Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4ForwardXrayTR.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4ForwardXrayTR.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4ForwardXrayTR.cc (Version 9.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4ForwardXrayTR.cc,v 1.14 2007/05/11 14:23:04 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-03-patch-01 $
                                                   >>  29 //
                                                   >>  30 // G4ForwardXrayTR class -- implementation file
                                                   >>  31 
                                                   >>  32 // GEANT 4 class implementation file --- Copyright CERN 1995
                                                   >>  33 // CERN Geneva Switzerland
                                                   >>  34 
                                                   >>  35 // For information related to this code, please, contact
                                                   >>  36 // CERN, CN Division, ASD Group
 26 // History:                                        37 // History:
 27 // 1st version 11.09.97 V. Grichine (Vladimir.     38 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch )
 28 // 2nd version 17.12.97 V. Grichine                39 // 2nd version 17.12.97 V. Grichine
 29 // 17-09-01, migration of Materials to pure ST     40 // 17-09-01, migration of Materials to pure STL (mma)
 30 // 10-03-03, migration to "cut per region" (V.     41 // 10-03-03, migration to "cut per region" (V.Ivanchenko)
 31 // 03.06.03, V.Ivanchenko fix compilation warn     42 // 03.06.03, V.Ivanchenko fix compilation warnings
 32                                                    43 
 33 #include "G4ForwardXrayTR.hh"                      44 #include "G4ForwardXrayTR.hh"
 34                                                    45 
 35 #include "globals.hh"                              46 #include "globals.hh"
 36 #include "G4Gamma.hh"                          <<  47 #include "G4Poisson.hh"
 37 #include "G4GeometryTolerance.hh"              << 
 38 #include "G4Material.hh"                           48 #include "G4Material.hh"
 39 #include "G4PhysicalConstants.hh"              << 
 40 #include "G4PhysicsLinearVector.hh"            << 
 41 #include "G4PhysicsLogVector.hh"               << 
 42 #include "G4PhysicsTable.hh"                       49 #include "G4PhysicsTable.hh"
 43 #include "G4PhysicsVector.hh"                      50 #include "G4PhysicsVector.hh"
 44 #include "G4Poisson.hh"                        <<  51 #include "G4PhysicsLinearVector.hh"
                                                   >>  52 #include "G4PhysicsLogVector.hh"
 45 #include "G4ProductionCutsTable.hh"                53 #include "G4ProductionCutsTable.hh"
 46 #include "G4SystemOfUnits.hh"                  <<  54 #include "G4GeometryTolerance.hh"
 47 #include "G4PhysicsModelCatalog.hh"            <<  55 
                                                   >>  56 // Table initialization
                                                   >>  57 
                                                   >>  58 // G4PhysicsTable* G4ForwardXrayTR::fAngleDistrTable  = NULL ;
                                                   >>  59 // G4PhysicsTable* G4ForwardXrayTR::fEnergyDistrTable = NULL ;
                                                   >>  60 
                                                   >>  61 
                                                   >>  62 // Initialization of local constants
                                                   >>  63 
                                                   >>  64 G4int    G4ForwardXrayTR::fSympsonNumber =  100       ;
                                                   >>  65 
                                                   >>  66 G4double G4ForwardXrayTR::fTheMinEnergyTR   =    1.0*keV  ;
                                                   >>  67 G4double G4ForwardXrayTR::fTheMaxEnergyTR   =  100.0*keV  ;
                                                   >>  68 G4double G4ForwardXrayTR::fTheMaxAngle    =      1.0e-3   ;
                                                   >>  69 G4double G4ForwardXrayTR::fTheMinAngle    =      5.0e-6   ;
                                                   >>  70 G4int    G4ForwardXrayTR::fBinTR            =   50        ;
                                                   >>  71 
                                                   >>  72 G4double G4ForwardXrayTR::fMinProtonTkin = 100.0*GeV  ;
                                                   >>  73 G4double G4ForwardXrayTR::fMaxProtonTkin = 100.0*TeV  ;
                                                   >>  74 G4int    G4ForwardXrayTR::fTotBin        =  50        ;
                                                   >>  75 // Proton energy vector initialization
                                                   >>  76 
                                                   >>  77 G4PhysicsLogVector* G4ForwardXrayTR::
                                                   >>  78 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin,
                                                   >>  79                                              fMaxProtonTkin,
                                                   >>  80                                                     fTotBin  ) ;
                                                   >>  81 
                                                   >>  82 G4double G4ForwardXrayTR::fPlasmaCof = 4.0*pi*fine_structure_const*
                                                   >>  83                                        hbarc*hbarc*hbarc/electron_mass_c2 ;
                                                   >>  84 
                                                   >>  85 G4double G4ForwardXrayTR::fCofTR     = fine_structure_const/pi ;
                                                   >>  86 
                                                   >>  87 using namespace std;
                                                   >>  88 
                                                   >>  89 /*   ************************************************************************
                                                   >>  90 
                                                   >>  91 
                                                   >>  92 ///////////////////////////////////////////////////////////////////////
                                                   >>  93 //
                                                   >>  94 // Constructor for preparation tables with angle and energy TR distributions
                                                   >>  95 // in all materials involved in test program. Lorentz factors correspond to
                                                   >>  96 // kinetic energies of protons between 100*GeV and 100*TeV, ~ 10^2-10^5
                                                   >>  97 //
                                                   >>  98 // Recommended only for use in applications with
                                                   >>  99 // few light materials involved                     !!!!!!!!!!!!!!
                                                   >> 100 
                                                   >> 101 G4ForwardXrayTR::G4ForwardXrayTR()
                                                   >> 102   : G4TransitionRadiation("XrayTR")
                                                   >> 103 {
                                                   >> 104   G4int iMat, jMat, iTkin, iTR, iPlace ;
                                                   >> 105   static
                                                   >> 106   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
                                                   >> 107   G4int numOfMat = G4Material::GetNumberOfMaterials();
                                                   >> 108   fGammaCutInKineticEnergy = new G4double[numOfMat] ;
                                                   >> 109   fGammaCutInKineticEnergy = fPtrGamma->GetEnergyCuts() ;
                                                   >> 110   fMatIndex1 = -1 ;
                                                   >> 111   fMatIndex2 = -1 ;
                                                   >> 112   fAngleDistrTable  = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ;
                                                   >> 113   fEnergyDistrTable = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ;
                                                   >> 114 
                                                   >> 115         G4PhysicsLogVector* aVector = new G4PhysicsLogVector(fMinProtonTkin,
                                                   >> 116                                                              fMaxProtonTkin,
                                                   >> 117                                                                     fTotBin  ) ;
                                                   >> 118 
                                                   >> 119   for(iMat=0;iMat<numOfMat;iMat++) // loop over pairs of different materials
                                                   >> 120   {
                                                   >> 121     for(jMat=0;jMat<numOfMat;jMat++)  // transition iMat -> jMat !!!
                                                   >> 122     {
                                                   >> 123       if(iMat == jMat)   continue ;      // no TR !!
                                                   >> 124       else
                                                   >> 125       {
                                                   >> 126         const G4Material* mat1 = (*theMaterialTable)[iMat] ;
                                                   >> 127         const G4Material* mat2 = (*theMaterialTable)[jMat] ;
                                                   >> 128 
                                                   >> 129         fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ;
                                                   >> 130         fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ;
                                                   >> 131 
                                                   >> 132 //        fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat !
                                                   >> 133           fGammaTkinCut = 0.0 ;
                                                   >> 134 
                                                   >> 135         if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies
                                                   >> 136   {
                                                   >> 137           fMinEnergyTR = fGammaTkinCut ;
                                                   >> 138   }
                                                   >> 139         else
                                                   >> 140   {
                                                   >> 141           fMinEnergyTR = fTheMinEnergyTR ;
                                                   >> 142   }
                                                   >> 143         if(fGammaTkinCut > fTheMaxEnergyTR)
                                                   >> 144   {
                                                   >> 145           fMaxEnergyTR = 2.0*fGammaTkinCut ;    // usually very low TR rate 
                                                   >> 146   }
                                                   >> 147         else
                                                   >> 148   {
                                                   >> 149           fMaxEnergyTR = fTheMaxEnergyTR ;
                                                   >> 150   }
                                                   >> 151         for(iTkin=0;iTkin<fTotBin;iTkin++)      // Lorentz factor loop
                                                   >> 152   {
                                                   >> 153           G4PhysicsLogVector* 
                                                   >> 154                     energyVector = new G4PhysicsLogVector(fMinEnergyTR,
                                                   >> 155                                                              fMaxEnergyTR,
                                                   >> 156                                                                    fBinTR  ) ;
                                                   >> 157           G4PhysicsLinearVector* 
                                                   >> 158                      angleVector = new G4PhysicsLinearVector(        0.0,
                                                   >> 159                                                              fMaxThetaTR,
                                                   >> 160                                                                   fBinTR  ) ;
                                                   >> 161           G4double energySum = 0.0 ;
                                                   >> 162           G4double angleSum  = 0.0 ;
                                                   >> 163           fGamma = 1.0 +   (aVector->GetLowEdgeEnergy(iTkin)/proton_mass_c2) ;
                                                   >> 164           fMaxThetaTR = 10000.0/(fGamma*fGamma) ;
                                                   >> 165           if(fMaxThetaTR > fTheMaxAngle)
                                                   >> 166           {
                                                   >> 167             fMaxThetaTR = fTheMaxAngle ;
                                                   >> 168     }
                                                   >> 169           else
                                                   >> 170     {
                                                   >> 171             if(fMaxThetaTR < fTheMinAngle)
                                                   >> 172       {
                                                   >> 173               fMaxThetaTR = fTheMinAngle ;
                                                   >> 174       }
                                                   >> 175     }
                                                   >> 176           energyVector->PutValue(fBinTR-1,energySum) ;
                                                   >> 177           angleVector->PutValue(fBinTR-1,angleSum)   ;
                                                   >> 178 
                                                   >> 179           for(iTR=fBinTR-2;iTR>=0;iTR--)
                                                   >> 180     {
                                                   >> 181             energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR),
                                                   >> 182                                         energyVector->GetLowEdgeEnergy(iTR+1)) ;
                                                   >> 183 
                                                   >> 184             angleSum  += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR),
                                                   >> 185                                          angleVector->GetLowEdgeEnergy(iTR+1)) ;
                                                   >> 186             energyVector->PutValue(iTR,energySum) ;
                                                   >> 187             angleVector->PutValue(iTR,angleSum)   ;
                                                   >> 188     }
                                                   >> 189           if(jMat < iMat)
                                                   >> 190     {
                                                   >> 191             iPlace = (iMat*(numOfMat-1)+jMat)*fTotBin+iTkin ;
                                                   >> 192     }
                                                   >> 193           else   // jMat > iMat right part of matrices (jMat-1) !
                                                   >> 194     {
                                                   >> 195             iPlace = (iMat*(numOfMat-1)+jMat-1)*fTotBin+iTkin ;
                                                   >> 196     }
                                                   >> 197           fEnergyDistrTable->insertAt(iPlace,energyVector) ;
                                                   >> 198           fAngleDistrTable->insertAt(iPlace,angleVector) ;
                                                   >> 199   }    //                      iTkin
                                                   >> 200       }      //         jMat != iMat
                                                   >> 201     }        //     jMat
                                                   >> 202   }          // iMat
                                                   >> 203 }
                                                   >> 204 
                                                   >> 205 
                                                   >> 206 ****************************************************************  */
                                                   >> 207 
 48                                                   208 
 49 //////////////////////////////////////////////    209 //////////////////////////////////////////////////////////////////////
 50 //                                                210 //
 51 // Constructor for creation of physics tables     211 // Constructor for creation of physics tables (angle and energy TR
 52 // distributions) for a couple of selected mat    212 // distributions) for a couple of selected materials.
 53 //                                                213 //
 54 // Recommended for use in applications with ma    214 // Recommended for use in applications with many materials involved,
 55 // when only few (usually couple) materials ar    215 // when only few (usually couple) materials are interested for generation
 56 // of TR on the interface between them            216 // of TR on the interface between them
 57 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 
 58                                  const G4Strin << 
 59                                  const G4Strin << 
 60   : G4TransitionRadiation(processName)         << 
 61 {                                              << 
 62   secID = G4PhysicsModelCatalog::GetModelID("m << 
 63   fPtrGamma                = nullptr;          << 
 64   fGammaCutInKineticEnergy = nullptr;          << 
 65   fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR  << 
 66   fGamma = fSigma1 = fSigma2 = 0.0;            << 
 67   fAngleDistrTable           = nullptr;        << 
 68   fEnergyDistrTable          = nullptr;        << 
 69   fMatIndex1 = fMatIndex2 = 0;                 << 
 70                                                << 
 71   // Proton energy vector initialization       << 
 72   fProtonEnergyVector =                        << 
 73     new G4PhysicsLogVector(fMinProtonTkin, fMa << 
 74   G4int iMat;                                  << 
 75   const G4ProductionCutsTable* theCoupleTable  << 
 76     G4ProductionCutsTable::GetProductionCutsTa << 
 77   G4int numOfCouples = (G4int)theCoupleTable-> << 
 78                                                   217 
 79   G4bool build = true;                         << 
 80                                                   218 
 81   for(iMat = 0; iMat < numOfCouples; ++iMat)   << 219 G4ForwardXrayTR::
                                                   >> 220 G4ForwardXrayTR( const G4String& matName1,   //  G4Material* pMat1,
                                                   >> 221      const G4String& matName2,    //  G4Material* pMat2,
                                                   >> 222                  const G4String& processName                          )
                                                   >> 223   :        G4TransitionRadiation(processName)
                                                   >> 224 {
                                                   >> 225   //  fMatIndex1 = pMat1->GetIndex() ;
                                                   >> 226   //  fMatIndex2 = pMat2->GetIndex() ;
                                                   >> 227   G4int iMat;
                                                   >> 228   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 229         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 230   G4int numOfCouples = theCoupleTable->GetTableSize();
                                                   >> 231 
                                                   >> 232   for(iMat=0;iMat<numOfCouples;iMat++)    // check first material name
 82   {                                               233   {
 83     const G4MaterialCutsCouple* couple =       << 234     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat);
 84       theCoupleTable->GetMaterialCutsCouple(iM << 235     if( matName1 == couple->GetMaterial()->GetName() )
 85     if(matName1 == couple->GetMaterial()->GetN << 
 86     {                                             236     {
 87       fMatIndex1 = couple->GetIndex();         << 237       fMatIndex1 = couple->GetIndex() ;
 88       break;                                   << 238       break ;
 89     }                                             239     }
 90   }                                               240   }
 91   if(iMat == numOfCouples)                        241   if(iMat == numOfCouples)
 92   {                                               242   {
 93     G4Exception("G4ForwardXrayTR::G4ForwardXra << 243     G4Exception("Invalid first material name in G4ForwardXrayTR constructor") ;
 94                 JustWarning,                   << 
 95                 "Invalid first material name i << 
 96     build = false;                             << 
 97   }                                               244   }
 98                                                   245 
 99   if(build)                                    << 246   for(iMat=0;iMat<numOfCouples;iMat++)    // check second material name
100   {                                               247   {
101     for(iMat = 0; iMat < numOfCouples; ++iMat) << 248     const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat);
                                                   >> 249     if( matName2 == couple->GetMaterial()->GetName() )
102     {                                             250     {
103       const G4MaterialCutsCouple* couple =     << 251       fMatIndex2 = couple->GetIndex() ;
104         theCoupleTable->GetMaterialCutsCouple( << 252       break ;
105       if(matName2 == couple->GetMaterial()->Ge << 
106       {                                        << 
107         fMatIndex2 = couple->GetIndex();       << 
108         break;                                 << 
109       }                                        << 
110     }                                          << 
111     if(iMat == numOfCouples)                   << 
112     {                                          << 
113       G4Exception(                             << 
114         "G4ForwardXrayTR::G4ForwardXrayTR", "F << 
115         "Invalid second material name in G4For << 
116       build = false;                           << 
117     }                                             253     }
118   }                                               254   }
119   if(build)                                    << 255   if(iMat == numOfCouples)
120   {                                               256   {
121     BuildXrayTRtables();                       << 257     G4Exception("Invalid second material name in G4ForwardXrayTR constructor") ;
122   }                                               258   }
                                                   >> 259   //  G4cout<<"G4ForwardXray constructor is called"<<G4endl ;
                                                   >> 260   BuildXrayTRtables() ;
123 }                                                 261 }
124                                                   262 
125 //////////////////////////////////////////////    263 /////////////////////////////////////////////////////////////////////////
                                                   >> 264 //
126 // Constructor used by X-ray transition radiat    265 // Constructor used by X-ray transition radiation parametrisation models
127 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 266 
128   : G4TransitionRadiation(processName)         << 267 G4ForwardXrayTR::
                                                   >> 268 G4ForwardXrayTR( const G4String& processName  )
                                                   >> 269   :        G4TransitionRadiation(processName)
129 {                                                 270 {
130   fPtrGamma                = nullptr;          << 271   ;
131   fGammaCutInKineticEnergy = nullptr;          << 
132   fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR  << 
133   fGamma = fSigma1 = fSigma2 = 0.0;            << 
134   fAngleDistrTable           = nullptr;        << 
135   fEnergyDistrTable          = nullptr;        << 
136   fMatIndex1 = fMatIndex2 = 0;                 << 
137                                                << 
138   // Proton energy vector initialization       << 
139   fProtonEnergyVector =                        << 
140     new G4PhysicsLogVector(fMinProtonTkin, fMa << 
141 }                                                 272 }
142                                                   273 
                                                   >> 274 
143 //////////////////////////////////////////////    275 //////////////////////////////////////////////////////////////////////
                                                   >> 276 //
144 // Destructor                                     277 // Destructor
145 G4ForwardXrayTR::~G4ForwardXrayTR()            << 278 //
146 {                                              << 
147   delete fAngleDistrTable;                     << 
148   delete fEnergyDistrTable;                    << 
149   delete fProtonEnergyVector;                  << 
150 }                                              << 
151                                                << 
152 void G4ForwardXrayTR::ProcessDescription(std:: << 
153 {                                              << 
154   out << "Simulation of forward X-ray transiti << 
155          "relativistic charged particles cross << 
156          "two materials.\n";                   << 
157 }                                              << 
158                                                   279 
159 G4double G4ForwardXrayTR::GetMeanFreePath(cons << 280 G4ForwardXrayTR::~G4ForwardXrayTR()
160                                           G4Fo << 
161 {                                                 281 {
162   *condition = Forced;                         << 282   ;
163   return DBL_MAX;  // so TR doesn't limit mean << 
164 }                                                 283 }
165                                                   284 
166 //////////////////////////////////////////////    285 //////////////////////////////////////////////////////////////////////////////
                                                   >> 286 //
167 // Build physics tables for energy and angular    287 // Build physics tables for energy and angular distributions of X-ray TR photon
                                                   >> 288 
168 void G4ForwardXrayTR::BuildXrayTRtables()         289 void G4ForwardXrayTR::BuildXrayTRtables()
169 {                                                 290 {
170   G4int iMat, jMat, iTkin, iTR, iPlace;        << 291   G4int iMat, jMat, iTkin, iTR, iPlace ;
171   const G4ProductionCutsTable* theCoupleTable  << 292   const G4ProductionCutsTable* theCoupleTable=
172     G4ProductionCutsTable::GetProductionCutsTa << 293         G4ProductionCutsTable::GetProductionCutsTable();
173   G4int numOfCouples = (G4int)theCoupleTable-> << 294   G4int numOfCouples = theCoupleTable->GetTableSize();
174                                                   295 
175   fGammaCutInKineticEnergy = theCoupleTable->G    296   fGammaCutInKineticEnergy = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut);
176                                                   297 
177   fAngleDistrTable  = new G4PhysicsTable(2 * f << 298   fAngleDistrTable  = new G4PhysicsTable(2*fTotBin) ;
178   fEnergyDistrTable = new G4PhysicsTable(2 * f << 299   fEnergyDistrTable = new G4PhysicsTable(2*fTotBin) ;
                                                   >> 300 
179                                                   301 
180   for(iMat = 0; iMat < numOfCouples;           << 302   for(iMat=0;iMat<numOfCouples;iMat++)     // loop over pairs of different materials
181       ++iMat)  // loop over pairs of different << 
182   {                                               303   {
183     if(iMat != fMatIndex1 && iMat != fMatIndex << 304     if( iMat != fMatIndex1 && iMat != fMatIndex2 ) continue ;
184       continue;                                << 
185                                                   305 
186     for(jMat = 0; jMat < numOfCouples; ++jMat) << 306     for(jMat=0;jMat<numOfCouples;jMat++)  // transition iMat -> jMat !!!
187     {                                             307     {
188       if(iMat == jMat || (jMat != fMatIndex1 & << 308       if( iMat == jMat || ( jMat != fMatIndex1 && jMat != fMatIndex2 ) )
189       {                                           309       {
190         continue;                              << 310         continue ;
191       }                                           311       }
192       else                                        312       else
193       {                                           313       {
194         const G4MaterialCutsCouple* iCouple =  << 314         const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat);
195           theCoupleTable->GetMaterialCutsCoupl << 315         const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat);
196         const G4MaterialCutsCouple* jCouple =  << 316         const G4Material* mat1 = iCouple->GetMaterial() ;
197           theCoupleTable->GetMaterialCutsCoupl << 317         const G4Material* mat2 = jCouple->GetMaterial() ;
198         const G4Material* mat1 = iCouple->GetM << 318 
199         const G4Material* mat2 = jCouple->GetM << 319         fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ;
200                                                << 320         fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ;
201         fSigma1 = fPlasmaCof * (mat1->GetElect << 321 
202         fSigma2 = fPlasmaCof * (mat2->GetElect << 322         // fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat !
203                                                << 323 
204         fGammaTkinCut = 0.0;                   << 324         fGammaTkinCut = 0.0 ;
205                                                << 325 
206         if(fGammaTkinCut > fTheMinEnergyTR)  / << 326         if(fGammaTkinCut > fTheMinEnergyTR)    // setting of min/max TR energies
207         {                                      << 327   {
208           fMinEnergyTR = fGammaTkinCut;        << 328           fMinEnergyTR = fGammaTkinCut ;
209         }                                      << 329   }
210         else                                      330         else
211         {                                      << 331   {
212           fMinEnergyTR = fTheMinEnergyTR;      << 332           fMinEnergyTR = fTheMinEnergyTR ;
213         }                                      << 333   }
214         if(fGammaTkinCut > fTheMaxEnergyTR)       334         if(fGammaTkinCut > fTheMaxEnergyTR)
215         {                                      << 335   {
216           fMaxEnergyTR = 2.0 * fGammaTkinCut;  << 336           fMaxEnergyTR = 2.0*fGammaTkinCut ;    // usually very low TR rate
217         }                                      << 337   }
218         else                                      338         else
219         {                                      << 339   {
220           fMaxEnergyTR = fTheMaxEnergyTR;      << 340           fMaxEnergyTR = fTheMaxEnergyTR ;
221         }                                      << 341   }
222         for(iTkin = 0; iTkin < fTotBin; ++iTki << 342         for(iTkin=0;iTkin<fTotBin;iTkin++)      // Lorentz factor loop
223         {                                      << 343   {
224           auto energyVector =                  << 344           G4PhysicsLogVector*
225             new G4PhysicsLogVector(fMinEnergyT << 345                     energyVector = new G4PhysicsLogVector( fMinEnergyTR,
                                                   >> 346                                                            fMaxEnergyTR,
                                                   >> 347                                                            fBinTR         ) ;
226                                                   348 
227           fGamma = 1.0 + (fProtonEnergyVector- << 349           fGamma = 1.0 +   (fProtonEnergyVector->
228                           proton_mass_c2);     << 350                             GetLowEdgeEnergy(iTkin)/proton_mass_c2) ;
229                                                   351 
230           fMaxThetaTR = 10000.0 / (fGamma * fG << 352           fMaxThetaTR = 10000.0/(fGamma*fGamma) ;
231                                                   353 
232           if(fMaxThetaTR > fTheMaxAngle)          354           if(fMaxThetaTR > fTheMaxAngle)
233           {                                       355           {
234             fMaxThetaTR = fTheMaxAngle;        << 356             fMaxThetaTR = fTheMaxAngle ;
235           }                                    << 357     }
236           else                                    358           else
237           {                                    << 359     {
238             if(fMaxThetaTR < fTheMinAngle)        360             if(fMaxThetaTR < fTheMinAngle)
239             {                                  << 361       {
240               fMaxThetaTR = fTheMinAngle;      << 362               fMaxThetaTR = fTheMinAngle ;
241             }                                  << 363       }
242           }                                    << 364     }
243           auto angleVector =                   << 365    // G4cout<<G4endl<<"fGamma = "<<fGamma<<"  fMaxThetaTR = "<<fMaxThetaTR<<G4endl ;
244             new G4PhysicsLinearVector(0.0, fMa << 366           G4PhysicsLinearVector*
245           G4double energySum = 0.0;            << 367                      angleVector = new G4PhysicsLinearVector(        0.0,
246           G4double angleSum  = 0.0;            << 368                                                              fMaxThetaTR,
247                                                << 369                                                                   fBinTR  ) ;
248           energyVector->PutValue(fBinTR - 1, e << 370           G4double energySum = 0.0 ;
249           angleVector->PutValue(fBinTR - 1, an << 371           G4double angleSum  = 0.0 ;
250                                                << 372 
251           for(iTR = fBinTR - 2; iTR >= 0; --iT << 373           energyVector->PutValue(fBinTR-1,energySum) ;
252           {                                    << 374           angleVector->PutValue(fBinTR-1,angleSum)   ;
253             energySum +=                       << 375 
254               fCofTR * EnergySum(energyVector- << 376           for(iTR=fBinTR-2;iTR>=0;iTR--)
255                                  energyVector- << 377     {
256                                                << 378             energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR),
257             angleSum +=                        << 379                                         energyVector->GetLowEdgeEnergy(iTR+1)) ;
258               fCofTR * AngleSum(angleVector->G << 380 
259                                 angleVector->G << 381             angleSum  += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR),
260                                                << 382                                          angleVector->GetLowEdgeEnergy(iTR+1)) ;
261             energyVector->PutValue(iTR, energy << 383 
262             angleVector->PutValue(iTR, angleSu << 384             energyVector->PutValue(iTR,energySum) ;
263           }                                    << 385             angleVector ->PutValue(iTR,angleSum)   ;
                                                   >> 386     }
                                                   >> 387     // G4cout<<"sumE = "<<energySum<<" ; sumA = "<<angleSum<<G4endl ;
264                                                   388 
265           if(jMat < iMat)                         389           if(jMat < iMat)
266           {                                    << 390     {
267             iPlace = fTotBin + iTkin;          << 391             iPlace = fTotBin+iTkin ;   // (iMat*(numOfMat-1)+jMat)*
268           }                                    << 392     }
269           else  // jMat > iMat right part of m << 393           else   // jMat > iMat right part of matrices (jMat-1) !
270           {                                    << 394     {
271             iPlace = iTkin;                    << 395             iPlace = iTkin ;  // (iMat*(numOfMat-1)+jMat-1)*fTotBin+
272           }                                    << 396     }
273           fEnergyDistrTable->insertAt(iPlace,  << 397           fEnergyDistrTable->insertAt(iPlace,energyVector) ;
274           fAngleDistrTable->insertAt(iPlace, a << 398           fAngleDistrTable->insertAt(iPlace,angleVector) ;
275         }  //                      iTkin       << 399   }    //                      iTkin
276       }    //         jMat != iMat             << 400       }      //         jMat != iMat
277     }      //     jMat                         << 401     }        //     jMat
278   }        // iMat                             << 402   }          // iMat
                                                   >> 403   //  G4cout<<"G4ForwardXrayTR::BuildXrayTRtables have been called"<<G4endl ;
279 }                                                 404 }
280                                                   405 
281 //////////////////////////////////////////////    406 ///////////////////////////////////////////////////////////////////////
282 //                                                407 //
283 // This function returns the spectral and angl    408 // This function returns the spectral and angle density of TR quanta
284 // in X-ray energy region generated forward wh    409 // in X-ray energy region generated forward when a relativistic
285 // charged particle crosses interface between     410 // charged particle crosses interface between two materials.
286 // The high energy small theta approximation i    411 // The high energy small theta approximation is applied.
287 // (matter1 -> matter2)                           412 // (matter1 -> matter2)
288 // varAngle =2* (1 - std::cos(Theta)) or appro << 413 // varAngle =2* (1 - cos(Theta)) or approximately = Theta*Theta
289 //                                                414 //
290 G4double G4ForwardXrayTR::SpectralAngleTRdensi << 415 
291                                                << 416 G4double
292 {                                              << 417 G4ForwardXrayTR::SpectralAngleTRdensity( G4double energy,
293   G4double formationLength1, formationLength2; << 418                                          G4double varAngle ) const
294   formationLength1 =                           << 419 {
295     1.0 / (1.0 / (fGamma * fGamma) + fSigma1 / << 420   G4double  formationLength1, formationLength2 ;
296   formationLength2 =                           << 421   formationLength1 = 1.0/
297     1.0 / (1.0 / (fGamma * fGamma) + fSigma2 / << 422   (1.0/(fGamma*fGamma)
298   return (varAngle / energy) * (formationLengt << 423   + fSigma1/(energy*energy)
299          (formationLength1 - formationLength2) << 424   + varAngle) ;
                                                   >> 425   formationLength2 = 1.0/
                                                   >> 426   (1.0/(fGamma*fGamma)
                                                   >> 427   + fSigma2/(energy*energy)
                                                   >> 428   + varAngle) ;
                                                   >> 429   return (varAngle/energy)*(formationLength1 - formationLength2)
                                                   >> 430               *(formationLength1 - formationLength2)  ;
                                                   >> 431 
300 }                                                 432 }
301                                                   433 
                                                   >> 434 
302 //////////////////////////////////////////////    435 //////////////////////////////////////////////////////////////////
                                                   >> 436 //
303 // Analytical formula for angular density of X    437 // Analytical formula for angular density of X-ray TR photons
304 G4double G4ForwardXrayTR::AngleDensity(G4doubl << 438 //
                                                   >> 439 
                                                   >> 440 G4double G4ForwardXrayTR::AngleDensity( G4double energy,
                                                   >> 441                                         G4double varAngle ) const
305 {                                                 442 {
306   G4double x, x2, c, d, f, a2, b2, a4, b4;     << 443   G4double x, x2, a, b, c, d, f, a2, b2, a4, b4 ;
307   G4double cof1, cof2, cof3;                   << 444   G4double cof1, cof2, cof3 ;
308   x    = 1.0 / energy;                         << 445   x = 1.0/energy ;
309   x2   = x * x;                                << 446   x2 = x*x ;
310   c    = 1.0 / fSigma1;                        << 447   c = 1.0/fSigma1 ;
311   d    = 1.0 / fSigma2;                        << 448   d = 1.0/fSigma2 ;
312   f    = (varAngle + 1.0 / (fGamma * fGamma)); << 449   f = (varAngle + 1.0/(fGamma*fGamma)) ;
313   a2   = c * f;                                << 450   a2 = c*f ;
314   b2   = d * f;                                << 451   b2 = d*f ;
315   a4   = a2 * a2;                              << 452   a4 = a2*a2 ;
316   b4   = b2 * b2;                              << 453   b4 = b2*b2 ;
317   cof1 = c * c * (0.5 / (a2 * (x2 + a2)) + 0.5 << 454   a = sqrt(a2) ;
318   cof3 = d * d * (0.5 / (b2 * (x2 + b2)) + 0.5 << 455   b = sqrt(b2) ;
319   cof2 = -c * d *                              << 456   cof1 = c*c*(0.5/(a2*(x2 +a2)) +0.5*log(x2/(x2 +a2))/a4) ;
320          (std::log(x2 / (x2 + b2)) / b2 - std: << 457   cof3 = d*d*(0.5/(b2*(x2 +b2)) +0.5*log(x2/(x2 +b2))/b4) ;
321          (a2 - b2);                            << 458   cof2 = -c*d*(log(x2/(x2 +b2))/b2 - log(x2/(x2 +a2))/a2)/(a2 - b2)   ;
322   return -varAngle * (cof1 + cof2 + cof3);     << 459   return -varAngle*(cof1 + cof2 + cof3) ;
323 }                                                 460 }
324                                                   461 
325 //////////////////////////////////////////////    462 /////////////////////////////////////////////////////////////////////
                                                   >> 463 //
326 // Definite integral of X-ray TR spectral-angl    464 // Definite integral of X-ray TR spectral-angle density from energy1
327 // to energy2                                     465 // to energy2
328 G4double G4ForwardXrayTR::EnergyInterval(G4dou << 466 //
329                                          G4dou << 467 
                                                   >> 468 G4double G4ForwardXrayTR::EnergyInterval( G4double energy1,
                                                   >> 469                                           G4double energy2,
                                                   >> 470                                           G4double varAngle ) const
330 {                                                 471 {
331   return AngleDensity(energy2, varAngle) - Ang << 472   return     AngleDensity(energy2,varAngle)
                                                   >> 473            - AngleDensity(energy1,varAngle) ;
332 }                                                 474 }
333                                                   475 
334 //////////////////////////////////////////////    476 //////////////////////////////////////////////////////////////////////
                                                   >> 477 //
335 // Integral angle distribution of X-ray TR pho    478 // Integral angle distribution of X-ray TR photons based on analytical
336 // formula for angle density                      479 // formula for angle density
337 G4double G4ForwardXrayTR::AngleSum(G4double va << 480 //
                                                   >> 481 
                                                   >> 482 G4double G4ForwardXrayTR::AngleSum( G4double varAngle1,
                                                   >> 483                                     G4double varAngle2     )   const
338 {                                                 484 {
339   G4int i;                                     << 485   G4int i ;
340   G4double h, sumEven = 0.0, sumOdd = 0.0;     << 486   G4double h , sumEven = 0.0 , sumOdd = 0.0 ;
341   h = 0.5 * (varAngle2 - varAngle1) / fSympson << 487   h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ;
342   for(i = 1; i < fSympsonNumber; ++i)          << 488   for(i=1;i<fSympsonNumber;i++)
343   {                                            << 489   {
344     sumEven +=                                 << 490    sumEven += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1 + 2*i*h   ) ;
345       EnergyInterval(fMinEnergyTR, fMaxEnergyT << 491    sumOdd  += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,
346     sumOdd +=                                  << 492                                                    varAngle1 + (2*i - 1)*h ) ;
347       EnergyInterval(fMinEnergyTR, fMaxEnergyT << 493   }
348   }                                            << 494   sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,
349   sumOdd += EnergyInterval(fMinEnergyTR, fMaxE << 495                         varAngle1 + (2*fSympsonNumber - 1)*h    ) ;
350                            varAngle1 + (2 * fS << 496 
351                                                << 497   return h*(EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1)
352   return h *                                   << 498           + EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle2)
353          (EnergyInterval(fMinEnergyTR, fMaxEne << 499           + 4.0*sumOdd + 2.0*sumEven                          )/3.0 ;
354           EnergyInterval(fMinEnergyTR, fMaxEne << 
355           2.0 * sumEven) /                     << 
356          3.0;                                  << 
357 }                                                 500 }
358                                                   501 
359 //////////////////////////////////////////////    502 /////////////////////////////////////////////////////////////////////
                                                   >> 503 //
360 // Analytical Expression for   spectral densit    504 // Analytical Expression for   spectral density of Xray TR photons
361 // x = 2*(1 - std::cos(Theta)) ~ Theta^2       << 505 // x = 2*(1 - cos(Theta)) ~ Theta^2
362 G4double G4ForwardXrayTR::SpectralDensity(G4do << 506 //
                                                   >> 507 
                                                   >> 508 G4double G4ForwardXrayTR::SpectralDensity( G4double energy,
                                                   >> 509                                            G4double      x  ) const
363 {                                                 510 {
364   G4double a, b;                               << 511   G4double a, b ;
365   a = 1.0 / (fGamma * fGamma) + fSigma1 / (ene << 512   a =  1.0/(fGamma*fGamma)
366   b = 1.0 / (fGamma * fGamma) + fSigma2 / (ene << 513      + fSigma1/(energy*energy)  ;
367   return ((a + b) * std::log((x + b) / (x + a) << 514   b =  1.0/(fGamma*fGamma)
368           b / (x + b)) /                       << 515      + fSigma2/(energy*energy)  ;
369          energy;                               << 516   return ( (a + b)*log((x + b)/(x + a))/(a - b)
                                                   >> 517           + a/(x + a) + b/(x + b) )/energy ;
                                                   >> 518 
370 }                                                 519 }
371                                                   520 
372 //////////////////////////////////////////////    521 ////////////////////////////////////////////////////////////////////
                                                   >> 522 //
373 //  The spectral density in some angle interva    523 //  The spectral density in some angle interval from varAngle1 to
374 //  varAngle2                                     524 //  varAngle2
375 G4double G4ForwardXrayTR::AngleInterval(G4doub << 525 //
376                                         G4doub << 526 
                                                   >> 527 G4double G4ForwardXrayTR::AngleInterval( G4double    energy,
                                                   >> 528                                          G4double varAngle1,
                                                   >> 529                                          G4double varAngle2   ) const
377 {                                                 530 {
378   return SpectralDensity(energy, varAngle2) -  << 531   return     SpectralDensity(energy,varAngle2)
379          SpectralDensity(energy, varAngle1);   << 532            - SpectralDensity(energy,varAngle1) ;
380 }                                                 533 }
381                                                   534 
382 //////////////////////////////////////////////    535 ////////////////////////////////////////////////////////////////////
                                                   >> 536 //
383 // Integral spectral distribution of X-ray TR     537 // Integral spectral distribution of X-ray TR photons based on
384 // analytical formula for spectral density        538 // analytical formula for spectral density
385 G4double G4ForwardXrayTR::EnergySum(G4double e << 539 //
                                                   >> 540 
                                                   >> 541 G4double G4ForwardXrayTR::EnergySum( G4double energy1,
                                                   >> 542                                      G4double energy2     )   const
386 {                                                 543 {
387   G4int i;                                     << 544   G4int i ;
388   G4double h, sumEven = 0.0, sumOdd = 0.0;     << 545   G4double h , sumEven = 0.0 , sumOdd = 0.0 ;
389   h = 0.5 * (energy2 - energy1) / fSympsonNumb << 546   h = 0.5*(energy2 - energy1)/fSympsonNumber ;
390   for(i = 1; i < fSympsonNumber; ++i)          << 547   for(i=1;i<fSympsonNumber;i++)
391   {                                            << 548   {
392     sumEven += AngleInterval(energy1 + 2 * i * << 549    sumEven += AngleInterval(energy1 + 2*i*h,0.0,fMaxThetaTR);
393     sumOdd += AngleInterval(energy1 + (2 * i - << 550    sumOdd  += AngleInterval(energy1 + (2*i - 1)*h,0.0,fMaxThetaTR) ;
394   }                                            << 551   }
395   sumOdd +=                                    << 552   sumOdd += AngleInterval(energy1 + (2*fSympsonNumber - 1)*h,
396     AngleInterval(energy1 + (2 * fSympsonNumbe << 553                           0.0,fMaxThetaTR) ;
397                                                << 554 
398   return h *                                   << 555   return h*(  AngleInterval(energy1,0.0,fMaxThetaTR)
399          (AngleInterval(energy1, 0.0, fMaxThet << 556             + AngleInterval(energy2,0.0,fMaxThetaTR)
400           AngleInterval(energy2, 0.0, fMaxThet << 557             + 4.0*sumOdd + 2.0*sumEven                          )/3.0 ;
401           2.0 * sumEven) /                     << 
402          3.0;                                  << 
403 }                                                 558 }
404                                                   559 
405 //////////////////////////////////////////////    560 /////////////////////////////////////////////////////////////////////////
                                                   >> 561 //
406 // PostStepDoIt function for creation of forwa    562 // PostStepDoIt function for creation of forward X-ray photons in TR process
407 // on boundary between two materials with real << 563 // on boubndary between two materials with really different plasma energies
                                                   >> 564 //
                                                   >> 565 
408 G4VParticleChange* G4ForwardXrayTR::PostStepDo    566 G4VParticleChange* G4ForwardXrayTR::PostStepDoIt(const G4Track& aTrack,
409                                                << 567                         const G4Step&  aStep)
410 {                                                 568 {
411   aParticleChange.Initialize(aTrack);             569   aParticleChange.Initialize(aTrack);
412   G4int iMat, jMat, iTkin, iPlace, numOfTR, iT << 570   //  G4cout<<"call G4ForwardXrayTR::PostStepDoIt"<<G4endl ;
                                                   >> 571   G4int iMat, jMat, iTkin, iPlace, numOfTR, iTR, iTransfer ;
413                                                   572 
414   G4double energyPos, anglePos, energyTR, thet << 573   G4double energyPos, anglePos, energyTR, theta, phi, dirX, dirY, dirZ ;
415   G4double W, W1, W2, E1, E2;                  << 574   G4double W, W1, W2, E1, E2 ;
416                                                   575 
417   G4StepPoint* pPreStepPoint  = aStep.GetPreSt    576   G4StepPoint* pPreStepPoint  = aStep.GetPreStepPoint();
418   G4StepPoint* pPostStepPoint = aStep.GetPostS    577   G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
419   G4double tol =                               << 578   G4double tol=0.5*G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
420     0.5 * G4GeometryTolerance::GetInstance()-> << 
421                                                   579 
422   if(pPostStepPoint->GetStepStatus() != fGeomB << 580   if (pPostStepPoint->GetStepStatus() != fGeomBoundary)
423   {                                               581   {
424     return G4VDiscreteProcess::PostStepDoIt(aT    582     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
425   }                                               583   }
426   if(aTrack.GetStepLength() <= tol)            << 584   if (aTrack.GetStepLength() <= tol)
427   {                                               585   {
428     return G4VDiscreteProcess::PostStepDoIt(aT    586     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
429   }                                               587   }
430   // Arrived at boundary, so begin to try TR   << 588   // Come on boundary, so begin to try TR
431                                                   589 
432   const G4MaterialCutsCouple* iCouple = pPreSt << 590   const G4MaterialCutsCouple* iCouple = pPreStepPoint ->GetPhysicalVolume()->
433                                           ->Ge << 591        GetLogicalVolume()->GetMaterialCutsCouple();
434                                           ->Ge << 592   const G4MaterialCutsCouple* jCouple = pPostStepPoint ->GetPhysicalVolume()->
435   const G4MaterialCutsCouple* jCouple = pPostS << 593        GetLogicalVolume()->GetMaterialCutsCouple();
436                                           ->Ge << 
437                                           ->Ge << 
438   const G4Material* iMaterial = iCouple->GetMa    594   const G4Material* iMaterial = iCouple->GetMaterial();
439   const G4Material* jMaterial = jCouple->GetMa    595   const G4Material* jMaterial = jCouple->GetMaterial();
440   iMat                        = iCouple->GetIn << 596   iMat = iCouple->GetIndex();
441   jMat                        = jCouple->GetIn << 597   jMat = jCouple->GetIndex();
442                                                   598 
443   // The case of equal or approximate (in term    599   // The case of equal or approximate (in terms of plasma energy) materials
444   // No TR photons ?!                             600   // No TR photons ?!
445                                                   601 
446   if(iMat == jMat ||                           << 602   if (     iMat == jMat
447      ((fMatIndex1 >= 0 && fMatIndex2 >= 0) &&  << 603       || (    (fMatIndex1 >= 0 && fMatIndex1 >= 0)
448       (iMat != fMatIndex1 && iMat != fMatIndex << 604            && ( iMat != fMatIndex1 && iMat != fMatIndex2 )
449       (jMat != fMatIndex1 && jMat != fMatIndex << 605            && ( jMat != fMatIndex1 && jMat != fMatIndex2 )  )
450                                                   606 
451      || iMaterial->GetState() == jMaterial->Ge << 607       || iMaterial->GetState() == jMaterial->GetState()
452                                                   608 
453      || (iMaterial->GetState() == kStateSolid  << 609       ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid )
454          jMaterial->GetState() == kStateLiquid << 
455                                                   610 
456      || (iMaterial->GetState() == kStateLiquid << 611       ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid  )   )
457          jMaterial->GetState() == kStateSolid) << 
458   {                                               612   {
459     return G4VDiscreteProcess::PostStepDoIt(aT << 613     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep) ;
460   }                                               614   }
461                                                   615 
462   const G4DynamicParticle* aParticle = aTrack.    616   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
463   G4double charge = aParticle->GetDefinition()    617   G4double charge = aParticle->GetDefinition()->GetPDGCharge();
464                                                   618 
465   if(charge == 0.0)  // Uncharged particle doe << 619   if(charge == 0.0) // Uncharged particle doesn't Generate TR photons
466   {                                               620   {
467     return G4VDiscreteProcess::PostStepDoIt(aT    621     return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
468   }                                               622   }
469   // Now we are ready to Generate TR photons      623   // Now we are ready to Generate TR photons
470                                                   624 
471   G4double chargeSq  = charge * charge;        << 625   G4double chargeSq = charge*charge ;
472   G4double kinEnergy = aParticle->GetKineticEn << 626   G4double kinEnergy     = aParticle->GetKineticEnergy() ;
473   G4double massRatio =                         << 627   G4double massRatio = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ;
474     proton_mass_c2 / aParticle->GetDefinition( << 628   G4double TkinScaled = kinEnergy*massRatio ;
475   G4double TkinScaled = kinEnergy * massRatio; << 629   for(iTkin=0;iTkin<fTotBin;iTkin++)
476   for(iTkin = 0; iTkin < fTotBin; ++iTkin)     << 
477   {                                               630   {
478     if(TkinScaled < fProtonEnergyVector->GetLo << 631     if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) // <= ?
479     {                                             632     {
480       break;                                   << 633       break ;
481     }                                             634     }
482   }                                               635   }
483   if(jMat < iMat)                                 636   if(jMat < iMat)
484   {                                               637   {
485     iPlace = fTotBin + iTkin - 1;              << 638     iPlace = fTotBin + iTkin - 1 ; // (iMat*(numOfMat - 1) + jMat)*
486   }                                               639   }
487   else                                            640   else
488   {                                               641   {
489     iPlace = iTkin - 1;                        << 642     iPlace = iTkin - 1 ;  // (iMat*(numOfMat - 1) + jMat - 1)*fTotBin +
490   }                                               643   }
                                                   >> 644   //  G4PhysicsVector*  energyVector1 = (*fEnergyDistrTable)(iPlace)     ;
                                                   >> 645   //  G4PhysicsVector*  energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ;
                                                   >> 646 
                                                   >> 647   //  G4PhysicsVector*   angleVector1 = (*fAngleDistrTable)(iPlace)      ;
                                                   >> 648   //  G4PhysicsVector*   angleVector2 = (*fAngleDistrTable)(iPlace + 1)  ;
491                                                   649 
492   G4ParticleMomentum particleDir = aParticle-> << 650   G4ParticleMomentum particleDir = aParticle->GetMomentumDirection() ;
493                                                   651 
494   if(iTkin == fTotBin)  // TR plato, try from  << 652   if(iTkin == fTotBin)                 // TR plato, try from left
495   {                                               653   {
496     numOfTR = (G4int)G4Poisson(                << 654  // G4cout<<iTkin<<" mean TR number = "<<( (*(*fEnergyDistrTable)(iPlace))(0) +
497       ((*(*fEnergyDistrTable)(iPlace))(0) + (* << 655  //                                   (*(*fAngleDistrTable)(iPlace))(0) )
498       chargeSq * 0.5);                         << 656  //      *chargeSq*0.5<<G4endl ;
                                                   >> 657 
                                                   >> 658     numOfTR = G4Poisson( ( (*(*fEnergyDistrTable)(iPlace))(0) +
                                                   >> 659                            (*(*fAngleDistrTable)(iPlace))(0) )
                                                   >> 660                          *chargeSq*0.5 ) ;
499     if(numOfTR == 0)                              661     if(numOfTR == 0)
500     {                                             662     {
501       return G4VDiscreteProcess::PostStepDoIt(    663       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
502     }                                             664     }
503     else                                          665     else
504     {                                             666     {
                                                   >> 667       // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ;
                                                   >> 668 
505       aParticleChange.SetNumberOfSecondaries(n    669       aParticleChange.SetNumberOfSecondaries(numOfTR);
506                                                   670 
507       for(iTR = 0; iTR < numOfTR; ++iTR)       << 671       for(iTR=0;iTR<numOfTR;iTR++)
508       {                                           672       {
509         energyPos = (*(*fEnergyDistrTable)(iPl << 673         energyPos = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand() ;
510         for(iTransfer = 0; iTransfer < fBinTR  << 674         for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
511         {                                      << 675   {
512           if(energyPos >= (*(*fEnergyDistrTabl << 676           if(energyPos >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break ;
513             break;                             << 677   }
514         }                                      << 678         energyTR = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ;
515         energyTR = (*fEnergyDistrTable)(iPlace << 
516                                                   679 
517         kinEnergy -= energyTR;                 << 680   // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ;
518         aParticleChange.ProposeEnergy(kinEnerg << 
519                                                   681 
520         anglePos = (*(*fAngleDistrTable)(iPlac << 682         kinEnergy -= energyTR ;
521         for(iTransfer = 0; iTransfer < fBinTR  << 683         aParticleChange.ProposeEnergy(kinEnergy);
522         {                                      << 
523           if(anglePos > (*(*fAngleDistrTable)( << 
524             break;                             << 
525         }                                      << 
526         theta = std::sqrt(                     << 
527           (*fAngleDistrTable)(iPlace)->GetLowE << 
528                                                   684 
529         phi  = twopi * G4UniformRand();        << 685         anglePos = (*(*fAngleDistrTable)(iPlace))(0)*G4UniformRand() ;
530         dirX = std::sin(theta) * std::cos(phi) << 686         for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
531         dirY = std::sin(theta) * std::sin(phi) << 687   {
532         dirZ = std::cos(theta);                << 688           if(anglePos > (*(*fAngleDistrTable)(iPlace))(iTransfer)) break ;
533         G4ThreeVector directionTR(dirX, dirY,  << 689   }
534         directionTR.rotateUz(particleDir);     << 690         theta = sqrt((*fAngleDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1)) ;
535         auto aPhotonTR = new G4DynamicParticle << 691 
536                                                << 692   // G4cout<<iTransfer<<" :  theta = "<<theta<<G4endl ;
537   // Create the G4Track                        << 693 
538   auto aSecondaryTrack = new G4Track(aPhotonTR << 694         phi = twopi*G4UniformRand() ;
539   aSecondaryTrack->SetTouchableHandle(aStep.Ge << 695         dirX = sin(theta)*cos(phi)  ;
540   aSecondaryTrack->SetParentID(aTrack.GetTrack << 696         dirY = sin(theta)*sin(phi)  ;
541   aSecondaryTrack->SetCreatorModelID(secID);   << 697         dirZ = cos(theta)           ;
542   aParticleChange.AddSecondary(aSecondaryTrack << 698         G4ThreeVector directionTR(dirX,dirY,dirZ) ;
                                                   >> 699         directionTR.rotateUz(particleDir) ;
                                                   >> 700         G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(),
                                                   >> 701                                                              directionTR,
                                                   >> 702                                                              energyTR     ) ;
                                                   >> 703         aParticleChange.AddSecondary(aPhotonTR) ;
543       }                                           704       }
544     }                                             705     }
545   }                                               706   }
546   else                                            707   else
547   {                                               708   {
548     if(iTkin == 0)  // Tkin is too small, negl << 709     if(iTkin == 0) // Tkin is too small, neglect of TR photon generation
549     {                                             710     {
550       return G4VDiscreteProcess::PostStepDoIt(    711       return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
551     }                                             712     }
552     else  // general case: Tkin between two ve << 713     else          // general case: Tkin between two vectors of the material
553     {                                             714     {
554       E1 = fProtonEnergyVector->GetLowEdgeEner << 715       E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ;
555       E2 = fProtonEnergyVector->GetLowEdgeEner << 716       E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin)     ;
556       W  = 1.0 / (E2 - E1);                    << 717        W = 1.0/(E2 - E1) ;
557       W1 = (E2 - TkinScaled) * W;              << 718       W1 = (E2 - TkinScaled)*W ;
558       W2 = (TkinScaled - E1) * W;              << 719       W2 = (TkinScaled - E1)*W ;
559                                                << 720 
560       numOfTR = (G4int)G4Poisson((((*(*fEnergy << 721   // G4cout<<iTkin<<" mean TR number = "<<(((*(*fEnergyDistrTable)(iPlace))(0)+
561                                    (*(*fAngleD << 722   // (*(*fAngleDistrTable)(iPlace))(0))*W1 +
562                                     W1 +       << 723   //                                ((*(*fEnergyDistrTable)(iPlace + 1))(0)+
563                                   ((*(*fEnergy << 724   // (*(*fAngleDistrTable)(iPlace + 1))(0))*W2)
564                                    (*(*fAngleD << 725   //                                    *chargeSq*0.5<<G4endl ;
565                                     W2) *      << 726 
566                                  chargeSq * 0. << 727       numOfTR = G4Poisson((((*(*fEnergyDistrTable)(iPlace))(0)+
                                                   >> 728                             (*(*fAngleDistrTable)(iPlace))(0))*W1 +
                                                   >> 729                            ((*(*fEnergyDistrTable)(iPlace + 1))(0)+
                                                   >> 730                             (*(*fAngleDistrTable)(iPlace + 1))(0))*W2)
                                                   >> 731                           *chargeSq*0.5 ) ;
567       if(numOfTR == 0)                            732       if(numOfTR == 0)
568       {                                           733       {
569         return G4VDiscreteProcess::PostStepDoI    734         return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
570       }                                           735       }
571       else                                        736       else
572       {                                           737       {
                                                   >> 738         // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ;
                                                   >> 739 
573         aParticleChange.SetNumberOfSecondaries    740         aParticleChange.SetNumberOfSecondaries(numOfTR);
574         for(iTR = 0; iTR < numOfTR; ++iTR)     << 741         for(iTR=0;iTR<numOfTR;iTR++)
575         {                                         742         {
576           energyPos = ((*(*fEnergyDistrTable)( << 743           energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+
577                        (*(*fEnergyDistrTable)( << 744                        (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ;
578                       G4UniformRand();         << 745           for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
579           for(iTransfer = 0; iTransfer < fBinT << 746       {
580           {                                    << 747             if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+
581             if(energyPos >=                    << 748                        (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break ;
582                ((*(*fEnergyDistrTable)(iPlace) << 749       }
583                 (*(*fEnergyDistrTable)(iPlace  << 750           energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+
584               break;                           << 751                ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2 ;
585           }                                    << 
586           energyTR =                           << 
587             ((*fEnergyDistrTable)(iPlace)->Get << 
588             ((*fEnergyDistrTable)(iPlace + 1)- << 
589               W2;                              << 
590                                                   752 
591           kinEnergy -= energyTR;               << 753     // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ;
                                                   >> 754 
                                                   >> 755           kinEnergy -= energyTR ;
592           aParticleChange.ProposeEnergy(kinEne    756           aParticleChange.ProposeEnergy(kinEnergy);
593                                                   757 
594           anglePos = ((*(*fAngleDistrTable)(iP << 758           anglePos = ((*(*fAngleDistrTable)(iPlace))(0)*W1+
595                       (*(*fAngleDistrTable)(iP << 759                        (*(*fAngleDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ;
596                      G4UniformRand();          << 760           for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
597           for(iTransfer = 0; iTransfer < fBinT << 761     {
598           {                                    << 762             if(anglePos > ((*(*fAngleDistrTable)(iPlace))(iTransfer)*W1+
599             if(anglePos > ((*(*fAngleDistrTabl << 763                       (*(*fAngleDistrTable)(iPlace + 1))(iTransfer)*W2)) break ;
600                            (*(*fAngleDistrTabl << 764     }
601               break;                           << 765           theta = sqrt(((*fAngleDistrTable)(iPlace)->
602           }                                    << 766                         GetLowEdgeEnergy(iTransfer-1))*W1+
603           theta = std::sqrt(                   << 767                   ((*fAngleDistrTable)(iPlace + 1)->
604             ((*fAngleDistrTable)(iPlace)->GetL << 768                         GetLowEdgeEnergy(iTransfer-1))*W2) ;
605               W1 +                             << 769 
606             ((*fAngleDistrTable)(iPlace + 1)-> << 770     // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl ;
607               W2);                             << 771 
608                                                << 772           phi = twopi*G4UniformRand() ;
609           phi  = twopi * G4UniformRand();      << 773           dirX = sin(theta)*cos(phi)  ;
610           dirX = std::sin(theta) * std::cos(ph << 774           dirY = sin(theta)*sin(phi)  ;
611           dirY = std::sin(theta) * std::sin(ph << 775           dirZ = cos(theta)           ;
612           dirZ = std::cos(theta);              << 776           G4ThreeVector directionTR(dirX,dirY,dirZ) ;
613           G4ThreeVector directionTR(dirX, dirY << 777           directionTR.rotateUz(particleDir) ;
614           directionTR.rotateUz(particleDir);   << 778           G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(),
615           auto aPhotonTR =                     << 779                                                                directionTR,
616             new G4DynamicParticle(G4Gamma::Gam << 780                                                                energyTR     ) ;
617                                                << 781           aParticleChange.AddSecondary(aPhotonTR) ;
618     // Create the G4Track                      << 
619     G4Track* aSecondaryTrack = new G4Track(aPh << 
620     aSecondaryTrack->SetTouchableHandle(aStep. << 
621     aSecondaryTrack->SetParentID(aTrack.GetTra << 
622     aSecondaryTrack->SetCreatorModelID(secID); << 
623     aParticleChange.AddSecondary(aSecondaryTra << 
624         }                                         782         }
625       }                                           783       }
626     }                                             784     }
627   }                                               785   }
628   return &aParticleChange;                     << 786   return &aParticleChange ;
629 }                                                 787 }
630                                                   788 
631 //////////////////////////////////////////////    789 ////////////////////////////////////////////////////////////////////////////
                                                   >> 790 //
632 // Test function for checking of PostStepDoIt     791 // Test function for checking of PostStepDoIt random preparation of TR photon
633 // energy                                         792 // energy
634 G4double G4ForwardXrayTR::GetEnergyTR(G4int iM << 793 //
                                                   >> 794 
                                                   >> 795 G4double
                                                   >> 796 G4ForwardXrayTR::GetEnergyTR(G4int iMat, G4int jMat, G4int iTkin) const
635 {                                                 797 {
636   G4int iPlace, numOfTR, iTR, iTransfer;       << 798   G4int  iPlace, numOfTR, iTR, iTransfer ;
637   G4double energyTR = 0.0;  // return this val << 799   G4double energyTR = 0.0 ; // return this value for no TR photons
638   G4double energyPos;                          << 800   G4double energyPos  ;
639   G4double W1, W2;                             << 801   G4double  W1, W2;
640                                                << 802 
641   const G4ProductionCutsTable* theCoupleTable  << 803   const G4ProductionCutsTable* theCoupleTable=
642     G4ProductionCutsTable::GetProductionCutsTa << 804         G4ProductionCutsTable::GetProductionCutsTable();
643   G4int numOfCouples = (G4int)theCoupleTable-> << 805   G4int numOfCouples = theCoupleTable->GetTableSize();
644                                                   806 
645   // The case of equal or approximate (in term    807   // The case of equal or approximate (in terms of plasma energy) materials
646   // No TR photons ?!                             808   // No TR photons ?!
647                                                   809 
648   const G4MaterialCutsCouple* iCouple =        << 810   const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat);
649     theCoupleTable->GetMaterialCutsCouple(iMat << 811   const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat);
650   const G4MaterialCutsCouple* jCouple =        << 
651     theCoupleTable->GetMaterialCutsCouple(jMat << 
652   const G4Material* iMaterial = iCouple->GetMa    812   const G4Material* iMaterial = iCouple->GetMaterial();
653   const G4Material* jMaterial = jCouple->GetMa    813   const G4Material* jMaterial = jCouple->GetMaterial();
654                                                   814 
655   if(iMat == jMat                              << 815   if (     iMat == jMat
656                                                   816 
657      || iMaterial->GetState() == jMaterial->Ge << 817       || iMaterial->GetState() == jMaterial->GetState()
658                                                   818 
659      || (iMaterial->GetState() == kStateSolid  << 819       ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid )
660          jMaterial->GetState() == kStateLiquid << 
661                                                   820 
662      || (iMaterial->GetState() == kStateLiquid << 821       ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid  )   )
663          jMaterial->GetState() == kStateSolid) << 
664                                                   822 
665   {                                               823   {
666     return energyTR;                           << 824     return energyTR ;
667   }                                               825   }
668                                                   826 
669   if(jMat < iMat)                                 827   if(jMat < iMat)
670   {                                               828   {
671     iPlace = (iMat * (numOfCouples - 1) + jMat << 829     iPlace = (iMat*(numOfCouples - 1) + jMat)*fTotBin + iTkin - 1 ;
672   }                                               830   }
673   else                                            831   else
674   {                                               832   {
675     iPlace = (iMat * (numOfCouples - 1) + jMat << 833     iPlace = (iMat*(numOfCouples - 1) + jMat - 1)*fTotBin + iTkin - 1 ;
676   }                                               834   }
677   G4PhysicsVector* energyVector1 = (*fEnergyDi << 835   G4PhysicsVector*  energyVector1 = (*fEnergyDistrTable)(iPlace)     ;
678   G4PhysicsVector* energyVector2 = (*fEnergyDi << 836   G4PhysicsVector*  energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ;
679                                                   837 
680   if(iTkin == fTotBin)  // TR plato, try from  << 838   if(iTkin == fTotBin)                 // TR plato, try from left
681   {                                               839   {
682     numOfTR = (G4int)G4Poisson((*energyVector1 << 840     numOfTR = G4Poisson( (*energyVector1)(0)  ) ;
683     if(numOfTR == 0)                              841     if(numOfTR == 0)
684     {                                             842     {
685       return energyTR;                         << 843       return energyTR ;
686     }                                             844     }
687     else                                          845     else
688     {                                             846     {
689       for(iTR = 0; iTR < numOfTR; ++iTR)       << 847       for(iTR=0;iTR<numOfTR;iTR++)
690       {                                           848       {
691         energyPos = (*energyVector1)(0) * G4Un << 849         energyPos = (*energyVector1)(0)*G4UniformRand() ;
692         for(iTransfer = 0; iTransfer < fBinTR  << 850         for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
693         {                                      << 851   {
694           if(energyPos >= (*energyVector1)(iTr << 852           if(energyPos >= (*energyVector1)(iTransfer)) break ;
695             break;                             << 853   }
696         }                                      << 854         energyTR += energyVector1->GetLowEdgeEnergy(iTransfer) ;
697         energyTR += energyVector1->GetLowEdgeE << 
698       }                                           855       }
699     }                                             856     }
700   }                                               857   }
701   else                                            858   else
702   {                                               859   {
703     if(iTkin == 0)  // Tkin is too small, negl << 860     if(iTkin == 0) // Tkin is too small, neglect of TR photon generation
704     {                                             861     {
705       return energyTR;                         << 862       return energyTR ;
706     }                                             863     }
707     else  // general case: Tkin between two ve << 864     else          // general case: Tkin between two vectors of the material
708     {     // use trivial mean half/half        << 865     {             // use trivial mean half/half
709       W1      = 0.5;                           << 866       W1 = 0.5 ;
710       W2      = 0.5;                           << 867       W2 = 0.5 ;
711       numOfTR = (G4int)G4Poisson((*energyVecto << 868      numOfTR = G4Poisson( (*energyVector1)(0)*W1 +
                                                   >> 869                           (*energyVector2)(0)*W2  ) ;
712       if(numOfTR == 0)                            870       if(numOfTR == 0)
713       {                                           871       {
714         return energyTR;                       << 872         return energyTR ;
715       }                                           873       }
716       else                                        874       else
717       {                                           875       {
718         G4cout << "It is still OK in GetEnergy << 876   G4cout<<"It is still OK in GetEnergyTR(int,int,int)"<<G4endl;
719         for(iTR = 0; iTR < numOfTR; ++iTR)     << 877         for(iTR=0;iTR<numOfTR;iTR++)
720         {                                         878         {
721           energyPos = ((*energyVector1)(0) * W << 879           energyPos = ((*energyVector1)(0)*W1+
722                       G4UniformRand();         << 880                        (*energyVector2)(0)*W2)*G4UniformRand() ;
723           for(iTransfer = 0; iTransfer < fBinT << 881           for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++)
724           {                                    << 882       {
725             if(energyPos >= ((*energyVector1)( << 883             if(energyPos >= ((*energyVector1)(iTransfer)*W1+
726                              (*energyVector2)( << 884                              (*energyVector2)(iTransfer)*W2)) break ;
727               break;                           << 885       }
728           }                                    << 886           energyTR += (energyVector1->GetLowEdgeEnergy(iTransfer))*W1+
729           energyTR += (energyVector1->GetLowEd << 887                       (energyVector2->GetLowEdgeEnergy(iTransfer))*W2 ;
730                       (energyVector2->GetLowEd << 888 
731         }                                         889         }
732       }                                           890       }
733     }                                             891     }
734   }                                               892   }
735                                                   893 
736   return energyTR;                             << 894   return energyTR   ;
737 }                                                 895 }
738                                                   896 
739 //////////////////////////////////////////////    897 ////////////////////////////////////////////////////////////////////////////
                                                   >> 898 //
740 // Test function for checking of PostStepDoIt     899 // Test function for checking of PostStepDoIt random preparation of TR photon
741 // theta angle relative to particle direction     900 // theta angle relative to particle direction
742 G4double G4ForwardXrayTR::GetThetaTR(G4int, G4 << 901 //
743                                                   902 
744 G4int G4ForwardXrayTR::GetSympsonNumber() { re << 
745                                                   903 
746 G4int G4ForwardXrayTR::GetBinTR() { return fBi << 904 G4double
                                                   >> 905 G4ForwardXrayTR::GetThetaTR(G4int, G4int, G4int) const
                                                   >> 906 {
                                                   >> 907   G4double theta = 0.0 ;
                                                   >> 908 
                                                   >> 909   return theta   ;
                                                   >> 910 }
747                                                   911 
748 G4double G4ForwardXrayTR::GetMinProtonTkin() { << 
749                                                   912 
750 G4double G4ForwardXrayTR::GetMaxProtonTkin() { << 
751                                                   913 
752 G4int G4ForwardXrayTR::GetTotBin() { return fT << 914 // end of G4ForwardXrayTR implementation file
                                                   >> 915 //
                                                   >> 916 ///////////////////////////////////////////////////////////////////////////
753                                                   917