Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02 >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 28 // 29 // 29 // ******************************************* 30 // **************************************************************************************** 30 // Short description: Cross-sections extracted 31 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 31 // Hyperon-nuclear interactions. Original aut 32 // Hyperon-nuclear interactions. Original author: M. Kossov 32 // ------------------------------------------- 33 // ------------------------------------------------------------------------------------- 33 // 34 // 34 35 35 #include "G4ChipsHyperonInelasticXS.hh" 36 #include "G4ChipsHyperonInelasticXS.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4SystemOfUnits.hh" 37 #include "G4DynamicParticle.hh" 38 #include "G4DynamicParticle.hh" 38 #include "G4ParticleDefinition.hh" 39 #include "G4ParticleDefinition.hh" 39 #include "G4Lambda.hh" 40 #include "G4Lambda.hh" 40 #include "G4SigmaPlus.hh" 41 #include "G4SigmaPlus.hh" 41 #include "G4SigmaMinus.hh" 42 #include "G4SigmaMinus.hh" 42 #include "G4SigmaZero.hh" 43 #include "G4SigmaZero.hh" 43 #include "G4XiMinus.hh" 44 #include "G4XiMinus.hh" 44 #include "G4XiZero.hh" 45 #include "G4XiZero.hh" 45 #include "G4OmegaMinus.hh" 46 #include "G4OmegaMinus.hh" 46 #include "G4Log.hh" << 47 #include "G4Exp.hh" << 48 47 49 // factory 48 // factory 50 #include "G4CrossSectionFactory.hh" 49 #include "G4CrossSectionFactory.hh" 51 // 50 // 52 G4_DECLARE_XS_FACTORY(G4ChipsHyperonInelasticX 51 G4_DECLARE_XS_FACTORY(G4ChipsHyperonInelasticXS); 53 52 54 G4ChipsHyperonInelasticXS::G4ChipsHyperonInela 53 G4ChipsHyperonInelasticXS::G4ChipsHyperonInelasticXS():G4VCrossSectionDataSet(Default_Name()) 55 { 54 { 56 // Initialization of the 55 // Initialization of the 57 lastLEN=0; // Pointer to the lastArray of Lo 56 lastLEN=0; // Pointer to the lastArray of LowEn CS 58 lastHEN=0; // Pointer to the lastArray of Hi 57 lastHEN=0; // Pointer to the lastArray of HighEn CS 59 lastN=0; // The last N of calculated nucle 58 lastN=0; // The last N of calculated nucleus 60 lastZ=0; // The last Z of calculated nucle 59 lastZ=0; // The last Z of calculated nucleus 61 lastP=0.; // Last used in cross section Mom 60 lastP=0.; // Last used in cross section Momentum 62 lastTH=0.; // Last threshold momentum 61 lastTH=0.; // Last threshold momentum 63 lastCS=0.; // Last value of the Cross Sectio 62 lastCS=0.; // Last value of the Cross Section 64 lastI=0; // The last position in the DAMDB 63 lastI=0; // The last position in the DAMDB 65 LEN = new std::vector<G4double*>; 64 LEN = new std::vector<G4double*>; 66 HEN = new std::vector<G4double*>; 65 HEN = new std::vector<G4double*>; 67 } 66 } 68 67 69 G4ChipsHyperonInelasticXS::~G4ChipsHyperonInel 68 G4ChipsHyperonInelasticXS::~G4ChipsHyperonInelasticXS() 70 { 69 { 71 std::size_t lens=LEN->size(); << 70 G4int lens=LEN->size(); 72 for(std::size_t i=0; i<lens; ++i) delete[] << 71 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i]; 73 delete LEN; 72 delete LEN; 74 73 75 std::size_t hens=HEN->size(); << 74 G4int hens=HEN->size(); 76 for(std::size_t i=0; i<hens; ++i) delete[] << 75 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i]; 77 delete HEN; 76 delete HEN; 78 } 77 } 79 78 80 void G4ChipsHyperonInelasticXS::CrossSectionDe << 79 G4bool G4ChipsHyperonInelasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int, 81 { << 82 outFile << "G4ChipsHyperonInelasticXS provid << 83 << "section for hyperon nucleus scat << 84 << "momentum. The cross section is c << 85 << "CHIPS parameterization of cross << 86 } << 87 << 88 G4bool G4ChipsHyperonInelasticXS::IsIsoApplica << 89 const G4Element*, 80 const G4Element*, 90 const G4Material*) 81 const G4Material*) 91 { 82 { 92 return true; << 83 G4ParticleDefinition* particle = Pt->GetDefinition(); >> 84 if (particle == G4Lambda::Lambda()) >> 85 { >> 86 return true; >> 87 } >> 88 else if(particle == G4SigmaPlus::SigmaPlus()) >> 89 { >> 90 return true; >> 91 } >> 92 else if(particle == G4SigmaMinus::SigmaMinus()) >> 93 { >> 94 return true; >> 95 } >> 96 else if(particle == G4SigmaZero::SigmaZero()) >> 97 { >> 98 return true; >> 99 } >> 100 else if(particle == G4XiMinus::XiMinus()) >> 101 { >> 102 return true; >> 103 } >> 104 else if(particle == G4XiZero::XiZero()) >> 105 { >> 106 return true; >> 107 } >> 108 else if(particle == G4OmegaMinus::OmegaMinus()) >> 109 { >> 110 return true; >> 111 } >> 112 return false; 93 } 113 } 94 114 95 // The main member function giving the collisi 115 // The main member function giving the collision cross section (P is in IU, CS is in mb) 96 // Make pMom in independent units ! (Now it is 116 // Make pMom in independent units ! (Now it is MeV) 97 G4double G4ChipsHyperonInelasticXS::GetIsoCros 117 G4double G4ChipsHyperonInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 98 const G4Isotope*, 118 const G4Isotope*, 99 const G4Element*, 119 const G4Element*, 100 const G4Material*) 120 const G4Material*) 101 { 121 { 102 G4double pMom=Pt->GetTotalMomentum(); 122 G4double pMom=Pt->GetTotalMomentum(); 103 G4int tgN = A - tgZ; 123 G4int tgN = A - tgZ; 104 G4int pdg = Pt->GetDefinition()->GetPDGEncod 124 G4int pdg = Pt->GetDefinition()->GetPDGEncoding(); 105 125 106 return GetChipsCrossSection(pMom, tgZ, tgN, 126 return GetChipsCrossSection(pMom, tgZ, tgN, pdg); 107 } 127 } 108 128 109 G4double G4ChipsHyperonInelasticXS::GetChipsCr 129 G4double G4ChipsHyperonInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int PDG) 110 { 130 { >> 131 static G4int j; // A#0f Z/N-records already tested in AMDB >> 132 static std::vector <G4int> colN; // Vector of N for calculated nuclei (isotops) >> 133 static std::vector <G4int> colZ; // Vector of Z for calculated nuclei (isotops) >> 134 static std::vector <G4double> colP; // Vector of last momenta for the reaction >> 135 static std::vector <G4double> colTH; // Vector of energy thresholds for the reaction >> 136 static std::vector <G4double> colCS; // Vector of last cross sections for the reaction >> 137 // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---*** 111 138 112 G4bool in=false; // By d 139 G4bool in=false; // By default the isotope must be found in the AMDB 113 if(tgN!=lastN || tgZ!=lastZ) // The 140 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope 114 { 141 { 115 in = false; // By d 142 in = false; // By default the isotope haven't be found in AMDB 116 lastP = 0.; // New 143 lastP = 0.; // New momentum history (nothing to compare with) 117 lastN = tgN; // The 144 lastN = tgN; // The last N of the calculated nucleus 118 lastZ = tgZ; // The 145 lastZ = tgZ; // The last Z of the calculated nucleus 119 lastI = (G4int)colN.size(); // Size << 146 lastI = colN.size(); // Size of the Associative Memory DB in the heap 120 j = 0; // A#0f 147 j = 0; // A#0f records found in DB for this projectile 121 148 122 if(lastI) for(G4int i=0; i<lastI; ++i) // << 149 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope 123 { 150 { 124 if(colN[i]==tgN && colZ[i]==tgZ) // Try 151 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB 125 { 152 { 126 lastI=i; // Reme 153 lastI=i; // Remember the index for future fast/last use 127 lastTH =colTH[i]; // The 154 lastTH =colTH[i]; // The last THreshold (A-dependent) 128 155 129 if(pMom<=lastTH) 156 if(pMom<=lastTH) 130 { 157 { 131 return 0.; // Ener 158 return 0.; // Energy is below the Threshold value 132 } 159 } 133 lastP =colP [i]; // Last 160 lastP =colP [i]; // Last Momentum (A-dependent) 134 lastCS =colCS[i]; // Last 161 lastCS =colCS[i]; // Last CrossSect (A-dependent) 135 in = true; // This 162 in = true; // This is the case when the isotop is found in DB 136 // Momentum pMom is in IU ! @@ Units 163 // Momentum pMom is in IU ! @@ Units 137 lastCS=CalculateCrossSection(-1,j,PDG, 164 lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update 138 165 139 if(lastCS<=0. && pMom>lastTH) // Corr 166 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros) 140 { 167 { 141 lastCS=0.; 168 lastCS=0.; 142 lastTH=pMom; 169 lastTH=pMom; 143 } 170 } 144 break; // Go o 171 break; // Go out of the LOOP 145 } 172 } 146 j++; // Incr 173 j++; // Increment a#0f records found in DB 147 } 174 } 148 if(!in) // This 175 if(!in) // This isotope has not been calculated previously 149 { 176 { 150 //!!The slave functions must provide cro 177 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 151 lastCS=CalculateCrossSection(0,j,PDG,las 178 lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create >> 179 //if(lastCS>0.) // It means that the AMBD was initialized >> 180 //{ 152 181 153 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 182 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 154 colN.push_back(tgN); 183 colN.push_back(tgN); 155 colZ.push_back(tgZ); 184 colZ.push_back(tgZ); 156 colP.push_back(pMom); 185 colP.push_back(pMom); 157 colTH.push_back(lastTH); 186 colTH.push_back(lastTH); 158 colCS.push_back(lastCS); 187 colCS.push_back(lastCS); 159 //} // M.K. Presence of H1 with high thresho 188 //} // M.K. Presence of H1 with high threshold breaks the syncronization 160 return lastCS*millibarn; 189 return lastCS*millibarn; 161 } // End of creation of the new set of par 190 } // End of creation of the new set of parameters 162 else 191 else 163 { 192 { 164 colP[lastI]=pMom; 193 colP[lastI]=pMom; 165 colCS[lastI]=lastCS; 194 colCS[lastI]=lastCS; 166 } 195 } 167 } // End of parameters udate 196 } // End of parameters udate 168 else if(pMom<=lastTH) 197 else if(pMom<=lastTH) 169 { 198 { 170 return 0.; // Mome 199 return 0.; // Momentum is below the Threshold Value -> CS=0 171 } 200 } 172 else // It i 201 else // It is the last used -> use the current tables 173 { 202 { 174 lastCS=CalculateCrossSection(1,j,PDG,lastZ 203 lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB 175 lastP=pMom; 204 lastP=pMom; 176 } 205 } 177 return lastCS*millibarn; 206 return lastCS*millibarn; 178 } 207 } 179 208 180 // The main member function giving the gamma-A 209 // The main member function giving the gamma-A cross section (E in GeV, CS in mb) 181 G4double G4ChipsHyperonInelasticXS::CalculateC 210 G4double G4ChipsHyperonInelasticXS::CalculateCrossSection(G4int F, G4int I, 182 G4int, G4int targZ, G4int targ 211 G4int, G4int targZ, G4int targN, G4double Momentum) 183 { 212 { 184 static const G4double THmin=27.; // defa 213 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold 185 static const G4double THmiG=THmin*.001; // m 214 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold 186 static const G4double dP=10.; // step 215 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c 187 static const G4double dPG=dP*.001; // step 216 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c 188 static const G4int nL=105; // A#of 217 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c) 189 static const G4double Pmin=THmin+(nL-1)*dP; 218 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety 190 static const G4double Pmax=227000.; // maxP 219 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV 191 static const G4int nH=224; // A#of 220 static const G4int nH=224; // A#of HEN points in lnE 192 static const G4double milP=G4Log(Pmin);// Lo << 221 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part 193 static const G4double malP=G4Log(Pmax);// Hi << 222 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent) 194 static const G4double dlP=(malP-milP)/(nH-1) 223 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part 195 static const G4double milPG=G4Log(.001*Pmin) << 224 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c 196 << 225 G4double sigma=0.; >> 226 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!! >> 227 //G4double A=targN+targZ; // A of the target 197 if(F<=0) // This 228 if(F<=0) // This isotope was not the last used isotop 198 { 229 { 199 if(F<0) // This 230 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE 200 { 231 { 201 G4int sync=(G4int)LEN->size(); << 232 G4int sync=LEN->size(); 202 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS 233 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl; 203 lastLEN=(*LEN)[I]; // Poin 234 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections 204 lastHEN=(*HEN)[I]; // Poin 235 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections 205 } 236 } 206 else // This 237 else // This isotope wasn't calculated before => CREATE 207 { 238 { 208 lastLEN = new G4double[nL]; // Allo 239 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections 209 lastHEN = new G4double[nH]; // Allo 240 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections 210 // --- Instead of making a separate func 241 // --- Instead of making a separate function --- 211 G4double P=THmiG; // Tabl 242 G4double P=THmiG; // Table threshold in GeV/c 212 for(G4int k=0; k<nL; k++) 243 for(G4int k=0; k<nL; k++) 213 { 244 { 214 lastLEN[k] = CrossSectionLin(targZ, ta 245 lastLEN[k] = CrossSectionLin(targZ, targN, P); 215 P+=dPG; 246 P+=dPG; 216 } 247 } 217 G4double lP=milPG; 248 G4double lP=milPG; 218 for(G4int n=0; n<nH; n++) 249 for(G4int n=0; n<nH; n++) 219 { 250 { 220 lastHEN[n] = CrossSectionLog(targZ, ta 251 lastHEN[n] = CrossSectionLog(targZ, targN, lP); 221 lP+=dlP; 252 lP+=dlP; 222 } 253 } 223 // --- End of possible separate function 254 // --- End of possible separate function 224 // *** The synchronization check *** 255 // *** The synchronization check *** 225 G4int sync=(G4int)LEN->size(); << 256 G4int sync=LEN->size(); 226 if(sync!=I) 257 if(sync!=I) 227 { 258 { 228 G4cerr<<"***G4QHyperNuclCS::CalcCrossS 259 G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ 229 <<", N="<<targN<<", F="<<F<<G4en 260 <<", N="<<targN<<", F="<<F<<G4endl; 230 //G4Exception("G4PiMinusNuclearCS::Cal 261 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow"); 231 } 262 } 232 LEN->push_back(lastLEN); // reme 263 LEN->push_back(lastLEN); // remember the Low Energy Table 233 HEN->push_back(lastHEN); // reme 264 HEN->push_back(lastHEN); // remember the High Energy Table 234 } // End of creation of the new set of par 265 } // End of creation of the new set of parameters 235 } // End of parameters udate 266 } // End of parameters udate 236 // =--------------------------= NOW the Magi 267 // =--------------------------= NOW the Magic Formula =------------------------------= 237 G4double sigma; << 238 if (Momentum<lastTH) return 0.; // It m 268 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class 239 else if (Momentum<Pmin) // High 269 else if (Momentum<Pmin) // High Energy region 240 { 270 { 241 sigma=EquLinearFit(Momentum,nL,THmin,dP,la 271 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN); 242 } 272 } 243 else if (Momentum<Pmax) // High 273 else if (Momentum<Pmax) // High Energy region 244 { 274 { 245 G4double lP=G4Log(Momentum); << 275 G4double lP=std::log(Momentum); 246 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN) 276 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN); 247 } 277 } 248 else // UHE 278 else // UHE region (calculation, not frequent) 249 { 279 { 250 G4double P=0.001*Momentum; // Appr 280 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c 251 sigma=CrossSectionFormula(targZ, targN, P, << 281 sigma=CrossSectionFormula(targZ, targN, P, std::log(P)); 252 } 282 } 253 if (sigma<0.) return 0.; << 283 if(sigma<0.) return 0.; 254 return sigma; 284 return sigma; 255 } 285 } 256 286 257 // Calculation formula for piMinus-nuclear ine 287 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c) 258 G4double G4ChipsHyperonInelasticXS::CrossSecti 288 G4double G4ChipsHyperonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P) 259 { 289 { 260 G4double lP=G4Log(P); << 290 G4double lP=std::log(P); 261 return CrossSectionFormula(tZ, tN, P, lP); 291 return CrossSectionFormula(tZ, tN, P, lP); 262 } 292 } 263 293 264 // Calculation formula for piMinus-nuclear ine 294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 265 G4double G4ChipsHyperonInelasticXS::CrossSecti 295 G4double G4ChipsHyperonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP) 266 { 296 { 267 G4double P=G4Exp(lP); << 297 G4double P=std::exp(lP); 268 return CrossSectionFormula(tZ, tN, P, lP); 298 return CrossSectionFormula(tZ, tN, P, lP); 269 } 299 } 270 // Calculation formula for piMinus-nuclear ine 300 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 271 G4double G4ChipsHyperonInelasticXS::CrossSecti 301 G4double G4ChipsHyperonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN, 272 302 G4double P, G4double lP) 273 { 303 { 274 G4double sigma=0.; 304 G4double sigma=0.; 275 << 276 //AR-24Apr2018 Switch to allow transuranic e << 277 const G4bool isHeavyElementAllowed = true; << 278 << 279 if(tZ==1 && !tN) // H 305 if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios 280 { 306 { 281 G4double ld=lP-3.5; 307 G4double ld=lP-3.5; 282 G4double ld2=ld*ld; 308 G4double ld2=ld*ld; 283 G4double p2=P*P; 309 G4double p2=P*P; 284 G4double p4=p2*p2; 310 G4double p4=p2*p2; 285 G4double sp=std::sqrt(P); 311 G4double sp=std::sqrt(P); 286 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2. 312 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4); 287 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./ 313 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4); 288 sigma=To-El; 314 sigma=To-El; 289 } 315 } 290 else if((tZ<97 && tN<152) || isHeavyElementA << 316 else if(tZ<97 && tN<152) // General solution 291 { 317 { 292 G4double d=lP-4.2; 318 G4double d=lP-4.2; 293 G4double p2=P*P; 319 G4double p2=P*P; 294 G4double p4=p2*p2; 320 G4double p4=p2*p2; 295 G4double sp=std::sqrt(P); 321 G4double sp=std::sqrt(P); 296 G4double ssp=std::sqrt(sp); 322 G4double ssp=std::sqrt(sp); 297 G4double a=tN+tZ; // 323 G4double a=tN+tZ; // A of the target 298 G4double al=G4Log(a); << 324 G4double al=std::log(a); 299 G4double sa=std::sqrt(a); 325 G4double sa=std::sqrt(a); 300 G4double a2=a*a; 326 G4double a2=a*a; 301 G4double a2s=a2*sa; 327 G4double a2s=a2*sa; 302 G4double a4=a2*a2; 328 G4double a4=a2*a2; 303 G4double a8=a4*a4; 329 G4double a8=a4*a4; 304 G4double c=(170.+3600./a2s)/(1.+65./a2s); 330 G4double c=(170.+3600./a2s)/(1.+65./a2s); 305 G4double gg=42.*(G4Exp(al*0.8)+4.E-8*a4)/( << 331 G4double gg=42.*(std::exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2); 306 G4double e=390.; // 332 G4double e=390.; // Defolt values for deutrons 307 G4double r=0.27; 333 G4double r=0.27; 308 G4double h=2.E-7; 334 G4double h=2.E-7; 309 G4double t=0.3; 335 G4double t=0.3; 310 if(tZ>1 || tN>1) 336 if(tZ>1 || tN>1) 311 { 337 { 312 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8) 338 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8); 313 r=0.15; 339 r=0.15; 314 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8); 340 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8); 315 t=(.2+.00056*a2)/(1.+a2*.0006); 341 t=(.2+.00056*a2)/(1.+a2*.0006); 316 } 342 } 317 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*G4Exp( << 343 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*std::exp(-6.*P))/(1.+h/p4/p4); 318 #ifdef pdebug 344 #ifdef pdebug 319 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<< 345 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg 320 <<",d="<<d<<",r="<<r<<",e="<<e<<",h= 346 <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl; 321 #endif 347 #endif 322 } 348 } 323 else 349 else 324 { 350 { 325 G4cerr<<"-Warning-G4QHyperonNuclearCroSect 351 G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl; 326 sigma=0.; 352 sigma=0.; 327 } 353 } 328 if(sigma<0.) return 0.; 354 if(sigma<0.) return 0.; 329 return sigma; 355 return sigma; 330 } 356 } 331 357 332 G4double G4ChipsHyperonInelasticXS::EquLinearF 358 G4double G4ChipsHyperonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y) 333 { 359 { 334 if(DX<=0. || N<2) 360 if(DX<=0. || N<2) 335 { 361 { 336 G4cerr<<"***G4ChipsHyperonInelasticXS::E 362 G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl; 337 return Y[0]; 363 return Y[0]; 338 } 364 } 339 365 340 G4int N2=N-2; 366 G4int N2=N-2; 341 G4double d=(X-X0)/DX; 367 G4double d=(X-X0)/DX; 342 G4int jj=static_cast<int>(d); << 368 G4int j=static_cast<int>(d); 343 if (jj<0) jj=0; << 369 if (j<0) j=0; 344 else if(jj>N2) jj=N2; << 370 else if(j>N2) j=N2; 345 d-=jj; // excess << 371 d-=j; // excess 346 G4double yi=Y[jj]; << 372 G4double yi=Y[j]; 347 G4double sigma=yi+(Y[jj+1]-yi)*d; << 373 G4double sigma=yi+(Y[j+1]-yi)*d; 348 374 349 return sigma; 375 return sigma; 350 } 376 } 351 377