Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02 >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 28 // 29 // 29 // 30 // 30 // G4 Physics class: G4QKaonPlusNuclearCrossSe 31 // G4 Physics class: G4QKaonPlusNuclearCrossSection for gamma+A cross sections 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20 32 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03 32 // The last update: M.V. Kossov, CERN/ITEP (Mo 33 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04 33 // 34 // 34 // ------------------------------------------- 35 // -------------------------------------------------------------------------------- 35 // Short description: Cross-sections extracted 36 // Short description: Cross-sections extracted from the CHIPS package for 36 // kaon(minus)-nuclear interactions. Author: M 37 // kaon(minus)-nuclear interactions. Author: M. Kossov 37 // ------------------------------------------- 38 // ------------------------------------------------------------------------------------- 38 // 39 // 39 40 40 #include "G4ChipsKaonPlusInelasticXS.hh" 41 #include "G4ChipsKaonPlusInelasticXS.hh" 41 #include "G4SystemOfUnits.hh" 42 #include "G4SystemOfUnits.hh" 42 #include "G4DynamicParticle.hh" 43 #include "G4DynamicParticle.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4ParticleDefinition.hh" 44 #include "G4KaonPlus.hh" 45 #include "G4KaonPlus.hh" 45 #include "G4Proton.hh" 46 #include "G4Proton.hh" 46 #include "G4PionPlus.hh" 47 #include "G4PionPlus.hh" 47 #include "G4AutoLock.hh" << 48 48 49 // factory 49 // factory 50 #include "G4CrossSectionFactory.hh" 50 #include "G4CrossSectionFactory.hh" 51 // 51 // 52 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusInelastic 52 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusInelasticXS); 53 53 54 namespace { << 55 const G4double THmin=27.; // default m << 56 const G4double THmiG=THmin*.001; // minimu << 57 const G4double dP=10.; // step for << 58 const G4double dPG=dP*.001; // step for << 59 const G4int nL=105; // A#of LEN << 60 const G4double Pmin=THmin+(nL-1)*dP; // mi << 61 const G4double Pmax=227000.; // maxP for << 62 const G4int nH=224; // A#of HEN << 63 const G4double milP=std::log(Pmin);// Low << 64 const G4double malP=std::log(Pmax);// High << 65 const G4double dlP=(malP-milP)/(nH-1); // << 66 const G4double milPG=std::log(.001*Pmin);/ << 67 const G4double third=1./3.; << 68 G4Mutex initM = G4MUTEX_INITIALIZER; << 69 G4double prM;// = G4Proton::Proton()->GetP << 70 G4double piM;// = G4PionPlus::PionPlus()-> << 71 G4double pM;// = G4KaonPlus::KaonPlus()-> << 72 G4double tpM;//= pM+pM; // Doubled proje << 73 } << 74 54 75 G4ChipsKaonPlusInelasticXS::G4ChipsKaonPlusIne 55 G4ChipsKaonPlusInelasticXS::G4ChipsKaonPlusInelasticXS():G4VCrossSectionDataSet(Default_Name()) 76 { 56 { 77 G4AutoLock l(&initM); << 78 prM = G4Proton::Proton()->GetPDGMass(); // P << 79 piM = G4PionPlus::PionPlus()->GetPDGMass()+. << 80 pM = G4KaonPlus::KaonPlus()->GetPDGMass(); << 81 tpM = pM+pM; // Doubled projectile mass (M << 82 l.unlock(); << 83 // Initialization of the 57 // Initialization of the 84 lastLEN=0; // Pointer to the lastArray of Lo 58 lastLEN=0; // Pointer to the lastArray of LowEn CS 85 lastHEN=0; // Pointer to the lastArray of Hi 59 lastHEN=0; // Pointer to the lastArray of HighEn CS 86 lastN=0; // The last N of calculated nucle 60 lastN=0; // The last N of calculated nucleus 87 lastZ=0; // The last Z of calculated nucle 61 lastZ=0; // The last Z of calculated nucleus 88 lastP=0.; // Last used in cross section Mom 62 lastP=0.; // Last used in cross section Momentum 89 lastTH=0.; // Last threshold momentum 63 lastTH=0.; // Last threshold momentum 90 lastCS=0.; // Last value of the Cross Sectio 64 lastCS=0.; // Last value of the Cross Section 91 lastI=0; // The last position in the DAMDB 65 lastI=0; // The last position in the DAMDB 92 LEN = new std::vector<G4double*>; 66 LEN = new std::vector<G4double*>; 93 HEN = new std::vector<G4double*>; 67 HEN = new std::vector<G4double*>; 94 } 68 } 95 69 96 G4ChipsKaonPlusInelasticXS::~G4ChipsKaonPlusIn 70 G4ChipsKaonPlusInelasticXS::~G4ChipsKaonPlusInelasticXS() 97 { 71 { 98 std::size_t lens=LEN->size(); << 72 G4int lens=LEN->size(); 99 for(std::size_t i=0; i<lens; ++i) delete[] ( << 73 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i]; 100 delete LEN; 74 delete LEN; 101 75 102 std::size_t hens=HEN->size(); << 76 G4int hens=HEN->size(); 103 for(std::size_t i=0; i<hens; ++i) delete[] ( << 77 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i]; 104 delete HEN; 78 delete HEN; 105 } 79 } 106 80 107 void << 108 G4ChipsKaonPlusInelasticXS::CrossSectionDescri << 109 { << 110 outFile << "G4ChipsKaonPlusInelasticXS pro << 111 << "section for K+ nucleus scatter << 112 << "momentum. The cross section is << 113 << "CHIPS parameterization of cros << 114 } << 115 81 116 G4bool G4ChipsKaonPlusInelasticXS::IsIsoApplic << 82 G4bool G4ChipsKaonPlusInelasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int, 117 const G4Element*, 83 const G4Element*, 118 const G4Material*) 84 const G4Material*) 119 { 85 { 120 return true; << 86 G4ParticleDefinition* particle = Pt->GetDefinition(); >> 87 if (particle == G4KaonPlus::KaonPlus() ) return true; >> 88 return false; 121 } 89 } 122 90 123 91 124 // The main member function giving the collisi 92 // The main member function giving the collision cross section (P is in IU, CS is in mb) 125 // Make pMom in independent units ! (Now it is 93 // Make pMom in independent units ! (Now it is MeV) 126 G4double G4ChipsKaonPlusInelasticXS::GetIsoCro 94 G4double G4ChipsKaonPlusInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 127 const G4Isotope*, 95 const G4Isotope*, 128 const G4Element*, 96 const G4Element*, 129 const G4Material*) 97 const G4Material*) 130 { 98 { 131 G4double pMom=Pt->GetTotalMomentum(); 99 G4double pMom=Pt->GetTotalMomentum(); 132 G4int tgN = A - tgZ; 100 G4int tgN = A - tgZ; 133 101 134 return GetChipsCrossSection(pMom, tgZ, tgN, 102 return GetChipsCrossSection(pMom, tgZ, tgN, 321); 135 } 103 } 136 104 137 G4double G4ChipsKaonPlusInelasticXS::GetChipsC 105 G4double G4ChipsKaonPlusInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int ) 138 { 106 { >> 107 static G4int j; // A#0f Z/N-records already tested in AMDB >> 108 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops) >> 109 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops) >> 110 static std::vector <G4double> colP; // Vector of last momenta for the reaction >> 111 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction >> 112 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction >> 113 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---*** 139 114 140 G4bool in=false; // By d 115 G4bool in=false; // By default the isotope must be found in the AMDB 141 if(tgN!=lastN || tgZ!=lastZ) // The 116 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope 142 { 117 { 143 in = false; // By d 118 in = false; // By default the isotope haven't be found in AMDB 144 lastP = 0.; // New 119 lastP = 0.; // New momentum history (nothing to compare with) 145 lastN = tgN; // The 120 lastN = tgN; // The last N of the calculated nucleus 146 lastZ = tgZ; // The 121 lastZ = tgZ; // The last Z of the calculated nucleus 147 lastI = (G4int)colN.size(); // Size << 122 lastI = colN.size(); // Size of the Associative Memory DB in the heap 148 j = 0; // A#0f 123 j = 0; // A#0f records found in DB for this projectile 149 124 150 if(lastI) for(G4int i=0; i<lastI; ++i) // << 125 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope 151 { 126 { 152 if(colN[i]==tgN && colZ[i]==tgZ) // Try 127 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB 153 { 128 { 154 lastI=i; // Reme 129 lastI=i; // Remember the index for future fast/last use 155 lastTH =colTH[i]; // The 130 lastTH =colTH[i]; // The last THreshold (A-dependent) 156 131 157 if(pMom<=lastTH) 132 if(pMom<=lastTH) 158 { 133 { 159 return 0.; // Ener 134 return 0.; // Energy is below the Threshold value 160 } 135 } 161 lastP =colP [i]; // Last 136 lastP =colP [i]; // Last Momentum (A-dependent) 162 lastCS =colCS[i]; // Last 137 lastCS =colCS[i]; // Last CrossSect (A-dependent) 163 in = true; // This 138 in = true; // This is the case when the isotop is found in DB 164 // Momentum pMom is in IU ! @@ Units 139 // Momentum pMom is in IU ! @@ Units 165 lastCS=CalculateCrossSection(-1,j,321, 140 lastCS=CalculateCrossSection(-1,j,321,lastZ,lastN,pMom); // read & update 166 141 167 if(lastCS<=0. && pMom>lastTH) // Corr 142 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros) 168 { 143 { 169 lastCS=0.; 144 lastCS=0.; 170 lastTH=pMom; 145 lastTH=pMom; 171 } 146 } 172 break; // Go o 147 break; // Go out of the LOOP 173 } 148 } 174 j++; // Incr 149 j++; // Increment a#0f records found in DB 175 } 150 } 176 if(!in) // This 151 if(!in) // This isotope has not been calculated previously 177 { 152 { 178 //!!The slave functions must provide cro 153 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 179 lastCS=CalculateCrossSection(0,j,321,las 154 lastCS=CalculateCrossSection(0,j,321,lastZ,lastN,pMom); //calculate & create 180 155 181 //if(lastCS>0.) // It 156 //if(lastCS>0.) // It means that the AMBD was initialized 182 //{ 157 //{ 183 158 184 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 159 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 185 colN.push_back(tgN); 160 colN.push_back(tgN); 186 colZ.push_back(tgZ); 161 colZ.push_back(tgZ); 187 colP.push_back(pMom); 162 colP.push_back(pMom); 188 colTH.push_back(lastTH); 163 colTH.push_back(lastTH); 189 colCS.push_back(lastCS); 164 colCS.push_back(lastCS); 190 //} // M.K. Presence of H1 with high thr 165 //} // M.K. Presence of H1 with high threshold breaks the syncronization 191 return lastCS*millibarn; 166 return lastCS*millibarn; 192 } // End of creation of the new set of par 167 } // End of creation of the new set of parameters 193 else 168 else 194 { 169 { 195 colP[lastI]=pMom; 170 colP[lastI]=pMom; 196 colCS[lastI]=lastCS; 171 colCS[lastI]=lastCS; 197 } 172 } 198 } // End of parameters udate 173 } // End of parameters udate 199 else if(pMom<=lastTH) 174 else if(pMom<=lastTH) 200 { 175 { 201 return 0.; // Mome 176 return 0.; // Momentum is below the Threshold Value -> CS=0 202 } 177 } 203 else // It i 178 else // It is the last used -> use the current tables 204 { 179 { 205 lastCS=CalculateCrossSection(1,j,321,lastZ 180 lastCS=CalculateCrossSection(1,j,321,lastZ,lastN,pMom); // Only read and UpdateDB 206 lastP=pMom; 181 lastP=pMom; 207 } 182 } 208 return lastCS*millibarn; 183 return lastCS*millibarn; 209 } 184 } 210 185 211 // The main member function giving the gamma-A 186 // The main member function giving the gamma-A cross section (E in GeV, CS in mb) 212 G4double G4ChipsKaonPlusInelasticXS::Calculate 187 G4double G4ChipsKaonPlusInelasticXS::CalculateCrossSection(G4int F, G4int I, 213 G4int, 188 G4int, G4int targZ, G4int targN, G4double Momentum) 214 { 189 { >> 190 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold >> 191 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold >> 192 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c >> 193 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c >> 194 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c) >> 195 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety >> 196 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV >> 197 static const G4int nH=224; // A#of HEN points in lnE >> 198 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part >> 199 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent) >> 200 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part >> 201 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c >> 202 >> 203 G4double sigma=0.; >> 204 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!! 215 G4double A=targN+targZ; // A of 205 G4double A=targN+targZ; // A of the target 216 206 217 if(F<=0) // This 207 if(F<=0) // This isotope was not the last used isotop 218 { 208 { 219 if(F<0) // This 209 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE 220 { 210 { 221 G4int sync=(G4int)LEN->size(); << 211 G4int sync=LEN->size(); 222 if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNucl 212 if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl; 223 lastLEN=(*LEN)[I]; // Poin 213 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections 224 lastHEN=(*HEN)[I]; // Poin 214 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections 225 } 215 } 226 else // This 216 else // This isotope wasn't calculated before => CREATE 227 { 217 { 228 lastLEN = new G4double[nL]; // Allo 218 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections 229 lastHEN = new G4double[nH]; // Allo 219 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections 230 // --- Instead of making a separate func 220 // --- Instead of making a separate function --- 231 G4double P=THmiG; // Tabl 221 G4double P=THmiG; // Table threshold in GeV/c 232 for(G4int k=0; k<nL; k++) 222 for(G4int k=0; k<nL; k++) 233 { 223 { 234 lastLEN[k] = CrossSectionLin(targZ, ta 224 lastLEN[k] = CrossSectionLin(targZ, targN, P); 235 P+=dPG; 225 P+=dPG; 236 } 226 } 237 G4double lP=milPG; 227 G4double lP=milPG; 238 for(G4int n=0; n<nH; n++) 228 for(G4int n=0; n<nH; n++) 239 { 229 { 240 lastHEN[n] = CrossSectionLog(targZ, ta 230 lastHEN[n] = CrossSectionLog(targZ, targN, lP); 241 lP+=dlP; 231 lP+=dlP; 242 } 232 } 243 // --- End of possible separate function 233 // --- End of possible separate function 244 // *** The synchronization check *** 234 // *** The synchronization check *** 245 G4int sync=(G4int)LEN->size(); << 235 G4int sync=LEN->size(); 246 if(sync!=I) 236 if(sync!=I) 247 { 237 { 248 G4cerr<<"***G4ChipsKPlusNuclCS::CalcCr 238 G4cerr<<"***G4ChipsKPlusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ 249 <<", N="<<targN<<", F="<<F<<G4en 239 <<", N="<<targN<<", F="<<F<<G4endl; 250 //G4Exception("G4PiMinusNuclearCS::Cal 240 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow"); 251 } 241 } 252 LEN->push_back(lastLEN); // reme 242 LEN->push_back(lastLEN); // remember the Low Energy Table 253 HEN->push_back(lastHEN); // reme 243 HEN->push_back(lastHEN); // remember the High Energy Table 254 } // End of creation of the new set of par 244 } // End of creation of the new set of parameters 255 } // End of parameters udate 245 } // End of parameters udate 256 // =--------------------------= NOW the Magi 246 // =--------------------------= NOW the Magic Formula =---------------------------------= 257 247 258 G4double sigma; << 259 if (Momentum<lastTH) return 0.; // It m 248 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class 260 else if (Momentum<Pmin) // Low 249 else if (Momentum<Pmin) // Low Energy region 261 { 250 { 262 if(A<=1. && Momentum < 600.) sigma=0.; // 251 if(A<=1. && Momentum < 600.) sigma=0.; // Approximation tot/el uncertainty 263 else sigma=EquLinearFit(Momentum,nL,THmin, 252 else sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN); 264 } 253 } 265 else if (Momentum<Pmax) // High 254 else if (Momentum<Pmax) // High Energy region 266 { 255 { 267 G4double lP=std::log(Momentum); 256 G4double lP=std::log(Momentum); 268 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN) 257 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN); 269 } 258 } 270 else // UHE 259 else // UHE region (calculation, not frequent) 271 { 260 { 272 G4double P=0.001*Momentum; // Appr 261 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c 273 sigma=CrossSectionFormula(targZ, targN, P, 262 sigma=CrossSectionFormula(targZ, targN, P, std::log(P)); 274 } 263 } 275 if(sigma<0.) return 0.; 264 if(sigma<0.) return 0.; 276 return sigma; 265 return sigma; 277 } 266 } 278 267 279 // Electromagnetic momentum-threshold (in MeV/ 268 // Electromagnetic momentum-threshold (in MeV/c) 280 G4double G4ChipsKaonPlusInelasticXS::Threshold 269 G4double G4ChipsKaonPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN) 281 { 270 { >> 271 static const G4double third=1./3.; >> 272 static const G4double prM = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV >> 273 static const G4double piM = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)?? >> 274 static const G4double pM = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV >> 275 static const G4double tpM= pM+pM; // Doubled projectile mass (MeV) 282 G4double tA=tZ+tN; 276 G4double tA=tZ+tN; 283 if(tZ<.99 || tN<0.) return 0.; 277 if(tZ<.99 || tN<0.) return 0.; 284 G4double tM=931.5*tA; 278 G4double tM=931.5*tA; 285 G4double dE=piM; // At le 279 G4double dE=piM; // At least one Pi0 must be created 286 if(tZ==1 && tN==0) tM=prM; // A thr 280 if(tZ==1 && tN==0) tM=prM; // A threshold on the free proton 287 else dE=tZ/(1.+std::pow(tA,third)); // Safet 281 else dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE) 288 //G4double dE=1.263*tZ/(1.+std::pow(tA,third 282 //G4double dE=1.263*tZ/(1.+std::pow(tA,third)); 289 G4double T=dE+dE*(dE/2+pM)/tM; 283 G4double T=dE+dE*(dE/2+pM)/tM; 290 return std::sqrt(T*(tpM+T)); 284 return std::sqrt(T*(tpM+T)); 291 } 285 } 292 286 293 // Calculation formula for piMinus-nuclear ine 287 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c) 294 G4double G4ChipsKaonPlusInelasticXS::CrossSect 288 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P) 295 { 289 { 296 G4double lP=std::log(P); 290 G4double lP=std::log(P); 297 return CrossSectionFormula(tZ, tN, P, lP); 291 return CrossSectionFormula(tZ, tN, P, lP); 298 } 292 } 299 293 300 // Calculation formula for piMinus-nuclear ine 294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 301 G4double G4ChipsKaonPlusInelasticXS::CrossSect 295 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP) 302 { 296 { 303 G4double P=std::exp(lP); 297 G4double P=std::exp(lP); 304 return CrossSectionFormula(tZ, tN, P, lP); 298 return CrossSectionFormula(tZ, tN, P, lP); 305 } 299 } 306 // Calculation formula for piMinus-nuclear ine 300 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 307 G4double G4ChipsKaonPlusInelasticXS::CrossSect 301 G4double G4ChipsKaonPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN, 308 302 G4double P, G4double lP) 309 { 303 { 310 G4double sigma=0.; 304 G4double sigma=0.; 311 if(tZ==1 && !tN) // K 305 if(tZ==1 && !tN) // KPlus-Proton interaction from G4QuasiElRatios 312 { 306 { 313 G4double ld=lP-3.5; 307 G4double ld=lP-3.5; 314 G4double ld2=ld*ld; 308 G4double ld2=ld*ld; 315 G4double sp=std::sqrt(P); 309 G4double sp=std::sqrt(P); 316 G4double p2=P*P; 310 G4double p2=P*P; 317 G4double p4=p2*p2; 311 G4double p4=p2*p2; 318 G4double lm=P-1.; 312 G4double lm=P-1.; 319 G4double md=lm*lm+.372; 313 G4double md=lm*lm+.372; 320 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/ 314 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/p4); 321 G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p 315 G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p4); 322 sigma=(To-El)+.6/md; 316 sigma=(To-El)+.6/md; 323 } 317 } 324 else if(tZ<97 && tN<152) // G 318 else if(tZ<97 && tN<152) // General solution 325 { 319 { 326 G4double p2=P*P; 320 G4double p2=P*P; 327 G4double p4=p2*p2; 321 G4double p4=p2*p2; 328 G4double a=tN+tZ; // 322 G4double a=tN+tZ; // A of the target 329 G4double al=std::log(a); 323 G4double al=std::log(a); 330 G4double sa=std::sqrt(a); 324 G4double sa=std::sqrt(a); 331 G4double asa=a*sa; 325 G4double asa=a*sa; 332 G4double a2=a*a; 326 G4double a2=a*a; 333 G4double a3=a2*a; 327 G4double a3=a2*a; 334 G4double a4=a2*a2; 328 G4double a4=a2*a2; 335 G4double a8=a4*a4; 329 G4double a8=a4*a4; 336 G4double a12=a8*a4; 330 G4double a12=a8*a4; 337 G4double f=.6; // De 331 G4double f=.6; // Default values for deutrons 338 G4double r=.5; 332 G4double r=.5; 339 G4double gg=3.7; 333 G4double gg=3.7; 340 G4double c=36.; 334 G4double c=36.; 341 G4double ss=3.5; 335 G4double ss=3.5; 342 G4double t=3.; 336 G4double t=3.; 343 G4double u=.44; 337 G4double u=.44; 344 G4double v=5.E-9; 338 G4double v=5.E-9; 345 if(tZ>1 && tN>1) // Mo 339 if(tZ>1 && tN>1) // More than deuteron 346 { 340 { 347 f=1.; 341 f=1.; 348 r=1./(1.+.007*a2); 342 r=1./(1.+.007*a2); 349 gg=4.2; 343 gg=4.2; 350 c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9. 344 c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9./a)/(1.+46./a2); 351 ss=(40.+.14*a)/(1.+12./a); 345 ss=(40.+.14*a)/(1.+12./a); 352 G4double y=std::exp(al*1.7); 346 G4double y=std::exp(al*1.7); 353 t=.185*y/(1.+.00012*y); 347 t=.185*y/(1.+.00012*y); 354 u=(1.+80./asa)/(1.+200./asa); 348 u=(1.+80./asa)/(1.+200./asa); 355 v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/ 349 v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/a3/20000.; 356 } 350 } 357 G4double d=lP-gg; 351 G4double d=lP-gg; 358 G4double w=P-1.; 352 G4double w=P-1.; 359 G4double rD=ss/(w*w+.36); 353 G4double rD=ss/(w*w+.36); 360 G4double h=P-.44; 354 G4double h=P-.44; 361 G4double rR=t/(h*h+u*u); 355 G4double rR=t/(h*h+u*u); 362 sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+ 356 sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+(rD+rR)/(1+v/p4/p4); 363 } 357 } 364 else 358 else 365 { 359 { 366 G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCr 360 G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCroSect::CSForm:Bad A, Z="<<tZ<<", N="<<tN<<G4endl; 367 sigma=0.; 361 sigma=0.; 368 } 362 } 369 if(sigma<0.) return 0.; 363 if(sigma<0.) return 0.; 370 return sigma; 364 return sigma; 371 } 365 } 372 366 373 G4double G4ChipsKaonPlusInelasticXS::EquLinear 367 G4double G4ChipsKaonPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y) 374 { 368 { 375 if(DX<=0. || N<2) 369 if(DX<=0. || N<2) 376 { 370 { 377 G4cerr<<"***G4ChipsKaonPlusInelasticXS:: 371 G4cerr<<"***G4ChipsKaonPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl; 378 return Y[0]; 372 return Y[0]; 379 } 373 } 380 374 381 G4int N2=N-2; 375 G4int N2=N-2; 382 G4double d=(X-X0)/DX; 376 G4double d=(X-X0)/DX; 383 G4int jj=static_cast<int>(d); << 377 G4int j=static_cast<int>(d); 384 if (jj<0) jj=0; << 378 if (j<0) j=0; 385 else if(jj>N2) jj=N2; << 379 else if(j>N2) j=N2; 386 d-=jj; // excess << 380 d-=j; // excess 387 G4double yi=Y[jj]; << 381 G4double yi=Y[j]; 388 G4double sigma=yi+(Y[jj+1]-yi)*d; << 382 G4double sigma=yi+(Y[j+1]-yi)*d; 389 383 390 return sigma; 384 return sigma; 391 } 385 } 392 386