Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // >> 28 >> 29 #include <complex> 26 30 27 #include "G4XTRGammaRadModel.hh" 31 #include "G4XTRGammaRadModel.hh" >> 32 #include "Randomize.hh" >> 33 >> 34 #include "G4Gamma.hh" >> 35 >> 36 using namespace std; 28 37 29 ////////////////////////////////////////////// 38 //////////////////////////////////////////////////////////////////////////// >> 39 // 30 // Constructor, destructor 40 // Constructor, destructor >> 41 31 G4XTRGammaRadModel::G4XTRGammaRadModel(G4Logic 42 G4XTRGammaRadModel::G4XTRGammaRadModel(G4LogicalVolume* anEnvelope, 32 G4doubl << 43 G4double alphaPlate, 33 G4Mater << 44 G4double alphaGas, 34 G4doubl << 45 G4Material* foilMat,G4Material* gasMat, 35 const G << 46 G4double a, G4double b, G4int n, 36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasM << 47 const G4String& processName) : >> 48 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName) 37 { 49 { 38 G4cout << "Gamma distributed X-ray TR radiat << 50 G4cout<<"Gammma distributed X-ray TR radiator model is called"<<G4endl ; 39 51 40 // Build energy and angular integral spectra 52 // Build energy and angular integral spectra of X-ray TR photons from 41 // a radiator 53 // a radiator 42 fAlphaPlate = alphaPlate; << 54 43 fAlphaGas = alphaGas; << 55 fAlphaPlate = alphaPlate ; 44 G4cout << "fAlphaPlate = " << fAlphaPlate << << 56 fAlphaGas = alphaGas ; 45 << G4endl; << 57 G4cout<<"fAlphaPlate = "<<fAlphaPlate<<" ; fAlphaGas = "<<fAlphaGas<<G4endl ; 46 fExitFlux = true; 58 fExitFlux = true; >> 59 // BuildTable() ; 47 } 60 } 48 61 49 ////////////////////////////////////////////// 62 /////////////////////////////////////////////////////////////////////////// 50 G4XTRGammaRadModel::~G4XTRGammaRadModel() = de << 51 63 52 void G4XTRGammaRadModel::ProcessDescription(st << 64 G4XTRGammaRadModel::~G4XTRGammaRadModel() 53 { 65 { 54 out << "Rough model describing X-ray transit << 66 ; 55 "plates\n" << 56 "and gas gaps are distributed accordi << 57 } 67 } 58 68 >> 69 >> 70 59 ////////////////////////////////////////////// 71 /////////////////////////////////////////////////////////////////////////// >> 72 // 60 // Rough approximation for radiator interferen 73 // Rough approximation for radiator interference factor for the case of 61 // fully GamDistr radiator. The plate and gas << 74 // fully GamDistr radiator. The plate and gas gap thicknesses are distributed 62 // according to exponent. The mean values of t << 75 // according to exponent. The mean values of the plate and gas gap thicknesses 63 // are supposed to be about XTR formation zone << 76 // are supposed to be about XTR formation zones but much less than 64 // mean absorption length of XTR photons in co 77 // mean absorption length of XTR photons in coresponding material. 65 G4double G4XTRGammaRadModel::GetStackFactor(G4 << 78 66 G4 << 79 G4double >> 80 G4XTRGammaRadModel::GetStackFactor( G4double energy, >> 81 G4double gamma, G4double varAngle ) 67 { 82 { 68 G4double result, Qa, Qb, Q, Za, Zb, Ma, Mb; << 83 G4double result, Qa, Qb, Q, Za, Zb, Ma, Mb ; >> 84 >> 85 Za = GetPlateFormationZone(energy,gamma,varAngle) ; >> 86 Zb = GetGasFormationZone(energy,gamma,varAngle) ; 69 87 70 Za = GetPlateFormationZone(energy, gamma, va << 88 Ma = GetPlateLinearPhotoAbs(energy) ; 71 Zb = GetGasFormationZone(energy, gamma, varA << 89 Mb = GetGasLinearPhotoAbs(energy) ; 72 90 73 Ma = GetPlateLinearPhotoAbs(energy); << 91 Qa = ( 1.0 + fPlateThick*Ma/fAlphaPlate ) ; 74 Mb = GetGasLinearPhotoAbs(energy); << 92 Qa = std::pow(Qa,-fAlphaPlate) ; >> 93 Qb = ( 1.0 + fGasThick*Mb/fAlphaGas ) ; >> 94 Qb = std::pow(Qb,-fAlphaGas) ; >> 95 Q = Qa*Qb ; 75 96 76 Qa = (1.0 + fPlateThick * Ma / fAlphaPlate); << 97 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate) ; 77 Qa = std::pow(Qa, -fAlphaPlate); << 98 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas) ; 78 Qb = (1.0 + fGasThick * Mb / fAlphaGas); << 79 Qb = std::pow(Qb, -fAlphaGas); << 80 Q = Qa * Qb; << 81 99 82 G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / << 100 G4complex Ha = std::pow(Ca,-fAlphaPlate) ; 83 fPlateThick / Za / fAlphaPlate) << 101 G4complex Hb = std::pow(Cb,-fAlphaGas) ; 84 G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fA << 102 G4complex H = Ha*Hb ; 85 fGasThick / Zb / fAlphaGas); << 86 103 87 G4complex Ha = std::pow(Ca, -fAlphaPlate); << 104 G4complex F1 = ( 0.5*(1+Qa)*(1.0+H) - Ha - Qa*Hb )/(1.0-H) ; 88 G4complex Hb = std::pow(Cb, -fAlphaGas); << 89 G4complex H = Ha * Hb; << 90 105 91 G4complex F1 = (0.5 * (1 + Qa) * (1.0 + H) - << 106 G4complex F2 = (1.0-Ha)*(Qa-Ha)*Hb/(1.0-H)/(Q-H) ; 92 107 93 G4complex F2 = (1.0 - Ha) * (Qa - Ha) * Hb / << 108 F2 *= std::pow(Q,G4double(fPlateNumber)) - std::pow(H,fPlateNumber) ; 94 109 95 F2 *= std::pow(Q, G4double(fPlateNumber)) - << 110 result = ( 1 - std::pow(Q,G4double(fPlateNumber)) )/( 1 - Q ) ; 96 111 97 result = (1. - std::pow(Q, G4double(fPlateNu << 112 G4complex stack = result*F1; >> 113 stack += F2; >> 114 stack *= 2.0*OneInterfaceXTRdEdx(energy,gamma,varAngle); 98 115 99 G4complex stack = result * F1; << 116 result = std::real(stack); 100 stack += F2; << 101 stack *= 2.0 * OneInterfaceXTRdEdx(energy, g << 102 117 103 result = std::real(stack); << 118 // result *= 2.0*std::real(F1); >> 119 // result += 2.0*std::real(F2); 104 120 105 return result; << 121 return result ; 106 } 122 } >> 123 >> 124 >> 125 // >> 126 // >> 127 //////////////////////////////////////////////////////////////////////////// >> 128 >> 129 >> 130 >> 131 >> 132 >> 133 >> 134 >> 135 107 136