Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos 27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02 28 // 28 // 29 // ******************************************* 29 // **************************************************************************************** 30 // Short description: Cross-sections extracted 30 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 31 // Hyperon-nuclear interactions. Original aut 31 // Hyperon-nuclear interactions. Original author: M. Kossov 32 // ------------------------------------------- 32 // ------------------------------------------------------------------------------------- 33 // 33 // 34 34 35 #include "G4ChipsHyperonInelasticXS.hh" 35 #include "G4ChipsHyperonInelasticXS.hh" 36 #include "G4SystemOfUnits.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "G4DynamicParticle.hh" 37 #include "G4DynamicParticle.hh" 38 #include "G4ParticleDefinition.hh" 38 #include "G4ParticleDefinition.hh" 39 #include "G4Lambda.hh" 39 #include "G4Lambda.hh" 40 #include "G4SigmaPlus.hh" 40 #include "G4SigmaPlus.hh" 41 #include "G4SigmaMinus.hh" 41 #include "G4SigmaMinus.hh" 42 #include "G4SigmaZero.hh" 42 #include "G4SigmaZero.hh" 43 #include "G4XiMinus.hh" 43 #include "G4XiMinus.hh" 44 #include "G4XiZero.hh" 44 #include "G4XiZero.hh" 45 #include "G4OmegaMinus.hh" 45 #include "G4OmegaMinus.hh" 46 #include "G4Log.hh" << 47 #include "G4Exp.hh" << 48 46 49 // factory 47 // factory 50 #include "G4CrossSectionFactory.hh" 48 #include "G4CrossSectionFactory.hh" 51 // 49 // 52 G4_DECLARE_XS_FACTORY(G4ChipsHyperonInelasticX 50 G4_DECLARE_XS_FACTORY(G4ChipsHyperonInelasticXS); 53 51 54 G4ChipsHyperonInelasticXS::G4ChipsHyperonInela 52 G4ChipsHyperonInelasticXS::G4ChipsHyperonInelasticXS():G4VCrossSectionDataSet(Default_Name()) 55 { 53 { 56 // Initialization of the 54 // Initialization of the 57 lastLEN=0; // Pointer to the lastArray of Lo 55 lastLEN=0; // Pointer to the lastArray of LowEn CS 58 lastHEN=0; // Pointer to the lastArray of Hi 56 lastHEN=0; // Pointer to the lastArray of HighEn CS 59 lastN=0; // The last N of calculated nucle 57 lastN=0; // The last N of calculated nucleus 60 lastZ=0; // The last Z of calculated nucle 58 lastZ=0; // The last Z of calculated nucleus 61 lastP=0.; // Last used in cross section Mom 59 lastP=0.; // Last used in cross section Momentum 62 lastTH=0.; // Last threshold momentum 60 lastTH=0.; // Last threshold momentum 63 lastCS=0.; // Last value of the Cross Sectio 61 lastCS=0.; // Last value of the Cross Section 64 lastI=0; // The last position in the DAMDB 62 lastI=0; // The last position in the DAMDB 65 LEN = new std::vector<G4double*>; 63 LEN = new std::vector<G4double*>; 66 HEN = new std::vector<G4double*>; 64 HEN = new std::vector<G4double*>; 67 } 65 } 68 66 69 G4ChipsHyperonInelasticXS::~G4ChipsHyperonInel 67 G4ChipsHyperonInelasticXS::~G4ChipsHyperonInelasticXS() 70 { 68 { 71 std::size_t lens=LEN->size(); << 69 G4int lens=LEN->size(); 72 for(std::size_t i=0; i<lens; ++i) delete[] << 70 for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i]; 73 delete LEN; 71 delete LEN; 74 72 75 std::size_t hens=HEN->size(); << 73 G4int hens=HEN->size(); 76 for(std::size_t i=0; i<hens; ++i) delete[] << 74 for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i]; 77 delete HEN; 75 delete HEN; 78 } 76 } 79 77 80 void G4ChipsHyperonInelasticXS::CrossSectionDe << 81 { << 82 outFile << "G4ChipsHyperonInelasticXS provid << 83 << "section for hyperon nucleus scat << 84 << "momentum. The cross section is c << 85 << "CHIPS parameterization of cross << 86 } << 87 << 88 G4bool G4ChipsHyperonInelasticXS::IsIsoApplica 78 G4bool G4ChipsHyperonInelasticXS::IsIsoApplicable(const G4DynamicParticle*, G4int, G4int, 89 const G4Element*, 79 const G4Element*, 90 const G4Material*) 80 const G4Material*) 91 { 81 { >> 82 /* >> 83 const G4ParticleDefinition* particle = Pt->GetDefinition(); >> 84 if (particle == G4Lambda::Lambda()) >> 85 { >> 86 return true; >> 87 } >> 88 else if(particle == G4SigmaPlus::SigmaPlus()) >> 89 { >> 90 return true; >> 91 } >> 92 else if(particle == G4SigmaMinus::SigmaMinus()) >> 93 { >> 94 return true; >> 95 } >> 96 else if(particle == G4SigmaZero::SigmaZero()) >> 97 { >> 98 return true; >> 99 } >> 100 else if(particle == G4XiMinus::XiMinus()) >> 101 { >> 102 return true; >> 103 } >> 104 else if(particle == G4XiZero::XiZero()) >> 105 { >> 106 return true; >> 107 } >> 108 else if(particle == G4OmegaMinus::OmegaMinus()) >> 109 { >> 110 return true; >> 111 } >> 112 */ 92 return true; 113 return true; 93 } 114 } 94 115 95 // The main member function giving the collisi 116 // The main member function giving the collision cross section (P is in IU, CS is in mb) 96 // Make pMom in independent units ! (Now it is 117 // Make pMom in independent units ! (Now it is MeV) 97 G4double G4ChipsHyperonInelasticXS::GetIsoCros 118 G4double G4ChipsHyperonInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A, 98 const G4Isotope*, 119 const G4Isotope*, 99 const G4Element*, 120 const G4Element*, 100 const G4Material*) 121 const G4Material*) 101 { 122 { 102 G4double pMom=Pt->GetTotalMomentum(); 123 G4double pMom=Pt->GetTotalMomentum(); 103 G4int tgN = A - tgZ; 124 G4int tgN = A - tgZ; 104 G4int pdg = Pt->GetDefinition()->GetPDGEncod 125 G4int pdg = Pt->GetDefinition()->GetPDGEncoding(); 105 126 106 return GetChipsCrossSection(pMom, tgZ, tgN, 127 return GetChipsCrossSection(pMom, tgZ, tgN, pdg); 107 } 128 } 108 129 109 G4double G4ChipsHyperonInelasticXS::GetChipsCr 130 G4double G4ChipsHyperonInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int PDG) 110 { 131 { 111 132 112 G4bool in=false; // By d 133 G4bool in=false; // By default the isotope must be found in the AMDB 113 if(tgN!=lastN || tgZ!=lastZ) // The 134 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope 114 { 135 { 115 in = false; // By d 136 in = false; // By default the isotope haven't be found in AMDB 116 lastP = 0.; // New 137 lastP = 0.; // New momentum history (nothing to compare with) 117 lastN = tgN; // The 138 lastN = tgN; // The last N of the calculated nucleus 118 lastZ = tgZ; // The 139 lastZ = tgZ; // The last Z of the calculated nucleus 119 lastI = (G4int)colN.size(); // Size << 140 lastI = colN.size(); // Size of the Associative Memory DB in the heap 120 j = 0; // A#0f 141 j = 0; // A#0f records found in DB for this projectile 121 142 122 if(lastI) for(G4int i=0; i<lastI; ++i) // << 143 if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope 123 { 144 { 124 if(colN[i]==tgN && colZ[i]==tgZ) // Try 145 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB 125 { 146 { 126 lastI=i; // Reme 147 lastI=i; // Remember the index for future fast/last use 127 lastTH =colTH[i]; // The 148 lastTH =colTH[i]; // The last THreshold (A-dependent) 128 149 129 if(pMom<=lastTH) 150 if(pMom<=lastTH) 130 { 151 { 131 return 0.; // Ener 152 return 0.; // Energy is below the Threshold value 132 } 153 } 133 lastP =colP [i]; // Last 154 lastP =colP [i]; // Last Momentum (A-dependent) 134 lastCS =colCS[i]; // Last 155 lastCS =colCS[i]; // Last CrossSect (A-dependent) 135 in = true; // This 156 in = true; // This is the case when the isotop is found in DB 136 // Momentum pMom is in IU ! @@ Units 157 // Momentum pMom is in IU ! @@ Units 137 lastCS=CalculateCrossSection(-1,j,PDG, 158 lastCS=CalculateCrossSection(-1,j,PDG,lastZ,lastN,pMom); // read & update 138 159 139 if(lastCS<=0. && pMom>lastTH) // Corr 160 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros) 140 { 161 { 141 lastCS=0.; 162 lastCS=0.; 142 lastTH=pMom; 163 lastTH=pMom; 143 } 164 } 144 break; // Go o 165 break; // Go out of the LOOP 145 } 166 } 146 j++; // Incr 167 j++; // Increment a#0f records found in DB 147 } 168 } 148 if(!in) // This 169 if(!in) // This isotope has not been calculated previously 149 { 170 { 150 //!!The slave functions must provide cro 171 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU) 151 lastCS=CalculateCrossSection(0,j,PDG,las 172 lastCS=CalculateCrossSection(0,j,PDG,lastZ,lastN,pMom); //calculate & create >> 173 //if(lastCS>0.) // It means that the AMBD was initialized >> 174 //{ 152 175 153 lastTH = 0; //ThresholdEnergy(tgZ, tgN); 176 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last 154 colN.push_back(tgN); 177 colN.push_back(tgN); 155 colZ.push_back(tgZ); 178 colZ.push_back(tgZ); 156 colP.push_back(pMom); 179 colP.push_back(pMom); 157 colTH.push_back(lastTH); 180 colTH.push_back(lastTH); 158 colCS.push_back(lastCS); 181 colCS.push_back(lastCS); 159 //} // M.K. Presence of H1 with high thresho 182 //} // M.K. Presence of H1 with high threshold breaks the syncronization 160 return lastCS*millibarn; 183 return lastCS*millibarn; 161 } // End of creation of the new set of par 184 } // End of creation of the new set of parameters 162 else 185 else 163 { 186 { 164 colP[lastI]=pMom; 187 colP[lastI]=pMom; 165 colCS[lastI]=lastCS; 188 colCS[lastI]=lastCS; 166 } 189 } 167 } // End of parameters udate 190 } // End of parameters udate 168 else if(pMom<=lastTH) 191 else if(pMom<=lastTH) 169 { 192 { 170 return 0.; // Mome 193 return 0.; // Momentum is below the Threshold Value -> CS=0 171 } 194 } 172 else // It i 195 else // It is the last used -> use the current tables 173 { 196 { 174 lastCS=CalculateCrossSection(1,j,PDG,lastZ 197 lastCS=CalculateCrossSection(1,j,PDG,lastZ,lastN,pMom); // Only read and UpdateDB 175 lastP=pMom; 198 lastP=pMom; 176 } 199 } 177 return lastCS*millibarn; 200 return lastCS*millibarn; 178 } 201 } 179 202 180 // The main member function giving the gamma-A 203 // The main member function giving the gamma-A cross section (E in GeV, CS in mb) 181 G4double G4ChipsHyperonInelasticXS::CalculateC 204 G4double G4ChipsHyperonInelasticXS::CalculateCrossSection(G4int F, G4int I, 182 G4int, G4int targZ, G4int targ 205 G4int, G4int targZ, G4int targN, G4double Momentum) 183 { 206 { 184 static const G4double THmin=27.; // defa 207 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold 185 static const G4double THmiG=THmin*.001; // m 208 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold 186 static const G4double dP=10.; // step 209 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c 187 static const G4double dPG=dP*.001; // step 210 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c 188 static const G4int nL=105; // A#of 211 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c) 189 static const G4double Pmin=THmin+(nL-1)*dP; 212 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety 190 static const G4double Pmax=227000.; // maxP 213 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV 191 static const G4int nH=224; // A#of 214 static const G4int nH=224; // A#of HEN points in lnE 192 static const G4double milP=G4Log(Pmin);// Lo << 215 static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part 193 static const G4double malP=G4Log(Pmax);// Hi << 216 static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent) 194 static const G4double dlP=(malP-milP)/(nH-1) 217 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part 195 static const G4double milPG=G4Log(.001*Pmin) << 218 static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c 196 << 219 G4double sigma=0.; >> 220 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!! >> 221 //G4double A=targN+targZ; // A of the target 197 if(F<=0) // This 222 if(F<=0) // This isotope was not the last used isotop 198 { 223 { 199 if(F<0) // This 224 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE 200 { 225 { 201 G4int sync=(G4int)LEN->size(); << 226 G4int sync=LEN->size(); 202 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS 227 if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl; 203 lastLEN=(*LEN)[I]; // Poin 228 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections 204 lastHEN=(*HEN)[I]; // Poin 229 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections 205 } 230 } 206 else // This 231 else // This isotope wasn't calculated before => CREATE 207 { 232 { 208 lastLEN = new G4double[nL]; // Allo 233 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections 209 lastHEN = new G4double[nH]; // Allo 234 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections 210 // --- Instead of making a separate func 235 // --- Instead of making a separate function --- 211 G4double P=THmiG; // Tabl 236 G4double P=THmiG; // Table threshold in GeV/c 212 for(G4int k=0; k<nL; k++) 237 for(G4int k=0; k<nL; k++) 213 { 238 { 214 lastLEN[k] = CrossSectionLin(targZ, ta 239 lastLEN[k] = CrossSectionLin(targZ, targN, P); 215 P+=dPG; 240 P+=dPG; 216 } 241 } 217 G4double lP=milPG; 242 G4double lP=milPG; 218 for(G4int n=0; n<nH; n++) 243 for(G4int n=0; n<nH; n++) 219 { 244 { 220 lastHEN[n] = CrossSectionLog(targZ, ta 245 lastHEN[n] = CrossSectionLog(targZ, targN, lP); 221 lP+=dlP; 246 lP+=dlP; 222 } 247 } 223 // --- End of possible separate function 248 // --- End of possible separate function 224 // *** The synchronization check *** 249 // *** The synchronization check *** 225 G4int sync=(G4int)LEN->size(); << 250 G4int sync=LEN->size(); 226 if(sync!=I) 251 if(sync!=I) 227 { 252 { 228 G4cerr<<"***G4QHyperNuclCS::CalcCrossS 253 G4cerr<<"***G4QHyperNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ 229 <<", N="<<targN<<", F="<<F<<G4en 254 <<", N="<<targN<<", F="<<F<<G4endl; 230 //G4Exception("G4PiMinusNuclearCS::Cal 255 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow"); 231 } 256 } 232 LEN->push_back(lastLEN); // reme 257 LEN->push_back(lastLEN); // remember the Low Energy Table 233 HEN->push_back(lastHEN); // reme 258 HEN->push_back(lastHEN); // remember the High Energy Table 234 } // End of creation of the new set of par 259 } // End of creation of the new set of parameters 235 } // End of parameters udate 260 } // End of parameters udate 236 // =--------------------------= NOW the Magi 261 // =--------------------------= NOW the Magic Formula =------------------------------= 237 G4double sigma; << 238 if (Momentum<lastTH) return 0.; // It m 262 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class 239 else if (Momentum<Pmin) // High 263 else if (Momentum<Pmin) // High Energy region 240 { 264 { 241 sigma=EquLinearFit(Momentum,nL,THmin,dP,la 265 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN); 242 } 266 } 243 else if (Momentum<Pmax) // High 267 else if (Momentum<Pmax) // High Energy region 244 { 268 { 245 G4double lP=G4Log(Momentum); << 269 G4double lP=std::log(Momentum); 246 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN) 270 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN); 247 } 271 } 248 else // UHE 272 else // UHE region (calculation, not frequent) 249 { 273 { 250 G4double P=0.001*Momentum; // Appr 274 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c 251 sigma=CrossSectionFormula(targZ, targN, P, << 275 sigma=CrossSectionFormula(targZ, targN, P, std::log(P)); 252 } 276 } 253 if (sigma<0.) return 0.; << 277 if(sigma<0.) return 0.; 254 return sigma; 278 return sigma; 255 } 279 } 256 280 257 // Calculation formula for piMinus-nuclear ine 281 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c) 258 G4double G4ChipsHyperonInelasticXS::CrossSecti 282 G4double G4ChipsHyperonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P) 259 { 283 { 260 G4double lP=G4Log(P); << 284 G4double lP=std::log(P); 261 return CrossSectionFormula(tZ, tN, P, lP); 285 return CrossSectionFormula(tZ, tN, P, lP); 262 } 286 } 263 287 264 // Calculation formula for piMinus-nuclear ine 288 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 265 G4double G4ChipsHyperonInelasticXS::CrossSecti 289 G4double G4ChipsHyperonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP) 266 { 290 { 267 G4double P=G4Exp(lP); << 291 G4double P=std::exp(lP); 268 return CrossSectionFormula(tZ, tN, P, lP); 292 return CrossSectionFormula(tZ, tN, P, lP); 269 } 293 } 270 // Calculation formula for piMinus-nuclear ine 294 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c) 271 G4double G4ChipsHyperonInelasticXS::CrossSecti 295 G4double G4ChipsHyperonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN, 272 296 G4double P, G4double lP) 273 { 297 { 274 G4double sigma=0.; 298 G4double sigma=0.; 275 << 276 //AR-24Apr2018 Switch to allow transuranic e << 277 const G4bool isHeavyElementAllowed = true; << 278 << 279 if(tZ==1 && !tN) // H 299 if(tZ==1 && !tN) // Hyperon-P interaction from G4QuasiElastRatios 280 { 300 { 281 G4double ld=lP-3.5; 301 G4double ld=lP-3.5; 282 G4double ld2=ld*ld; 302 G4double ld2=ld*ld; 283 G4double p2=P*P; 303 G4double p2=P*P; 284 G4double p4=p2*p2; 304 G4double p4=p2*p2; 285 G4double sp=std::sqrt(P); 305 G4double sp=std::sqrt(P); 286 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2. 306 G4double El=(.0557*ld2+6.72+99./p2)/(1.+2./sp+2./p4); 287 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./ 307 G4double To=(.3*ld2+38.2+900./sp)/(1.+27./sp+3./p4); 288 sigma=To-El; 308 sigma=To-El; 289 } 309 } 290 else if((tZ<97 && tN<152) || isHeavyElementA << 310 else if(tZ<97 && tN<152) // General solution 291 { 311 { 292 G4double d=lP-4.2; 312 G4double d=lP-4.2; 293 G4double p2=P*P; 313 G4double p2=P*P; 294 G4double p4=p2*p2; 314 G4double p4=p2*p2; 295 G4double sp=std::sqrt(P); 315 G4double sp=std::sqrt(P); 296 G4double ssp=std::sqrt(sp); 316 G4double ssp=std::sqrt(sp); 297 G4double a=tN+tZ; // 317 G4double a=tN+tZ; // A of the target 298 G4double al=G4Log(a); << 318 G4double al=std::log(a); 299 G4double sa=std::sqrt(a); 319 G4double sa=std::sqrt(a); 300 G4double a2=a*a; 320 G4double a2=a*a; 301 G4double a2s=a2*sa; 321 G4double a2s=a2*sa; 302 G4double a4=a2*a2; 322 G4double a4=a2*a2; 303 G4double a8=a4*a4; 323 G4double a8=a4*a4; 304 G4double c=(170.+3600./a2s)/(1.+65./a2s); 324 G4double c=(170.+3600./a2s)/(1.+65./a2s); 305 G4double gg=42.*(G4Exp(al*0.8)+4.E-8*a4)/( << 325 G4double gg=42.*(std::exp(al*0.8)+4.E-8*a4)/(1.+28./a)/(1.+5.E-5*a2); 306 G4double e=390.; // 326 G4double e=390.; // Defolt values for deutrons 307 G4double r=0.27; 327 G4double r=0.27; 308 G4double h=2.E-7; 328 G4double h=2.E-7; 309 G4double t=0.3; 329 G4double t=0.3; 310 if(tZ>1 || tN>1) 330 if(tZ>1 || tN>1) 311 { 331 { 312 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8) 332 e=380.+18.*a2/(1.+a2/60.)/(1.+2.E-19*a8); 313 r=0.15; 333 r=0.15; 314 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8); 334 h=1.E-8*a2/(1.+a2/17.)/(1.+3.E-20*a8); 315 t=(.2+.00056*a2)/(1.+a2*.0006); 335 t=(.2+.00056*a2)/(1.+a2*.0006); 316 } 336 } 317 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*G4Exp( << 337 sigma=(c+d*d)/(1.+t/ssp+r/p4)+(gg+e*std::exp(-6.*P))/(1.+h/p4/p4); 318 #ifdef pdebug 338 #ifdef pdebug 319 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<< 339 G4cout<<"G4QHyperonNucCS::CSForm: A="<<a<<",P="<<P<<",CS="<<sigma<<",c="<<c<<",g="<<gg 320 <<",d="<<d<<",r="<<r<<",e="<<e<<",h= 340 <<",d="<<d<<",r="<<r<<",e="<<e<<",h="<<h<<G4endl; 321 #endif 341 #endif 322 } 342 } 323 else 343 else 324 { 344 { 325 G4cerr<<"-Warning-G4QHyperonNuclearCroSect 345 G4cerr<<"-Warning-G4QHyperonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl; 326 sigma=0.; 346 sigma=0.; 327 } 347 } 328 if(sigma<0.) return 0.; 348 if(sigma<0.) return 0.; 329 return sigma; 349 return sigma; 330 } 350 } 331 351 332 G4double G4ChipsHyperonInelasticXS::EquLinearF 352 G4double G4ChipsHyperonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y) 333 { 353 { 334 if(DX<=0. || N<2) 354 if(DX<=0. || N<2) 335 { 355 { 336 G4cerr<<"***G4ChipsHyperonInelasticXS::E 356 G4cerr<<"***G4ChipsHyperonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl; 337 return Y[0]; 357 return Y[0]; 338 } 358 } 339 359 340 G4int N2=N-2; 360 G4int N2=N-2; 341 G4double d=(X-X0)/DX; 361 G4double d=(X-X0)/DX; 342 G4int jj=static_cast<int>(d); 362 G4int jj=static_cast<int>(d); 343 if (jj<0) jj=0; 363 if (jj<0) jj=0; 344 else if(jj>N2) jj=N2; 364 else if(jj>N2) jj=N2; 345 d-=jj; // excess 365 d-=jj; // excess 346 G4double yi=Y[jj]; 366 G4double yi=Y[jj]; 347 G4double sigma=yi+(Y[jj+1]-yi)*d; 367 G4double sigma=yi+(Y[jj+1]-yi)*d; 348 368 349 return sigma; 369 return sigma; 350 } 370 } 351 371