Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02 28 // 28 // 29 // 29 // 30 // G4 Physics class: G4QKaonPlusNuclearCrossSe 30 // G4 Physics class: G4QKaonPlusNuclearCrossSection for gamma+A cross sections 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03 32 // The last update: M.V. Kossov, CERN/ITEP (Mo 32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04 33 // 33 // 34 // ------------------------------------------- 34 // -------------------------------------------------------------------------------- 35 // Short description: Cross-sections extracted 35 // Short description: Cross-sections extracted from the CHIPS package for 36 // kaon(minus)-nuclear interactions. Author: M 36 // kaon(minus)-nuclear interactions. Author: M. Kossov 37 // ------------------------------------------- 37 // ------------------------------------------------------------------------------------- 38 // 38 // 39 39 40 #include "G4ChipsKaonPlusInelasticXS.hh" 40 #include "G4ChipsKaonPlusInelasticXS.hh" 41 #include "G4SystemOfUnits.hh" 41 #include "G4SystemOfUnits.hh" 42 #include "G4DynamicParticle.hh" 42 #include "G4DynamicParticle.hh" 43 #include "G4ParticleDefinition.hh" 43 #include "G4ParticleDefinition.hh" 44 #include "G4KaonPlus.hh" 44 #include "G4KaonPlus.hh" 45 #include "G4Proton.hh" 45 #include "G4Proton.hh" 46 #include "G4PionPlus.hh" 46 #include "G4PionPlus.hh" 47 #include "G4AutoLock.hh" 47 #include "G4AutoLock.hh" 48 48 49 // factory 49 // factory 50 #include "G4CrossSectionFactory.hh" 50 #include "G4CrossSectionFactory.hh" 51 // 51 // 52 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusInelastic 52 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusInelasticXS); 53 53 54 namespace { 54 namespace { 55 const G4double THmin=27.; // default m 55 const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold 56 const G4double THmiG=THmin*.001; // minimu 56 const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold 57 const G4double dP=10.; // step for 57 const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c 58 const G4double dPG=dP*.001; // step for 58 const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c 59 const G4int nL=105; // A#of LEN 59 const G4int nL=105; // A#of LEN points in E (step 10 MeV/c) 60 const G4double Pmin=THmin+(nL-1)*dP; // mi 60 const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety 61 const G4double Pmax=227000.; // maxP for 61 const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV 62 const G4int nH=224; // A#of HEN 62 const G4int nH=224; // A#of HEN points in lnE 63 const G4double milP=std::log(Pmin);// Low 63 const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part 64 const G4double malP=std::log(Pmax);// High 64 const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent) 65 const G4double dlP=(malP-milP)/(nH-1); // 65 const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part 66 const G4double milPG=std::log(.001*Pmin);/ 66 const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c 67 const G4double third=1./3.; 67 const G4double third=1./3.; 68 G4Mutex initM = G4MUTEX_INITIALIZER; 68 G4Mutex initM = G4MUTEX_INITIALIZER; 69 G4double prM;// = G4Proton::Proton()->GetP 69 G4double prM;// = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV 70 G4double piM;// = G4PionPlus::PionPlus()-> 70 G4double piM;// = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)?? 71 G4double pM;// = G4KaonPlus::KaonPlus()-> 71 G4double pM;// = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV 72 G4double tpM;//= pM+pM; // Doubled proje 72 G4double tpM;//= pM+pM; // Doubled projectile mass (MeV) 73 } 73 } 74 74 75 G4ChipsKaonPlusInelasticXS::G4ChipsKaonPlusIne 75 G4ChipsKaonPlusInelasticXS::G4ChipsKaonPlusInelasticXS():G4VCrossSectionDataSet(Default_Name()) 76 { 76 { 77 G4AutoLock l(&initM); 77 G4AutoLock l(&initM); 78 prM = G4Proton::Proton()->GetPDGMass(); // P 78 prM = G4Proton::Proton()->GetPDGMass(); // Proton mass in MeV 79 piM = G4PionPlus::PionPlus()->GetPDGMass()+. 79 piM = G4PionPlus::PionPlus()->GetPDGMass()+.1; // Pion mass in MeV+Safety (WP)?? 80 pM = G4KaonPlus::KaonPlus()->GetPDGMass(); 80 pM = G4KaonPlus::KaonPlus()->GetPDGMass(); // Projectile mass in MeV 81 tpM = pM+pM; // Doubled projectile mass (M 81 tpM = pM+pM; // Doubled projectile mass (MeV) 82 l.unlock(); 82 l.unlock(); 83 // Initialization of the 83 // Initialization of the 84 lastLEN=0; // Pointer to the lastArray of Lo 84 lastLEN=0; // Pointer to the lastArray of LowEn CS 85 lastHEN=0; // Pointer to the lastArray of Hi 85 lastHEN=0; // Pointer to the lastArray of HighEn CS 86 lastN=0; // The last N of calculated nucle 86 lastN=0; // The last N of calculated nucleus 87 lastZ=0; // The last Z of calculated nucle 87 lastZ=0; // The last Z of calculated nucleus 88 lastP=0.; // Last used in cross section Mom 88 lastP=0.; // Last used in cross section Momentum 89 lastTH=0.; // Last threshold momentum 89 lastTH=0.; // Last threshold momentum 90 lastCS=0.; // Last value of the Cross Sectio 90 lastCS=0.; // Last value of the Cross Section 91 lastI=0; // The last position in the DAMDB 91 lastI=0; // The last position in the DAMDB 92 LEN = new std::vector<G4double*>; 92 LEN = new std::vector<G4double*>; 93 HEN = new std::vector<G4double*>; 93 HEN = new std::vector<G4double*>; 94 } 94 } 95 95 96 G4ChipsKaonPlusInelasticXS::~G4ChipsKaonPlusIn 96 G4ChipsKaonPlusInelasticXS::~G4ChipsKaonPlusInelasticXS() 97 { 97 { 98 std::size_t lens=LEN->size(); << 98 G4int lens=LEN->size(); 99 for(std::size_t i=0; i<lens; ++i) delete[] ( << 99 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i]; 100 delete LEN; 100 delete LEN; 101 101 102 std::size_t hens=HEN->size(); << 102 G4int hens=HEN->size(); 103 for(std::size_t i=0; i<hens; ++i) delete[] ( << 103 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i]; 104 delete HEN; 104 delete HEN; 105 } 105 } 106 106 107 void 107 void 108 G4ChipsKaonPlusInelasticXS::CrossSectionDescri 108 G4ChipsKaonPlusInelasticXS::CrossSectionDescription(std::ostream& outFile) const 109 { 109 { 110 outFile << "G4ChipsKaonPlusInelasticXS pro 110 outFile << "G4ChipsKaonPlusInelasticXS provides the inelastic cross\n" 111 << "section for K+ nucleus scatter 111 << "section for K+ nucleus scattering as a function of incident\n" 112 << "momentum. The cross section is 112 << "momentum. The cross section is calculated using M. Kossov's\n" 113 << "CHIPS parameterization of cros 113 << "CHIPS parameterization of cross section data.\n"; 114 } 114 } 115 115 116 G4bool G4ChipsKaonPlusInelasticXS::IsIsoApplic 116 G4bool G4ChipsKaonPlusInelasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 117 const G4Element*, 117 const G4Element*, 118 const G4Material*) 118 const G4Material*) 119 { 119 { 120 return true; 120 return true; 121 } 121 } 122 122 123 123 124 // The main member function giving the collisi 124 // The main member function giving the collision cross section (P is in IU, CS is in mb) 125 // Make pMom in independent units ! (Now it is 125 // Make pMom in independent units ! (Now it is MeV) 126 G4double G4ChipsKaonPlusInelasticXS::GetIsoCro 126 G4double G4ChipsKaonPlusInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 127 const G4Isotope*, 127 const G4Isotope*, 128 const G4Element*, 128 const G4Element*, 129 const G4Material*) 129 const G4Material*) 130 { 130 { 131 G4double pMom=Pt->GetTotalMomentum(); 131 G4double pMom=Pt->GetTotalMomentum(); 132 G4int tgN = A - tgZ; 132 G4int tgN = A - tgZ; 133 133 134 return GetChipsCrossSection(pMom, tgZ, tgN, 134 return GetChipsCrossSection(pMom, tgZ, tgN, 321); 135 } 135 } 136 136 137 G4double G4ChipsKaonPlusInelasticXS::GetChipsC 137 G4double G4ChipsKaonPlusInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int ) 138 { 138 { 139 139 140 G4bool in=false; // By d 140 G4bool in=false; // By default the isotope must be found in the AMDB 141 if(tgN!=lastN || tgZ!=lastZ) // The 141 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope 142 { 142 { 143 in = false; // By d 143 in = false; // By default the isotope haven't be found in AMDB 144 lastP = 0.; // New 144 lastP = 0.; // New momentum history (nothing to compare with) 145 lastN = tgN; // The 145 lastN = tgN; // The last N of the calculated nucleus 146 lastZ = tgZ; // The 146 lastZ = tgZ; // The last Z of the calculated nucleus 147 lastI = (G4int)colN.size(); // Size << 147 lastI = colN.size(); // Size of the Associative Memory DB in the heap 148 j = 0; // A#0f 148 j = 0; // A#0f records found in DB for this projectile 149 149 150 if(lastI) for(G4int i=0; i<lastI; ++i) // << 150 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope 151 { 151 { 152 if(colN[i]==tgN && colZ[i]==tgZ) // Try 152 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB 153 { 153 { 154 lastI=i; // Reme 154 lastI=i; // Remember the index for future fast/last use 155 lastTH =colTH[i]; // The 155 lastTH =colTH[i]; // The last THreshold (A-dependent) 156 156 157 if(pMom<=lastTH) 157 if(pMom<=lastTH) 158 { 158 { 159 return 0.; // Ener 159 return 0.; // Energy is below the Threshold value 160 } 160 } 161 lastP =colP [i]; // Last 161 lastP =colP [i]; // Last Momentum (A-dependent) 162 lastCS =colCS[i]; // Last 162 lastCS =colCS[i]; // Last CrossSect (A-dependent) 163 in = true; // This 163 in = true; // This is the case when the isotop is found in DB 164 // Momentum pMom is in IU ! @@ Units 164 // Momentum pMom is in IU ! @@ Units 165 lastCS=CalculateCrossSection(-1,j,321, 165 lastCS=CalculateCrossSection(-1,j,321,lastZ,lastN,pMom); // read & update 166 166 167 if(lastCS<=0. && pMom>lastTH) // Corr 167 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros) 168 { 168 { 169 lastCS=0.; 169 lastCS=0.; 170 lastTH=pMom; 170 lastTH=pMom; 171 } 171 } 172 break; // Go o 172 break; // Go out of the LOOP 173 } 173 } 174 j++; // Incr 174 j++; // Increment a#0f records found in DB 175 } 175 } 176 if(!in) // This 176 if(!in) // This isotope has not been calculated previously 177 { 177 { 178 //!!The slave functions must provide cro 178 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 179 lastCS=CalculateCrossSection(0,j,321,las 179 lastCS=CalculateCrossSection(0,j,321,lastZ,lastN,pMom); //calculate & create 180 180 181 //if(lastCS>0.) // It 181 //if(lastCS>0.) // It means that the AMBD was initialized 182 //{ 182 //{ 183 183 184 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 184 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 185 colN.push_back(tgN); 185 colN.push_back(tgN); 186 colZ.push_back(tgZ); 186 colZ.push_back(tgZ); 187 colP.push_back(pMom); 187 colP.push_back(pMom); 188 colTH.push_back(lastTH); 188 colTH.push_back(lastTH); 189 colCS.push_back(lastCS); 189 colCS.push_back(lastCS); 190 //} // M.K. Presence of H1 with high thr 190 //} // M.K. Presence of H1 with high threshold breaks the syncronization 191 return lastCS*millibarn; 191 return lastCS*millibarn; 192 } // End of creation of the new set of par 192 } // End of creation of the new set of parameters 193 else 193 else 194 { 194 { 195 colP[lastI]=pMom; 195 colP[lastI]=pMom; 196 colCS[lastI]=lastCS; 196 colCS[lastI]=lastCS; 197 } 197 } 198 } // End of parameters udate 198 } // End of parameters udate 199 else if(pMom<=lastTH) 199 else if(pMom<=lastTH) 200 { 200 { 201 return 0.; // Mome 201 return 0.; // Momentum is below the Threshold Value -> CS=0 202 } 202 } 203 else // It i 203 else // It is the last used -> use the current tables 204 { 204 { 205 lastCS=CalculateCrossSection(1,j,321,lastZ 205 lastCS=CalculateCrossSection(1,j,321,lastZ,lastN,pMom); // Only read and UpdateDB 206 lastP=pMom; 206 lastP=pMom; 207 } 207 } 208 return lastCS*millibarn; 208 return lastCS*millibarn; 209 } 209 } 210 210 211 // The main member function giving the gamma-A 211 // The main member function giving the gamma-A cross section (E in GeV, CS in mb) 212 G4double G4ChipsKaonPlusInelasticXS::Calculate 212 G4double G4ChipsKaonPlusInelasticXS::CalculateCrossSection(G4int F, G4int I, 213 G4int, 213 G4int, G4int targZ, G4int targN, G4double Momentum) 214 { 214 { >> 215 G4double sigma=0.; >> 216 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!! 215 G4double A=targN+targZ; // A of 217 G4double A=targN+targZ; // A of the target 216 218 217 if(F<=0) // This 219 if(F<=0) // This isotope was not the last used isotop 218 { 220 { 219 if(F<0) // This 221 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE 220 { 222 { 221 G4int sync=(G4int)LEN->size(); << 223 G4int sync=LEN->size(); 222 if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNucl 224 if(sync<=I) G4cerr<<"*!*G4ChipsKPlusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl; 223 lastLEN=(*LEN)[I]; // Poin 225 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections 224 lastHEN=(*HEN)[I]; // Poin 226 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections 225 } 227 } 226 else // This 228 else // This isotope wasn't calculated before => CREATE 227 { 229 { 228 lastLEN = new G4double[nL]; // Allo 230 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections 229 lastHEN = new G4double[nH]; // Allo 231 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections 230 // --- Instead of making a separate func 232 // --- Instead of making a separate function --- 231 G4double P=THmiG; // Tabl 233 G4double P=THmiG; // Table threshold in GeV/c 232 for(G4int k=0; k<nL; k++) 234 for(G4int k=0; k<nL; k++) 233 { 235 { 234 lastLEN[k] = CrossSectionLin(targZ, ta 236 lastLEN[k] = CrossSectionLin(targZ, targN, P); 235 P+=dPG; 237 P+=dPG; 236 } 238 } 237 G4double lP=milPG; 239 G4double lP=milPG; 238 for(G4int n=0; n<nH; n++) 240 for(G4int n=0; n<nH; n++) 239 { 241 { 240 lastHEN[n] = CrossSectionLog(targZ, ta 242 lastHEN[n] = CrossSectionLog(targZ, targN, lP); 241 lP+=dlP; 243 lP+=dlP; 242 } 244 } 243 // --- End of possible separate function 245 // --- End of possible separate function 244 // *** The synchronization check *** 246 // *** The synchronization check *** 245 G4int sync=(G4int)LEN->size(); << 247 G4int sync=LEN->size(); 246 if(sync!=I) 248 if(sync!=I) 247 { 249 { 248 G4cerr<<"***G4ChipsKPlusNuclCS::CalcCr 250 G4cerr<<"***G4ChipsKPlusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ 249 <<", N="<<targN<<", F="<<F<<G4en 251 <<", N="<<targN<<", F="<<F<<G4endl; 250 //G4Exception("G4PiMinusNuclearCS::Cal 252 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow"); 251 } 253 } 252 LEN->push_back(lastLEN); // reme 254 LEN->push_back(lastLEN); // remember the Low Energy Table 253 HEN->push_back(lastHEN); // reme 255 HEN->push_back(lastHEN); // remember the High Energy Table 254 } // End of creation of the new set of par 256 } // End of creation of the new set of parameters 255 } // End of parameters udate 257 } // End of parameters udate 256 // =--------------------------= NOW the Magi 258 // =--------------------------= NOW the Magic Formula =---------------------------------= 257 259 258 G4double sigma; << 259 if (Momentum<lastTH) return 0.; // It m 260 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class 260 else if (Momentum<Pmin) // Low 261 else if (Momentum<Pmin) // Low Energy region 261 { 262 { 262 if(A<=1. && Momentum < 600.) sigma=0.; // 263 if(A<=1. && Momentum < 600.) sigma=0.; // Approximation tot/el uncertainty 263 else sigma=EquLinearFit(Momentum,nL,THmin, 264 else sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN); 264 } 265 } 265 else if (Momentum<Pmax) // High 266 else if (Momentum<Pmax) // High Energy region 266 { 267 { 267 G4double lP=std::log(Momentum); 268 G4double lP=std::log(Momentum); 268 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN) 269 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN); 269 } 270 } 270 else // UHE 271 else // UHE region (calculation, not frequent) 271 { 272 { 272 G4double P=0.001*Momentum; // Appr 273 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c 273 sigma=CrossSectionFormula(targZ, targN, P, 274 sigma=CrossSectionFormula(targZ, targN, P, std::log(P)); 274 } 275 } 275 if(sigma<0.) return 0.; 276 if(sigma<0.) return 0.; 276 return sigma; 277 return sigma; 277 } 278 } 278 279 279 // Electromagnetic momentum-threshold (in MeV/ 280 // Electromagnetic momentum-threshold (in MeV/c) 280 G4double G4ChipsKaonPlusInelasticXS::Threshold 281 G4double G4ChipsKaonPlusInelasticXS::ThresholdMomentum(G4int tZ, G4int tN) 281 { 282 { 282 G4double tA=tZ+tN; 283 G4double tA=tZ+tN; 283 if(tZ<.99 || tN<0.) return 0.; 284 if(tZ<.99 || tN<0.) return 0.; 284 G4double tM=931.5*tA; 285 G4double tM=931.5*tA; 285 G4double dE=piM; // At le 286 G4double dE=piM; // At least one Pi0 must be created 286 if(tZ==1 && tN==0) tM=prM; // A thr 287 if(tZ==1 && tN==0) tM=prM; // A threshold on the free proton 287 else dE=tZ/(1.+std::pow(tA,third)); // Safet 288 else dE=tZ/(1.+std::pow(tA,third)); // Safety for diffused edge of the nucleus (QE) 288 //G4double dE=1.263*tZ/(1.+std::pow(tA,third 289 //G4double dE=1.263*tZ/(1.+std::pow(tA,third)); 289 G4double T=dE+dE*(dE/2+pM)/tM; 290 G4double T=dE+dE*(dE/2+pM)/tM; 290 return std::sqrt(T*(tpM+T)); 291 return std::sqrt(T*(tpM+T)); 291 } 292 } 292 293 293 // Calculation formula for piMinus-nuclear ine 294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c) 294 G4double G4ChipsKaonPlusInelasticXS::CrossSect 295 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P) 295 { 296 { 296 G4double lP=std::log(P); 297 G4double lP=std::log(P); 297 return CrossSectionFormula(tZ, tN, P, lP); 298 return CrossSectionFormula(tZ, tN, P, lP); 298 } 299 } 299 300 300 // Calculation formula for piMinus-nuclear ine 301 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 301 G4double G4ChipsKaonPlusInelasticXS::CrossSect 302 G4double G4ChipsKaonPlusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP) 302 { 303 { 303 G4double P=std::exp(lP); 304 G4double P=std::exp(lP); 304 return CrossSectionFormula(tZ, tN, P, lP); 305 return CrossSectionFormula(tZ, tN, P, lP); 305 } 306 } 306 // Calculation formula for piMinus-nuclear ine 307 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 307 G4double G4ChipsKaonPlusInelasticXS::CrossSect 308 G4double G4ChipsKaonPlusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN, 308 309 G4double P, G4double lP) 309 { 310 { 310 G4double sigma=0.; 311 G4double sigma=0.; 311 if(tZ==1 && !tN) // K 312 if(tZ==1 && !tN) // KPlus-Proton interaction from G4QuasiElRatios 312 { 313 { 313 G4double ld=lP-3.5; 314 G4double ld=lP-3.5; 314 G4double ld2=ld*ld; 315 G4double ld2=ld*ld; 315 G4double sp=std::sqrt(P); 316 G4double sp=std::sqrt(P); 316 G4double p2=P*P; 317 G4double p2=P*P; 317 G4double p4=p2*p2; 318 G4double p4=p2*p2; 318 G4double lm=P-1.; 319 G4double lm=P-1.; 319 G4double md=lm*lm+.372; 320 G4double md=lm*lm+.372; 320 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/ 321 G4double El=(.0557*ld2+2.23)/(1.-.7/sp+.1/p4); 321 G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p 322 G4double To=(.3*ld2+19.5)/(1.+.46/sp+1.6/p4); 322 sigma=(To-El)+.6/md; 323 sigma=(To-El)+.6/md; 323 } 324 } 324 else if(tZ<97 && tN<152) // G 325 else if(tZ<97 && tN<152) // General solution 325 { 326 { 326 G4double p2=P*P; 327 G4double p2=P*P; 327 G4double p4=p2*p2; 328 G4double p4=p2*p2; 328 G4double a=tN+tZ; // 329 G4double a=tN+tZ; // A of the target 329 G4double al=std::log(a); 330 G4double al=std::log(a); 330 G4double sa=std::sqrt(a); 331 G4double sa=std::sqrt(a); 331 G4double asa=a*sa; 332 G4double asa=a*sa; 332 G4double a2=a*a; 333 G4double a2=a*a; 333 G4double a3=a2*a; 334 G4double a3=a2*a; 334 G4double a4=a2*a2; 335 G4double a4=a2*a2; 335 G4double a8=a4*a4; 336 G4double a8=a4*a4; 336 G4double a12=a8*a4; 337 G4double a12=a8*a4; 337 G4double f=.6; // De 338 G4double f=.6; // Default values for deutrons 338 G4double r=.5; 339 G4double r=.5; 339 G4double gg=3.7; 340 G4double gg=3.7; 340 G4double c=36.; 341 G4double c=36.; 341 G4double ss=3.5; 342 G4double ss=3.5; 342 G4double t=3.; 343 G4double t=3.; 343 G4double u=.44; 344 G4double u=.44; 344 G4double v=5.E-9; 345 G4double v=5.E-9; 345 if(tZ>1 && tN>1) // Mo 346 if(tZ>1 && tN>1) // More than deuteron 346 { 347 { 347 f=1.; 348 f=1.; 348 r=1./(1.+.007*a2); 349 r=1./(1.+.007*a2); 349 gg=4.2; 350 gg=4.2; 350 c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9. 351 c=52.*std::exp(al*.6)*(1.+95./a2)/(1.+9./a)/(1.+46./a2); 351 ss=(40.+.14*a)/(1.+12./a); 352 ss=(40.+.14*a)/(1.+12./a); 352 G4double y=std::exp(al*1.7); 353 G4double y=std::exp(al*1.7); 353 t=.185*y/(1.+.00012*y); 354 t=.185*y/(1.+.00012*y); 354 u=(1.+80./asa)/(1.+200./asa); 355 u=(1.+80./asa)/(1.+200./asa); 355 v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/ 356 v=(1.+3.E-6*a4*(1.+6.E-7*a3+4.E10/a12))/a3/20000.; 356 } 357 } 357 G4double d=lP-gg; 358 G4double d=lP-gg; 358 G4double w=P-1.; 359 G4double w=P-1.; 359 G4double rD=ss/(w*w+.36); 360 G4double rD=ss/(w*w+.36); 360 G4double h=P-.44; 361 G4double h=P-.44; 361 G4double rR=t/(h*h+u*u); 362 G4double rR=t/(h*h+u*u); 362 sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+ 363 sigma=(f*d*d+c)/(1.+r/std::sqrt(P)+1./p4)+(rD+rR)/(1+v/p4/p4); 363 } 364 } 364 else 365 else 365 { 366 { 366 G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCr 367 G4cerr<<"-Warning-G4ChipsKaonPlusNuclearCroSect::CSForm:Bad A, Z="<<tZ<<", N="<<tN<<G4endl; 367 sigma=0.; 368 sigma=0.; 368 } 369 } 369 if(sigma<0.) return 0.; 370 if(sigma<0.) return 0.; 370 return sigma; 371 return sigma; 371 } 372 } 372 373 373 G4double G4ChipsKaonPlusInelasticXS::EquLinear 374 G4double G4ChipsKaonPlusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y) 374 { 375 { 375 if(DX<=0. || N<2) 376 if(DX<=0. || N<2) 376 { 377 { 377 G4cerr<<"***G4ChipsKaonPlusInelasticXS:: 378 G4cerr<<"***G4ChipsKaonPlusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl; 378 return Y[0]; 379 return Y[0]; 379 } 380 } 380 381 381 G4int N2=N-2; 382 G4int N2=N-2; 382 G4double d=(X-X0)/DX; 383 G4double d=(X-X0)/DX; 383 G4int jj=static_cast<int>(d); 384 G4int jj=static_cast<int>(d); 384 if (jj<0) jj=0; 385 if (jj<0) jj=0; 385 else if(jj>N2) jj=N2; 386 else if(jj>N2) jj=N2; 386 d-=jj; // excess 387 d-=jj; // excess 387 G4double yi=Y[jj]; 388 G4double yi=Y[jj]; 388 G4double sigma=yi+(Y[jj+1]-yi)*d; 389 G4double sigma=yi+(Y[jj+1]-yi)*d; 389 390 390 return sigma; 391 return sigma; 391 } 392 } 392 393