of last momenta for the reaction >> 161 static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction >> 162 static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction >> 163 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---*** 168 164 169 G4double pEn=pMom; 165 G4double pEn=pMom; 170 G4bool fCS = false; 166 G4bool fCS = false; 171 onlyCS=fCS; 167 onlyCS=fCS; 172 168 173 G4bool in=false; // By def 169 G4bool in=false; // By default the isotope must be found in the AMDB 174 lastP = 0.; // New mo 170 lastP = 0.; // New momentum history (nothing to compare with) 175 lastN = tgN; // The la 171 lastN = tgN; // The last N of the calculated nucleus 176 lastZ = tgZ; // The la 172 lastZ = tgZ; // The last Z of the calculated nucleus 177 lastI = (G4int)colN.size(); // Size o << 173 lastI = colN.size(); // Size of the Associative Memory DB in the heap 178 if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 174 if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB 179 { // The nu 175 { // The nucleus with projPDG is found in AMDB 180 if(colN[i]==tgN && colZ[i]==tgZ) // Isotop 176 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB 181 { 177 { 182 lastI=i; 178 lastI=i; 183 lastTH =colTH[i]; // Last T 179 lastTH =colTH[i]; // Last THreshold (A-dependent) 184 if(pEn<=lastTH) 180 if(pEn<=lastTH) 185 { 181 { 186 return 0.; // Energy 182 return 0.; // Energy is below the Threshold value 187 } 183 } 188 lastP =colP [i]; // Last M 184 lastP =colP [i]; // Last Momentum (A-dependent) 189 lastCS =colCS[i]; // Last C 185 lastCS =colCS[i]; // Last CrossSect (A-dependent) 190 // if(std::fabs(lastP/pMom-1.)<toleranc 186 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance) 191 if(lastP == pMom) // Do not 187 if(lastP == pMom) // Do not recalculate 192 { 188 { 193 CalculateCrossSection(fCS,-1,i,-211,la 189 CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // Update param's only 194 return lastCS*millibarn; // Use th 190 return lastCS*millibarn; // Use theLastCS 195 } 191 } 196 in = true; // This 192 in = true; // This is the case when the isotop is found in DB 197 // Momentum pMom is in IU ! @@ Units 193 // Momentum pMom is in IU ! @@ Units 198 lastCS=CalculateCrossSection(fCS,-1,i,-2 194 lastCS=CalculateCrossSection(fCS,-1,i,-211,lastZ,lastN,pMom); // read & update 199 if(lastCS<=0. && pEn>lastTH) // Corre 195 if(lastCS<=0. && pEn>lastTH) // Correct the threshold 200 { 196 { 201 lastTH=pEn; 197 lastTH=pEn; 202 } 198 } 203 break; // Go o 199 break; // Go out of the LOOP with found lastI 204 } 200 } 205 } // End of attampt to find the nucleus in D 201 } // End of attampt to find the nucleus in DB 206 if(!in) // This n 202 if(!in) // This nucleus has not been calculated previously 207 { 203 { 208 //!!The slave functions must provide cross 204 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 209 lastCS=CalculateCrossSection(fCS,0,lastI,- 205 lastCS=CalculateCrossSection(fCS,0,lastI,-211,lastZ,lastN,pMom);//calculate&create 210 if(lastCS<=0.) 206 if(lastCS<=0.) 211 { 207 { 212 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 208 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 213 if(pEn>lastTH) 209 if(pEn>lastTH) 214 { 210 { 215 lastTH=pEn; 211 lastTH=pEn; 216 } 212 } 217 } 213 } 218 colN.push_back(tgN); 214 colN.push_back(tgN); 219 colZ.push_back(tgZ); 215 colZ.push_back(tgZ); 220 colP.push_back(pMom); 216 colP.push_back(pMom); 221 colTH.push_back(lastTH); 217 colTH.push_back(lastTH); 222 colCS.push_back(lastCS); 218 colCS.push_back(lastCS); 223 return lastCS*millibarn; 219 return lastCS*millibarn; 224 } // End of creation of the new set of param 220 } // End of creation of the new set of parameters 225 else 221 else 226 { 222 { 227 colP[lastI]=pMom; 223 colP[lastI]=pMom; 228 colCS[lastI]=lastCS; 224 colCS[lastI]=lastCS; 229 } 225 } 230 return lastCS*millibarn; 226 return lastCS*millibarn; 231 } 227 } 232 228 233 // Calculation of total elastic cross section 229 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?) 234 // F=0 - create AMDB, F=-1 - read&update AMDB, 230 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB) 235 G4double G4ChipsPionMinusElasticXS::CalculateC 231 G4double G4ChipsPionMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,G4int I, 236 G 232 G4int PDG, G4int tgZ, G4int tgN, G4double pIU) 237 { 233 { >> 234 // *** Begin of Associative Memory DB for acceleration of the cross section calculations >> 235 static G4ThreadLocal std::vector <G4double> *PIN_G4MT_TLS_ = 0 ; if (!PIN_G4MT_TLS_) PIN_G4MT_TLS_ = new std::vector <G4double> ; std::vector <G4double> &PIN = *PIN_G4MT_TLS_; // Vector of max initialized log(P) in the table >> 236 // *** End of Static Definitions (Associative Memory Data Base) *** 238 G4double pMom=pIU/GeV; // All 237 G4double pMom=pIU/GeV; // All calculations are in GeV 239 onlyCS=CS; // Fla 238 onlyCS=CS; // Flag to calculate only CS (not Si/Bi) 240 lastLP=G4Log(pMom); // Make a << 239 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation 241 if(F) // Thi 240 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE 242 { 241 { 243 if(F<0) // the 242 if(F<0) // the AMDB must be loded 244 { 243 { 245 lastPIN = PIN[I]; // Max 244 lastPIN = PIN[I]; // Max log(P) initialised for this table set 246 lastPAR = PAR[I]; // Poi 245 lastPAR = PAR[I]; // Pointer to the parameter set 247 lastCST = CST[I]; // Poi 246 lastCST = CST[I]; // Pointer to the total sross-section table 248 lastSST = SST[I]; // Poi 247 lastSST = SST[I]; // Pointer to the first squared slope 249 lastS1T = S1T[I]; // Poi 248 lastS1T = S1T[I]; // Pointer to the first mantissa 250 lastB1T = B1T[I]; // Poi 249 lastB1T = B1T[I]; // Pointer to the first slope 251 lastS2T = S2T[I]; // Poi 250 lastS2T = S2T[I]; // Pointer to the second mantissa 252 lastB2T = B2T[I]; // Poi 251 lastB2T = B2T[I]; // Pointer to the second slope 253 lastS3T = S3T[I]; // Poi 252 lastS3T = S3T[I]; // Pointer to the third mantissa 254 lastB3T = B3T[I]; // Poi 253 lastB3T = B3T[I]; // Pointer to the rhird slope 255 lastS4T = S4T[I]; // Poi 254 lastS4T = S4T[I]; // Pointer to the 4-th mantissa 256 lastB4T = B4T[I]; // Poi 255 lastB4T = B4T[I]; // Pointer to the 4-th slope 257 } 256 } 258 if(lastLP>lastPIN && lastLP<lPMax) 257 if(lastLP>lastPIN && lastLP<lPMax) 259 { 258 { 260 lastPIN=GetPTables(lastLP,lastPIN,PDG,tg 259 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs 261 PIN[I]=lastPIN; // Rem 260 PIN[I]=lastPIN; // Remember the new P-Limit of the tables 262 } 261 } 263 } 262 } 264 else // Thi 263 else // This isotope wasn't initialized => CREATE 265 { 264 { 266 lastPAR = new G4double[nPoints]; // All 265 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function 267 lastPAR[nLast]=0; // Ini 266 lastPAR[nLast]=0; // Initialization for VALGRIND 268 lastCST = new G4double[nPoints]; // All 267 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function 269 lastSST = new G4double[nPoints]; // All 268 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope 270 lastS1T = new G4double[nPoints]; // All 269 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa 271 lastB1T = new G4double[nPoints]; // All 270 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope 272 lastS2T = new G4double[nPoints]; // All 271 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa 273 lastB2T = new G4double[nPoints]; // All 272 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope 274 lastS3T = new G4double[nPoints]; // All 273 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa 275 lastB3T = new G4double[nPoints]; // All 274 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope 276 lastS4T = new G4double[nPoints]; // All 275 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa 277 lastB4T = new G4double[nPoints]; // All 276 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope 278 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ, 277 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables 279 PIN.push_back(lastPIN); // Fil 278 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB 280 PAR.push_back(lastPAR); // Fil 279 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB 281 CST.push_back(lastCST); // Fil 280 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB 282 SST.push_back(lastSST); // Fil 281 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB 283 S1T.push_back(lastS1T); // Fil 282 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB 284 B1T.push_back(lastB1T); // Fil 283 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB 285 S2T.push_back(lastS2T); // Fil 284 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB 286 B2T.push_back(lastB2T); // Fil 285 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB 287 S3T.push_back(lastS3T); // Fil 286 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB 288 B3T.push_back(lastB3T); // Fil 287 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB 289 S4T.push_back(lastS4T); // Fil 288 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB 290 B4T.push_back(lastB4T); // Fil 289 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB 291 } // End of creation/update of the new set o 290 } // End of creation/update of the new set of parameters and tables 292 // =----------= NOW Update (if necessary) an 291 // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------= 293 if(lastLP>lastPIN && lastLP<lPMax) 292 if(lastLP>lastPIN && lastLP<lPMax) 294 { 293 { 295 lastPIN = GetPTables(lastLP,lastPIN,PDG,tg 294 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN); 296 } 295 } 297 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p 296 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2) 298 if(lastLP>lPMin && lastLP<=lastPIN) // Lin 297 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables 299 { 298 { 300 if(lastLP==lastPIN) 299 if(lastLP==lastPIN) 301 { 300 { 302 G4double shift=(lastLP-lPMin)/dlnP+.0000 301 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin 303 G4int blast=static_cast<int>(shift); 302 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0) 304 if(blast<0 || blast>=nLast) G4cout<<"G4Q 303 if(blast<0 || blast>=nLast) G4cout<<"G4QEleastCS::CCS:b="<<blast<<","<<nLast<<G4endl; 305 lastSIG = lastCST[blast]; 304 lastSIG = lastCST[blast]; 306 if(!onlyCS) // Ski 305 if(!onlyCS) // Skip the differential cross-section parameters 307 { 306 { 308 theSS = lastSST[blast]; 307 theSS = lastSST[blast]; 309 theS1 = lastS1T[blast]; 308 theS1 = lastS1T[blast]; 310 theB1 = lastB1T[blast]; 309 theB1 = lastB1T[blast]; 311 theS2 = lastS2T[blast]; 310 theS2 = lastS2T[blast]; 312 theB2 = lastB2T[blast]; 311 theB2 = lastB2T[blast]; 313 theS3 = lastS3T[blast]; 312 theS3 = lastS3T[blast]; 314 theB3 = lastB3T[blast]; 313 theB3 = lastB3T[blast]; 315 theS4 = lastS4T[blast]; 314 theS4 = lastS4T[blast]; 316 theB4 = lastB4T[blast]; 315 theB4 = lastB4T[blast]; 317 } 316 } 318 } 317 } 319 else 318 else 320 { 319 { 321 G4double shift=(lastLP-lPMin)/dlnP; 320 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table 322 G4int blast=static_cast<int>(shift); 321 G4int blast=static_cast<int>(shift); // the lower bin number 323 if(blast<0) blast=0; 322 if(blast<0) blast=0; 324 if(blast>=nLast) blast=nLast-1; 323 if(blast>=nLast) blast=nLast-1; // low edge of the last bin 325 shift-=blast; 324 shift-=blast; // step inside the unit bin 326 G4int lastL=blast+1; 325 G4int lastL=blast+1; // the upper bin number 327 G4double SIGL=lastCST[blast]; 326 G4double SIGL=lastCST[blast]; // the basic value of the cross-section 328 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL 327 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section 329 if(!onlyCS) // Ski 328 if(!onlyCS) // Skip the differential cross-section parameters 330 { 329 { 331 G4double SSTL=lastSST[blast]; 330 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope 332 theSS=SSTL+shift*(lastSST[lastL]-SSTL) 331 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope 333 G4double S1TL=lastS1T[blast]; 332 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa 334 theS1=S1TL+shift*(lastS1T[lastL]-S1TL) 333 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa 335 G4double B1TL=lastB1T[blast]; 334 G4double B1TL=lastB1T[blast]; // the low bin of the first slope 336 theB1=B1TL+shift*(lastB1T[lastL]-B1TL) 335 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope 337 G4double S2TL=lastS2T[blast]; 336 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa 338 theS2=S2TL+shift*(lastS2T[lastL]-S2TL) 337 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa 339 G4double B2TL=lastB2T[blast]; 338 G4double B2TL=lastB2T[blast]; // the low bin of the second slope 340 theB2=B2TL+shift*(lastB2T[lastL]-B2TL) 339 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope 341 G4double S3TL=lastS3T[blast]; 340 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa 342 theS3=S3TL+shift*(lastS3T[lastL]-S3TL) 341 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa 343 G4double B3TL=lastB3T[blast]; 342 G4double B3TL=lastB3T[blast]; // the low bin of the third slope 344 theB3=B3TL+shift*(lastB3T[lastL]-B3TL) 343 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope 345 G4double S4TL=lastS4T[blast]; 344 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa 346 theS4=S4TL+shift*(lastS4T[lastL]-S4TL) 345 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa 347 G4double B4TL=lastB4T[blast]; 346 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope 348 theB4=B4TL+shift*(lastB4T[lastL]-B4TL) 347 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope 349 } 348 } 350 } 349 } 351 } 350 } 352 else lastSIG=GetTabValues(lastLP, PDG, tgZ, 351 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table 353 if(lastSIG<0.) lastSIG = 0.; 352 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added 354 return lastSIG; 353 return lastSIG; 355 } 354 } 356 355 357 // It has parameter sets for all tZ/tN/PDG, us 356 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated 358 G4double G4ChipsPionMinusElasticXS::GetPTables 357 G4double G4ChipsPionMinusElasticXS::GetPTables(G4double LP, G4double ILP, G4int PDG, 359 358 G4int tgZ, G4int tgN) 360 { 359 { 361 // @@ At present all nA==pA ---------> Each 360 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters 362 static const G4double pwd=2727; 361 static const G4double pwd=2727; 363 const G4int n_pimpel=38; // # 362 const G4int n_pimpel=38; // #of parameters for pp-elastic (<nPoints=128) 364 // -0- -1- -2- 363 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10-11-12- 365 G4double pimp_el[n_pimpel]={1.27,1.53,.0676, 364 G4double pimp_el[n_pimpel]={1.27,1.53,.0676,3.5,.36,.04,.017,.0025,.0557,2.4,7.,.7,.6, 366 .05,5.,74.,3.,3. 365 .05,5.,74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500., 367 .46,1.2e6,3.5e6, 366 .46,1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.}; 368 // -13-14--15--16--1 367 // -13-14--15--16--17-18--19--20--21- -22- -23- -24- -25- -26- 369 // -27--28- -29- 368 // -27--28- -29- -30- -31- -32- -33- -34- -35- -36- -37- 370 if(PDG ==-211) 369 if(PDG ==-211) 371 { 370 { 372 // -- Total pp elastic cross section cs & 371 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) -- 373 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l 372 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom| 374 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d 373 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4); 375 // par(0) par(7) par(1) par(2) 374 // par(0) par(7) par(1) par(2) par(4) par(5) par(6) 376 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4 375 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp), 377 // par(8) par(9) par(10) par(11 376 // par(8) par(9) par(10) par(11) par(12)par(13) par(14) 378 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40 377 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp); 379 // par(15) par(16) par(17) par(18) pa 378 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23) 380 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); 379 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0. 381 // par(24) par(25) par(26) par(27) p 380 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31) 382 // 381 // 383 if(lastPAR[nLast]!=pwd) // A unique flag t 382 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition 384 { 383 { 385 if ( tgZ == 1 && tgN == 0 ) 384 if ( tgZ == 1 && tgN == 0 ) 386 { 385 { 387 for (G4int ip=0; ip<n_pimpel; ip++) la 386 for (G4int ip=0; ip<n_pimpel; ip++) lastPAR[ip]=pimp_el[ip]; // PiMinus+P 388 } 387 } 389 else 388 else 390 { 389 { 391 G4double a=tgZ+tgN; 390 G4double a=tgZ+tgN; 392 G4double sa=std::sqrt(a); 391 G4double sa=std::sqrt(a); 393 G4double ssa=std::sqrt(sa); 392 G4double ssa=std::sqrt(sa); 394 G4double asa=a*sa; 393 G4double asa=a*sa; 395 G4double a2=a*a; 394 G4double a2=a*a; 396 G4double a3=a2*a; 395 G4double a3=a2*a; 397 G4double a4=a3*a; 396 G4double a4=a3*a; 398 G4double a5=a4*a; 397 G4double a5=a4*a; 399 G4double a6=a4*a2; 398 G4double a6=a4*a2; 400 G4double a7=a6*a; 399 G4double a7=a6*a; 401 G4double a8=a7*a; 400 G4double a8=a7*a; 402 G4double a9=a8*a; 401 G4double a9=a8*a; 403 G4double a10=a5*a5; 402 G4double a10=a5*a5; 404 G4double a12=a6*a6; 403 G4double a12=a6*a6; 405 G4double a14=a7*a7; 404 G4double a14=a7*a7; 406 G4double a16=a8*a8; 405 G4double a16=a8*a8; 407 G4double a17=a16*a; 406 G4double a17=a16*a; 408 //G4double a20=a16*a4; 407 //G4double a20=a16*a4; 409 G4double a32=a16*a16; 408 G4double a32=a16*a16; 410 // Reaction cross-section parameters ( 409 // Reaction cross-section parameters (pel=peh_fit.f) 411 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a) 410 lastPAR[0]=(.95*sa+2.E5/a16)/(1.+17/a); // p1 412 lastPAR[1]=a/(1./4.4+1./a); 411 lastPAR[1]=a/(1./4.4+1./a); // p2 413 lastPAR[2]=.22/G4Pow::GetInstance()->p << 412 lastPAR[2]=.22/std::pow(a,.33); // p3 414 lastPAR[3]=.5*a/(1.+3./a+1800./a8); 413 lastPAR[3]=.5*a/(1.+3./a+1800./a8); // p4 415 lastPAR[4]=3.E-4*G4Pow::GetInstance()- << 414 lastPAR[4]=3.E-4*std::pow(a,.32)/(1.+14./a2); // p5 416 lastPAR[5]=0.; 415 lastPAR[5]=0.; // p6 not used 417 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2) 416 lastPAR[6]=(.55+.001*a2)/(1.+4.E-4*a2); // p7 418 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./ 417 lastPAR[7]=(.0002/asa+4.E-9*a)/(1.+9./a4); // p8 419 lastPAR[8]=0.; 418 lastPAR[8]=0.; // p9 not used 420 // @@ the differential cross-section i 419 // @@ the differential cross-section is parameterized separately for A>6 & A<7 421 if(a<6.5) 420 if(a<6.5) 422 { 421 { 423 G4double a28=a16*a12; 422 G4double a28=a16*a12; 424 // The main pre-exponent (pel_s 423 // The main pre-exponent (pel_sg) 425 lastPAR[ 9]=4000*a; 424 lastPAR[ 9]=4000*a; // p1 426 lastPAR[10]=1.2e7*a8+380*a17; 425 lastPAR[10]=1.2e7*a8+380*a17; // p2 427 lastPAR[11]=.7/(1.+4.e-12*a16); 426 lastPAR[11]=.7/(1.+4.e-12*a16); // p3 428 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); 427 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4 429 lastPAR[13]=.28*a; 428 lastPAR[13]=.28*a; // p5 430 lastPAR[14]=1.2*a2+2.3; 429 lastPAR[14]=1.2*a2+2.3; // p6 431 lastPAR[15]=3.8/a; 430 lastPAR[15]=3.8/a; // p7 432 // The main slope (pel_s 431 // The main slope (pel_sl) 433 lastPAR[16]=.01/(1.+.0024*a5); 432 lastPAR[16]=.01/(1.+.0024*a5); // p1 434 lastPAR[17]=.2*a; 433 lastPAR[17]=.2*a; // p2 435 lastPAR[18]=9.e-7/(1.+.035*a5); 434 lastPAR[18]=9.e-7/(1.+.035*a5); // p3 436 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1 435 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4 437 // The main quadratic (pel_s 436 // The main quadratic (pel_sh) 438 lastPAR[20]=2.25*a3; 437 lastPAR[20]=2.25*a3; // p1 439 lastPAR[21]=18.; 438 lastPAR[21]=18.; // p2 440 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7) 439 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3 441 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1 440 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4 442 // The 1st max pre-exponent (pel_q 441 // The 1st max pre-exponent (pel_qq) 443 lastPAR[24]=1.e5/(a8+2.5e12/a16); 442 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1 444 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28 443 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2 445 lastPAR[26]=.0006*a3; 444 lastPAR[26]=.0006*a3; // p3 446 // The 1st max slope (pel_q 445 // The 1st max slope (pel_qs) 447 lastPAR[27]=10.+4.e-8*a12*a; 446 lastPAR[27]=10.+4.e-8*a12*a; // p1 448 lastPAR[28]=.114; 447 lastPAR[28]=.114; // p2 449 lastPAR[29]=.003; 448 lastPAR[29]=.003; // p3 450 lastPAR[30]=2.e-23; 449 lastPAR[30]=2.e-23; // p4 451 // The effective pre-exponent (pel_s 450 // The effective pre-exponent (pel_ss) 452 lastPAR[31]=1./(1.+.0001*a8); 451 lastPAR[31]=1./(1.+.0001*a8); // p1 453 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); 452 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2 454 lastPAR[33]=.03; 453 lastPAR[33]=.03; // p3 455 // The effective slope (pel_s 454 // The effective slope (pel_sb) 456 lastPAR[34]=a/2; 455 lastPAR[34]=a/2; // p1 457 lastPAR[35]=2.e-7*a4; 456 lastPAR[35]=2.e-7*a4; // p2 458 lastPAR[36]=4.; 457 lastPAR[36]=4.; // p3 459 lastPAR[37]=64./a3; 458 lastPAR[37]=64./a3; // p4 460 // The gloria pre-exponent (pel_u 459 // The gloria pre-exponent (pel_us) 461 lastPAR[38]=1.e8*G4Exp(.32*asa); << 460 lastPAR[38]=1.e8*std::exp(.32*asa); // p1 462 lastPAR[39]=20.*G4Exp(.45*asa); << 461 lastPAR[39]=20.*std::exp(.45*asa); // p2 463 lastPAR[40]=7.e3+2.4e6/a5; 462 lastPAR[40]=7.e3+2.4e6/a5; // p3 464 lastPAR[41]=2.5e5*G4Exp(.085*a3); << 463 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4 465 lastPAR[42]=2.5*a; 464 lastPAR[42]=2.5*a; // p5 466 // The gloria slope (pel_u 465 // The gloria slope (pel_ub) 467 lastPAR[43]=920.+.03*a8*a3; 466 lastPAR[43]=920.+.03*a8*a3; // p1 468 lastPAR[44]=93.+.0023*a12; 467 lastPAR[44]=93.+.0023*a12; // p2 469 } 468 } 470 else 469 else 471 { 470 { 472 G4double p1a10=2.2e-28*a10; 471 G4double p1a10=2.2e-28*a10; 473 G4double r4a16=6.e14/a16; 472 G4double r4a16=6.e14/a16; 474 G4double s4a16=r4a16*r4a16; 473 G4double s4a16=r4a16*r4a16; 475 // a24 474 // a24 476 // a36 475 // a36 477 // The main pre-exponent (peh_s 476 // The main pre-exponent (peh_sg) 478 lastPAR[ 9]=4.5*G4Pow::GetInstance() << 477 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1 479 lastPAR[10]=.06*G4Pow::GetInstance() << 478 lastPAR[10]=.06*std::pow(a,.6); // p2 480 lastPAR[11]=.6*a/(1.+2.e15/a16); 479 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3 481 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3 480 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4 482 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4 481 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5 483 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1. 482 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6 484 // The main slope (peh_s 483 // The main slope (peh_sl) 485 lastPAR[15]=400./a12+2.e-22*a9; 484 lastPAR[15]=400./a12+2.e-22*a9; // p1 486 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14 485 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2 487 lastPAR[17]=1000./a2+9.5*sa*ssa; 486 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3 488 lastPAR[18]=4.e-6*a*asa+1.e11/a16; 487 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4 489 lastPAR[19]=(120./a+.002*a2)/(1.+2.e 488 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5 490 lastPAR[20]=9.+100./a; 489 lastPAR[20]=9.+100./a; // p6 491 // The main quadratic (peh_s 490 // The main quadratic (peh_sh) 492 lastPAR[21]=.002*a3+3.e7/a6; 491 lastPAR[21]=.002*a3+3.e7/a6; // p1 493 lastPAR[22]=7.e-15*a4*asa; 492 lastPAR[22]=7.e-15*a4*asa; // p2 494 lastPAR[23]=9000./a4; 493 lastPAR[23]=9000./a4; // p3 495 // The 1st max pre-exponent (peh_q 494 // The 1st max pre-exponent (peh_qq) 496 lastPAR[24]=.0011*asa/(1.+3.e34/a32/ 495 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1 497 lastPAR[25]=1.e-5*a2+2.e14/a16; 496 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2 498 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1 497 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3 499 lastPAR[27]=.016*asa/(1.+5.e16/a16); 498 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4 500 // The 1st max slope (peh_q 499 // The 1st max slope (peh_qs) 501 lastPAR[28]=.002*a4/(1.+7.e7/G4Pow:: << 500 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1 502 lastPAR[29]=2.e6/a6+7.2/G4Pow::GetIn << 501 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2 503 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8) 502 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3 504 lastPAR[31]=100./asa; 503 lastPAR[31]=100./asa; // p4 505 // The 2nd max pre-exponent (peh_s 504 // The 2nd max pre-exponent (peh_ss) 506 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/ 505 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1 507 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); 506 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2 508 lastPAR[34]=1.3+3.e5/a4; 507 lastPAR[34]=1.3+3.e5/a4; // p3 509 lastPAR[35]=500./(a2+50.)+3; 508 lastPAR[35]=500./(a2+50.)+3; // p4 510 lastPAR[36]=1.e-9/a+s4a16*s4a16; 509 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5 511 // The 2nd max slope (peh_s 510 // The 2nd max slope (peh_sb) 512 lastPAR[37]=.4*asa+3.e-9*a6; 511 lastPAR[37]=.4*asa+3.e-9*a6; // p1 513 lastPAR[38]=.0005*a5; 512 lastPAR[38]=.0005*a5; // p2 514 lastPAR[39]=.002*a5; 513 lastPAR[39]=.002*a5; // p3 515 lastPAR[40]=10.; 514 lastPAR[40]=10.; // p4 516 // The effective pre-exponent (peh_u 515 // The effective pre-exponent (peh_us) 517 lastPAR[41]=.05+.005*a; 516 lastPAR[41]=.05+.005*a; // p1 518 lastPAR[42]=7.e-8/sa; 517 lastPAR[42]=7.e-8/sa; // p2 519 lastPAR[43]=.8*sa; 518 lastPAR[43]=.8*sa; // p3 520 lastPAR[44]=.02*sa; 519 lastPAR[44]=.02*sa; // p4 521 lastPAR[45]=1.e8/a3; 520 lastPAR[45]=1.e8/a3; // p5 522 lastPAR[46]=3.e32/(a32+1.e32); 521 lastPAR[46]=3.e32/(a32+1.e32); // p6 523 // The effective slope (peh_u 522 // The effective slope (peh_ub) 524 lastPAR[47]=24.; 523 lastPAR[47]=24.; // p1 525 lastPAR[48]=20./sa; 524 lastPAR[48]=20./sa; // p2 526 lastPAR[49]=7.e3*a/(sa+1.); 525 lastPAR[49]=7.e3*a/(sa+1.); // p3 527 lastPAR[50]=900.*sa/(1.+500./a3); 526 lastPAR[50]=900.*sa/(1.+500./a3); // p4 528 } 527 } 529 // Parameter for lowEnergyNeutrons 528 // Parameter for lowEnergyNeutrons 530 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18* 529 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16); 531 } 530 } 532 lastPAR[nLast]=pwd; 531 lastPAR[nLast]=pwd; 533 // and initialize the zero element of th 532 // and initialize the zero element of the table 534 G4double lp=lPMin; 533 G4double lp=lPMin; // ln(momentum) 535 G4bool memCS=onlyCS; 534 G4bool memCS=onlyCS; // ?? 536 onlyCS=false; 535 onlyCS=false; 537 lastCST[0]=GetTabValues(lp, PDG, tgZ, tg 536 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables 538 onlyCS=memCS; 537 onlyCS=memCS; 539 lastSST[0]=theSS; 538 lastSST[0]=theSS; 540 lastS1T[0]=theS1; 539 lastS1T[0]=theS1; 541 lastB1T[0]=theB1; 540 lastB1T[0]=theB1; 542 lastS2T[0]=theS2; 541 lastS2T[0]=theS2; 543 lastB2T[0]=theB2; 542 lastB2T[0]=theB2; 544 lastS3T[0]=theS3; 543 lastS3T[0]=theS3; 545 lastB3T[0]=theB3; 544 lastB3T[0]=theB3; 546 lastS4T[0]=theS4; 545 lastS4T[0]=theS4; 547 lastB4T[0]=theB4; 546 lastB4T[0]=theB4; 548 } 547 } 549 if(LP>ILP) 548 if(LP>ILP) 550 { 549 { 551 G4int ini = static_cast<int>((ILP-lPMin+ 550 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this 552 if(ini<0) ini=0; 551 if(ini<0) ini=0; 553 if(ini<nPoints) 552 if(ini<nPoints) 554 { 553 { 555 G4int fin = static_cast<int>((LP-lPMin 554 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization 556 if(fin>=nPoints) fin=nLast; 555 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization 557 if(fin>=ini) 556 if(fin>=ini) 558 { 557 { 559 G4double lp=0.; 558 G4double lp=0.; 560 for(G4int ip=ini; ip<=fin; ip++) 559 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3 561 { 560 { 562 lp=lPMin+ip*dlnP; 561 lp=lPMin+ip*dlnP; // ln(momentum) 563 G4bool memCS=onlyCS; 562 G4bool memCS=onlyCS; 564 onlyCS=false; 563 onlyCS=false; 565 lastCST[ip]=GetTabValues(lp, PDG, 564 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS) 566 onlyCS=memCS; 565 onlyCS=memCS; 567 lastSST[ip]=theSS; 566 lastSST[ip]=theSS; 568 lastS1T[ip]=theS1; 567 lastS1T[ip]=theS1; 569 lastB1T[ip]=theB1; 568 lastB1T[ip]=theB1; 570 lastS2T[ip]=theS2; 569 lastS2T[ip]=theS2; 571 lastB2T[ip]=theB2; 570 lastB2T[ip]=theB2; 572 lastS3T[ip]=theS3; 571 lastS3T[ip]=theS3; 573 lastB3T[ip]=theB3; 572 lastB3T[ip]=theB3; 574 lastS4T[ip]=theS4; 573 lastS4T[ip]=theS4; 575 lastB4T[ip]=theB4; 574 lastB4T[ip]=theB4; 576 } 575 } 577 return lp; 576 return lp; 578 } 577 } 579 else G4cout<<"*Warning*G4ChipsPionMinu 578 else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG 580 <<", Z="<<tgZ<<", N="<<tgN< 579 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP 581 <<" > ILP="<<ILP<<" nothing 580 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl; 582 } 581 } 583 else G4cout<<"*Warning*G4ChipsPionMinusE 582 else G4cout<<"*Warning*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG 584 <<", Z="<<tgZ<<", N="<<tgN<<" 583 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP 585 <<" > ILP="<<ILP<<", lPMax="< 584 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl; 586 } 585 } 587 } 586 } 588 else 587 else 589 { 588 { 590 // G4cout<<"*Error*G4ChipsPionMinusElastic 589 // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ 591 // <<", N="<<tgN<<", while it is def 590 // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl; 592 // throw G4QException("G4ChipsPionMinusEla 591 // throw G4QException("G4ChipsPionMinusElasticXS::GetPTables:onlyPipA implemented"); 593 G4ExceptionDescription ed; 592 G4ExceptionDescription ed; 594 ed << "PDG = " << PDG << ", Z = " << tgZ < 593 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 595 << ", while it is defined only for PDG= 594 << ", while it is defined only for PDG=-211 (pi-)" << G4endl; 596 G4Exception("G4ChipsPionMinusElasticXS::Ge 595 G4Exception("G4ChipsPionMinusElasticXS::GetPTables()", "HAD_CHPS_0000", 597 FatalException, ed); 596 FatalException, ed); 598 } 597 } 599 return ILP; 598 return ILP; 600 } 599 } 601 600 602 // Returns Q2=-t in independent units (MeV^2) 601 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV) 603 G4double G4ChipsPionMinusElasticXS::GetExchang 602 G4double G4ChipsPionMinusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG) 604 { 603 { 605 static const G4double GeVSQ=gigaelectronvolt 604 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 606 static const G4double third=1./3.; 605 static const G4double third=1./3.; 607 static const G4double fifth=1./5.; 606 static const G4double fifth=1./5.; 608 static const G4double sevth=1./7.; 607 static const G4double sevth=1./7.; 609 if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMin 608 if(PDG!=-211)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExT:PDG="<<PDG<<G4endl; 610 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusE 609 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetExchanT:onlyCS=1"<<G4endl; 611 if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor 610 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV) 612 G4double q2=0.; 611 G4double q2=0.; 613 if(tgZ==1 && tgN==0) // ===> 612 if(tgZ==1 && tgN==0) // ===> p+p=p+p 614 { 613 { 615 G4double E1=lastTM*theB1; 614 G4double E1=lastTM*theB1; 616 G4double R1=(1.-G4Exp(-E1)); << 615 G4double R1=(1.-std::exp(-E1)); 617 G4double E2=lastTM*theB2; 616 G4double E2=lastTM*theB2; 618 G4double R2=(1.-G4Exp(-E2*E2*E2)); << 617 G4double R2=(1.-std::exp(-E2*E2*E2)); 619 G4double E3=lastTM*theB3; 618 G4double E3=lastTM*theB3; 620 G4double R3=(1.-G4Exp(-E3)); << 619 G4double R3=(1.-std::exp(-E3)); 621 G4double I1=R1*theS1/theB1; 620 G4double I1=R1*theS1/theB1; 622 G4double I2=R2*theS2; 621 G4double I2=R2*theS2; 623 G4double I3=R3*theS3; 622 G4double I3=R3*theS3; 624 G4double I12=I1+I2; 623 G4double I12=I1+I2; 625 G4double rand=(I12+I3)*G4UniformRand(); 624 G4double rand=(I12+I3)*G4UniformRand(); 626 if (rand<I1 ) 625 if (rand<I1 ) 627 { 626 { 628 G4double ran=R1*G4UniformRand(); 627 G4double ran=R1*G4UniformRand(); 629 if(ran>1.) ran=1.; 628 if(ran>1.) ran=1.; 630 q2=-G4Log(1.-ran)/theB1; << 629 q2=-std::log(1.-ran)/theB1; 631 } 630 } 632 else if(rand<I12) 631 else if(rand<I12) 633 { 632 { 634 G4double ran=R2*G4UniformRand(); 633 G4double ran=R2*G4UniformRand(); 635 if(ran>1.) ran=1.; 634 if(ran>1.) ran=1.; 636 q2=-G4Log(1.-ran); << 635 q2=-std::log(1.-ran); 637 if(q2<0.) q2=0.; 636 if(q2<0.) q2=0.; 638 q2=G4Pow::GetInstance()->powA(q2,third)/ << 637 q2=std::pow(q2,third)/theB2; 639 } 638 } 640 else 639 else 641 { 640 { 642 G4double ran=R3*G4UniformRand(); 641 G4double ran=R3*G4UniformRand(); 643 if(ran>1.) ran=1.; 642 if(ran>1.) ran=1.; 644 q2=-G4Log(1.-ran)/theB3; << 643 q2=-std::log(1.-ran)/theB3; 645 } 644 } 646 } 645 } 647 else 646 else 648 { 647 { 649 G4double a=tgZ+tgN; 648 G4double a=tgZ+tgN; 650 G4double E1=lastTM*(theB1+lastTM*theSS); 649 G4double E1=lastTM*(theB1+lastTM*theSS); 651 G4double R1=(1.-G4Exp(-E1)); << 650 G4double R1=(1.-std::exp(-E1)); 652 G4double tss=theSS+theSS; // for future so 651 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check) 653 G4double tm2=lastTM*lastTM; 652 G4double tm2=lastTM*lastTM; 654 G4double E2=lastTM*tm2*theB2; 653 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st) 655 if(a>6.5)E2*=tm2; 654 if(a>6.5)E2*=tm2; // for heavy nuclei 656 G4double R2=(1.-G4Exp(-E2)); << 655 G4double R2=(1.-std::exp(-E2)); 657 G4double E3=lastTM*theB3; 656 G4double E3=lastTM*theB3; 658 if(a>6.5)E3*=tm2*tm2*tm2; 657 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA 659 G4double R3=(1.-G4Exp(-E3)); << 658 G4double R3=(1.-std::exp(-E3)); 660 G4double E4=lastTM*theB4; 659 G4double E4=lastTM*theB4; 661 G4double R4=(1.-G4Exp(-E4)); << 660 G4double R4=(1.-std::exp(-E4)); 662 G4double I1=R1*theS1; 661 G4double I1=R1*theS1; 663 G4double I2=R2*theS2; 662 G4double I2=R2*theS2; 664 G4double I3=R3*theS3; 663 G4double I3=R3*theS3; 665 G4double I4=R4*theS4; 664 G4double I4=R4*theS4; 666 G4double I12=I1+I2; 665 G4double I12=I1+I2; 667 G4double I13=I12+I3; 666 G4double I13=I12+I3; 668 G4double rand=(I13+I4)*G4UniformRand(); 667 G4double rand=(I13+I4)*G4UniformRand(); 669 if(rand<I1) 668 if(rand<I1) 670 { 669 { 671 G4double ran=R1*G4UniformRand(); 670 G4double ran=R1*G4UniformRand(); 672 if(ran>1.) ran=1.; 671 if(ran>1.) ran=1.; 673 q2=-G4Log(1.-ran)/theB1; << 672 q2=-std::log(1.-ran)/theB1; 674 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t 673 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss; 675 } 674 } 676 else if(rand<I12) 675 else if(rand<I12) 677 { 676 { 678 G4double ran=R2*G4UniformRand(); 677 G4double ran=R2*G4UniformRand(); 679 if(ran>1.) ran=1.; 678 if(ran>1.) ran=1.; 680 q2=-G4Log(1.-ran)/theB2; << 679 q2=-std::log(1.-ran)/theB2; 681 if(q2<0.) q2=0.; 680 if(q2<0.) q2=0.; 682 if(a<6.5) q2=G4Pow::GetInstance()->powA( << 681 if(a<6.5) q2=std::pow(q2,third); 683 else q2=G4Pow::GetInstance()->powA( << 682 else q2=std::pow(q2,fifth); 684 } 683 } 685 else if(rand<I13) 684 else if(rand<I13) 686 { 685 { 687 G4double ran=R3*G4UniformRand(); 686 G4double ran=R3*G4UniformRand(); 688 if(ran>1.) ran=1.; 687 if(ran>1.) ran=1.; 689 q2=-G4Log(1.-ran)/theB3; << 688 q2=-std::log(1.-ran)/theB3; 690 if(q2<0.) q2=0.; 689 if(q2<0.) q2=0.; 691 if(a>6.5) q2=G4Pow::GetInstance()->powA( << 690 if(a>6.5) q2=std::pow(q2,sevth); 692 } 691 } 693 else 692 else 694 { 693 { 695 G4double ran=R4*G4UniformRand(); 694 G4double ran=R4*G4UniformRand(); 696 if(ran>1.) ran=1.; 695 if(ran>1.) ran=1.; 697 q2=-G4Log(1.-ran)/theB4; << 696 q2=-std::log(1.-ran)/theB4; 698 if(a<6.5) q2=lastTM-q2; 697 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0) 699 } 698 } 700 } 699 } 701 if(q2<0.) q2=0.; 700 if(q2<0.) q2=0.; 702 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElas 701 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QElasticCrossSect::GetExchangeT: -t="<<q2<<G4endl; 703 if(q2>lastTM) 702 if(q2>lastTM) 704 { 703 { 705 q2=lastTM; 704 q2=lastTM; 706 } 705 } 707 return q2*GeVSQ; 706 return q2*GeVSQ; 708 } 707 } 709 708 710 // Returns B in independent units (MeV^-2) (al 709 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT 711 G4double G4ChipsPionMinusElasticXS::GetSlope(G 710 G4double G4ChipsPionMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG) 712 { 711 { 713 static const G4double GeVSQ=gigaelectronvolt 712 static const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt; 714 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusE 713 if(onlyCS)G4cout<<"Warning*G4ChipsPionMinusElasticXS::GetSlope:onlCS=true"<<G4endl; 715 if(lastLP<-4.3) return 0.; // S-wav 714 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV) 716 if(PDG !=-211) 715 if(PDG !=-211) 717 { 716 { 718 // G4cout<<"*Error*G4ChipsPionMinusElastic 717 // G4cout<<"*Error*G4ChipsPionMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ 719 // <<", N="<<tgN<<", while it is def 718 // <<", N="<<tgN<<", while it is defined only for PDG=-211"<<G4endl; 720 // throw G4QException("G4ChipsPionMinusEla 719 // throw G4QException("G4ChipsPionMinusElasticXS::GetSlope: pipA are implemented"); 721 G4ExceptionDescription ed; 720 G4ExceptionDescription ed; 722 ed << "PDG = " << PDG << ", Z = " << tgZ < 721 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN 723 << ", while it is defined only for PDG= 722 << ", while it is defined only for PDG=-211" << G4endl; 724 G4Exception("G4ChipsPionMinusElasticXS::Ge 723 G4Exception("G4ChipsPionMinusElasticXS::GetSlope()", "HAD_CHPS_0000", 725 FatalException, ed); 724 FatalException, ed); 726 } 725 } 727 if(theB1<0.) theB1=0.; 726 if(theB1<0.) theB1=0.; 728 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4 727 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QElasticCrossSect::Getslope:"<<theB1<<G4endl; 729 return theB1/GeVSQ; 728 return theB1/GeVSQ; 730 } 729 } 731 730 732 // Returns half max(Q2=-t) in independent unit 731 // Returns half max(Q2=-t) in independent units (MeV^2) 733 G4double G4ChipsPionMinusElasticXS::GetHMaxT() 732 G4double G4ChipsPionMinusElasticXS::GetHMaxT() 734 { 733 { 735 static const G4double HGeVSQ=gigaelectronvol 734 static const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.; 736 return lastTM*HGeVSQ; 735 return lastTM*HGeVSQ; 737 } 736 } 738 737 739 // lastLP is used, so calculating tables, one 738 // lastLP is used, so calculating tables, one need to remember and then recover lastLP 740 G4double G4ChipsPionMinusElasticXS::GetTabValu 739 G4double G4ChipsPionMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ, 741 740 G4int tgN) 742 { 741 { 743 if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinus 742 if(PDG!=-211)G4cout<<"*Warn*G4ChipsPionMinusElasticXS::GetTabV: PDG="<<PDG<<G4endl; 744 << 743 if(tgZ<0 || tgZ>92) 745 //AR-24Apr2018 Switch to allow transuranic e << 746 const G4bool isHeavyElementAllowed = true; << 747 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 748 { 744 { 749 G4cout<<"*Warning*G4QPionPlusElCS::GetTabV 745 G4cout<<"*Warning*G4QPionPlusElCS::GetTabValue:(1-92) No isotopes for Z="<<tgZ<<G4endl; 750 return 0.; 746 return 0.; 751 } 747 } 752 G4int iZ=tgZ-1; // Z index 748 G4int iZ=tgZ-1; // Z index 753 if(iZ<0) 749 if(iZ<0) 754 { 750 { 755 iZ=0; // conversion of the neutron 751 iZ=0; // conversion of the neutron target to the proton target 756 tgZ=1; 752 tgZ=1; 757 tgN=0; 753 tgN=0; 758 } 754 } 759 G4double p=G4Exp(lp); // moment << 755 G4double p=std::exp(lp); // momentum 760 G4double sp=std::sqrt(p); // sqr 756 G4double sp=std::sqrt(p); // sqrt(p) 761 G4double p2=p*p; 757 G4double p2=p*p; 762 G4double p3=p2*p; 758 G4double p3=p2*p; 763 G4double p4=p3*p; 759 G4double p4=p3*p; 764 if ( tgZ == 1 && tgN == 0 ) // PiMin+P 760 if ( tgZ == 1 && tgN == 0 ) // PiMin+P 765 { 761 { 766 G4double dl2=lp-lastPAR[14]; 762 G4double dl2=lp-lastPAR[14]; 767 theSS=lastPAR[37]; 763 theSS=lastPAR[37]; 768 theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1 764 theS1=(lastPAR[15]+lastPAR[16]*dl2*dl2)/(1.+lastPAR[17]/p4/p)+ 769 (lastPAR[18]/p2+lastPAR[19]*p)/(p4+l 765 (lastPAR[18]/p2+lastPAR[19]*p)/(p4+lastPAR[20]*sp); 770 theB1=lastPAR[21]*G4Pow::GetInstance()->po << 766 theB1=lastPAR[21]*std::pow(p,lastPAR[22])/(1.+lastPAR[23]/p3); 771 theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[ 767 theS2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]*p); 772 theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[ 768 theB2=lastPAR[27]+lastPAR[28]/(p4+lastPAR[29]/sp); 773 theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastP 769 theS3=lastPAR[30]+lastPAR[31]/(p4*p4+lastPAR[32]*p2+lastPAR[33]); 774 theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[ 770 theB3=lastPAR[34]+lastPAR[35]/(p4+lastPAR[36]); 775 theS4=0.; 771 theS4=0.; 776 theB4=0.; 772 theB4=0.; 777 // Returns the total elastic pim-p cross-s 773 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG) 778 G4double lr=lp+lastPAR[0]; // lr 774 G4double lr=lp+lastPAR[0]; // lr 779 G4double ld=lp-lastPAR[14]; 775 G4double ld=lp-lastPAR[14]; 780 G4double dl3=lp+lastPAR[4]; // lm 776 G4double dl3=lp+lastPAR[4]; // lm 781 G4double dl4=lp-lastPAR[6]; // lh 777 G4double dl4=lp-lastPAR[6]; // lh 782 //G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastP 778 //G4cout<<"lastPAR[13] "<<lastPAR[13]<<" lastPAR[6] "<<lastPAR[6]<<" lastPAR[7] "<<lastPAR[7]<<G4endl; 783 return lastPAR[1]/(lr*lr+lastPAR[2])+ 779 return lastPAR[1]/(lr*lr+lastPAR[2])+ 784 (lastPAR[8]*ld*ld+lastPAR[9]+lastPA 780 (lastPAR[8]*ld*ld+lastPAR[9]+lastPAR[10]/sp)/(1.+lastPAR[11]/p4)+ 785 lastPAR[12]/(dl3*dl3+lastPAR[5])+la 781 lastPAR[12]/(dl3*dl3+lastPAR[5])+lastPAR[13]/(dl4*dl4+lastPAR[7]); 786 } 782 } 787 else 783 else 788 { 784 { 789 G4double p5=p4*p; 785 G4double p5=p4*p; 790 G4double p6=p5*p; 786 G4double p6=p5*p; 791 G4double p8=p6*p2; 787 G4double p8=p6*p2; 792 G4double p10=p8*p2; 788 G4double p10=p8*p2; 793 G4double p12=p10*p2; 789 G4double p12=p10*p2; 794 G4double p16=p8*p8; 790 G4double p16=p8*p8; 795 //G4double p24=p16*p8; 791 //G4double p24=p16*p8; 796 G4double dl=lp-5.; 792 G4double dl=lp-5.; 797 G4double a=tgZ+tgN; 793 G4double a=tgZ+tgN; 798 G4double pah=G4Pow::GetInstance()->powA(p, << 794 G4double pah=std::pow(p,a/2); 799 G4double pa=pah*pah; 795 G4double pa=pah*pah; 800 G4double pa2=pa*pa; 796 G4double pa2=pa*pa; 801 if(a<6.5) 797 if(a<6.5) 802 { 798 { 803 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+ 799 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+ 804 (lastPAR[13]*dl*dl+lastPAR[14])/(1 800 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2); 805 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l 801 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19]; 806 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la 802 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16); 807 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4) 803 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26]; 808 theB2=lastPAR[27]*G4Pow::GetInstance()-> << 804 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16); 809 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+ 805 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33]; 810 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la 806 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2); 811 theS4=p2*(pah*lastPAR[38]*G4Exp(-pah*las << 807 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+ 812 lastPAR[40]/(1.+lastPAR[41]*G4 << 808 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42]))); 813 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4 809 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]); 814 } 810 } 815 else 811 else 816 { 812 { 817 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las 813 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+ 818 lastPAR[13]/(p5+lastPAR[14]/p16); 814 lastPAR[13]/(p5+lastPAR[14]/p16); 819 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la << 815 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+ 820 lastPAR[17]/(1.+lastPAR[18]/p4); 816 lastPAR[17]/(1.+lastPAR[18]/p4); 821 theSS=lastPAR[21]/(p4/G4Pow::GetInstance << 817 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4); 822 theS2=lastPAR[24]/p4/(G4Pow::GetInstance << 818 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27]; 823 theB2=lastPAR[28]/G4Pow::GetInstance()-> << 819 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]); 824 theS3=lastPAR[32]/G4Pow::GetInstance()-> << 820 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+ 825 lastPAR[33]/(1.+lastPAR[34]/p6); 821 lastPAR[33]/(1.+lastPAR[34]/p6); 826 theB3=lastPAR[37]/p8+lastPAR[38]/p2+last 822 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8); 827 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1. 823 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+ 828 (lastPAR[43]+lastPAR[44]*dl*dl)/(1 824 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12); 829 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las 825 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5); 830 } 826 } 831 // Returns the total elastic (n/p)A cross- 827 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG) 832 // p1 p2 828 // p1 p2 p3 833 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+l 829 return (lastPAR[0]*dl*dl+lastPAR[1])/(1.+lastPAR[2]/p8)+ 834 lastPAR[3]/(p4+lastPAR[4]/p3)+lastP 830 lastPAR[3]/(p4+lastPAR[4]/p3)+lastPAR[6]/(p4+lastPAR[7]/p4); 835 // p4 p5 831 // p4 p5 p7 p8 836 } 832 } 837 return 0.; 833 return 0.; 838 } // End of GetTableValues 834 } // End of GetTableValues 839 835 840 // Returns max -t=Q2 (GeV^2) for the momentum 836 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ) 841 G4double G4ChipsPionMinusElasticXS::GetQ2max(G 837 G4double G4ChipsPionMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN, 842 838 G4double pP) 843 { 839 { 844 static const G4double mPi= G4PionMinus::Pion 840 static const G4double mPi= G4PionMinus::PionMinus()->GetPDGMass()*.001; // MeV to GeV 845 static const G4double mPi2= mPi*mPi; 841 static const G4double mPi2= mPi*mPi; 846 842 847 G4double pP2=pP*pP; 843 G4double pP2=pP*pP; // squared momentum of the projectile 848 if(tgZ || tgN>-1) 844 if(tgZ || tgN>-1) // ---> pipA 849 { 845 { 850 G4double mt=G4ParticleTable::GetParticleTa 846 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV 851 847 852 G4double dmt=mt+mt; 848 G4double dmt=mt+mt; 853 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+ 849 G4double mds=dmt*std::sqrt(pP2+mPi2)+mPi2+mt*mt; // Mondelstam mds 854 return dmt*dmt*pP2/mds; 850 return dmt*dmt*pP2/mds; 855 } 851 } 856 else 852 else 857 { 853 { 858 G4ExceptionDescription ed; 854 G4ExceptionDescription ed; 859 ed << "PDG = " << PDG << ",Z = " << tgZ << 855 ed << "PDG = " << PDG << ",Z = " << tgZ << ",N = " << tgN 860 << ", while it is defined only for p pr 856 << ", while it is defined only for p projectiles & Z_target>0" << G4endl; 861 G4Exception("G4ChipsPionMinusElasticXS::Ge 857 G4Exception("G4ChipsPionMinusElasticXS::GetQ2max()", "HAD_CHPS_0000", 862 FatalException, ed); 858 FatalException, ed); 863 return 0; 859 return 0; 864 } 860 } 865 } 861 } 866 862