Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // >> 28 // G4VTransitionRadiation class -- implementation file 26 29 27 // GEANT 4 class implementation file --- Copyr 30 // GEANT 4 class implementation file --- Copyright CERN 1995 >> 31 // CERN Geneva Switzerland 28 32 29 // History: 33 // History: 30 // 29.02.04 V.Ivanchenko create 34 // 29.02.04 V.Ivanchenko create 31 // 28.07.05, P.Gumplinger add G4ProcessType to 35 // 28.07.05, P.Gumplinger add G4ProcessType to constructor 32 36 33 #include "G4VTransitionRadiation.hh" 37 #include "G4VTransitionRadiation.hh" 34 << 35 #include "G4EmProcessSubType.hh" << 36 #include "G4LossTableManager.hh" << 37 #include "G4Material.hh" << 38 #include "G4ParticleDefinition.hh" 38 #include "G4ParticleDefinition.hh" >> 39 #include "G4VTRModel.hh" >> 40 #include "G4Material.hh" 39 #include "G4Region.hh" 41 #include "G4Region.hh" 40 #include "G4TransportationManager.hh" 42 #include "G4TransportationManager.hh" 41 #include "G4VTRModel.hh" << 43 #include "G4EmProcessSubType.hh" >> 44 #include "G4LossTableManager.hh" 42 45 43 ////////////////////////////////////////////// 46 /////////////////////////////////////////////////////////////////////// 44 G4VTransitionRadiation::G4VTransitionRadiation << 47 45 << 48 G4VTransitionRadiation::G4VTransitionRadiation( const G4String& processName, 46 : G4VDiscreteProcess(processName, type) << 49 G4ProcessType type ) 47 , region(nullptr) << 50 : G4VDiscreteProcess(processName, type), 48 , model(nullptr) << 51 region(nullptr), 49 , gammaMin(100.) << 52 model(nullptr), 50 , cosDThetaMax(std::cos(0.1)) << 53 nSteps(0), 51 , nSteps(0) << 54 gammaMin(100.), >> 55 cosDThetaMax(std::cos(0.1)) 52 { 56 { 53 SetProcessSubType(fTransitionRadiation); 57 SetProcessSubType(fTransitionRadiation); 54 Clear(); 58 Clear(); 55 theManager = G4LossTableManager::Instance(); 59 theManager = G4LossTableManager::Instance(); 56 theManager->Register(this); 60 theManager->Register(this); 57 } 61 } 58 62 59 ////////////////////////////////////////////// 63 /////////////////////////////////////////////////////////////////////// >> 64 60 G4VTransitionRadiation::~G4VTransitionRadiatio 65 G4VTransitionRadiation::~G4VTransitionRadiation() 61 { 66 { 62 Clear(); 67 Clear(); 63 theManager->DeRegister(this); 68 theManager->DeRegister(this); 64 } 69 } 65 70 66 void G4VTransitionRadiation::ProcessDescriptio << 67 { << 68 out << "Generic process of transition radiat << 69 << 70 if(model) << 71 model->PrintInfo(); << 72 } << 73 << 74 ////////////////////////////////////////////// 71 /////////////////////////////////////////////////////////////////////// >> 72 75 void G4VTransitionRadiation::Clear() 73 void G4VTransitionRadiation::Clear() 76 { 74 { 77 materials.clear(); 75 materials.clear(); 78 steps.clear(); 76 steps.clear(); 79 normals.clear(); 77 normals.clear(); 80 nSteps = 0; 78 nSteps = 0; 81 } 79 } 82 80 83 ////////////////////////////////////////////// 81 /////////////////////////////////////////////////////////////////////// 84 G4VParticleChange* G4VTransitionRadiation::Pos << 82 85 << 83 G4VParticleChange* G4VTransitionRadiation::PostStepDoIt( >> 84 const G4Track& track, >> 85 const G4Step& step) 86 { 86 { >> 87 87 // Fill temporary vectors 88 // Fill temporary vectors >> 89 88 const G4Material* material = track.GetMateri 90 const G4Material* material = track.GetMaterial(); 89 G4double length = step.GetStepLen << 91 G4double length = step.GetStepLength(); 90 G4ThreeVector direction = track.GetMoment << 92 G4ThreeVector direction = track.GetMomentumDirection(); >> 93 >> 94 if(nSteps == 0) { 91 95 92 if(nSteps == 0) << 93 { << 94 nSteps = 1; 96 nSteps = 1; 95 materials.push_back(material); 97 materials.push_back(material); 96 steps.push_back(length); 98 steps.push_back(length); 97 const G4StepPoint* point = step.GetPreStep 99 const G4StepPoint* point = step.GetPreStepPoint(); 98 startingPosition = point->GetPosit << 100 startingPosition = point->GetPosition(); 99 startingDirection = point->GetMomen << 101 startingDirection = point->GetMomentumDirection(); 100 G4bool valid = true; << 102 G4bool valid = true; 101 G4ThreeVector n = G4TransportationManager: 103 G4ThreeVector n = G4TransportationManager::GetTransportationManager() 102 ->GetNavigatorForTrack << 104 ->GetNavigatorForTracking()->GetLocalExitNormal(&valid); 103 ->GetLocalExitNormal(& << 105 if(valid) normals.push_back(n); 104 if(valid) << 106 else normals.push_back(direction); 105 normals.push_back(n); << 107 106 else << 108 } else { 107 normals.push_back(direction); << 109 108 } << 110 if(material == materials[nSteps-1]) { 109 else << 111 steps[nSteps-1] += length; 110 { << 112 } else { 111 if(material == materials[nSteps - 1]) << 113 nSteps++; 112 { << 113 steps[nSteps - 1] += length; << 114 } << 115 else << 116 { << 117 ++nSteps; << 118 materials.push_back(material); 114 materials.push_back(material); 119 steps.push_back(length); 115 steps.push_back(length); 120 G4bool valid = true; << 116 G4bool valid = true; 121 G4ThreeVector n = G4TransportationManage 117 G4ThreeVector n = G4TransportationManager::GetTransportationManager() 122 ->GetNavigatorForTra << 118 ->GetNavigatorForTracking()->GetLocalExitNormal(&valid); 123 ->GetLocalExitNormal << 119 if(valid) normals.push_back(n); 124 if(valid) << 120 else normals.push_back(direction); 125 normals.push_back(n); << 126 else << 127 normals.push_back(direction); << 128 } 121 } 129 } 122 } 130 123 131 // Check PostStepPoint condition << 124 // Check POstStepPoint condition >> 125 132 if(track.GetTrackStatus() == fStopAndKill || 126 if(track.GetTrackStatus() == fStopAndKill || 133 track.GetVolume()->GetLogicalVolume()->Ge 127 track.GetVolume()->GetLogicalVolume()->GetRegion() != region || 134 startingDirection.x() * direction.x() + << 128 startingDirection.x()*direction.x() + 135 startingDirection.y() * direction.y() << 129 startingDirection.y()*direction.y() + 136 startingDirection.z() * direction.z() << 130 startingDirection.z()*direction.z() < cosDThetaMax) 137 cosDThetaMax) << 138 { 131 { 139 if(model) << 132 if(model) { 140 { << 133 model->GenerateSecondaries(*pParticleChange, materials, steps, 141 model->GenerateSecondaries(*pParticleCha << 134 normals, startingPosition, track); 142 startingPosit << 135 } 143 } << 136 Clear(); 144 Clear(); << 145 } 137 } 146 138 147 return pParticleChange; 139 return pParticleChange; 148 } 140 } 149 141 150 ////////////////////////////////////////////// 142 /////////////////////////////////////////////////////////////////////// >> 143 151 G4bool G4VTransitionRadiation::IsApplicable( 144 G4bool G4VTransitionRadiation::IsApplicable( 152 const G4ParticleDefinition& aParticle) << 145 const G4ParticleDefinition& aParticle) 153 { 146 { 154 return (aParticle.GetPDGCharge() != 0.0); << 147 return ( aParticle.GetPDGCharge() != 0.0 ); 155 } 148 } 156 149 157 ////////////////////////////////////////////// 150 /////////////////////////////////////////////////////////////////////// 158 void G4VTransitionRadiation::SetRegion(const G << 151 >> 152 >> 153 void G4VTransitionRadiation::SetRegion(const G4Region* reg) >> 154 { >> 155 region = reg; >> 156 } >> 157 >> 158 /////////////////////////////////////////////////////////////////////// >> 159 >> 160 void G4VTransitionRadiation::SetModel(G4VTRModel* mod) >> 161 { >> 162 model = mod; >> 163 } 159 164 160 ////////////////////////////////////////////// 165 /////////////////////////////////////////////////////////////////////// 161 void G4VTransitionRadiation::SetModel(G4VTRMod << 166 >> 167 void G4VTransitionRadiation::PrintInfoDefinition() >> 168 { >> 169 if(model) model->PrintInfo(); >> 170 } 162 171 163 ////////////////////////////////////////////// 172 /////////////////////////////////////////////////////////////////////// 164 G4double G4VTransitionRadiation::GetMeanFreePa << 173 165 << 174 G4double G4VTransitionRadiation::GetMeanFreePath( >> 175 const G4Track& track, G4double, >> 176 G4ForceCondition* condition) 166 { 177 { 167 if(nSteps > 0) << 178 if(nSteps > 0) { 168 { << 169 *condition = StronglyForced; 179 *condition = StronglyForced; 170 } << 180 } else { 171 else << 172 { << 173 *condition = NotForced; 181 *condition = NotForced; 174 if(track.GetKineticEnergy() / track.GetDef << 182 if(track.GetKineticEnergy()/track.GetDefinition()->GetPDGMass() + 1.0 > gammaMin && 175 gammaMin && << 183 track.GetVolume()->GetLogicalVolume()->GetRegion() == region) { 176 track.GetVolume()->GetLogicalVolume()-> << 184 *condition = StronglyForced; 177 { << 178 *condition = StronglyForced; << 179 } 185 } 180 } 186 } 181 return DBL_MAX; // so TR doesn't limit mean << 187 return DBL_MAX; // so TR doesn't limit mean free path 182 } 188 } >> 189 >> 190 /////////////////////////////////////////////////////////////////////// 183 191