Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsKaonPlusElasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsKaonPlusElasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsKaonPlusElasticXS.cc (Version 10.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4ChipsKaonPlusElasticXS.cc 88983 2015-03-17 10:24:43Z gcosmo $
 27 //                                                 28 //
 28 //                                                 29 //
 29 // G4 Physics class: G4ChipsKaonPlusElasticXS      30 // G4 Physics class: G4ChipsKaonPlusElasticXS for pA elastic cross sections
 30 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-     31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
 31 // The last update: M.V. Kossov, CERN/ITEP (Mo     32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
 32 //                                                 33 // 
 33 // -------------------------------------------     34 // -------------------------------------------------------------------------------
 34 // Short description: Interaction cross-sectio     35 // Short description: Interaction cross-sections for the elastic process. 
 35 // Class extracted from CHIPS and integrated i     36 // Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
 36 // -------------------------------------------     37 // -------------------------------------------------------------------------------
 37 //                                                 38 //
 38                                                    39 
 39 #include "G4ChipsKaonPlusElasticXS.hh"             40 #include "G4ChipsKaonPlusElasticXS.hh"
 40 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 41 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 42 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 43 #include "G4KaonPlus.hh"                           44 #include "G4KaonPlus.hh"
 44 #include "G4Nucleus.hh"                            45 #include "G4Nucleus.hh"
 45 #include "G4ParticleTable.hh"                      46 #include "G4ParticleTable.hh"
 46 #include "G4NucleiProperties.hh"                   47 #include "G4NucleiProperties.hh"
 47 #include "G4IonTable.hh"                           48 #include "G4IonTable.hh"
 48 #include "G4AutoLock.hh"                           49 #include "G4AutoLock.hh"
                                                   >>  50 
 49 // factory                                         51 // factory
 50 #include "G4CrossSectionFactory.hh"                52 #include "G4CrossSectionFactory.hh"
 51 //                                                 53 //
 52 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusElasticXS     54 G4_DECLARE_XS_FACTORY(G4ChipsKaonPlusElasticXS);
 53                                                    55 
 54 namespace {                                        56 namespace {
 55     G4double mK;//= G4KaonPlus::KaonPlus()->Ge     57     G4double mK;//= G4KaonPlus::KaonPlus()->GetPDGMass()*.001; // MeV to GeV //Cannot initialize here, needs particles
 56     G4double mK2;//= mK*mK;                        58     G4double mK2;//= mK*mK;
 57     G4Mutex initM = G4MUTEX_INITIALIZER;           59     G4Mutex initM = G4MUTEX_INITIALIZER;
 58     const G4double pwd=2727;                       60     const G4double pwd=2727;
 59     const G4double GeVSQ=gigaelectronvolt*giga     61     const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
 60     const G4double third=1./3.;                    62     const G4double third=1./3.;
 61     const G4double fifth=1./5.;                    63     const G4double fifth=1./5.;
 62     const G4double sevth=1./7.;                    64     const G4double sevth=1./7.;
 63     const G4double HGeVSQ=gigaelectronvolt*gig     65     const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
 64     // @@ At present all nA==pA ---------> Eac     66     // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
 65     const G4int n_kppel=35;                //      67     const G4int n_kppel=35;                // #of parameters for pp-elastic (<nPoints=128)
 66     //                        -0--1-  -2-   -3     68     //                        -0--1-  -2-   -3-  -4- -5- -6--7--8--9- -10--11-12--13--14-
 67     G4double kpp_el[n_kppel]={.7,.38,.0676,.05     69     G4double kpp_el[n_kppel]={.7,.38,.0676,.0557,3.5,2.23,.7,.1,2.,1.,.372,5.,74.,3.,3.4,
 68         .2,.17,.001,8.,.055,3.64,5.e-5,4000.,1     70         .2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,1.2e6,3.5e6,
 69         5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e     71         5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
 70     //                       -15--16--17--18--     72     //                       -15--16--17--18--19- -20-  -21-  -22- -23-  -24- -25-  -26-
 71     //                         -27-  -28-  -29     73     //                         -27-  -28-  -29- -30-  -31- -32-  -33--34-
 72                                                    74     
 73                                                    75 
 74 }                                                  76 }
 75                                                    77 
 76 G4ChipsKaonPlusElasticXS::G4ChipsKaonPlusElast     78 G4ChipsKaonPlusElasticXS::G4ChipsKaonPlusElasticXS():G4VCrossSectionDataSet(Default_Name()), nPoints(128), nLast(nPoints-1)
 77 {                                                  79 {
 78   G4AutoLock l(&initM);                            80   G4AutoLock l(&initM);
 79   mK = G4KaonPlus::KaonPlus()->GetPDGMass()*.0     81   mK = G4KaonPlus::KaonPlus()->GetPDGMass()*.001;// MeV to GeV
 80   mK2 = mK*mK;                                     82   mK2 = mK*mK;
 81   l.unlock();                                      83   l.unlock();
 82   lPMin=-8.;  //Min tabulatedLogarithmMomentum     84   lPMin=-8.;  //Min tabulatedLogarithmMomentum/D
 83   lPMax= 8.;  //Max tabulatedLogarithmMomentum     85   lPMax= 8.;  //Max tabulatedLogarithmMomentum/D
 84   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable      86   dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
 85   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)     87   onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
 86   lastSIG=0.; //Last calculated cross section      88   lastSIG=0.; //Last calculated cross section /L
 87   lastLP=-10.;//LastLog(mom_of IncidentHadron)     89   lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
 88   lastTM=0.; //Last t_maximum                /     90   lastTM=0.; //Last t_maximum                /L
 89   theSS=0.;  //TheLastSqSlope of 1st difr.Max/     91   theSS=0.;  //TheLastSqSlope of 1st difr.Max/L
 90   theS1=0.;  //TheLastMantissa of 1st difrMax/     92   theS1=0.;  //TheLastMantissa of 1st difrMax/L
 91   theB1=0.;  //TheLastSlope of 1st difructMax/     93   theB1=0.;  //TheLastSlope of 1st difructMax/L
 92   theS2=0.;  //TheLastMantissa of 2nd difrMax/     94   theS2=0.;  //TheLastMantissa of 2nd difrMax/L
 93   theB2=0.;  //TheLastSlope of 2nd difructMax/     95   theB2=0.;  //TheLastSlope of 2nd difructMax/L
 94   theS3=0.;  //TheLastMantissa of 3d difr.Max/     96   theS3=0.;  //TheLastMantissa of 3d difr.Max/L
 95   theB3=0.;  //TheLastSlope of 3d difruct.Max/     97   theB3=0.;  //TheLastSlope of 3d difruct.Max/L
 96   theS4=0.;  //TheLastMantissa of 4th difrMax/     98   theS4=0.;  //TheLastMantissa of 4th difrMax/L
 97   theB4=0.;  //TheLastSlope of 4th difructMax/     99   theB4=0.;  //TheLastSlope of 4th difructMax/L
 98   lastTZ=0;  // Last atomic number of theTarge    100   lastTZ=0;  // Last atomic number of theTarget
 99   lastTN=0;  // Last # of neutrons in theTarge    101   lastTN=0;  // Last # of neutrons in theTarget
100   lastPIN=0.;// Last initialized max momentum     102   lastPIN=0.;// Last initialized max momentum
101   lastCST=0; // Elastic cross-section table       103   lastCST=0; // Elastic cross-section table
102   lastPAR=0; // ParametersForFunctionCalculati    104   lastPAR=0; // ParametersForFunctionCalculation
103   lastSST=0; // E-dep ofSqardSlope of 1st difM    105   lastSST=0; // E-dep ofSqardSlope of 1st difMax
104   lastS1T=0; // E-dep of mantissa of 1st dif.M    106   lastS1T=0; // E-dep of mantissa of 1st dif.Max
105   lastB1T=0; // E-dep of the slope of 1st difM    107   lastB1T=0; // E-dep of the slope of 1st difMax
106   lastS2T=0; // E-dep of mantissa of 2nd difrM    108   lastS2T=0; // E-dep of mantissa of 2nd difrMax
107   lastB2T=0; // E-dep of the slope of 2nd difM    109   lastB2T=0; // E-dep of the slope of 2nd difMax
108   lastS3T=0; // E-dep of mantissa of 3d difr.M    110   lastS3T=0; // E-dep of mantissa of 3d difr.Max
109   lastB3T=0; // E-dep of the slope of 3d difrM    111   lastB3T=0; // E-dep of the slope of 3d difrMax
110   lastS4T=0; // E-dep of mantissa of 4th difrM    112   lastS4T=0; // E-dep of mantissa of 4th difrMax
111   lastB4T=0; // E-dep of the slope of 4th difM    113   lastB4T=0; // E-dep of the slope of 4th difMax
112   lastN=0;   // The last N of calculated nucle    114   lastN=0;   // The last N of calculated nucleus
113   lastZ=0;   // The last Z of calculated nucle    115   lastZ=0;   // The last Z of calculated nucleus
114   lastP=0.;  // LastUsed inCrossSection Moment    116   lastP=0.;  // LastUsed inCrossSection Momentum
115   lastTH=0.; // Last threshold momentum           117   lastTH=0.; // Last threshold momentum
116   lastCS=0.; // Last value of the Cross Sectio    118   lastCS=0.; // Last value of the Cross Section
117   lastI=0;   // The last position in the DAMDB    119   lastI=0;   // The last position in the DAMDB
118 }                                                 120 }
119                                                   121 
120 G4ChipsKaonPlusElasticXS::~G4ChipsKaonPlusElas    122 G4ChipsKaonPlusElasticXS::~G4ChipsKaonPlusElasticXS()
121 {                                                 123 {
122   std::vector<G4double*>::iterator pos;           124   std::vector<G4double*>::iterator pos;
123   for (pos=CST.begin(); pos<CST.end(); pos++)     125   for (pos=CST.begin(); pos<CST.end(); pos++)
124   { delete [] *pos; }                             126   { delete [] *pos; }
125   CST.clear();                                    127   CST.clear();
126   for (pos=PAR.begin(); pos<PAR.end(); pos++)     128   for (pos=PAR.begin(); pos<PAR.end(); pos++)
127   { delete [] *pos; }                             129   { delete [] *pos; }
128   PAR.clear();                                    130   PAR.clear();
129   for (pos=SST.begin(); pos<SST.end(); pos++)     131   for (pos=SST.begin(); pos<SST.end(); pos++)
130   { delete [] *pos; }                             132   { delete [] *pos; }
131   SST.clear();                                    133   SST.clear();
132   for (pos=S1T.begin(); pos<S1T.end(); pos++)     134   for (pos=S1T.begin(); pos<S1T.end(); pos++)
133   { delete [] *pos; }                             135   { delete [] *pos; }
134   S1T.clear();                                    136   S1T.clear();
135   for (pos=B1T.begin(); pos<B1T.end(); pos++)     137   for (pos=B1T.begin(); pos<B1T.end(); pos++)
136   { delete [] *pos; }                             138   { delete [] *pos; }
137   B1T.clear();                                    139   B1T.clear();
138   for (pos=S2T.begin(); pos<S2T.end(); pos++)     140   for (pos=S2T.begin(); pos<S2T.end(); pos++)
139   { delete [] *pos; }                             141   { delete [] *pos; }
140   S2T.clear();                                    142   S2T.clear();
141   for (pos=B2T.begin(); pos<B2T.end(); pos++)     143   for (pos=B2T.begin(); pos<B2T.end(); pos++)
142   { delete [] *pos; }                             144   { delete [] *pos; }
143   B2T.clear();                                    145   B2T.clear();
144   for (pos=S3T.begin(); pos<S3T.end(); pos++)     146   for (pos=S3T.begin(); pos<S3T.end(); pos++)
145   { delete [] *pos; }                             147   { delete [] *pos; }
146   S3T.clear();                                    148   S3T.clear();
147   for (pos=B3T.begin(); pos<B3T.end(); pos++)     149   for (pos=B3T.begin(); pos<B3T.end(); pos++)
148   { delete [] *pos; }                             150   { delete [] *pos; }
149   B3T.clear();                                    151   B3T.clear();
150   for (pos=S4T.begin(); pos<S4T.end(); pos++)     152   for (pos=S4T.begin(); pos<S4T.end(); pos++)
151   { delete [] *pos; }                             153   { delete [] *pos; }
152   S4T.clear();                                    154   S4T.clear();
153   for (pos=B4T.begin(); pos<B4T.end(); pos++)     155   for (pos=B4T.begin(); pos<B4T.end(); pos++)
154   { delete [] *pos; }                             156   { delete [] *pos; }
155   B4T.clear();                                    157   B4T.clear();
156 }                                                 158 }
157                                                   159 
158 void                                           << 
159 G4ChipsKaonPlusElasticXS::CrossSectionDescript << 
160 {                                              << 
161     outFile << "G4ChipsKaonPlusElasticXS provi << 
162             << "section for K+ nucleus scatter << 
163             << "momentum. The cross section is << 
164             << "CHIPS parameterization of cros << 
165 }                                              << 
166                                                << 
167                                                << 
168 G4bool G4ChipsKaonPlusElasticXS::IsIsoApplicab    160 G4bool G4ChipsKaonPlusElasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int,    
169              const G4Element*,                    161              const G4Element*,
170              const G4Material*)                   162              const G4Material*)
171 {                                                 163 {
172   return true;                                    164   return true;
173 }                                                 165 }
174                                                   166 
175 // The main member function giving the collisi    167 // The main member function giving the collision cross section (P is in IU, CS is in mb)
176 // Make pMom in independent units ! (Now it is    168 // Make pMom in independent units ! (Now it is MeV)
177 G4double G4ChipsKaonPlusElasticXS::GetIsoCross    169 G4double G4ChipsKaonPlusElasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
178               const G4Isotope*,                   170               const G4Isotope*,
179               const G4Element*,                   171               const G4Element*,
180               const G4Material*)                  172               const G4Material*)
181 {                                                 173 {
182   G4double pMom=Pt->GetTotalMomentum();           174   G4double pMom=Pt->GetTotalMomentum();
183   G4int tgN = A - tgZ;                            175   G4int tgN = A - tgZ;
184                                                   176   
185   return GetChipsCrossSection(pMom, tgZ, tgN,     177   return GetChipsCrossSection(pMom, tgZ, tgN, 321);
186 }                                                 178 }
187                                                   179 
188 G4double G4ChipsKaonPlusElasticXS::GetChipsCro    180 G4double G4ChipsKaonPlusElasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int)
189 {                                                 181 {
190                                                   182 
191   G4bool fCS = false;                             183   G4bool fCS = false;
192   G4double pEn=pMom;                              184   G4double pEn=pMom;
193   onlyCS=fCS;                                     185   onlyCS=fCS;
194                                                   186 
195   G4bool in=false;                   // By def    187   G4bool in=false;                   // By default the isotope must be found in the AMDB
196   lastP   = 0.;                      // New mo    188   lastP   = 0.;                      // New momentum history (nothing to compare with)
197   lastN   = tgN;                     // The la    189   lastN   = tgN;                     // The last N of the calculated nucleus
198   lastZ   = tgZ;                     // The la    190   lastZ   = tgZ;                     // The last Z of the calculated nucleus
199   lastI   = (G4int)colN.size();      // Size o << 191   lastI   = colN.size();             // Size of the Associative Memory DB in the heap
200   if(lastI) for(G4int i=0; i<lastI; ++i) // Lo << 192   if(lastI) for(G4int i=0; i<lastI; i++) // Loop over proj/tgZ/tgN lines of DB
201   {                                  // The nu    193   {                                  // The nucleus with projPDG is found in AMDB
202     if(colN[i]==tgN && colZ[i]==tgZ) // Isotop    194     if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
203     {                                             195     {
204       lastI=i;                                    196       lastI=i;
205       lastTH =colTH[i];              // Last T    197       lastTH =colTH[i];              // Last THreshold (A-dependent)
206       if(pEn<=lastTH)                             198       if(pEn<=lastTH)
207       {                                           199       {
208         return 0.;                   // Energy    200         return 0.;                   // Energy is below the Threshold value
209       }                                           201       }
210       lastP  =colP [i];              // Last M    202       lastP  =colP [i];              // Last Momentum  (A-dependent)
211       lastCS =colCS[i];              // Last C    203       lastCS =colCS[i];              // Last CrossSect (A-dependent)
212       //  if(std::fabs(lastP/pMom-1.)<toleranc    204       //  if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
213       if(lastP == pMom)              // Do not    205       if(lastP == pMom)              // Do not recalculate
214       {                                           206       {
215         CalculateCrossSection(fCS,-1,i,321,las    207         CalculateCrossSection(fCS,-1,i,321,lastZ,lastN,pMom); // Update param's only
216         return lastCS*millibarn;     // Use th    208         return lastCS*millibarn;     // Use theLastCS
217       }                                           209       }
218       in = true;                       // This    210       in = true;                       // This is the case when the isotop is found in DB
219       // Momentum pMom is in IU ! @@ Units        211       // Momentum pMom is in IU ! @@ Units
220       lastCS=CalculateCrossSection(fCS,-1,i,32    212       lastCS=CalculateCrossSection(fCS,-1,i,321,lastZ,lastN,pMom); // read & update
221       if(lastCS<=0. && pEn>lastTH)    // Corre    213       if(lastCS<=0. && pEn>lastTH)    // Correct the threshold
222       {                                           214       {
223         lastTH=pEn;                               215         lastTH=pEn;
224       }                                           216       }
225       break;                           // Go o    217       break;                           // Go out of the LOOP with found lastI
226     }                                             218     }
227   } // End of attampt to find the nucleus in D    219   } // End of attampt to find the nucleus in DB
228   if(!in)                            // This n    220   if(!in)                            // This nucleus has not been calculated previously
229   {                                               221   {
230     //!!The slave functions must provide cross    222     //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
231     lastCS=CalculateCrossSection(fCS,0,lastI,3    223     lastCS=CalculateCrossSection(fCS,0,lastI,321,lastZ,lastN,pMom);//calculate&create
232     if(lastCS<=0.)                                224     if(lastCS<=0.)
233     {                                             225     {
234       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    226       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
235       if(pEn>lastTH)                              227       if(pEn>lastTH)
236       {                                           228       {
237         lastTH=pEn;                               229         lastTH=pEn;
238       }                                           230       }
239     }                                             231     }
240     colN.push_back(tgN);                          232     colN.push_back(tgN);
241     colZ.push_back(tgZ);                          233     colZ.push_back(tgZ);
242     colP.push_back(pMom);                         234     colP.push_back(pMom);
243     colTH.push_back(lastTH);                      235     colTH.push_back(lastTH);
244     colCS.push_back(lastCS);                      236     colCS.push_back(lastCS);
245     return lastCS*millibarn;                      237     return lastCS*millibarn;
246   } // End of creation of the new set of param    238   } // End of creation of the new set of parameters
247   else                                            239   else
248   {                                               240   {
249     colP[lastI]=pMom;                             241     colP[lastI]=pMom;
250     colCS[lastI]=lastCS;                          242     colCS[lastI]=lastCS;
251   }                                               243   }
252   return lastCS*millibarn;                        244   return lastCS*millibarn;
253 }                                                 245 }
254                                                   246 
255 // Calculation of total elastic cross section     247 // Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
256 // F=0 - create AMDB, F=-1 - read&update AMDB,    248 // F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
257 G4double G4ChipsKaonPlusElasticXS::CalculateCr    249 G4double G4ChipsKaonPlusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
258                                     G4int I, G    250                                     G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
259 {                                                 251 {
260   G4double pMom=pIU/GeV;                // All    252   G4double pMom=pIU/GeV;                // All calculations are in GeV
261   onlyCS=CS;                            // Fla    253   onlyCS=CS;                            // Flag to calculate only CS (not Si/Bi)
262   lastLP=std::log(pMom);                // Mak    254   lastLP=std::log(pMom);                // Make a logarithm of the momentum for calculation
263   if(F)                                 // Thi    255   if(F)                                 // This isotope was found in AMDB =>RETRIEVE/UPDATE
264   {                                               256   {
265     if(F<0)                             // the    257     if(F<0)                             // the AMDB must be loded
266     {                                             258     {
267       lastPIN = PIN[I];                 // Max    259       lastPIN = PIN[I];                 // Max log(P) initialised for this table set
268       lastPAR = PAR[I];                 // Poi    260       lastPAR = PAR[I];                 // Pointer to the parameter set
269       lastCST = CST[I];                 // Poi    261       lastCST = CST[I];                 // Pointer to the total sross-section table
270       lastSST = SST[I];                 // Poi    262       lastSST = SST[I];                 // Pointer to the first squared slope
271       lastS1T = S1T[I];                 // Poi    263       lastS1T = S1T[I];                 // Pointer to the first mantissa
272       lastB1T = B1T[I];                 // Poi    264       lastB1T = B1T[I];                 // Pointer to the first slope
273       lastS2T = S2T[I];                 // Poi    265       lastS2T = S2T[I];                 // Pointer to the second mantissa
274       lastB2T = B2T[I];                 // Poi    266       lastB2T = B2T[I];                 // Pointer to the second slope
275       lastS3T = S3T[I];                 // Poi    267       lastS3T = S3T[I];                 // Pointer to the third mantissa
276       lastB3T = B3T[I];                 // Poi    268       lastB3T = B3T[I];                 // Pointer to the rhird slope
277       lastS4T = S4T[I];                 // Poi    269       lastS4T = S4T[I];                 // Pointer to the 4-th mantissa
278       lastB4T = B4T[I];                 // Poi    270       lastB4T = B4T[I];                 // Pointer to the 4-th slope
279     }                                             271     }
280     if(lastLP>lastPIN && lastLP<lPMax)            272     if(lastLP>lastPIN && lastLP<lPMax)
281     {                                             273     {
282       lastPIN=GetPTables(lastLP,lastPIN,PDG,tg    274       lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
283       PIN[I]=lastPIN;                   // Rem    275       PIN[I]=lastPIN;                   // Remember the new P-Limit of the tables
284     }                                             276     }
285   }                                               277   }
286   else                                  // Thi    278   else                                  // This isotope wasn't initialized => CREATE
287   {                                               279   {
288     lastPAR = new G4double[nPoints];    // All    280     lastPAR = new G4double[nPoints];    // Allocate memory for parameters of CS function
289     lastPAR[nLast]=0;                   // Ini    281     lastPAR[nLast]=0;                   // Initialization for VALGRIND
290     lastCST = new G4double[nPoints];    // All    282     lastCST = new G4double[nPoints];    // Allocate memory for Tabulated CS function    
291     lastSST = new G4double[nPoints];    // All    283     lastSST = new G4double[nPoints];    // Allocate memory for Tabulated first sqaredSlope 
292     lastS1T = new G4double[nPoints];    // All    284     lastS1T = new G4double[nPoints];    // Allocate memory for Tabulated first mantissa 
293     lastB1T = new G4double[nPoints];    // All    285     lastB1T = new G4double[nPoints];    // Allocate memory for Tabulated first slope    
294     lastS2T = new G4double[nPoints];    // All    286     lastS2T = new G4double[nPoints];    // Allocate memory for Tabulated second mantissa
295     lastB2T = new G4double[nPoints];    // All    287     lastB2T = new G4double[nPoints];    // Allocate memory for Tabulated second slope   
296     lastS3T = new G4double[nPoints];    // All    288     lastS3T = new G4double[nPoints];    // Allocate memory for Tabulated third mantissa 
297     lastB3T = new G4double[nPoints];    // All    289     lastB3T = new G4double[nPoints];    // Allocate memory for Tabulated third slope    
298     lastS4T = new G4double[nPoints];    // All    290     lastS4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th mantissa 
299     lastB4T = new G4double[nPoints];    // All    291     lastB4T = new G4double[nPoints];    // Allocate memory for Tabulated 4-th slope    
300     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,    292     lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
301     PIN.push_back(lastPIN);             // Fil    293     PIN.push_back(lastPIN);             // Fill parameters of CS function to AMDB
302     PAR.push_back(lastPAR);             // Fil    294     PAR.push_back(lastPAR);             // Fill parameters of CS function to AMDB
303     CST.push_back(lastCST);             // Fil    295     CST.push_back(lastCST);             // Fill Tabulated CS function to AMDB    
304     SST.push_back(lastSST);             // Fil    296     SST.push_back(lastSST);             // Fill Tabulated first sq.slope to AMDB 
305     S1T.push_back(lastS1T);             // Fil    297     S1T.push_back(lastS1T);             // Fill Tabulated first mantissa to AMDB 
306     B1T.push_back(lastB1T);             // Fil    298     B1T.push_back(lastB1T);             // Fill Tabulated first slope to AMDB    
307     S2T.push_back(lastS2T);             // Fil    299     S2T.push_back(lastS2T);             // Fill Tabulated second mantissa to AMDB 
308     B2T.push_back(lastB2T);             // Fil    300     B2T.push_back(lastB2T);             // Fill Tabulated second slope to AMDB    
309     S3T.push_back(lastS3T);             // Fil    301     S3T.push_back(lastS3T);             // Fill Tabulated third mantissa to AMDB 
310     B3T.push_back(lastB3T);             // Fil    302     B3T.push_back(lastB3T);             // Fill Tabulated third slope to AMDB    
311     S4T.push_back(lastS4T);             // Fil    303     S4T.push_back(lastS4T);             // Fill Tabulated 4-th mantissa to AMDB 
312     B4T.push_back(lastB4T);             // Fil    304     B4T.push_back(lastB4T);             // Fill Tabulated 4-th slope to AMDB    
313   } // End of creation/update of the new set o    305   } // End of creation/update of the new set of parameters and tables
314   // =----------= NOW Update (if necessary) an    306   // =----------= NOW Update (if necessary) and Calculate the Cross Section =----------=
315   if(lastLP>lastPIN && lastLP<lPMax)              307   if(lastLP>lastPIN && lastLP<lPMax)
316   {                                               308   {
317     lastPIN = GetPTables(lastLP,lastPIN,PDG,tg    309     lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
318   }                                               310   }
319   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, p    311   if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
320   if(lastLP>lPMin && lastLP<=lastPIN)   // Lin    312   if(lastLP>lPMin && lastLP<=lastPIN)   // Linear fit is made using precalculated tables
321   {                                               313   {
322     if(lastLP==lastPIN)                           314     if(lastLP==lastPIN)
323     {                                             315     {
324       G4double shift=(lastLP-lPMin)/dlnP+.0000    316       G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
325       G4int    blast=static_cast<int>(shift);     317       G4int    blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
326       if(blast<0 || blast>=nLast) G4cout<<"G4Q    318       if(blast<0 || blast>=nLast) G4cout<<"G4QKPElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
327       lastSIG = lastCST[blast];                   319       lastSIG = lastCST[blast];
328       if(!onlyCS)                       // Ski    320       if(!onlyCS)                       // Skip the differential cross-section parameters
329       {                                           321       {
330         theSS  = lastSST[blast];                  322         theSS  = lastSST[blast];
331         theS1  = lastS1T[blast];                  323         theS1  = lastS1T[blast];
332         theB1  = lastB1T[blast];                  324         theB1  = lastB1T[blast];
333         theS2  = lastS2T[blast];                  325         theS2  = lastS2T[blast];
334         theB2  = lastB2T[blast];                  326         theB2  = lastB2T[blast];
335         theS3  = lastS3T[blast];                  327         theS3  = lastS3T[blast];
336         theB3  = lastB3T[blast];                  328         theB3  = lastB3T[blast];
337         theS4  = lastS4T[blast];                  329         theS4  = lastS4T[blast];
338         theB4  = lastB4T[blast];                  330         theB4  = lastB4T[blast];
339       }                                           331       }
340     }                                             332     }
341     else                                          333     else
342     {                                             334     {
343       G4double shift=(lastLP-lPMin)/dlnP;         335       G4double shift=(lastLP-lPMin)/dlnP;        // a shift from the beginning of the table
344       G4int    blast=static_cast<int>(shift);     336       G4int    blast=static_cast<int>(shift);    // the lower bin number
345       if(blast<0)   blast=0;                      337       if(blast<0)   blast=0;
346       if(blast>=nLast) blast=nLast-1;             338       if(blast>=nLast) blast=nLast-1;            // low edge of the last bin
347       shift-=blast;                               339       shift-=blast;                              // step inside the unit bin
348       G4int lastL=blast+1;                        340       G4int lastL=blast+1;                       // the upper bin number
349       G4double SIGL=lastCST[blast];               341       G4double SIGL=lastCST[blast];              // the basic value of the cross-section
350       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL    342       lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
351       if(!onlyCS)                       // Ski    343       if(!onlyCS)                       // Skip the differential cross-section parameters
352       {                                           344       {
353         G4double SSTL=lastSST[blast];             345         G4double SSTL=lastSST[blast];           // the low bin of the first squared slope
354         theSS=SSTL+shift*(lastSST[lastL]-SSTL)    346         theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
355         G4double S1TL=lastS1T[blast];             347         G4double S1TL=lastS1T[blast];           // the low bin of the first mantissa
356         theS1=S1TL+shift*(lastS1T[lastL]-S1TL)    348         theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
357         G4double B1TL=lastB1T[blast];             349         G4double B1TL=lastB1T[blast];           // the low bin of the first slope
358         theB1=B1TL+shift*(lastB1T[lastL]-B1TL)    350         theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
359         G4double S2TL=lastS2T[blast];             351         G4double S2TL=lastS2T[blast];           // the low bin of the second mantissa
360         theS2=S2TL+shift*(lastS2T[lastL]-S2TL)    352         theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
361         G4double B2TL=lastB2T[blast];             353         G4double B2TL=lastB2T[blast];           // the low bin of the second slope
362         theB2=B2TL+shift*(lastB2T[lastL]-B2TL)    354         theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
363         G4double S3TL=lastS3T[blast];             355         G4double S3TL=lastS3T[blast];           // the low bin of the third mantissa
364         theS3=S3TL+shift*(lastS3T[lastL]-S3TL)    356         theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
365         G4double B3TL=lastB3T[blast];             357         G4double B3TL=lastB3T[blast];           // the low bin of the third slope
366         theB3=B3TL+shift*(lastB3T[lastL]-B3TL)    358         theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
367         G4double S4TL=lastS4T[blast];             359         G4double S4TL=lastS4T[blast];           // the low bin of the 4-th mantissa
368         theS4=S4TL+shift*(lastS4T[lastL]-S4TL)    360         theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
369         G4double B4TL=lastB4T[blast];             361         G4double B4TL=lastB4T[blast];           // the low bin of the 4-th slope
370         theB4=B4TL+shift*(lastB4T[lastL]-B4TL)    362         theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
371       }                                           363       }
372     }                                             364     }
373   }                                               365   }
374   else lastSIG=GetTabValues(lastLP, PDG, tgZ,     366   else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
375   if(lastSIG<0.) lastSIG = 0.;                    367   if(lastSIG<0.) lastSIG = 0.;                   // @@ a Warning print can be added
376   return lastSIG;                                 368   return lastSIG;
377 }                                                 369 }
378                                                   370 
379 // It has parameter sets for all tZ/tN/PDG, us    371 // It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
380 G4double G4ChipsKaonPlusElasticXS::GetPTables(    372 G4double G4ChipsKaonPlusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
381                                                   373                                                        G4int tgZ, G4int tgN)
382 {                                                 374 {
383   if(PDG == 321)                                  375   if(PDG == 321)
384   {                                               376   {
385     // -- Total pp elastic cross section cs &     377     // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
386     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=l    378     //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
387     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*d    379     //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
388     //   par(0)       par(7)     par(1) par(2)    380     //   par(0)       par(7)     par(1) par(2)      par(4)      par(5)         par(6)
389     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4    381     //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
390     //     par(8) par(9) par(10)        par(11    382     //     par(8) par(9) par(10)        par(11)   par(12)par(13)    par(14)
391     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+40    383     // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
392     // par(15) par(16)  par(17)     par(18) pa    384     // par(15) par(16)  par(17)     par(18) par(19)  par(20)   par(21) par(22)  par(23)
393     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10);     385     // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
394     //  par(24) par(25)     par(26)  par(27) p    386     //  par(24) par(25)     par(26)  par(27) par(28) par(29)  par(30)   par(31)
395     //                                            387     //
396     if(lastPAR[nLast]!=pwd) // A unique flag t    388     if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
397     {                                             389     {
398       if ( tgZ == 1 && tgN == 0 )                 390       if ( tgZ == 1 && tgN == 0 )
399       {                                           391       {
400         for (G4int ip=0; ip<n_kppel; ip++) las    392         for (G4int ip=0; ip<n_kppel; ip++) lastPAR[ip]=kpp_el[ip]; // KPlus+P
401       }                                           393       }
402       else                                        394       else
403       {                                           395       {
404         G4double a=tgZ+tgN;                       396         G4double a=tgZ+tgN;
405         G4double sa=std::sqrt(a);                 397         G4double sa=std::sqrt(a);
406         G4double ssa=std::sqrt(sa);               398         G4double ssa=std::sqrt(sa);
407         G4double asa=a*sa;                        399         G4double asa=a*sa;
408         G4double a2=a*a;                          400         G4double a2=a*a;
409         G4double a3=a2*a;                         401         G4double a3=a2*a;
410         G4double a4=a3*a;                         402         G4double a4=a3*a;
411         G4double a5=a4*a;                         403         G4double a5=a4*a;
412         G4double a6=a4*a2;                        404         G4double a6=a4*a2;
413         G4double a7=a6*a;                         405         G4double a7=a6*a;
414         G4double a8=a7*a;                         406         G4double a8=a7*a;
415         G4double a9=a8*a;                         407         G4double a9=a8*a;
416         G4double a10=a5*a5;                       408         G4double a10=a5*a5;
417         G4double a12=a6*a6;                       409         G4double a12=a6*a6;
418         G4double a14=a7*a7;                       410         G4double a14=a7*a7;
419         G4double a16=a8*a8;                       411         G4double a16=a8*a8;
420         G4double a17=a16*a;                       412         G4double a17=a16*a;
421         //G4double a20=a16*a4;                    413         //G4double a20=a16*a4;
422         G4double a32=a16*a16;                     414         G4double a32=a16*a16;
423         // Reaction cross-section parameters (    415         // Reaction cross-section parameters (kpael_fit.f)
424         lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa))    416         lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa));                              // p1
425         lastPAR[1]=.75*asa/(1.+.009*a);           417         lastPAR[1]=.75*asa/(1.+.009*a);                                      // p2
426         lastPAR[2]=.9*asa*ssa/(1.+.03*a);         418         lastPAR[2]=.9*asa*ssa/(1.+.03*a);                                    // p3
427         lastPAR[3]=3.;                            419         lastPAR[3]=3.;                                                       // p4
428         lastPAR[4]=4.2;                           420         lastPAR[4]=4.2;                                                      // p5
429         lastPAR[5]=0.;                            421         lastPAR[5]=0.;                                                       // p6 not used
430         lastPAR[6]=0.;                            422         lastPAR[6]=0.;                                                       // p7 not used
431         lastPAR[7]=0.;                            423         lastPAR[7]=0.;                                                       // p8 not used
432         lastPAR[8]=0.;                            424         lastPAR[8]=0.;                                                       // p9 not used
433         // @@ the differential cross-section i    425         // @@ the differential cross-section is parameterized separately for A>6 & A<7
434         if(a<6.5)                                 426         if(a<6.5)
435         {                                         427         {
436           G4double a28=a16*a12;                   428           G4double a28=a16*a12;
437           // The main pre-exponent      (pel_s    429           // The main pre-exponent      (pel_sg)
438           lastPAR[ 9]=4000*a;                     430           lastPAR[ 9]=4000*a;                                // p1
439           lastPAR[10]=1.2e7*a8+380*a17;           431           lastPAR[10]=1.2e7*a8+380*a17;                      // p2
440           lastPAR[11]=.7/(1.+4.e-12*a16);         432           lastPAR[11]=.7/(1.+4.e-12*a16);                    // p3
441           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);     433           lastPAR[12]=2.5/a8/(a4+1.e-16*a32);                // p4
442           lastPAR[13]=.28*a;                      434           lastPAR[13]=.28*a;                                 // p5
443           lastPAR[14]=1.2*a2+2.3;                 435           lastPAR[14]=1.2*a2+2.3;                            // p6
444           lastPAR[15]=3.8/a;                      436           lastPAR[15]=3.8/a;                                 // p7
445           // The main slope             (pel_s    437           // The main slope             (pel_sl)
446           lastPAR[16]=.01/(1.+.0024*a5);          438           lastPAR[16]=.01/(1.+.0024*a5);                     // p1
447           lastPAR[17]=.2*a;                       439           lastPAR[17]=.2*a;                                  // p2
448           lastPAR[18]=9.e-7/(1.+.035*a5);         440           lastPAR[18]=9.e-7/(1.+.035*a5);                    // p3
449           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.1    441           lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a);          // p4
450           // The main quadratic         (pel_s    442           // The main quadratic         (pel_sh)
451           lastPAR[20]=2.25*a3;                    443           lastPAR[20]=2.25*a3;                               // p1
452           lastPAR[21]=18.;                        444           lastPAR[21]=18.;                                   // p2
453           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7)    445           lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7);              // p3
454           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-1    446           lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a);      // p4
455           // The 1st max pre-exponent   (pel_q    447           // The 1st max pre-exponent   (pel_qq)
456           lastPAR[24]=1.e5/(a8+2.5e12/a16);       448           lastPAR[24]=1.e5/(a8+2.5e12/a16);                  // p1
457           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28    449           lastPAR[25]=8.e7/(a12+1.e-27*a28*a28);             // p2 
458           lastPAR[26]=.0006*a3;                   450           lastPAR[26]=.0006*a3;                              // p3
459           // The 1st max slope          (pel_q    451           // The 1st max slope          (pel_qs)
460           lastPAR[27]=10.+4.e-8*a12*a;            452           lastPAR[27]=10.+4.e-8*a12*a;                       // p1
461           lastPAR[28]=.114;                       453           lastPAR[28]=.114;                                  // p2
462           lastPAR[29]=.003;                       454           lastPAR[29]=.003;                                  // p3
463           lastPAR[30]=2.e-23;                     455           lastPAR[30]=2.e-23;                                // p4
464           // The effective pre-exponent (pel_s    456           // The effective pre-exponent (pel_ss)
465           lastPAR[31]=1./(1.+.0001*a8);           457           lastPAR[31]=1./(1.+.0001*a8);                      // p1
466           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);      458           lastPAR[32]=1.5e-4/(1.+5.e-6*a12);                 // p2
467           lastPAR[33]=.03;                        459           lastPAR[33]=.03;                                   // p3
468           // The effective slope        (pel_s    460           // The effective slope        (pel_sb)
469           lastPAR[34]=a/2;                        461           lastPAR[34]=a/2;                                   // p1
470           lastPAR[35]=2.e-7*a4;                   462           lastPAR[35]=2.e-7*a4;                              // p2
471           lastPAR[36]=4.;                         463           lastPAR[36]=4.;                                    // p3
472           lastPAR[37]=64./a3;                     464           lastPAR[37]=64./a3;                                // p4
473           // The gloria pre-exponent    (pel_u    465           // The gloria pre-exponent    (pel_us)
474           lastPAR[38]=1.e8*std::exp(.32*asa);     466           lastPAR[38]=1.e8*std::exp(.32*asa);                // p1
475           lastPAR[39]=20.*std::exp(.45*asa);      467           lastPAR[39]=20.*std::exp(.45*asa);                 // p2
476           lastPAR[40]=7.e3+2.4e6/a5;              468           lastPAR[40]=7.e3+2.4e6/a5;                         // p3
477           lastPAR[41]=2.5e5*std::exp(.085*a3);    469           lastPAR[41]=2.5e5*std::exp(.085*a3);               // p4
478           lastPAR[42]=2.5*a;                      470           lastPAR[42]=2.5*a;                                 // p5
479           // The gloria slope           (pel_u    471           // The gloria slope           (pel_ub)
480           lastPAR[43]=920.+.03*a8*a3;             472           lastPAR[43]=920.+.03*a8*a3;                        // p1
481           lastPAR[44]=93.+.0023*a12;              473           lastPAR[44]=93.+.0023*a12;                         // p2
482         }                                         474         }
483         else                                      475         else
484         {                                         476         {
485           G4double p1a10=2.2e-28*a10;             477           G4double p1a10=2.2e-28*a10;
486           G4double r4a16=6.e14/a16;               478           G4double r4a16=6.e14/a16;
487           G4double s4a16=r4a16*r4a16;             479           G4double s4a16=r4a16*r4a16;
488           // a24                                  480           // a24
489           // a36                                  481           // a36
490           // The main pre-exponent      (peh_s    482           // The main pre-exponent      (peh_sg)
491           lastPAR[ 9]=4.5*std::pow(a,1.15);       483           lastPAR[ 9]=4.5*std::pow(a,1.15);                  // p1
492           lastPAR[10]=.06*std::pow(a,.6);         484           lastPAR[10]=.06*std::pow(a,.6);                    // p2
493           lastPAR[11]=.6*a/(1.+2.e15/a16);        485           lastPAR[11]=.6*a/(1.+2.e15/a16);                   // p3
494           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a3    486           lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32);            // p4
495           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4    487           lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5);      // p5
496           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.    488           lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12);  // p6
497           // The main slope             (peh_s    489           // The main slope             (peh_sl)
498           lastPAR[15]=400./a12+2.e-22*a9;         490           lastPAR[15]=400./a12+2.e-22*a9;                    // p1
499           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14    491           lastPAR[16]=1.e-32*a12/(1.+5.e22/a14);             // p2
500           lastPAR[17]=1000./a2+9.5*sa*ssa;        492           lastPAR[17]=1000./a2+9.5*sa*ssa;                   // p3
501           lastPAR[18]=4.e-6*a*asa+1.e11/a16;      493           lastPAR[18]=4.e-6*a*asa+1.e11/a16;                 // p4
502           lastPAR[19]=(120./a+.002*a2)/(1.+2.e    494           lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16);       // p5
503           lastPAR[20]=9.+100./a;                  495           lastPAR[20]=9.+100./a;                             // p6
504           // The main quadratic         (peh_s    496           // The main quadratic         (peh_sh)
505           lastPAR[21]=.002*a3+3.e7/a6;            497           lastPAR[21]=.002*a3+3.e7/a6;                       // p1
506           lastPAR[22]=7.e-15*a4*asa;              498           lastPAR[22]=7.e-15*a4*asa;                         // p2
507           lastPAR[23]=9000./a4;                   499           lastPAR[23]=9000./a4;                              // p3
508           // The 1st max pre-exponent   (peh_q    500           // The 1st max pre-exponent   (peh_qq)
509           lastPAR[24]=.0011*asa/(1.+3.e34/a32/    501           lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4);           // p1
510           lastPAR[25]=1.e-5*a2+2.e14/a16;         502           lastPAR[25]=1.e-5*a2+2.e14/a16;                    // p2
511           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a1    503           lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12);            // p3
512           lastPAR[27]=.016*asa/(1.+5.e16/a16);    504           lastPAR[27]=.016*asa/(1.+5.e16/a16);               // p4
513           // The 1st max slope          (peh_q    505           // The 1st max slope          (peh_qs)
514           lastPAR[28]=.002*a4/(1.+7.e7/std::po    506           lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
515           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.    507           lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11);           // p2
516           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8)    508           lastPAR[30]=11.*a3/(1.+7.e23/a16/a8);              // p3
517           lastPAR[31]=100./asa;                   509           lastPAR[31]=100./asa;                              // p4
518           // The 2nd max pre-exponent   (peh_s    510           // The 2nd max pre-exponent   (peh_ss)
519           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/    511           lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4);           // p1
520           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);     512           lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8);                // p2
521           lastPAR[34]=1.3+3.e5/a4;                513           lastPAR[34]=1.3+3.e5/a4;                           // p3
522           lastPAR[35]=500./(a2+50.)+3;            514           lastPAR[35]=500./(a2+50.)+3;                       // p4
523           lastPAR[36]=1.e-9/a+s4a16*s4a16;        515           lastPAR[36]=1.e-9/a+s4a16*s4a16;                   // p5
524           // The 2nd max slope          (peh_s    516           // The 2nd max slope          (peh_sb)
525           lastPAR[37]=.4*asa+3.e-9*a6;            517           lastPAR[37]=.4*asa+3.e-9*a6;                       // p1
526           lastPAR[38]=.0005*a5;                   518           lastPAR[38]=.0005*a5;                              // p2
527           lastPAR[39]=.002*a5;                    519           lastPAR[39]=.002*a5;                               // p3
528           lastPAR[40]=10.;                        520           lastPAR[40]=10.;                                   // p4
529           // The effective pre-exponent (peh_u    521           // The effective pre-exponent (peh_us)
530           lastPAR[41]=.05+.005*a;                 522           lastPAR[41]=.05+.005*a;                            // p1
531           lastPAR[42]=7.e-8/sa;                   523           lastPAR[42]=7.e-8/sa;                              // p2
532           lastPAR[43]=.8*sa;                      524           lastPAR[43]=.8*sa;                                 // p3
533           lastPAR[44]=.02*sa;                     525           lastPAR[44]=.02*sa;                                // p4
534           lastPAR[45]=1.e8/a3;                    526           lastPAR[45]=1.e8/a3;                               // p5
535           lastPAR[46]=3.e32/(a32+1.e32);          527           lastPAR[46]=3.e32/(a32+1.e32);                     // p6
536           // The effective slope        (peh_u    528           // The effective slope        (peh_ub)
537           lastPAR[47]=24.;                        529           lastPAR[47]=24.;                                   // p1
538           lastPAR[48]=20./sa;                     530           lastPAR[48]=20./sa;                                // p2
539           lastPAR[49]=7.e3*a/(sa+1.);             531           lastPAR[49]=7.e3*a/(sa+1.);                        // p3
540           lastPAR[50]=900.*sa/(1.+500./a3);       532           lastPAR[50]=900.*sa/(1.+500./a3);                  // p4
541         }                                         533         }
542         // Parameter for lowEnergyNeutrons        534         // Parameter for lowEnergyNeutrons
543         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*    535         lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
544       }                                           536       }
545       lastPAR[nLast]=pwd;                         537       lastPAR[nLast]=pwd;
546       // and initialize the zero element of th    538       // and initialize the zero element of the table
547       G4double lp=lPMin;                          539       G4double lp=lPMin;                                      // ln(momentum)
548       G4bool memCS=onlyCS;                        540       G4bool memCS=onlyCS;                                    // ??
549       onlyCS=false;                               541       onlyCS=false;
550       lastCST[0]=GetTabValues(lp, PDG, tgZ, tg    542       lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
551       onlyCS=memCS;                               543       onlyCS=memCS;
552       lastSST[0]=theSS;                           544       lastSST[0]=theSS;
553       lastS1T[0]=theS1;                           545       lastS1T[0]=theS1;
554       lastB1T[0]=theB1;                           546       lastB1T[0]=theB1;
555       lastS2T[0]=theS2;                           547       lastS2T[0]=theS2;
556       lastB2T[0]=theB2;                           548       lastB2T[0]=theB2;
557       lastS3T[0]=theS3;                           549       lastS3T[0]=theS3;
558       lastB3T[0]=theB3;                           550       lastB3T[0]=theB3;
559       lastS4T[0]=theS4;                           551       lastS4T[0]=theS4;
560       lastB4T[0]=theB4;                           552       lastB4T[0]=theB4;
561     }                                             553     }
562     if(LP>ILP)                                    554     if(LP>ILP)
563     {                                             555     {
564       G4int ini = static_cast<int>((ILP-lPMin+    556       G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
565       if(ini<0) ini=0;                            557       if(ini<0) ini=0;
566       if(ini<nPoints)                             558       if(ini<nPoints)
567       {                                           559       {
568         G4int fin = static_cast<int>((LP-lPMin    560         G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
569         if(fin>=nPoints) fin=nLast;               561         if(fin>=nPoints) fin=nLast;               // Limit of the tabular initialization
570         if(fin>=ini)                              562         if(fin>=ini)
571         {                                         563         {
572           G4double lp=0.;                         564           G4double lp=0.;
573           for(G4int ip=ini; ip<=fin; ip++)        565           for(G4int ip=ini; ip<=fin; ip++)        // Calculate tabular CS,S1,B1,S2,B2,S3,B3
574           {                                       566           {
575             lp=lPMin+ip*dlnP;                     567             lp=lPMin+ip*dlnP;                     // ln(momentum)
576             G4bool memCS=onlyCS;                  568             G4bool memCS=onlyCS;
577             onlyCS=false;                         569             onlyCS=false;
578             lastCST[ip]=GetTabValues(lp, PDG,     570             lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
579             onlyCS=memCS;                         571             onlyCS=memCS;
580             lastSST[ip]=theSS;                    572             lastSST[ip]=theSS;
581             lastS1T[ip]=theS1;                    573             lastS1T[ip]=theS1;
582             lastB1T[ip]=theB1;                    574             lastB1T[ip]=theB1;
583             lastS2T[ip]=theS2;                    575             lastS2T[ip]=theS2;
584             lastB2T[ip]=theB2;                    576             lastB2T[ip]=theB2;
585             lastS3T[ip]=theS3;                    577             lastS3T[ip]=theS3;
586             lastB3T[ip]=theB3;                    578             lastB3T[ip]=theB3;
587             lastS4T[ip]=theS4;                    579             lastS4T[ip]=theS4;
588             lastB4T[ip]=theB4;                    580             lastB4T[ip]=theB4;
589           }                                       581           }
590           return lp;                              582           return lp;
591         }                                         583         }
592         else G4cout<<"*Warning*G4ChipsKaonPlus    584         else G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG
593                    <<", Z="<<tgZ<<", N="<<tgN<    585                    <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
594                    <<" > ILP="<<ILP<<" nothing    586                    <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
595       }                                           587       }
596       else G4cout<<"*Warning*G4ChipsKaonPlusEl    588       else G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG
597                  <<", Z="<<tgZ<<", N="<<tgN<<"    589                  <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
598                  <<" > ILP="<<ILP<<", lPMax="<    590                  <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
599     }                                             591     }
600   }                                               592   }
601   else                                            593   else
602   {                                               594   {
603     // G4cout<<"*Error*G4ChipsKaonPlusElasticX    595     // G4cout<<"*Error*G4ChipsKaonPlusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
604     //       <<", N="<<tgN<<", while it is def    596     //       <<", N="<<tgN<<", while it is defined only for PDG=321"<<G4endl;
605     // throw G4QException("G4ChipsKaonPlusElas    597     // throw G4QException("G4ChipsKaonPlusElasticXS::GetPTables:onlyK+ is implemented");
606     G4ExceptionDescription ed;                    598     G4ExceptionDescription ed;
607     ed << "PDG = " << PDG << ", Z = " << tgZ <    599     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
608        << ", while it is defined only for PDG=    600        << ", while it is defined only for PDG=321 (K+) " << G4endl;
609     G4Exception("G4ChipsKaonPlusElasticXS::Get    601     G4Exception("G4ChipsKaonPlusElasticXS::GetPTables()", "HAD_CHPS_0000",
610                 FatalException, ed);              602                 FatalException, ed);
611   }                                               603   }
612   return ILP;                                     604   return ILP;
613 }                                                 605 }
614                                                   606 
615 // Returns Q2=-t in independent units (MeV^2)     607 // Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
616 G4double G4ChipsKaonPlusElasticXS::GetExchange    608 G4double G4ChipsKaonPlusElasticXS::GetExchangeT(G4int tgZ, G4int tgN, G4int PDG)
617 {                                                 609 {
618   if(PDG!=321) G4cout<<"*Warning*G4ChipsKaonPl    610   if(PDG!=321) G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetExT:PDG="<<PDG<<G4endl;
619   if(onlyCS) G4cout<<"*Warning*G4ChipsKaonPlus    611   if(onlyCS) G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetExT: onlyCS=1"<<G4endl;
620   if(lastLP<-4.3) return lastTM*GeVSQ*G4Unifor    612   if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
621   G4double q2=0.;                                 613   G4double q2=0.;
622   if(tgZ==1 && tgN==0)                // ===>     614   if(tgZ==1 && tgN==0)                // ===> p+p=p+p
623   {                                               615   {
624     G4double E1=lastTM*theB1;                     616     G4double E1=lastTM*theB1;
625     G4double R1=(1.-std::exp(-E1));               617     G4double R1=(1.-std::exp(-E1));
626     G4double E2=lastTM*theB2;                     618     G4double E2=lastTM*theB2;
627     G4double R2=(1.-std::exp(-E2*E2*E2));         619     G4double R2=(1.-std::exp(-E2*E2*E2));
628     G4double E3=lastTM*theB3;                     620     G4double E3=lastTM*theB3;
629     G4double R3=(1.-std::exp(-E3));               621     G4double R3=(1.-std::exp(-E3));
630     G4double I1=R1*theS1/theB1;                   622     G4double I1=R1*theS1/theB1;
631     G4double I2=R2*theS2;                         623     G4double I2=R2*theS2;
632     G4double I3=R3*theS3;                         624     G4double I3=R3*theS3;
633     G4double I12=I1+I2;                           625     G4double I12=I1+I2;
634     G4double rand=(I12+I3)*G4UniformRand();       626     G4double rand=(I12+I3)*G4UniformRand();
635     if     (rand<I1 )                             627     if     (rand<I1 )
636     {                                             628     {
637       G4double ran=R1*G4UniformRand();            629       G4double ran=R1*G4UniformRand();
638       if(ran>1.) ran=1.;                          630       if(ran>1.) ran=1.;
639       q2=-std::log(1.-ran)/theB1;                 631       q2=-std::log(1.-ran)/theB1;
640     }                                             632     }
641     else if(rand<I12)                             633     else if(rand<I12)
642     {                                             634     {
643       G4double ran=R2*G4UniformRand();            635       G4double ran=R2*G4UniformRand();
644       if(ran>1.) ran=1.;                          636       if(ran>1.) ran=1.;
645       q2=-std::log(1.-ran);                       637       q2=-std::log(1.-ran);
646       if(q2<0.) q2=0.;                            638       if(q2<0.) q2=0.;
647       q2=std::pow(q2,third)/theB2;                639       q2=std::pow(q2,third)/theB2;
648     }                                             640     }
649     else                                          641     else
650     {                                             642     {
651       G4double ran=R3*G4UniformRand();            643       G4double ran=R3*G4UniformRand();
652       if(ran>1.) ran=1.;                          644       if(ran>1.) ran=1.;
653       q2=-std::log(1.-ran)/theB3;                 645       q2=-std::log(1.-ran)/theB3;
654     }                                             646     }
655   }                                               647   }
656   else                                            648   else
657   {                                               649   {
658     G4double a=tgZ+tgN;                           650     G4double a=tgZ+tgN;
659     G4double E1=lastTM*(theB1+lastTM*theSS);      651     G4double E1=lastTM*(theB1+lastTM*theSS);
660     G4double R1=(1.-std::exp(-E1));               652     G4double R1=(1.-std::exp(-E1));
661     G4double tss=theSS+theSS; // for future so    653     G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
662     G4double tm2=lastTM*lastTM;                   654     G4double tm2=lastTM*lastTM;
663     G4double E2=lastTM*tm2*theB2;                 655     G4double E2=lastTM*tm2*theB2;                   // power 3 for lowA, 5 for HighA (1st)
664     if(a>6.5)E2*=tm2;                             656     if(a>6.5)E2*=tm2;                               // for heavy nuclei
665     G4double R2=(1.-std::exp(-E2));               657     G4double R2=(1.-std::exp(-E2));
666     G4double E3=lastTM*theB3;                     658     G4double E3=lastTM*theB3;
667     if(a>6.5)E3*=tm2*tm2*tm2;                     659     if(a>6.5)E3*=tm2*tm2*tm2;                       // power 1 for lowA, 7 (2nd) for HighA
668     G4double R3=(1.-std::exp(-E3));               660     G4double R3=(1.-std::exp(-E3));
669     G4double E4=lastTM*theB4;                     661     G4double E4=lastTM*theB4;
670     G4double R4=(1.-std::exp(-E4));               662     G4double R4=(1.-std::exp(-E4));
671     G4double I1=R1*theS1;                         663     G4double I1=R1*theS1;
672     G4double I2=R2*theS2;                         664     G4double I2=R2*theS2;
673     G4double I3=R3*theS3;                         665     G4double I3=R3*theS3;
674     G4double I4=R4*theS4;                         666     G4double I4=R4*theS4;
675     G4double I12=I1+I2;                           667     G4double I12=I1+I2;
676     G4double I13=I12+I3;                          668     G4double I13=I12+I3;
677     G4double rand=(I13+I4)*G4UniformRand();       669     G4double rand=(I13+I4)*G4UniformRand();
678     if(rand<I1)                                   670     if(rand<I1)
679     {                                             671     {
680       G4double ran=R1*G4UniformRand();            672       G4double ran=R1*G4UniformRand();
681       if(ran>1.) ran=1.;                          673       if(ran>1.) ran=1.;
682       q2=-std::log(1.-ran)/theB1;                 674       q2=-std::log(1.-ran)/theB1;
683       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(t    675       if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
684     }                                             676     }
685     else if(rand<I12)                             677     else if(rand<I12)
686     {                                             678     {
687       G4double ran=R2*G4UniformRand();            679       G4double ran=R2*G4UniformRand();
688       if(ran>1.) ran=1.;                          680       if(ran>1.) ran=1.;
689       q2=-std::log(1.-ran)/theB2;                 681       q2=-std::log(1.-ran)/theB2;
690       if(q2<0.) q2=0.;                            682       if(q2<0.) q2=0.;
691       if(a<6.5) q2=std::pow(q2,third);            683       if(a<6.5) q2=std::pow(q2,third);
692       else      q2=std::pow(q2,fifth);            684       else      q2=std::pow(q2,fifth);
693     }                                             685     }
694     else if(rand<I13)                             686     else if(rand<I13)
695     {                                             687     {
696       G4double ran=R3*G4UniformRand();            688       G4double ran=R3*G4UniformRand();
697       if(ran>1.) ran=1.;                          689       if(ran>1.) ran=1.;
698       q2=-std::log(1.-ran)/theB3;                 690       q2=-std::log(1.-ran)/theB3;
699       if(q2<0.) q2=0.;                            691       if(q2<0.) q2=0.;
700       if(a>6.5) q2=std::pow(q2,sevth);            692       if(a>6.5) q2=std::pow(q2,sevth);
701     }                                             693     }
702     else                                          694     else
703     {                                             695     {
704       G4double ran=R4*G4UniformRand();            696       G4double ran=R4*G4UniformRand();
705       if(ran>1.) ran=1.;                          697       if(ran>1.) ran=1.;
706       q2=-std::log(1.-ran)/theB4;                 698       q2=-std::log(1.-ran)/theB4;
707       if(a<6.5) q2=lastTM-q2;                     699       if(a<6.5) q2=lastTM-q2;                    // u reduced for lightA (starts from 0)
708     }                                             700     }
709   }                                               701   }
710   if(q2<0.) q2=0.;                                702   if(q2<0.) q2=0.;
711   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaon    703   if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonPlusElasticCS::GetExchT: -t="<<q2<<G4endl;
712   if(q2>lastTM)                                   704   if(q2>lastTM)
713   {                                               705   {
714     q2=lastTM;                                    706     q2=lastTM;
715   }                                               707   }
716   return q2*GeVSQ;                                708   return q2*GeVSQ;
717 }                                                 709 }
718                                                   710 
719 // Returns B in independent units (MeV^-2) (al    711 // Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
720 G4double G4ChipsKaonPlusElasticXS::GetSlope(G4    712 G4double G4ChipsKaonPlusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
721 {                                                 713 {
722   if(onlyCS)G4cout<<"*Warning*G4ChipsKaonPlusE    714   if(onlyCS)G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetSl:onlCS=true"<<G4endl;
723   if(lastLP<-4.3) return 0.;          // S-wav    715   if(lastLP<-4.3) return 0.;          // S-wave for p<14 MeV/c (kinE<.1MeV)
724   if(PDG != 321)                                  716   if(PDG != 321)
725   {                                               717   {
726     G4ExceptionDescription ed;                    718     G4ExceptionDescription ed;
727     ed << "PDG = " << PDG << ", Z = " << tgZ <    719     ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
728        << ", while it is defined only for PDG=    720        << ", while it is defined only for PDG=321 (K+)" << G4endl;
729     G4Exception("G4ChipsKaonPlusElasticXS::Get    721     G4Exception("G4ChipsKaonPlusElasticXS::GetSlope()", "HAD_CHPS_0000",
730                 FatalException, ed);              722                 FatalException, ed);
731   }                                               723   }
732   if(theB1<0.) theB1=0.;                          724   if(theB1<0.) theB1=0.;
733   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4    725   if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonPlusElCS::GetSlope:B1="<<theB1<<G4endl;
734   return theB1/GeVSQ;                             726   return theB1/GeVSQ;
735 }                                                 727 }
736                                                   728 
737 // Returns half max(Q2=-t) in independent unit    729 // Returns half max(Q2=-t) in independent units (MeV^2)
738 G4double G4ChipsKaonPlusElasticXS::GetHMaxT()     730 G4double G4ChipsKaonPlusElasticXS::GetHMaxT()
739 {                                                 731 {
740   return lastTM*HGeVSQ;                           732   return lastTM*HGeVSQ;
741 }                                                 733 }
742                                                   734 
743 // lastLP is used, so calculating tables, one     735 // lastLP is used, so calculating tables, one need to remember and then recover lastLP
744 G4double G4ChipsKaonPlusElasticXS::GetTabValue    736 G4double G4ChipsKaonPlusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
745                                                   737                                                     G4int tgN)
746 {                                                 738 {
747   if(PDG!=321)G4cout<<"*Warning*G4ChipsKaonPlu    739   if(PDG!=321)G4cout<<"*Warning*G4ChipsKaonPlusElasticXS::GetTaV:PDG="<<PDG<<G4endl;
748                                                << 740   if(tgZ<0 || tgZ>92)
749   //AR-24Apr2018 Switch to allow transuranic e << 
750   const G4bool isHeavyElementAllowed = true;   << 
751   if(tgZ<0 || ( !isHeavyElementAllowed && tgZ> << 
752   {                                               741   {
753     G4cout<<"*Warning*G4QKaonPlusElasticCS::Ge    742     G4cout<<"*Warning*G4QKaonPlusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
754     return 0.;                                    743     return 0.;
755   }                                               744   }
756   G4int iZ=tgZ-1; // Z index                      745   G4int iZ=tgZ-1; // Z index
757   if(iZ<0)                                        746   if(iZ<0)
758   {                                               747   {
759     iZ=0;         // conversion of the neutron    748     iZ=0;         // conversion of the neutron target to the proton target
760     tgZ=1;                                        749     tgZ=1;
761     tgN=0;                                        750     tgN=0;
762   }                                               751   }
763   G4double p=std::exp(lp);              // mom    752   G4double p=std::exp(lp);              // momentum
764   G4double sp=std::sqrt(p);             // sqr    753   G4double sp=std::sqrt(p);             // sqrt(p)
765   G4double p2=p*p;                                754   G4double p2=p*p;            
766   G4double p3=p2*p;                               755   G4double p3=p2*p;
767   G4double p4=p3*p;                               756   G4double p4=p3*p;
768   if ( tgZ == 1 && tgN == 0 ) // KaonPlus+P       757   if ( tgZ == 1 && tgN == 0 ) // KaonPlus+P
769   {                                               758   {
770     G4double dl2=lp-lastPAR[11];                  759     G4double dl2=lp-lastPAR[11];
771     theSS=lastPAR[34];                            760     theSS=lastPAR[34];
772     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1    761     theS1=(lastPAR[12]+lastPAR[13]*dl2*dl2)/(1.+lastPAR[14]/p4/p)+
773           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+l    762           (lastPAR[15]/p2+lastPAR[16]*p)/(p4+lastPAR[17]*sp);
774     theB1=lastPAR[18]*std::pow(p,lastPAR[19])/    763     theB1=lastPAR[18]*std::pow(p,lastPAR[19])/(1.+lastPAR[20]/p3);
775     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[    764     theS2=lastPAR[21]+lastPAR[22]/(p4+lastPAR[23]*p);
776     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[    765     theB2=lastPAR[24]+lastPAR[25]/(p4+lastPAR[26]/sp); 
777     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastP    766     theS3=lastPAR[27]+lastPAR[28]/(p4*p4+lastPAR[29]*p2+lastPAR[30]);
778     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[    767     theB3=lastPAR[31]+lastPAR[32]/(p4+lastPAR[33]); 
779     theS4=0.;                                     768     theS4=0.;
780     theB4=0.;                                     769     theB4=0.; 
781     // Returns the total elastic pim-p cross-s    770     // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
782     G4double dp=lp-lastPAR[4];                    771     G4double dp=lp-lastPAR[4];
783 //G4cout<<"lastPAR[8] "<<lastPAR[8]<<" lastPAR    772 //G4cout<<"lastPAR[8] "<<lastPAR[8]<<" lastPAR[9] "<<lastPAR[9]<<" lastPAR[10] "<<lastPAR[10]<<G4endl; 
784     return lastPAR[0]/(lastPAR[2]+sqr(p-lastPA    773     return lastPAR[0]/(lastPAR[2]+sqr(p-lastPAR[1]))+(lastPAR[3]*dp*dp+lastPAR[5])/
785            (1.-lastPAR[6]/sp+lastPAR[7]/p4)       774            (1.-lastPAR[6]/sp+lastPAR[7]/p4)
786            +lastPAR[8]/(sqr(p-lastPAR[9])+last    775            +lastPAR[8]/(sqr(p-lastPAR[9])+lastPAR[10]);    // Uzhi
787                                                   776 
788   }                                               777   }
789   else                                            778   else
790   {                                               779   {
791     G4double p5=p4*p;                             780     G4double p5=p4*p;
792     G4double p6=p5*p;                             781     G4double p6=p5*p;
793     G4double p8=p6*p2;                            782     G4double p8=p6*p2;
794     G4double p10=p8*p2;                           783     G4double p10=p8*p2;
795     G4double p12=p10*p2;                          784     G4double p12=p10*p2;
796     G4double p16=p8*p8;                           785     G4double p16=p8*p8;
797     //G4double p24=p16*p8;                        786     //G4double p24=p16*p8;
798     G4double dl=lp-5.;                            787     G4double dl=lp-5.;
799     G4double a=tgZ+tgN;                           788     G4double a=tgZ+tgN;
800     G4double pah=std::pow(p,a/2);                 789     G4double pah=std::pow(p,a/2);
801     G4double pa=pah*pah;                          790     G4double pa=pah*pah;
802     G4double pa2=pa*pa;                           791     G4double pa2=pa*pa;
803     if(a<6.5)                                     792     if(a<6.5)
804     {                                             793     {
805       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+    794       theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
806             (lastPAR[13]*dl*dl+lastPAR[14])/(1    795             (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
807       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+l    796       theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
808       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+la    797       theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
809       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)    798       theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
810       theB2=lastPAR[27]*std::pow(p,lastPAR[28]    799       theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
811       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+    800       theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
812       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+la    801       theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
813       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*    802       theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
814                 lastPAR[40]/(1.+lastPAR[41]*st    803                 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
815       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[4    804       theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
816     }                                             805     }
817     else                                          806     else
818     {                                             807     {
819       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+las    808       theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
820             lastPAR[13]/(p5+lastPAR[14]/p16);     809             lastPAR[13]/(p5+lastPAR[14]/p16);
821       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+la    810       theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
822             lastPAR[17]/(1.+lastPAR[18]/p4);      811             lastPAR[17]/(1.+lastPAR[18]/p4);
823       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR    812       theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
824       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR    813       theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
825       theB2=lastPAR[28]/std::pow(p,lastPAR[29]    814       theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
826       theS3=lastPAR[32]/std::pow(p,lastPAR[35]    815       theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
827             lastPAR[33]/(1.+lastPAR[34]/p6);      816             lastPAR[33]/(1.+lastPAR[34]/p6);
828       theB3=lastPAR[37]/p8+lastPAR[38]/p2+last    817       theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
829       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.    818       theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
830             (lastPAR[43]+lastPAR[44]*dl*dl)/(1    819             (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
831       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+las    820       theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
832     }                                             821     }
833     // Returns the total elastic (n/p)A cross-    822     // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
834     G4double dlp=lp-lastPAR[4]; // ax             823     G4double dlp=lp-lastPAR[4]; // ax
835     //         p1                p2          p    824     //         p1                p2          p3                 p4
836     return (lastPAR[0]*dlp*dlp+lastPAR[1]+last    825     return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p2)/(1.+lastPAR[3]/p2/sp);
837   }                                               826   }
838   return 0.;                                      827   return 0.;
839 } // End of GetTableValues                        828 } // End of GetTableValues
840                                                   829 
841 // Returns max -t=Q2 (GeV^2) for the momentum     830 // Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
842 G4double G4ChipsKaonPlusElasticXS::GetQ2max(G4    831 G4double G4ChipsKaonPlusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
843                                                   832                                                     G4double pP)
844 {                                                 833 {
845   G4double pP2=pP*pP;                             834   G4double pP2=pP*pP;                                 // squared momentum of the projectile
846   if(tgZ || tgN>-1)                               835   if(tgZ || tgN>-1)                                   // ---> pipA
847   {                                               836   {
848     G4double mt=G4ParticleTable::GetParticleTa    837     G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
849                                                   838 
850     G4double dmt=mt+mt;                           839     G4double dmt=mt+mt;
851     G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt    840     G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt;    // Mondelstam mds
852     return dmt*dmt*pP2/mds;                       841     return dmt*dmt*pP2/mds;
853   }                                               842   }
854   else                                            843   else
855   {                                               844   {
856     G4ExceptionDescription ed;                    845     G4ExceptionDescription ed;
857     ed << "PDG = " << PDG << ",Z = " << tgZ <<    846     ed << "PDG = " << PDG << ",Z = " << tgZ << ", N = " << tgN
858        << ", while it is defined only for p pr    847        << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
859     G4Exception("G4ChipsKaonPlusElasticXS::Get    848     G4Exception("G4ChipsKaonPlusElasticXS::GetQ2max()", "HAD_CHPS_0000",
860                 FatalException, ed);              849                 FatalException, ed);
861     return 0;                                     850     return 0;
862   }                                               851   }
863 }                                                 852 }
864                                                   853