Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /////////////////////////////////////////////////////////////////////////// 27 // 28 // Rough model describing a gamma function distributed radiator of X-ray 29 // transition radiation. XTR is considered to flux after radiator! 30 // Thicknesses of plates and gas gaps are distributed according to gamma 31 // distribution. x are thicknesses of plates or gas gaps: 32 // 33 // p(x) = (alpha/<x>)^alpha * x^(alpha-1) * std::exp(-alpha*x/<x>) / G(alpha) 34 // 35 // G(alpha) is Euler's gamma function. 36 // Plates have mean <x> = fPlateThick > 0 and power alpha = fAlphaPlate > 0 : 37 // Gas gaps have mean <x> = fGasThick > 0 and power alpha = fAlphaGas > 0 : 38 // We suppose that: 39 // formation zone ~ mean thickness << absorption length 40 // for each material and in the range 1-100 keV. This allows us to simplify 41 // interference effects in radiator stack (GetStackFactor method). 42 // 43 // History: 44 // 45 // 03.10.05 V. Grichine, first version 46 // 47 48 #ifndef G4XTRGammaRadModel_h 49 #define G4XTRGammaRadModel_h 1 50 51 #include "G4LogicalVolume.hh" 52 #include "G4Material.hh" 53 #include "G4VXTRenergyLoss.hh" 54 55 class G4XTRGammaRadModel : public G4VXTRenergyLoss 56 { 57 public: 58 explicit G4XTRGammaRadModel(G4LogicalVolume* anEnvelope, G4double, G4double, 59 G4Material*, G4Material*, G4double, G4double, 60 G4int, 61 const G4String& processName = "XTRgammaRadiator"); 62 ~G4XTRGammaRadModel(); 63 64 void ProcessDescription(std::ostream&) const override; 65 void DumpInfo() const override { ProcessDescription(G4cout); }; 66 67 G4double GetStackFactor(G4double energy, G4double gamma, 68 G4double varAngle) override; 69 }; 70 71 #endif 72