Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/cross_sections/src/G4ChipsAntiBaryonInelasticXS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/cross_sections/src/G4ChipsAntiBaryonInelasticXS.cc (Version 11.3.0) and /processes/hadronic/cross_sections/src/G4ChipsAntiBaryonInelasticXS.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // The lust update: M.V. Kossov, CERN/ITEP(Mos     27 // The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
 28 //                                                 28 //
 29 //                                                 29 //
 30 // G4 Physics class: G4ChipsAntiBaryonInelasti     30 // G4 Physics class: G4ChipsAntiBaryonInelasticXS for gamma+A cross sections
 31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20     31 // Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
 32 // The last update: M.V. Kossov, CERN/ITEP (Mo     32 // The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
 33 //                                                 33 //
 34 // -------------------------------------------     34 // -------------------------------------------------------------------------------------
 35 // Short description: Cross-sections extracted     35 // Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for 
 36 // anti-baryoninteractions. Original author: M     36 // anti-baryoninteractions. Original author: M. Kossov
 37 // -------------------------------------------     37 // -------------------------------------------------------------------------------------
 38 //                                                 38 //
 39                                                    39 
 40 #include "G4ChipsAntiBaryonInelasticXS.hh"         40 #include "G4ChipsAntiBaryonInelasticXS.hh"
 41 #include "G4SystemOfUnits.hh"                      41 #include "G4SystemOfUnits.hh"
 42 #include "G4DynamicParticle.hh"                    42 #include "G4DynamicParticle.hh"
 43 #include "G4ParticleDefinition.hh"                 43 #include "G4ParticleDefinition.hh"
 44 #include "G4AntiNeutron.hh"                        44 #include "G4AntiNeutron.hh"
 45 #include "G4AntiProton.hh"                         45 #include "G4AntiProton.hh"
 46 #include "G4AntiLambda.hh"                         46 #include "G4AntiLambda.hh"
 47 #include "G4AntiSigmaPlus.hh"                      47 #include "G4AntiSigmaPlus.hh"
 48 #include "G4AntiSigmaMinus.hh"                     48 #include "G4AntiSigmaMinus.hh"
 49 #include "G4AntiSigmaZero.hh"                      49 #include "G4AntiSigmaZero.hh"
 50 #include "G4AntiXiMinus.hh"                        50 #include "G4AntiXiMinus.hh"
 51 #include "G4AntiXiZero.hh"                         51 #include "G4AntiXiZero.hh"
 52 #include "G4AntiOmegaMinus.hh"                     52 #include "G4AntiOmegaMinus.hh"
 53 #include "G4Log.hh"                            << 
 54 #include "G4Exp.hh"                            << 
 55 #include "G4Pow.hh"                            << 
 56                                                    53 
 57 // factory                                         54 // factory
 58 #include "G4CrossSectionFactory.hh"                55 #include "G4CrossSectionFactory.hh"
 59 //                                                 56 //
 60 G4_DECLARE_XS_FACTORY(G4ChipsAntiBaryonInelast     57 G4_DECLARE_XS_FACTORY(G4ChipsAntiBaryonInelasticXS);
 61                                                    58 
 62 G4ChipsAntiBaryonInelasticXS::G4ChipsAntiBaryo     59 G4ChipsAntiBaryonInelasticXS::G4ChipsAntiBaryonInelasticXS():G4VCrossSectionDataSet(Default_Name())
 63 {                                                  60 {
 64   lastLEN=0; // Pointer to lastArray of LowEn      61   lastLEN=0; // Pointer to lastArray of LowEn CS
 65   lastHEN=0; // Pointer to lastArray of HighEn     62   lastHEN=0; // Pointer to lastArray of HighEn CS
 66   lastN=0;   // The last N of calculated nucle     63   lastN=0;   // The last N of calculated nucleus
 67   lastZ=0;   // The last Z of calculated nucle     64   lastZ=0;   // The last Z of calculated nucleus
 68   lastP=0.;  // Last used Cross Section Moment     65   lastP=0.;  // Last used Cross Section Momentum
 69   lastTH=0.; // Last threshold momentum            66   lastTH=0.; // Last threshold momentum
 70   lastCS=0.; // Last value of the Cross Sectio     67   lastCS=0.; // Last value of the Cross Section
 71   lastI=0;   // The last position in the DAMDB     68   lastI=0;   // The last position in the DAMDB
 72   LEN = new std::vector<G4double*>;                69   LEN = new std::vector<G4double*>;
 73   HEN = new std::vector<G4double*>;                70   HEN = new std::vector<G4double*>;
 74 }                                                  71 }
 75                                                    72 
 76 G4ChipsAntiBaryonInelasticXS::~G4ChipsAntiBary     73 G4ChipsAntiBaryonInelasticXS::~G4ChipsAntiBaryonInelasticXS()
 77 {                                                  74 {
 78   std::size_t lens=LEN->size();                <<  75   G4int lens=LEN->size();
 79   for(std::size_t i=0; i<lens; ++i) delete[] ( <<  76   for(G4int i=0; i<lens; ++i) delete[] (*LEN)[i];
 80   delete LEN;                                      77   delete LEN;
 81   std::size_t hens=HEN->size();                <<  78   G4int hens=HEN->size();
 82   for(std::size_t i=0; i<hens; ++i) delete[] ( <<  79   for(G4int i=0; i<hens; ++i) delete[] (*HEN)[i];
 83   delete HEN;                                      80   delete HEN;
 84 }                                                  81 }
 85                                                    82 
 86 void G4ChipsAntiBaryonInelasticXS::CrossSectio <<  83 G4bool G4ChipsAntiBaryonInelasticXS::IsIsoApplicable(const G4DynamicParticle* Pt, G4int, G4int,    
 87 {                                              << 
 88   outFile << "G4ChipsAntiBaryonInelasticXS pro << 
 89           << "section for anti-baryon nucleus  << 
 90           << "momentum. The cross section is c << 
 91           << "CHIPS parameterization of cross  << 
 92 }                                              << 
 93                                                << 
 94                                                << 
 95 G4bool G4ChipsAntiBaryonInelasticXS::IsIsoAppl << 
 96          const G4Element*,                         84          const G4Element*,
 97          const G4Material*)                        85          const G4Material*)
 98 {                                                  86 {
 99   /*                                           <<  87   G4ParticleDefinition* particle = Pt->GetDefinition();
100   const G4ParticleDefinition* particle = Pt->G << 
101                                                    88 
102   if(particle == G4AntiNeutron::AntiNeutron())     89   if(particle == G4AntiNeutron::AntiNeutron())
103   {                                                90   {
104     return true;                                   91     return true;
105   }                                                92   }
106   else if(particle == G4AntiProton::AntiProton     93   else if(particle == G4AntiProton::AntiProton())
107   {                                                94   {
108     return true;                                   95     return true;
109   }                                                96   }
110   else if(particle == G4AntiLambda::AntiLambda     97   else if(particle == G4AntiLambda::AntiLambda())
111   {                                                98   {
112     return true;                                   99     return true;
113   }                                               100   }
114   else if(particle == G4AntiSigmaPlus::AntiSig    101   else if(particle == G4AntiSigmaPlus::AntiSigmaPlus())
115   {                                               102   {
116     return true;                                  103     return true;
117   }                                               104   }
118   else if(particle == G4AntiSigmaMinus::AntiSi    105   else if(particle == G4AntiSigmaMinus::AntiSigmaMinus())
119   {                                               106   {
120     return true;                                  107     return true;
121   }                                               108   }
122   else if(particle == G4AntiSigmaZero::AntiSig    109   else if(particle == G4AntiSigmaZero::AntiSigmaZero())
123   {                                               110   {
124     return true;                                  111     return true;
125   }                                               112   }
126   else if(particle == G4AntiXiMinus::AntiXiMin    113   else if(particle == G4AntiXiMinus::AntiXiMinus())
127   {                                               114   {
128     return true;                                  115     return true;
129   }                                               116   }
130   else if(particle == G4AntiXiZero::AntiXiZero    117   else if(particle == G4AntiXiZero::AntiXiZero())
131   {                                               118   {
132     return true;                                  119     return true;
133   }                                               120   }
134   else if(particle == G4AntiOmegaMinus::AntiOm    121   else if(particle == G4AntiOmegaMinus::AntiOmegaMinus())
135   {                                               122   {
136     return true;                                  123     return true;
137   }                                               124   }
138   */                                           << 125   return false;
139   return true;                                 << 
140 }                                                 126 }
141                                                   127 
142 // The main member function giving the collisi    128 // The main member function giving the collision cross section (P is in IU, CS is in mb)
143 // Make pMom in independent units ! (Now it is    129 // Make pMom in independent units ! (Now it is MeV)
144 G4double G4ChipsAntiBaryonInelasticXS::GetIsoC    130 G4double G4ChipsAntiBaryonInelasticXS::GetIsoCrossSection(const G4DynamicParticle* Pt, G4int tgZ, G4int A,  
145               const G4Isotope*,                   131               const G4Isotope*,
146               const G4Element*,                   132               const G4Element*,
147               const G4Material*)                  133               const G4Material*)
148 {                                                 134 {
149   G4double pMom=Pt->GetTotalMomentum();           135   G4double pMom=Pt->GetTotalMomentum();
150   G4int tgN = A - tgZ;                            136   G4int tgN = A - tgZ;
151   G4int pdg = Pt->GetDefinition()->GetPDGEncod    137   G4int pdg = Pt->GetDefinition()->GetPDGEncoding();
152                                                   138   
153   return GetChipsCrossSection(pMom, tgZ, tgN,     139   return GetChipsCrossSection(pMom, tgZ, tgN, pdg);
154 }                                                 140 }
155                                                   141 
156 G4double G4ChipsAntiBaryonInelasticXS::GetChip    142 G4double G4ChipsAntiBaryonInelasticXS::GetChipsCrossSection(G4double pMom, G4int tgZ, G4int tgN, G4int cPDG)
157 {                                                 143 {
                                                   >> 144   static G4ThreadLocal G4int j;                      // A#0f Z/N-records already tested in AMDB
                                                   >> 145   static G4ThreadLocal std::vector <G4int>    *colN_G4MT_TLS_ = 0 ; if (!colN_G4MT_TLS_) colN_G4MT_TLS_ = new  std::vector <G4int>     ;  std::vector <G4int>    &colN = *colN_G4MT_TLS_;  // Vector of N for calculated nuclei (isotops)
                                                   >> 146   static G4ThreadLocal std::vector <G4int>    *colZ_G4MT_TLS_ = 0 ; if (!colZ_G4MT_TLS_) colZ_G4MT_TLS_ = new  std::vector <G4int>     ;  std::vector <G4int>    &colZ = *colZ_G4MT_TLS_;  // Vector of Z for calculated nuclei (isotops)
                                                   >> 147   static G4ThreadLocal std::vector <G4double> *colP_G4MT_TLS_ = 0 ; if (!colP_G4MT_TLS_) colP_G4MT_TLS_ = new  std::vector <G4double>  ;  std::vector <G4double> &colP = *colP_G4MT_TLS_;  // Vector of last momenta for the reaction
                                                   >> 148   static G4ThreadLocal std::vector <G4double> *colTH_G4MT_TLS_ = 0 ; if (!colTH_G4MT_TLS_) colTH_G4MT_TLS_ = new  std::vector <G4double>  ;  std::vector <G4double> &colTH = *colTH_G4MT_TLS_; // Vector of energy thresholds for the reaction
                                                   >> 149   static G4ThreadLocal std::vector <G4double> *colCS_G4MT_TLS_ = 0 ; if (!colCS_G4MT_TLS_) colCS_G4MT_TLS_ = new  std::vector <G4double>  ;  std::vector <G4double> &colCS = *colCS_G4MT_TLS_; // Vector of last cross sections for the reaction
                                                   >> 150   // ***---*** End of the mandatory Static Definitions of the Associative Memory ***---***
158                                                   151 
159   G4bool in=false;                     // By d    152   G4bool in=false;                     // By default the isotope must be found in the AMDB
160   if(tgN!=lastN || tgZ!=lastZ)         // The     153   if(tgN!=lastN || tgZ!=lastZ)         // The nucleus was not the last used isotope
161   {                                               154   {
162     in = false;                        // By d    155     in = false;                        // By default the isotope haven't be found in AMDB  
163     lastP   = 0.;                      // New     156     lastP   = 0.;                      // New momentum history (nothing to compare with)
164     lastN   = tgN;                     // The     157     lastN   = tgN;                     // The last N of the calculated nucleus
165     lastZ   = tgZ;                     // The     158     lastZ   = tgZ;                     // The last Z of the calculated nucleus
166     lastI   = (G4int)colN.size();      // Size << 159     lastI   = colN.size();             // Size of the Associative Memory DB in the heap
167     j  = 0;                            // A#0f    160     j  = 0;                            // A#0f records found in DB for this projectile
168     if(lastI) for(G4int i=0; i<lastI; i++) //     161     if(lastI) for(G4int i=0; i<lastI; i++) // AMDB exists, try to find the (Z,N) isotope
169     {                                             162     {
170       if(colN[i]==tgN && colZ[i]==tgZ) // Try     163       if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
171       {                                           164       {
172         lastI=i;                       // Reme    165         lastI=i;                       // Remember the index for future fast/last use
173         lastTH =colTH[i];              // The     166         lastTH =colTH[i];              // The last THreshold (A-dependent)
174         if(pMom<=lastTH)                          167         if(pMom<=lastTH)
175         {                                         168         {
176           return 0.;                   // Ener    169           return 0.;                   // Energy is below the Threshold value
177         }                                         170         }
178         lastP  =colP [i];              // Last    171         lastP  =colP [i];              // Last Momentum  (A-dependent)
179         lastCS =colCS[i];              // Last    172         lastCS =colCS[i];              // Last CrossSect (A-dependent)
180         in = true;                     // This    173         in = true;                     // This is the case when the isotop is found in DB
181         // Momentum pMom is in IU ! @@ Units      174         // Momentum pMom is in IU ! @@ Units
182         lastCS=CalculateCrossSection(-1,j,cPDG    175         lastCS=CalculateCrossSection(-1,j,cPDG,lastZ,lastN,pMom); // read & update
183         if(lastCS<=0. && pMom>lastTH)  // Corr    176         if(lastCS<=0. && pMom>lastTH)  // Correct the threshold (@@ No intermediate Zeros)
184         {                                         177         {
185           lastCS=0.;                              178           lastCS=0.;
186           lastTH=pMom;                            179           lastTH=pMom;
187         }                                         180         }
188         break;                         // Go o    181         break;                         // Go out of the LOOP
189       }                                           182       }
190       j++;                             // Incr    183       j++;                             // Increment a#0f records found in DB
191     }                                             184     }
192     if(!in)                            // This    185     if(!in)                            // This isotope has not been calculated previously
193     {                                             186     {
194       //!!The slave functions must provide cro    187       //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
195       lastCS=CalculateCrossSection(0,j,cPDG,la    188       lastCS=CalculateCrossSection(0,j,cPDG,lastZ,lastN,pMom); //calculate & create
196       //if(lastCS>0.)                   // It     189       //if(lastCS>0.)                   // It means that the AMBD was initialized
197       //{                                         190       //{
198                                                   191 
199       lastTH = 0; //ThresholdEnergy(tgZ, tgN);    192       lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
200         colN.push_back(tgN);                      193         colN.push_back(tgN);
201         colZ.push_back(tgZ);                      194         colZ.push_back(tgZ);
202         colP.push_back(pMom);                     195         colP.push_back(pMom);
203         colTH.push_back(lastTH);                  196         colTH.push_back(lastTH);
204         colCS.push_back(lastCS);                  197         colCS.push_back(lastCS);
205       //} // M.K. Presence of H1 with high thr    198       //} // M.K. Presence of H1 with high threshold breaks the syncronization
206       return lastCS*millibarn;                    199       return lastCS*millibarn;
207     } // End of creation of the new set of par    200     } // End of creation of the new set of parameters
208     else                                          201     else
209     {                                             202     {
210       colP[lastI]=pMom;                           203       colP[lastI]=pMom;
211       colCS[lastI]=lastCS;                        204       colCS[lastI]=lastCS;
212     }                                             205     }
213   } // End of parameters udate                    206   } // End of parameters udate
214   else if(pMom<=lastTH)                           207   else if(pMom<=lastTH)
215   {                                               208   {
216     return 0.;                         // Mome    209     return 0.;                         // Momentum is below the Threshold Value -> CS=0
217   }                                               210   }
218   else                                 // It i    211   else                                 // It is the last used -> use the current tables
219   {                                               212   {
220     lastCS=CalculateCrossSection(1,j,cPDG,last    213     lastCS=CalculateCrossSection(1,j,cPDG,lastZ,lastN,pMom); // Only read and UpdateDB
221     lastP=pMom;                                   214     lastP=pMom;
222   }                                               215   }
223   return lastCS*millibarn;                        216   return lastCS*millibarn;
224 }                                                 217 }
225                                                   218 
226 // The main member function giving the gamma-A    219 // The main member function giving the gamma-A cross section (E in GeV, CS in mb)
227 G4double G4ChipsAntiBaryonInelasticXS::Calcula    220 G4double G4ChipsAntiBaryonInelasticXS::CalculateCrossSection(G4int F, G4int I,
228                                         G4int,    221                                         G4int, G4int targZ, G4int targN, G4double Momentum)
229 {                                                 222 {
230   static const G4double THmin=27.;     // defa    223   static const G4double THmin=27.;     // default minimum Momentum (MeV/c) Threshold
231   static const G4double THmiG=THmin*.001; // m    224   static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
232   static const G4double dP=10.;        // step    225   static const G4double dP=10.;        // step for the LEN (Low ENergy) table MeV/c
233   static const G4double dPG=dP*.001;   // step    226   static const G4double dPG=dP*.001;   // step for the LEN (Low ENergy) table GeV/c
234   static const G4int    nL=105;        // A#of    227   static const G4int    nL=105;        // A#of LEN points in E (step 10 MeV/c)
235   static const G4double Pmin=THmin+(nL-1)*dP;     228   static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
236   static const G4double Pmax=227000.;  // maxP    229   static const G4double Pmax=227000.;  // maxP for the HEN (High ENergy) part 227 GeV
237   static const G4int    nH=224;        // A#of    230   static const G4int    nH=224;        // A#of HEN points in lnE
238   static const G4double milP=G4Log(Pmin);// Lo << 231   static const G4double milP=std::log(Pmin);// Low logarithm energy for the HEN part
239   static const G4double malP=G4Log(Pmax);// Hi << 232   static const G4double malP=std::log(Pmax);// High logarithm energy (each 2.75 percent)
240   static const G4double dlP=(malP-milP)/(nH-1)    233   static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
241   static const G4double milPG=G4Log(.001*Pmin) << 234   static const G4double milPG=std::log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
                                                   >> 235   G4double sigma=0.;
                                                   >> 236   if(F&&I) sigma=0.;                   // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
                                                   >> 237   //G4double A=targN+targZ;              // A of the target
242   if(F<=0)                             // This    238   if(F<=0)                             // This isotope was not the last used isotop
243   {                                               239   {
244     if(F<0)                            // This    240     if(F<0)                            // This isotope was found in DAMDB =-----=> RETRIEVE
245     {                                             241     {
246       G4int sync=(G4int)LEN->size();           << 242       G4int sync=LEN->size();
247       if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS    243       if(sync<=I) G4cerr<<"*!*G4QPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
248       lastLEN=(*LEN)[I];               // Poin    244       lastLEN=(*LEN)[I];               // Pointer to prepared LowEnergy cross sections
249       lastHEN=(*HEN)[I];               // Poin    245       lastHEN=(*HEN)[I];               // Pointer to prepared High Energy cross sections
250     }                                             246     }
251     else                               // This    247     else                               // This isotope wasn't calculated before => CREATE
252     {                                             248     {
253       lastLEN = new G4double[nL];      // Allo    249       lastLEN = new G4double[nL];      // Allocate memory for the new LEN cross sections
254       lastHEN = new G4double[nH];      // Allo    250       lastHEN = new G4double[nH];      // Allocate memory for the new HEN cross sections
255       // --- Instead of making a separate func    251       // --- Instead of making a separate function ---
256       G4double P=THmiG;                // Tabl    252       G4double P=THmiG;                // Table threshold in GeV/c
257       for(G4int k=0; k<nL; k++)                   253       for(G4int k=0; k<nL; k++)
258       {                                           254       {
259         lastLEN[k] = CrossSectionLin(targZ, ta    255         lastLEN[k] = CrossSectionLin(targZ, targN, P);
260         P+=dPG;                                   256         P+=dPG;
261       }                                           257       }
262       G4double lP=milPG;                          258       G4double lP=milPG;
263       for(G4int n=0; n<nH; n++)                   259       for(G4int n=0; n<nH; n++)
264       {                                           260       {
265         lastHEN[n] = CrossSectionLog(targZ, ta    261         lastHEN[n] = CrossSectionLog(targZ, targN, lP);
266         lP+=dlP;                                  262         lP+=dlP;
267       }                                           263       }
268       // --- End of possible separate function    264       // --- End of possible separate function
269       // *** The synchronization check ***        265       // *** The synchronization check ***
270       G4int sync=(G4int)LEN->size();           << 266       G4int sync=LEN->size();
271       if(sync!=I)                                 267       if(sync!=I)
272       {                                           268       {
273         G4cerr<<"***G4QPiMinusNuclCS::CalcCros    269         G4cerr<<"***G4QPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
274               <<", N="<<targN<<", F="<<F<<G4en    270               <<", N="<<targN<<", F="<<F<<G4endl;
275         //G4Exception("G4PiMinusNuclearCS::Cal    271         //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
276       }                                           272       }
277       LEN->push_back(lastLEN);         // reme    273       LEN->push_back(lastLEN);         // remember the Low Energy Table
278       HEN->push_back(lastHEN);         // reme    274       HEN->push_back(lastHEN);         // remember the High Energy Table
279     } // End of creation of the new set of par    275     } // End of creation of the new set of parameters
280   } // End of parameters udate                    276   } // End of parameters udate
281   // =-------------------= NOW the Magic Formu    277   // =-------------------= NOW the Magic Formula =--------------------=
282   G4double sigma;                              << 
283   if (Momentum<lastTH) return 0.;      // It m    278   if (Momentum<lastTH) return 0.;      // It must be already checked in the interface class
284   else if (Momentum<Pmin)              // High    279   else if (Momentum<Pmin)              // High Energy region
285   {                                               280   {
286     sigma=EquLinearFit(Momentum,nL,THmin,dP,la    281     sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
287   }                                               282   }
288   else if (Momentum<Pmax)              // High    283   else if (Momentum<Pmax)              // High Energy region
289   {                                               284   {
290     G4double lP=G4Log(Momentum);               << 285     G4double lP=std::log(Momentum);
291     sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN)    286     sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
292   }                                               287   }
293   else                                 // UHE     288   else                                 // UHE region (calculation, not frequent)
294   {                                               289   {
295     G4double P=0.001*Momentum;         // Appr    290     G4double P=0.001*Momentum;         // Approximation formula is for P in GeV/c
296     sigma=CrossSectionFormula(targZ, targN, P, << 291     sigma=CrossSectionFormula(targZ, targN, P, std::log(P));
297   }                                               292   }
298   if(sigma<0.) return 0.;                         293   if(sigma<0.) return 0.;
299   return sigma;                                   294   return sigma;
300 }                                                 295 }
301                                                   296 
302 // Calculation formula for piMinus-nuclear ine    297 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
303 G4double G4ChipsAntiBaryonInelasticXS::CrossSe    298 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
304 {                                                 299 {
305   G4double lP=G4Log(P);                        << 300   G4double lP=std::log(P);
306   return CrossSectionFormula(tZ, tN, P, lP);      301   return CrossSectionFormula(tZ, tN, P, lP);
307 }                                                 302 }
308                                                   303 
309 // Calculation formula for piMinus-nuclear ine    304 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
310 G4double G4ChipsAntiBaryonInelasticXS::CrossSe    305 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
311 {                                                 306 {
312   G4double P=G4Exp(lP);                        << 307   G4double P=std::exp(lP);
313   return CrossSectionFormula(tZ, tN, P, lP);      308   return CrossSectionFormula(tZ, tN, P, lP);
314 }                                                 309 }
315 // Calculation formula for piMinus-nuclear ine    310 // Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
316 G4double G4ChipsAntiBaryonInelasticXS::CrossSe    311 G4double G4ChipsAntiBaryonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
317                                                   312                                                               G4double P, G4double lP)
318 {                                                 313 {
319   G4double sigma=0.;                              314   G4double sigma=0.;
320   if(tZ==1 && !tN)                        // A    315   if(tZ==1 && !tN)                        // AntiBar-Prot interaction from G4QuasiElRatios
321   {                                               316   {
322     G4double ld=lP-3.5;                           317     G4double ld=lP-3.5;
323     G4double ld2=ld*ld;                           318     G4double ld2=ld*ld;
324     G4double ye=G4Exp(lP*1.25);                << 319     G4double ye=std::exp(lP*1.25);
325     G4double yt=G4Exp(lP*0.35);                << 320     G4double yt=std::exp(lP*0.35);
326     G4double El=80./(ye+1.);                      321     G4double El=80./(ye+1.);
327     G4double To=(80./yt+.3)/yt;                   322     G4double To=(80./yt+.3)/yt;
328     sigma=(To-El)+.2443*ld2+31.48;                323     sigma=(To-El)+.2443*ld2+31.48;
329   }                                               324   }
330   else if(tZ==1 && tN==1)                         325   else if(tZ==1 && tN==1)
331   {                                               326   {
332     G4double r=lP-3.7;                            327     G4double r=lP-3.7;
333     sigma=0.6*r*r+67.+90.*G4Exp(-lP*.666);     << 328     sigma=0.6*r*r+67.+90.*std::exp(-lP*.666);
334   }                                               329   }
335   else if(tZ<97 && tN<152)                // G    330   else if(tZ<97 && tN<152)                // General solution
336   {                                               331   {
337     G4double d=lP-4.2;                            332     G4double d=lP-4.2;
338     G4double sp=std::sqrt(P);                     333     G4double sp=std::sqrt(P);
339     G4double a=tN+tZ;                      //     334     G4double a=tN+tZ;                      // A of the target
340     G4double sa=std::sqrt(a);                     335     G4double sa=std::sqrt(a);
341     G4double a2=a*a;                              336     G4double a2=a*a;
342     G4double a3=a2*a;                             337     G4double a3=a2*a;
343     G4double a2s=a2*sa;                           338     G4double a2s=a2*sa;
344     G4double c=(170.+3600./a2s)/(1.+65./a2s)+4 << 339     G4double c=(170.+3600./a2s)/(1.+65./a2s)+40.*std::pow(a,0.712)/(1.+12.2/a)/(1.+34./a2);
345     G4double r=(170.+0.01*a3)/(1.+a3/28000.);     340     G4double r=(170.+0.01*a3)/(1.+a3/28000.);
346     sigma=c+d*d+r/sp;                             341     sigma=c+d*d+r/sp;
347   }                                               342   }
348   else                                            343   else
349   {                                               344   {
350     G4cerr<<"-Warning-G4QAntiBarNuclearCroSect    345     G4cerr<<"-Warning-G4QAntiBarNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
351     sigma=0.;                                     346     sigma=0.;
352   }                                               347   }
353   if(sigma<0.) return 0.;                         348   if(sigma<0.) return 0.;
354   return sigma;                                   349   return sigma;  
355 }                                                 350 }
356                                                   351 
357 G4double G4ChipsAntiBaryonInelasticXS::EquLine    352 G4double G4ChipsAntiBaryonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
358 {                                                 353 {
359   if(DX<=0. || N<2)                               354   if(DX<=0. || N<2)
360     {                                             355     {
361       G4cerr<<"***G4ChipsAntiBaryonInelasticXS    356       G4cerr<<"***G4ChipsAntiBaryonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
362       return Y[0];                                357       return Y[0];
363     }                                             358     }
364                                                   359   
365   G4int    N2=N-2;                                360   G4int    N2=N-2;
366   G4double d=(X-X0)/DX;                           361   G4double d=(X-X0)/DX;
367   G4int    jj=static_cast<int>(d);             << 362   G4int         j=static_cast<int>(d);
368   if     (jj<0)  jj=0;                         << 363   if     (j<0)  j=0;
369   else if(jj>N2) jj=N2;                        << 364   else if(j>N2) j=N2;
370   d-=jj; // excess                             << 365   d-=j; // excess
371   G4double yi=Y[jj];                           << 366   G4double yi=Y[j];
372   G4double sigma=yi+(Y[jj+1]-yi)*d;            << 367   G4double sigma=yi+(Y[j+1]-yi)*d;
373                                                   368   
374   return sigma;                                   369   return sigma;
375 }                                                 370 }
376                                                   371