Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4ForwardXrayTR.cc,v 1.10 2003/06/03 08:11:01 vnivanch Exp $ >> 25 // GEANT4 tag $Name: geant4-06-00 $ >> 26 // >> 27 // G4ForwardXrayTR class -- implementation file >> 28 >> 29 // GEANT 4 class implementation file --- Copyright CERN 1995 >> 30 // CERN Geneva Switzerland >> 31 >> 32 // For information related to this code, please, contact >> 33 // CERN, CN Division, ASD Group 26 // History: 34 // History: 27 // 1st version 11.09.97 V. Grichine (Vladimir. 35 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch ) 28 // 2nd version 17.12.97 V. Grichine 36 // 2nd version 17.12.97 V. Grichine 29 // 17-09-01, migration of Materials to pure ST 37 // 17-09-01, migration of Materials to pure STL (mma) 30 // 10-03-03, migration to "cut per region" (V. 38 // 10-03-03, migration to "cut per region" (V.Ivanchenko) 31 // 03.06.03, V.Ivanchenko fix compilation warn 39 // 03.06.03, V.Ivanchenko fix compilation warnings 32 40 33 #include "G4ForwardXrayTR.hh" 41 #include "G4ForwardXrayTR.hh" 34 42 35 #include "globals.hh" 43 #include "globals.hh" 36 #include "G4Gamma.hh" << 44 #include "G4Poisson.hh" 37 #include "G4GeometryTolerance.hh" << 38 #include "G4Material.hh" 45 #include "G4Material.hh" 39 #include "G4PhysicalConstants.hh" << 40 #include "G4PhysicsLinearVector.hh" << 41 #include "G4PhysicsLogVector.hh" << 42 #include "G4PhysicsTable.hh" 46 #include "G4PhysicsTable.hh" 43 #include "G4PhysicsVector.hh" 47 #include "G4PhysicsVector.hh" 44 #include "G4Poisson.hh" << 48 #include "G4PhysicsLinearVector.hh" >> 49 #include "G4PhysicsLogVector.hh" 45 #include "G4ProductionCutsTable.hh" 50 #include "G4ProductionCutsTable.hh" 46 #include "G4SystemOfUnits.hh" << 51 47 #include "G4PhysicsModelCatalog.hh" << 52 >> 53 // Table initialization >> 54 >> 55 // G4PhysicsTable* G4ForwardXrayTR::fAngleDistrTable = NULL ; >> 56 // G4PhysicsTable* G4ForwardXrayTR::fEnergyDistrTable = NULL ; >> 57 >> 58 >> 59 // Initialization of local constants >> 60 >> 61 G4int G4ForwardXrayTR::fSympsonNumber = 100 ; >> 62 >> 63 G4double G4ForwardXrayTR::fTheMinEnergyTR = 1.0*keV ; >> 64 G4double G4ForwardXrayTR::fTheMaxEnergyTR = 100.0*keV ; >> 65 G4double G4ForwardXrayTR::fTheMaxAngle = 1.0e-3 ; >> 66 G4double G4ForwardXrayTR::fTheMinAngle = 5.0e-6 ; >> 67 G4int G4ForwardXrayTR::fBinTR = 50 ; >> 68 >> 69 G4double G4ForwardXrayTR::fMinProtonTkin = 100.0*GeV ; >> 70 G4double G4ForwardXrayTR::fMaxProtonTkin = 100.0*TeV ; >> 71 G4int G4ForwardXrayTR::fTotBin = 50 ; >> 72 // Proton energy vector initialization >> 73 >> 74 G4PhysicsLogVector* G4ForwardXrayTR:: >> 75 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 76 fMaxProtonTkin, >> 77 fTotBin ) ; >> 78 >> 79 G4double G4ForwardXrayTR::fPlasmaCof = 4.0*pi*fine_structure_const* >> 80 hbarc*hbarc*hbarc/electron_mass_c2 ; >> 81 >> 82 G4double G4ForwardXrayTR::fCofTR = fine_structure_const/pi ; >> 83 >> 84 >> 85 /* ************************************************************************ >> 86 >> 87 >> 88 /////////////////////////////////////////////////////////////////////// >> 89 // >> 90 // Constructor for preparation tables with angle and energy TR distributions >> 91 // in all materials involved in test program. Lorentz factors correspond to >> 92 // kinetic energies of protons between 100*GeV and 100*TeV, ~ 10^2-10^5 >> 93 // >> 94 // Recommended only for use in applications with >> 95 // few light materials involved !!!!!!!!!!!!!! >> 96 >> 97 G4ForwardXrayTR::G4ForwardXrayTR() >> 98 : G4TransitionRadiation("XrayTR") >> 99 { >> 100 G4int iMat, jMat, iTkin, iTR, iPlace ; >> 101 static >> 102 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); >> 103 G4int numOfMat = G4Material::GetNumberOfMaterials(); >> 104 fGammaCutInKineticEnergy = new G4double[numOfMat] ; >> 105 fGammaCutInKineticEnergy = fPtrGamma->GetEnergyCuts() ; >> 106 fMatIndex1 = -1 ; >> 107 fMatIndex2 = -1 ; >> 108 fAngleDistrTable = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ; >> 109 fEnergyDistrTable = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ; >> 110 >> 111 G4PhysicsLogVector* aVector = new G4PhysicsLogVector(fMinProtonTkin, >> 112 fMaxProtonTkin, >> 113 fTotBin ) ; >> 114 >> 115 for(iMat=0;iMat<numOfMat;iMat++) // loop over pairs of different materials >> 116 { >> 117 for(jMat=0;jMat<numOfMat;jMat++) // transition iMat -> jMat !!! >> 118 { >> 119 if(iMat == jMat) continue ; // no TR !! >> 120 else >> 121 { >> 122 const G4Material* mat1 = (*theMaterialTable)[iMat] ; >> 123 const G4Material* mat2 = (*theMaterialTable)[jMat] ; >> 124 >> 125 fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ; >> 126 fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ; >> 127 >> 128 // fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat ! >> 129 fGammaTkinCut = 0.0 ; >> 130 >> 131 if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies >> 132 { >> 133 fMinEnergyTR = fGammaTkinCut ; >> 134 } >> 135 else >> 136 { >> 137 fMinEnergyTR = fTheMinEnergyTR ; >> 138 } >> 139 if(fGammaTkinCut > fTheMaxEnergyTR) >> 140 { >> 141 fMaxEnergyTR = 2.0*fGammaTkinCut ; // usually very low TR rate >> 142 } >> 143 else >> 144 { >> 145 fMaxEnergyTR = fTheMaxEnergyTR ; >> 146 } >> 147 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop >> 148 { >> 149 G4PhysicsLogVector* >> 150 energyVector = new G4PhysicsLogVector(fMinEnergyTR, >> 151 fMaxEnergyTR, >> 152 fBinTR ) ; >> 153 G4PhysicsLinearVector* >> 154 angleVector = new G4PhysicsLinearVector( 0.0, >> 155 fMaxThetaTR, >> 156 fBinTR ) ; >> 157 G4double energySum = 0.0 ; >> 158 G4double angleSum = 0.0 ; >> 159 fGamma = 1.0 + (aVector->GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; >> 160 fMaxThetaTR = 10000.0/(fGamma*fGamma) ; >> 161 if(fMaxThetaTR > fTheMaxAngle) >> 162 { >> 163 fMaxThetaTR = fTheMaxAngle ; >> 164 } >> 165 else >> 166 { >> 167 if(fMaxThetaTR < fTheMinAngle) >> 168 { >> 169 fMaxThetaTR = fTheMinAngle ; >> 170 } >> 171 } >> 172 energyVector->PutValue(fBinTR-1,energySum) ; >> 173 angleVector->PutValue(fBinTR-1,angleSum) ; >> 174 >> 175 for(iTR=fBinTR-2;iTR>=0;iTR--) >> 176 { >> 177 energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR), >> 178 energyVector->GetLowEdgeEnergy(iTR+1)) ; >> 179 >> 180 angleSum += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR), >> 181 angleVector->GetLowEdgeEnergy(iTR+1)) ; >> 182 energyVector->PutValue(iTR,energySum) ; >> 183 angleVector->PutValue(iTR,angleSum) ; >> 184 } >> 185 if(jMat < iMat) >> 186 { >> 187 iPlace = (iMat*(numOfMat-1)+jMat)*fTotBin+iTkin ; >> 188 } >> 189 else // jMat > iMat right part of matrices (jMat-1) ! >> 190 { >> 191 iPlace = (iMat*(numOfMat-1)+jMat-1)*fTotBin+iTkin ; >> 192 } >> 193 fEnergyDistrTable->insertAt(iPlace,energyVector) ; >> 194 fAngleDistrTable->insertAt(iPlace,angleVector) ; >> 195 } // iTkin >> 196 } // jMat != iMat >> 197 } // jMat >> 198 } // iMat >> 199 } >> 200 >> 201 >> 202 **************************************************************** */ >> 203 48 204 49 ////////////////////////////////////////////// 205 ////////////////////////////////////////////////////////////////////// 50 // 206 // 51 // Constructor for creation of physics tables 207 // Constructor for creation of physics tables (angle and energy TR 52 // distributions) for a couple of selected mat 208 // distributions) for a couple of selected materials. 53 // 209 // 54 // Recommended for use in applications with ma 210 // Recommended for use in applications with many materials involved, 55 // when only few (usually couple) materials ar 211 // when only few (usually couple) materials are interested for generation 56 // of TR on the interface between them 212 // of TR on the interface between them 57 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 58 const G4Strin << 59 const G4Strin << 60 : G4TransitionRadiation(processName) << 61 { << 62 secID = G4PhysicsModelCatalog::GetModelID("m << 63 fPtrGamma = nullptr; << 64 fGammaCutInKineticEnergy = nullptr; << 65 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 66 fGamma = fSigma1 = fSigma2 = 0.0; << 67 fAngleDistrTable = nullptr; << 68 fEnergyDistrTable = nullptr; << 69 fMatIndex1 = fMatIndex2 = 0; << 70 << 71 // Proton energy vector initialization << 72 fProtonEnergyVector = << 73 new G4PhysicsLogVector(fMinProtonTkin, fMa << 74 G4int iMat; << 75 const G4ProductionCutsTable* theCoupleTable << 76 G4ProductionCutsTable::GetProductionCutsTa << 77 G4int numOfCouples = (G4int)theCoupleTable-> << 78 213 79 G4bool build = true; << 80 214 81 for(iMat = 0; iMat < numOfCouples; ++iMat) << 215 G4ForwardXrayTR:: >> 216 G4ForwardXrayTR( const G4String& matName1, // G4Material* pMat1, >> 217 const G4String& matName2, // G4Material* pMat2, >> 218 const G4String& processName ) >> 219 : G4TransitionRadiation(processName) >> 220 { >> 221 // fMatIndex1 = pMat1->GetIndex() ; >> 222 // fMatIndex2 = pMat2->GetIndex() ; >> 223 G4int iMat; >> 224 const G4ProductionCutsTable* theCoupleTable= >> 225 G4ProductionCutsTable::GetProductionCutsTable(); >> 226 G4int numOfCouples = theCoupleTable->GetTableSize(); >> 227 >> 228 for(iMat=0;iMat<numOfCouples;iMat++) // check first material name 82 { 229 { 83 const G4MaterialCutsCouple* couple = << 230 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat); 84 theCoupleTable->GetMaterialCutsCouple(iM << 231 if( matName1 == couple->GetMaterial()->GetName() ) 85 if(matName1 == couple->GetMaterial()->GetN << 86 { 232 { 87 fMatIndex1 = couple->GetIndex(); << 233 fMatIndex1 = couple->GetIndex() ; 88 break; << 234 break ; 89 } 235 } 90 } 236 } 91 if(iMat == numOfCouples) 237 if(iMat == numOfCouples) 92 { 238 { 93 G4Exception("G4ForwardXrayTR::G4ForwardXra << 239 G4Exception("Invalid first material name in G4ForwardXrayTR constructor") ; 94 JustWarning, << 95 "Invalid first material name i << 96 build = false; << 97 } 240 } 98 241 99 if(build) << 242 for(iMat=0;iMat<numOfCouples;iMat++) // check second material name 100 { 243 { 101 for(iMat = 0; iMat < numOfCouples; ++iMat) << 244 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat); 102 { << 245 if( matName2 == couple->GetMaterial()->GetName() ) 103 const G4MaterialCutsCouple* couple = << 104 theCoupleTable->GetMaterialCutsCouple( << 105 if(matName2 == couple->GetMaterial()->Ge << 106 { << 107 fMatIndex2 = couple->GetIndex(); << 108 break; << 109 } << 110 } << 111 if(iMat == numOfCouples) << 112 { 246 { 113 G4Exception( << 247 fMatIndex2 = couple->GetIndex() ; 114 "G4ForwardXrayTR::G4ForwardXrayTR", "F << 248 break ; 115 "Invalid second material name in G4For << 116 build = false; << 117 } 249 } 118 } 250 } 119 if(build) << 251 if(iMat == numOfCouples) 120 { 252 { 121 BuildXrayTRtables(); << 253 G4Exception("Invalid second material name in G4ForwardXrayTR constructor") ; 122 } 254 } >> 255 // G4cout<<"G4ForwardXray constructor is called"<<G4endl ; >> 256 BuildXrayTRtables() ; 123 } 257 } 124 258 125 ////////////////////////////////////////////// 259 ///////////////////////////////////////////////////////////////////////// >> 260 // 126 // Constructor used by X-ray transition radiat 261 // Constructor used by X-ray transition radiation parametrisation models 127 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 262 128 : G4TransitionRadiation(processName) << 263 G4ForwardXrayTR:: >> 264 G4ForwardXrayTR( const G4String& processName ) >> 265 : G4TransitionRadiation(processName) 129 { 266 { 130 fPtrGamma = nullptr; << 267 ; 131 fGammaCutInKineticEnergy = nullptr; << 132 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 133 fGamma = fSigma1 = fSigma2 = 0.0; << 134 fAngleDistrTable = nullptr; << 135 fEnergyDistrTable = nullptr; << 136 fMatIndex1 = fMatIndex2 = 0; << 137 << 138 // Proton energy vector initialization << 139 fProtonEnergyVector = << 140 new G4PhysicsLogVector(fMinProtonTkin, fMa << 141 } 268 } 142 269 >> 270 143 ////////////////////////////////////////////// 271 ////////////////////////////////////////////////////////////////////// >> 272 // 144 // Destructor 273 // Destructor 145 G4ForwardXrayTR::~G4ForwardXrayTR() << 274 // 146 { << 147 delete fAngleDistrTable; << 148 delete fEnergyDistrTable; << 149 delete fProtonEnergyVector; << 150 } << 151 << 152 void G4ForwardXrayTR::ProcessDescription(std:: << 153 { << 154 out << "Simulation of forward X-ray transiti << 155 "relativistic charged particles cross << 156 "two materials.\n"; << 157 } << 158 275 159 G4double G4ForwardXrayTR::GetMeanFreePath(cons << 276 G4ForwardXrayTR::~G4ForwardXrayTR() 160 G4Fo << 161 { 277 { 162 *condition = Forced; << 278 ; 163 return DBL_MAX; // so TR doesn't limit mean << 164 } 279 } 165 280 166 ////////////////////////////////////////////// 281 ////////////////////////////////////////////////////////////////////////////// >> 282 // 167 // Build physics tables for energy and angular 283 // Build physics tables for energy and angular distributions of X-ray TR photon >> 284 168 void G4ForwardXrayTR::BuildXrayTRtables() 285 void G4ForwardXrayTR::BuildXrayTRtables() 169 { 286 { 170 G4int iMat, jMat, iTkin, iTR, iPlace; << 287 G4int iMat, jMat, iTkin, iTR, iPlace ; 171 const G4ProductionCutsTable* theCoupleTable << 288 const G4ProductionCutsTable* theCoupleTable= 172 G4ProductionCutsTable::GetProductionCutsTa << 289 G4ProductionCutsTable::GetProductionCutsTable(); 173 G4int numOfCouples = (G4int)theCoupleTable-> << 290 G4int numOfCouples = theCoupleTable->GetTableSize(); 174 291 175 fGammaCutInKineticEnergy = theCoupleTable->G 292 fGammaCutInKineticEnergy = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); 176 293 177 fAngleDistrTable = new G4PhysicsTable(2 * f << 294 fAngleDistrTable = new G4PhysicsTable(2*fTotBin) ; 178 fEnergyDistrTable = new G4PhysicsTable(2 * f << 295 fEnergyDistrTable = new G4PhysicsTable(2*fTotBin) ; 179 296 180 for(iMat = 0; iMat < numOfCouples; << 297 181 ++iMat) // loop over pairs of different << 298 for(iMat=0;iMat<numOfCouples;iMat++) // loop over pairs of different materials 182 { 299 { 183 if(iMat != fMatIndex1 && iMat != fMatIndex << 300 if( iMat != fMatIndex1 && iMat != fMatIndex2 ) continue ; 184 continue; << 185 301 186 for(jMat = 0; jMat < numOfCouples; ++jMat) << 302 for(jMat=0;jMat<numOfCouples;jMat++) // transition iMat -> jMat !!! 187 { 303 { 188 if(iMat == jMat || (jMat != fMatIndex1 & << 304 if( iMat == jMat || ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 189 { 305 { 190 continue; << 306 continue ; 191 } 307 } 192 else 308 else 193 { 309 { 194 const G4MaterialCutsCouple* iCouple = << 310 const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat); 195 theCoupleTable->GetMaterialCutsCoupl << 311 const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat); 196 const G4MaterialCutsCouple* jCouple = << 312 const G4Material* mat1 = iCouple->GetMaterial() ; 197 theCoupleTable->GetMaterialCutsCoupl << 313 const G4Material* mat2 = jCouple->GetMaterial() ; 198 const G4Material* mat1 = iCouple->GetM << 314 199 const G4Material* mat2 = jCouple->GetM << 315 fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ; 200 << 316 fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ; 201 fSigma1 = fPlasmaCof * (mat1->GetElect << 317 202 fSigma2 = fPlasmaCof * (mat2->GetElect << 318 // fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat ! 203 << 319 204 fGammaTkinCut = 0.0; << 320 fGammaTkinCut = 0.0 ; 205 << 321 206 if(fGammaTkinCut > fTheMinEnergyTR) / << 322 if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies 207 { << 323 { 208 fMinEnergyTR = fGammaTkinCut; << 324 fMinEnergyTR = fGammaTkinCut ; 209 } << 325 } 210 else 326 else 211 { << 327 { 212 fMinEnergyTR = fTheMinEnergyTR; << 328 fMinEnergyTR = fTheMinEnergyTR ; 213 } << 329 } 214 if(fGammaTkinCut > fTheMaxEnergyTR) 330 if(fGammaTkinCut > fTheMaxEnergyTR) 215 { << 331 { 216 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 332 fMaxEnergyTR = 2.0*fGammaTkinCut ; // usually very low TR rate 217 } << 333 } 218 else 334 else 219 { << 335 { 220 fMaxEnergyTR = fTheMaxEnergyTR; << 336 fMaxEnergyTR = fTheMaxEnergyTR ; 221 } << 337 } 222 for(iTkin = 0; iTkin < fTotBin; ++iTki << 338 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 223 { << 339 { 224 auto energyVector = << 340 G4PhysicsLogVector* 225 new G4PhysicsLogVector(fMinEnergyT << 341 energyVector = new G4PhysicsLogVector( fMinEnergyTR, >> 342 fMaxEnergyTR, >> 343 fBinTR ) ; 226 344 227 fGamma = 1.0 + (fProtonEnergyVector- << 345 fGamma = 1.0 + (fProtonEnergyVector-> 228 proton_mass_c2); << 346 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 229 347 230 fMaxThetaTR = 10000.0 / (fGamma * fG << 348 fMaxThetaTR = 10000.0/(fGamma*fGamma) ; 231 349 232 if(fMaxThetaTR > fTheMaxAngle) 350 if(fMaxThetaTR > fTheMaxAngle) 233 { 351 { 234 fMaxThetaTR = fTheMaxAngle; << 352 fMaxThetaTR = fTheMaxAngle ; 235 } << 353 } 236 else 354 else 237 { << 355 { 238 if(fMaxThetaTR < fTheMinAngle) 356 if(fMaxThetaTR < fTheMinAngle) 239 { << 357 { 240 fMaxThetaTR = fTheMinAngle; << 358 fMaxThetaTR = fTheMinAngle ; 241 } << 359 } 242 } << 360 } 243 auto angleVector = << 361 // G4cout<<G4endl<<"fGamma = "<<fGamma<<" fMaxThetaTR = "<<fMaxThetaTR<<G4endl ; 244 new G4PhysicsLinearVector(0.0, fMa << 362 G4PhysicsLinearVector* 245 G4double energySum = 0.0; << 363 angleVector = new G4PhysicsLinearVector( 0.0, 246 G4double angleSum = 0.0; << 364 fMaxThetaTR, 247 << 365 fBinTR ) ; 248 energyVector->PutValue(fBinTR - 1, e << 366 G4double energySum = 0.0 ; 249 angleVector->PutValue(fBinTR - 1, an << 367 G4double angleSum = 0.0 ; 250 << 368 251 for(iTR = fBinTR - 2; iTR >= 0; --iT << 369 energyVector->PutValue(fBinTR-1,energySum) ; 252 { << 370 angleVector->PutValue(fBinTR-1,angleSum) ; 253 energySum += << 371 254 fCofTR * EnergySum(energyVector- << 372 for(iTR=fBinTR-2;iTR>=0;iTR--) 255 energyVector- << 373 { 256 << 374 energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR), 257 angleSum += << 375 energyVector->GetLowEdgeEnergy(iTR+1)) ; 258 fCofTR * AngleSum(angleVector->G << 376 259 angleVector->G << 377 angleSum += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR), 260 << 378 angleVector->GetLowEdgeEnergy(iTR+1)) ; 261 energyVector->PutValue(iTR, energy << 379 262 angleVector->PutValue(iTR, angleSu << 380 energyVector->PutValue(iTR,energySum) ; 263 } << 381 angleVector ->PutValue(iTR,angleSum) ; >> 382 } >> 383 // G4cout<<"sumE = "<<energySum<<" ; sumA = "<<angleSum<<G4endl ; 264 384 265 if(jMat < iMat) 385 if(jMat < iMat) 266 { << 386 { 267 iPlace = fTotBin + iTkin; << 387 iPlace = fTotBin+iTkin ; // (iMat*(numOfMat-1)+jMat)* 268 } << 388 } 269 else // jMat > iMat right part of m << 389 else // jMat > iMat right part of matrices (jMat-1) ! 270 { << 390 { 271 iPlace = iTkin; << 391 iPlace = iTkin ; // (iMat*(numOfMat-1)+jMat-1)*fTotBin+ 272 } << 392 } 273 fEnergyDistrTable->insertAt(iPlace, << 393 fEnergyDistrTable->insertAt(iPlace,energyVector) ; 274 fAngleDistrTable->insertAt(iPlace, a << 394 fAngleDistrTable->insertAt(iPlace,angleVector) ; 275 } // iTkin << 395 } // iTkin 276 } // jMat != iMat << 396 } // jMat != iMat 277 } // jMat << 397 } // jMat 278 } // iMat << 398 } // iMat >> 399 // G4cout<<"G4ForwardXrayTR::BuildXrayTRtables have been called"<<G4endl ; 279 } 400 } 280 401 281 ////////////////////////////////////////////// 402 /////////////////////////////////////////////////////////////////////// 282 // 403 // 283 // This function returns the spectral and angl 404 // This function returns the spectral and angle density of TR quanta 284 // in X-ray energy region generated forward wh 405 // in X-ray energy region generated forward when a relativistic 285 // charged particle crosses interface between 406 // charged particle crosses interface between two materials. 286 // The high energy small theta approximation i 407 // The high energy small theta approximation is applied. 287 // (matter1 -> matter2) 408 // (matter1 -> matter2) 288 // varAngle =2* (1 - std::cos(Theta)) or appro << 409 // varAngle =2* (1 - cos(Theta)) or approximately = Theta*Theta 289 // 410 // 290 G4double G4ForwardXrayTR::SpectralAngleTRdensi << 411 291 << 412 G4double 292 { << 413 G4ForwardXrayTR::SpectralAngleTRdensity( G4double energy, 293 G4double formationLength1, formationLength2; << 414 G4double varAngle ) const 294 formationLength1 = << 415 { 295 1.0 / (1.0 / (fGamma * fGamma) + fSigma1 / << 416 G4double formationLength1, formationLength2 ; 296 formationLength2 = << 417 formationLength1 = 1.0/ 297 1.0 / (1.0 / (fGamma * fGamma) + fSigma2 / << 418 (1.0/(fGamma*fGamma) 298 return (varAngle / energy) * (formationLengt << 419 + fSigma1/(energy*energy) 299 (formationLength1 - formationLength2) << 420 + varAngle) ; >> 421 formationLength2 = 1.0/ >> 422 (1.0/(fGamma*fGamma) >> 423 + fSigma2/(energy*energy) >> 424 + varAngle) ; >> 425 return (varAngle/energy)*(formationLength1 - formationLength2) >> 426 *(formationLength1 - formationLength2) ; >> 427 300 } 428 } 301 429 >> 430 302 ////////////////////////////////////////////// 431 ////////////////////////////////////////////////////////////////// >> 432 // 303 // Analytical formula for angular density of X 433 // Analytical formula for angular density of X-ray TR photons 304 G4double G4ForwardXrayTR::AngleDensity(G4doubl << 434 // >> 435 >> 436 G4double G4ForwardXrayTR::AngleDensity( G4double energy, >> 437 G4double varAngle ) const 305 { 438 { 306 G4double x, x2, c, d, f, a2, b2, a4, b4; << 439 G4double x, x2, a, b, c, d, f, a2, b2, a4, b4 ; 307 G4double cof1, cof2, cof3; << 440 G4double cof1, cof2, cof3 ; 308 x = 1.0 / energy; << 441 x = 1.0/energy ; 309 x2 = x * x; << 442 x2 = x*x ; 310 c = 1.0 / fSigma1; << 443 c = 1.0/fSigma1 ; 311 d = 1.0 / fSigma2; << 444 d = 1.0/fSigma2 ; 312 f = (varAngle + 1.0 / (fGamma * fGamma)); << 445 f = (varAngle + 1.0/(fGamma*fGamma)) ; 313 a2 = c * f; << 446 a2 = c*f ; 314 b2 = d * f; << 447 b2 = d*f ; 315 a4 = a2 * a2; << 448 a4 = a2*a2 ; 316 b4 = b2 * b2; << 449 b4 = b2*b2 ; 317 cof1 = c * c * (0.5 / (a2 * (x2 + a2)) + 0.5 << 450 a = sqrt(a2) ; 318 cof3 = d * d * (0.5 / (b2 * (x2 + b2)) + 0.5 << 451 b = sqrt(b2) ; 319 cof2 = -c * d * << 452 cof1 = c*c*(0.5/(a2*(x2 +a2)) +0.5*log(x2/(x2 +a2))/a4) ; 320 (std::log(x2 / (x2 + b2)) / b2 - std: << 453 cof3 = d*d*(0.5/(b2*(x2 +b2)) +0.5*log(x2/(x2 +b2))/b4) ; 321 (a2 - b2); << 454 cof2 = -c*d*(log(x2/(x2 +b2))/b2 - log(x2/(x2 +a2))/a2)/(a2 - b2) ; 322 return -varAngle * (cof1 + cof2 + cof3); << 455 return -varAngle*(cof1 + cof2 + cof3) ; 323 } 456 } 324 457 325 ////////////////////////////////////////////// 458 ///////////////////////////////////////////////////////////////////// >> 459 // 326 // Definite integral of X-ray TR spectral-angl 460 // Definite integral of X-ray TR spectral-angle density from energy1 327 // to energy2 461 // to energy2 328 G4double G4ForwardXrayTR::EnergyInterval(G4dou << 462 // 329 G4dou << 463 >> 464 G4double G4ForwardXrayTR::EnergyInterval( G4double energy1, >> 465 G4double energy2, >> 466 G4double varAngle ) const 330 { 467 { 331 return AngleDensity(energy2, varAngle) - Ang << 468 return AngleDensity(energy2,varAngle) >> 469 - AngleDensity(energy1,varAngle) ; 332 } 470 } 333 471 334 ////////////////////////////////////////////// 472 ////////////////////////////////////////////////////////////////////// >> 473 // 335 // Integral angle distribution of X-ray TR pho 474 // Integral angle distribution of X-ray TR photons based on analytical 336 // formula for angle density 475 // formula for angle density 337 G4double G4ForwardXrayTR::AngleSum(G4double va << 476 // >> 477 >> 478 G4double G4ForwardXrayTR::AngleSum( G4double varAngle1, >> 479 G4double varAngle2 ) const 338 { 480 { 339 G4int i; << 481 G4int i ; 340 G4double h, sumEven = 0.0, sumOdd = 0.0; << 482 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; 341 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 483 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; 342 for(i = 1; i < fSympsonNumber; ++i) << 484 for(i=1;i<fSympsonNumber;i++) 343 { << 485 { 344 sumEven += << 486 sumEven += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1 + 2*i*h ) ; 345 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 487 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 346 sumOdd += << 488 varAngle1 + (2*i - 1)*h ) ; 347 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 489 } 348 } << 490 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 349 sumOdd += EnergyInterval(fMinEnergyTR, fMaxE << 491 varAngle1 + (2*fSympsonNumber - 1)*h ) ; 350 varAngle1 + (2 * fS << 492 351 << 493 return h*(EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1) 352 return h * << 494 + EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle2) 353 (EnergyInterval(fMinEnergyTR, fMaxEne << 495 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 354 EnergyInterval(fMinEnergyTR, fMaxEne << 355 2.0 * sumEven) / << 356 3.0; << 357 } 496 } 358 497 359 ////////////////////////////////////////////// 498 ///////////////////////////////////////////////////////////////////// >> 499 // 360 // Analytical Expression for spectral densit 500 // Analytical Expression for spectral density of Xray TR photons 361 // x = 2*(1 - std::cos(Theta)) ~ Theta^2 << 501 // x = 2*(1 - cos(Theta)) ~ Theta^2 362 G4double G4ForwardXrayTR::SpectralDensity(G4do << 502 // >> 503 >> 504 G4double G4ForwardXrayTR::SpectralDensity( G4double energy, >> 505 G4double x ) const 363 { 506 { 364 G4double a, b; << 507 G4double a, b ; 365 a = 1.0 / (fGamma * fGamma) + fSigma1 / (ene << 508 a = 1.0/(fGamma*fGamma) 366 b = 1.0 / (fGamma * fGamma) + fSigma2 / (ene << 509 + fSigma1/(energy*energy) ; 367 return ((a + b) * std::log((x + b) / (x + a) << 510 b = 1.0/(fGamma*fGamma) 368 b / (x + b)) / << 511 + fSigma2/(energy*energy) ; 369 energy; << 512 return ( (a + b)*log((x + b)/(x + a))/(a - b) >> 513 + a/(x + a) + b/(x + b) )/energy ; >> 514 370 } 515 } 371 516 372 ////////////////////////////////////////////// 517 //////////////////////////////////////////////////////////////////// >> 518 // 373 // The spectral density in some angle interva 519 // The spectral density in some angle interval from varAngle1 to 374 // varAngle2 520 // varAngle2 375 G4double G4ForwardXrayTR::AngleInterval(G4doub << 521 // 376 G4doub << 522 >> 523 G4double G4ForwardXrayTR::AngleInterval( G4double energy, >> 524 G4double varAngle1, >> 525 G4double varAngle2 ) const 377 { 526 { 378 return SpectralDensity(energy, varAngle2) - << 527 return SpectralDensity(energy,varAngle2) 379 SpectralDensity(energy, varAngle1); << 528 - SpectralDensity(energy,varAngle1) ; 380 } 529 } 381 530 382 ////////////////////////////////////////////// 531 //////////////////////////////////////////////////////////////////// >> 532 // 383 // Integral spectral distribution of X-ray TR 533 // Integral spectral distribution of X-ray TR photons based on 384 // analytical formula for spectral density 534 // analytical formula for spectral density 385 G4double G4ForwardXrayTR::EnergySum(G4double e << 535 // >> 536 >> 537 G4double G4ForwardXrayTR::EnergySum( G4double energy1, >> 538 G4double energy2 ) const 386 { 539 { 387 G4int i; << 540 G4int i ; 388 G4double h, sumEven = 0.0, sumOdd = 0.0; << 541 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; 389 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 542 h = 0.5*(energy2 - energy1)/fSympsonNumber ; 390 for(i = 1; i < fSympsonNumber; ++i) << 543 for(i=1;i<fSympsonNumber;i++) 391 { << 544 { 392 sumEven += AngleInterval(energy1 + 2 * i * << 545 sumEven += AngleInterval(energy1 + 2*i*h,0.0,fMaxThetaTR); 393 sumOdd += AngleInterval(energy1 + (2 * i - << 546 sumOdd += AngleInterval(energy1 + (2*i - 1)*h,0.0,fMaxThetaTR) ; 394 } << 547 } 395 sumOdd += << 548 sumOdd += AngleInterval(energy1 + (2*fSympsonNumber - 1)*h, 396 AngleInterval(energy1 + (2 * fSympsonNumbe << 549 0.0,fMaxThetaTR) ; 397 << 550 398 return h * << 551 return h*( AngleInterval(energy1,0.0,fMaxThetaTR) 399 (AngleInterval(energy1, 0.0, fMaxThet << 552 + AngleInterval(energy2,0.0,fMaxThetaTR) 400 AngleInterval(energy2, 0.0, fMaxThet << 553 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 401 2.0 * sumEven) / << 402 3.0; << 403 } 554 } 404 555 405 ////////////////////////////////////////////// 556 ///////////////////////////////////////////////////////////////////////// >> 557 // 406 // PostStepDoIt function for creation of forwa 558 // PostStepDoIt function for creation of forward X-ray photons in TR process 407 // on boundary between two materials with real << 559 // on boubndary between two materials with really different plasma energies >> 560 // >> 561 408 G4VParticleChange* G4ForwardXrayTR::PostStepDo 562 G4VParticleChange* G4ForwardXrayTR::PostStepDoIt(const G4Track& aTrack, 409 << 563 const G4Step& aStep) 410 { 564 { 411 aParticleChange.Initialize(aTrack); 565 aParticleChange.Initialize(aTrack); 412 G4int iMat, jMat, iTkin, iPlace, numOfTR, iT << 566 // G4cout<<"call G4ForwardXrayTR::PostStepDoIt"<<G4endl ; >> 567 G4int iMat, jMat, iTkin, iPlace, numOfTR, iTR, iTransfer ; 413 568 414 G4double energyPos, anglePos, energyTR, thet << 569 G4double energyPos, anglePos, energyTR, theta, phi, dirX, dirY, dirZ ; 415 G4double W, W1, W2, E1, E2; << 570 G4double W, W1, W2, E1, E2 ; 416 571 417 G4StepPoint* pPreStepPoint = aStep.GetPreSt 572 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 418 G4StepPoint* pPostStepPoint = aStep.GetPostS 573 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 419 G4double tol = << 420 0.5 * G4GeometryTolerance::GetInstance()-> << 421 574 422 if(pPostStepPoint->GetStepStatus() != fGeomB << 575 if (pPostStepPoint->GetStepStatus() != fGeomBoundary) 423 { 576 { 424 return G4VDiscreteProcess::PostStepDoIt(aT 577 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 425 } 578 } 426 if(aTrack.GetStepLength() <= tol) << 579 if (aTrack.GetStepLength() <= kCarTolerance*0.5) >> 580 427 { 581 { 428 return G4VDiscreteProcess::PostStepDoIt(aT 582 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 429 } 583 } 430 // Arrived at boundary, so begin to try TR << 584 // Come on boundary, so begin to try TR 431 585 432 const G4MaterialCutsCouple* iCouple = pPreSt << 586 const G4MaterialCutsCouple* iCouple = pPreStepPoint ->GetPhysicalVolume()-> 433 ->Ge << 587 GetLogicalVolume()->GetMaterialCutsCouple(); 434 ->Ge << 588 const G4MaterialCutsCouple* jCouple = pPostStepPoint ->GetPhysicalVolume()-> 435 const G4MaterialCutsCouple* jCouple = pPostS << 589 GetLogicalVolume()->GetMaterialCutsCouple(); 436 ->Ge << 437 ->Ge << 438 const G4Material* iMaterial = iCouple->GetMa 590 const G4Material* iMaterial = iCouple->GetMaterial(); 439 const G4Material* jMaterial = jCouple->GetMa 591 const G4Material* jMaterial = jCouple->GetMaterial(); 440 iMat = iCouple->GetIn << 592 iMat = iCouple->GetIndex(); 441 jMat = jCouple->GetIn << 593 jMat = jCouple->GetIndex(); 442 594 443 // The case of equal or approximate (in term 595 // The case of equal or approximate (in terms of plasma energy) materials 444 // No TR photons ?! 596 // No TR photons ?! 445 597 446 if(iMat == jMat || << 598 if ( iMat == jMat 447 ((fMatIndex1 >= 0 && fMatIndex2 >= 0) && << 599 || ( (fMatIndex1 >= 0 && fMatIndex1 >= 0) 448 (iMat != fMatIndex1 && iMat != fMatIndex << 600 && ( iMat != fMatIndex1 && iMat != fMatIndex2 ) 449 (jMat != fMatIndex1 && jMat != fMatIndex << 601 && ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 450 602 451 || iMaterial->GetState() == jMaterial->Ge << 603 || iMaterial->GetState() == jMaterial->GetState() 452 604 453 || (iMaterial->GetState() == kStateSolid << 605 ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid ) 454 jMaterial->GetState() == kStateLiquid << 455 606 456 || (iMaterial->GetState() == kStateLiquid << 607 ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid ) ) 457 jMaterial->GetState() == kStateSolid) << 458 { 608 { 459 return G4VDiscreteProcess::PostStepDoIt(aT << 609 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep) ; 460 } 610 } 461 611 462 const G4DynamicParticle* aParticle = aTrack. 612 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 463 G4double charge = aParticle->GetDefinition() 613 G4double charge = aParticle->GetDefinition()->GetPDGCharge(); 464 614 465 if(charge == 0.0) // Uncharged particle doe << 615 if(charge == 0.0) // Uncharged particle doesn't Generate TR photons 466 { 616 { 467 return G4VDiscreteProcess::PostStepDoIt(aT 617 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 468 } 618 } 469 // Now we are ready to Generate TR photons 619 // Now we are ready to Generate TR photons 470 620 471 G4double chargeSq = charge * charge; << 621 G4double chargeSq = charge*charge ; 472 G4double kinEnergy = aParticle->GetKineticEn << 622 G4double kinEnergy = aParticle->GetKineticEnergy() ; 473 G4double massRatio = << 623 G4double massRatio = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ; 474 proton_mass_c2 / aParticle->GetDefinition( << 624 G4double TkinScaled = kinEnergy*massRatio ; 475 G4double TkinScaled = kinEnergy * massRatio; << 625 for(iTkin=0;iTkin<fTotBin;iTkin++) 476 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 477 { 626 { 478 if(TkinScaled < fProtonEnergyVector->GetLo << 627 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) // <= ? 479 { 628 { 480 break; << 629 break ; 481 } 630 } 482 } 631 } 483 if(jMat < iMat) 632 if(jMat < iMat) 484 { 633 { 485 iPlace = fTotBin + iTkin - 1; << 634 iPlace = fTotBin + iTkin - 1 ; // (iMat*(numOfMat - 1) + jMat)* 486 } 635 } 487 else 636 else 488 { 637 { 489 iPlace = iTkin - 1; << 638 iPlace = iTkin - 1 ; // (iMat*(numOfMat - 1) + jMat - 1)*fTotBin + 490 } 639 } >> 640 // G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; >> 641 // G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ; >> 642 >> 643 // G4PhysicsVector* angleVector1 = (*fAngleDistrTable)(iPlace) ; >> 644 // G4PhysicsVector* angleVector2 = (*fAngleDistrTable)(iPlace + 1) ; 491 645 492 G4ParticleMomentum particleDir = aParticle-> << 646 G4ParticleMomentum particleDir = aParticle->GetMomentumDirection() ; 493 647 494 if(iTkin == fTotBin) // TR plato, try from << 648 if(iTkin == fTotBin) // TR plato, try from left 495 { 649 { 496 numOfTR = (G4int)G4Poisson( << 650 // G4cout<<iTkin<<" mean TR number = "<<( (*(*fEnergyDistrTable)(iPlace))(0) + 497 ((*(*fEnergyDistrTable)(iPlace))(0) + (* << 651 // (*(*fAngleDistrTable)(iPlace))(0) ) 498 chargeSq * 0.5); << 652 // *chargeSq*0.5<<G4endl ; >> 653 >> 654 numOfTR = G4Poisson( ( (*(*fEnergyDistrTable)(iPlace))(0) + >> 655 (*(*fAngleDistrTable)(iPlace))(0) ) >> 656 *chargeSq*0.5 ) ; 499 if(numOfTR == 0) 657 if(numOfTR == 0) 500 { 658 { 501 return G4VDiscreteProcess::PostStepDoIt( 659 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 502 } 660 } 503 else 661 else 504 { 662 { >> 663 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 664 505 aParticleChange.SetNumberOfSecondaries(n 665 aParticleChange.SetNumberOfSecondaries(numOfTR); 506 666 507 for(iTR = 0; iTR < numOfTR; ++iTR) << 667 for(iTR=0;iTR<numOfTR;iTR++) 508 { 668 { 509 energyPos = (*(*fEnergyDistrTable)(iPl << 669 energyPos = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand() ; 510 for(iTransfer = 0; iTransfer < fBinTR << 670 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 511 { << 671 { 512 if(energyPos >= (*(*fEnergyDistrTabl << 672 if(energyPos >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break ; 513 break; << 673 } 514 } << 674 energyTR = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 515 energyTR = (*fEnergyDistrTable)(iPlace << 675 516 << 676 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 517 kinEnergy -= energyTR; << 677 518 aParticleChange.ProposeEnergy(kinEnerg << 678 kinEnergy -= energyTR ; 519 << 679 aParticleChange.SetEnergyChange(kinEnergy); 520 anglePos = (*(*fAngleDistrTable)(iPlac << 680 521 for(iTransfer = 0; iTransfer < fBinTR << 681 anglePos = (*(*fAngleDistrTable)(iPlace))(0)*G4UniformRand() ; 522 { << 682 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 523 if(anglePos > (*(*fAngleDistrTable)( << 683 { 524 break; << 684 if(anglePos > (*(*fAngleDistrTable)(iPlace))(iTransfer)) break ; 525 } << 685 } 526 theta = std::sqrt( << 686 theta = sqrt((*fAngleDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1)) ; 527 (*fAngleDistrTable)(iPlace)->GetLowE << 687 528 << 688 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl ; 529 phi = twopi * G4UniformRand(); << 689 530 dirX = std::sin(theta) * std::cos(phi) << 690 phi = twopi*G4UniformRand() ; 531 dirY = std::sin(theta) * std::sin(phi) << 691 dirX = sin(theta)*cos(phi) ; 532 dirZ = std::cos(theta); << 692 dirY = sin(theta)*sin(phi) ; 533 G4ThreeVector directionTR(dirX, dirY, << 693 dirZ = cos(theta) ; 534 directionTR.rotateUz(particleDir); << 694 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 535 auto aPhotonTR = new G4DynamicParticle << 695 directionTR.rotateUz(particleDir) ; 536 << 696 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 537 // Create the G4Track << 697 directionTR, 538 auto aSecondaryTrack = new G4Track(aPhotonTR << 698 energyTR ) ; 539 aSecondaryTrack->SetTouchableHandle(aStep.Ge << 699 aParticleChange.AddSecondary(aPhotonTR) ; 540 aSecondaryTrack->SetParentID(aTrack.GetTrack << 541 aSecondaryTrack->SetCreatorModelID(secID); << 542 aParticleChange.AddSecondary(aSecondaryTrack << 543 } 700 } 544 } 701 } 545 } 702 } 546 else 703 else 547 { 704 { 548 if(iTkin == 0) // Tkin is too small, negl << 705 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 549 { 706 { 550 return G4VDiscreteProcess::PostStepDoIt( 707 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 551 } 708 } 552 else // general case: Tkin between two ve << 709 else // general case: Tkin between two vectors of the material 553 { 710 { 554 E1 = fProtonEnergyVector->GetLowEdgeEner << 711 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 555 E2 = fProtonEnergyVector->GetLowEdgeEner << 712 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; 556 W = 1.0 / (E2 - E1); << 713 W = 1.0/(E2 - E1) ; 557 W1 = (E2 - TkinScaled) * W; << 714 W1 = (E2 - TkinScaled)*W ; 558 W2 = (TkinScaled - E1) * W; << 715 W2 = (TkinScaled - E1)*W ; 559 << 716 560 numOfTR = (G4int)G4Poisson((((*(*fEnergy << 717 // G4cout<<iTkin<<" mean TR number = "<<(((*(*fEnergyDistrTable)(iPlace))(0)+ 561 (*(*fAngleD << 718 // (*(*fAngleDistrTable)(iPlace))(0))*W1 + 562 W1 + << 719 // ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ 563 ((*(*fEnergy << 720 // (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) 564 (*(*fAngleD << 721 // *chargeSq*0.5<<G4endl ; 565 W2) * << 722 566 chargeSq * 0. << 723 numOfTR = G4Poisson((((*(*fEnergyDistrTable)(iPlace))(0)+ >> 724 (*(*fAngleDistrTable)(iPlace))(0))*W1 + >> 725 ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ >> 726 (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) >> 727 *chargeSq*0.5 ) ; 567 if(numOfTR == 0) 728 if(numOfTR == 0) 568 { 729 { 569 return G4VDiscreteProcess::PostStepDoI 730 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 570 } 731 } 571 else 732 else 572 { 733 { >> 734 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 735 573 aParticleChange.SetNumberOfSecondaries 736 aParticleChange.SetNumberOfSecondaries(numOfTR); 574 for(iTR = 0; iTR < numOfTR; ++iTR) << 737 for(iTR=0;iTR<numOfTR;iTR++) 575 { 738 { 576 energyPos = ((*(*fEnergyDistrTable)( << 739 energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+ 577 (*(*fEnergyDistrTable)( << 740 (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; 578 G4UniformRand(); << 741 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 579 for(iTransfer = 0; iTransfer < fBinT << 742 { 580 { << 743 if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+ 581 if(energyPos >= << 744 (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; 582 ((*(*fEnergyDistrTable)(iPlace) << 745 } 583 (*(*fEnergyDistrTable)(iPlace << 746 energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+ 584 break; << 747 ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2 ; 585 } << 748 586 energyTR = << 749 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 587 ((*fEnergyDistrTable)(iPlace)->Get << 750 588 ((*fEnergyDistrTable)(iPlace + 1)- << 751 kinEnergy -= energyTR ; 589 W2; << 752 aParticleChange.SetEnergyChange(kinEnergy); 590 << 753 591 kinEnergy -= energyTR; << 754 anglePos = ((*(*fAngleDistrTable)(iPlace))(0)*W1+ 592 aParticleChange.ProposeEnergy(kinEne << 755 (*(*fAngleDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; 593 << 756 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 594 anglePos = ((*(*fAngleDistrTable)(iP << 757 { 595 (*(*fAngleDistrTable)(iP << 758 if(anglePos > ((*(*fAngleDistrTable)(iPlace))(iTransfer)*W1+ 596 G4UniformRand(); << 759 (*(*fAngleDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; 597 for(iTransfer = 0; iTransfer < fBinT << 760 } 598 { << 761 theta = sqrt(((*fAngleDistrTable)(iPlace)-> 599 if(anglePos > ((*(*fAngleDistrTabl << 762 GetLowEdgeEnergy(iTransfer-1))*W1+ 600 (*(*fAngleDistrTabl << 763 ((*fAngleDistrTable)(iPlace + 1)-> 601 break; << 764 GetLowEdgeEnergy(iTransfer-1))*W2) ; 602 } << 765 603 theta = std::sqrt( << 766 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl ; 604 ((*fAngleDistrTable)(iPlace)->GetL << 767 605 W1 + << 768 phi = twopi*G4UniformRand() ; 606 ((*fAngleDistrTable)(iPlace + 1)-> << 769 dirX = sin(theta)*cos(phi) ; 607 W2); << 770 dirY = sin(theta)*sin(phi) ; 608 << 771 dirZ = cos(theta) ; 609 phi = twopi * G4UniformRand(); << 772 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 610 dirX = std::sin(theta) * std::cos(ph << 773 directionTR.rotateUz(particleDir) ; 611 dirY = std::sin(theta) * std::sin(ph << 774 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 612 dirZ = std::cos(theta); << 775 directionTR, 613 G4ThreeVector directionTR(dirX, dirY << 776 energyTR ) ; 614 directionTR.rotateUz(particleDir); << 777 aParticleChange.AddSecondary(aPhotonTR) ; 615 auto aPhotonTR = << 616 new G4DynamicParticle(G4Gamma::Gam << 617 << 618 // Create the G4Track << 619 G4Track* aSecondaryTrack = new G4Track(aPh << 620 aSecondaryTrack->SetTouchableHandle(aStep. << 621 aSecondaryTrack->SetParentID(aTrack.GetTra << 622 aSecondaryTrack->SetCreatorModelID(secID); << 623 aParticleChange.AddSecondary(aSecondaryTra << 624 } 778 } 625 } 779 } 626 } 780 } 627 } 781 } 628 return &aParticleChange; << 782 return &aParticleChange ; 629 } 783 } 630 784 631 ////////////////////////////////////////////// 785 //////////////////////////////////////////////////////////////////////////// >> 786 // 632 // Test function for checking of PostStepDoIt 787 // Test function for checking of PostStepDoIt random preparation of TR photon 633 // energy 788 // energy 634 G4double G4ForwardXrayTR::GetEnergyTR(G4int iM << 789 // >> 790 >> 791 G4double >> 792 G4ForwardXrayTR::GetEnergyTR(G4int iMat, G4int jMat, G4int iTkin) const 635 { 793 { 636 G4int iPlace, numOfTR, iTR, iTransfer; << 794 G4int iPlace, numOfTR, iTR, iTransfer ; 637 G4double energyTR = 0.0; // return this val << 795 G4double energyTR = 0.0 ; // return this value for no TR photons 638 G4double energyPos; << 796 G4double energyPos ; 639 G4double W1, W2; << 797 G4double W1, W2; 640 << 798 641 const G4ProductionCutsTable* theCoupleTable << 799 const G4ProductionCutsTable* theCoupleTable= 642 G4ProductionCutsTable::GetProductionCutsTa << 800 G4ProductionCutsTable::GetProductionCutsTable(); 643 G4int numOfCouples = (G4int)theCoupleTable-> << 801 G4int numOfCouples = theCoupleTable->GetTableSize(); 644 802 645 // The case of equal or approximate (in term 803 // The case of equal or approximate (in terms of plasma energy) materials 646 // No TR photons ?! 804 // No TR photons ?! 647 805 648 const G4MaterialCutsCouple* iCouple = << 806 const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat); 649 theCoupleTable->GetMaterialCutsCouple(iMat << 807 const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat); 650 const G4MaterialCutsCouple* jCouple = << 651 theCoupleTable->GetMaterialCutsCouple(jMat << 652 const G4Material* iMaterial = iCouple->GetMa 808 const G4Material* iMaterial = iCouple->GetMaterial(); 653 const G4Material* jMaterial = jCouple->GetMa 809 const G4Material* jMaterial = jCouple->GetMaterial(); 654 810 655 if(iMat == jMat << 811 if ( iMat == jMat 656 812 657 || iMaterial->GetState() == jMaterial->Ge << 813 || iMaterial->GetState() == jMaterial->GetState() 658 814 659 || (iMaterial->GetState() == kStateSolid << 815 ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid ) 660 jMaterial->GetState() == kStateLiquid << 661 816 662 || (iMaterial->GetState() == kStateLiquid << 817 ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid ) ) 663 jMaterial->GetState() == kStateSolid) << 664 818 665 { 819 { 666 return energyTR; << 820 return energyTR ; 667 } 821 } 668 822 669 if(jMat < iMat) 823 if(jMat < iMat) 670 { 824 { 671 iPlace = (iMat * (numOfCouples - 1) + jMat << 825 iPlace = (iMat*(numOfCouples - 1) + jMat)*fTotBin + iTkin - 1 ; 672 } 826 } 673 else 827 else 674 { 828 { 675 iPlace = (iMat * (numOfCouples - 1) + jMat << 829 iPlace = (iMat*(numOfCouples - 1) + jMat - 1)*fTotBin + iTkin - 1 ; 676 } 830 } 677 G4PhysicsVector* energyVector1 = (*fEnergyDi << 831 G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; 678 G4PhysicsVector* energyVector2 = (*fEnergyDi << 832 G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ; 679 833 680 if(iTkin == fTotBin) // TR plato, try from << 834 if(iTkin == fTotBin) // TR plato, try from left 681 { 835 { 682 numOfTR = (G4int)G4Poisson((*energyVector1 << 836 numOfTR = G4Poisson( (*energyVector1)(0) ) ; 683 if(numOfTR == 0) 837 if(numOfTR == 0) 684 { 838 { 685 return energyTR; << 839 return energyTR ; 686 } 840 } 687 else 841 else 688 { 842 { 689 for(iTR = 0; iTR < numOfTR; ++iTR) << 843 for(iTR=0;iTR<numOfTR;iTR++) 690 { 844 { 691 energyPos = (*energyVector1)(0) * G4Un << 845 energyPos = (*energyVector1)(0)*G4UniformRand() ; 692 for(iTransfer = 0; iTransfer < fBinTR << 846 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 693 { << 847 { 694 if(energyPos >= (*energyVector1)(iTr << 848 if(energyPos >= (*energyVector1)(iTransfer)) break ; 695 break; << 849 } 696 } << 850 energyTR += energyVector1->GetLowEdgeEnergy(iTransfer) ; 697 energyTR += energyVector1->GetLowEdgeE << 698 } 851 } 699 } 852 } 700 } 853 } 701 else 854 else 702 { 855 { 703 if(iTkin == 0) // Tkin is too small, negl << 856 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 704 { 857 { 705 return energyTR; << 858 return energyTR ; 706 } 859 } 707 else // general case: Tkin between two ve << 860 else // general case: Tkin between two vectors of the material 708 { // use trivial mean half/half << 861 { // use trivial mean half/half 709 W1 = 0.5; << 862 W1 = 0.5 ; 710 W2 = 0.5; << 863 W2 = 0.5 ; 711 numOfTR = (G4int)G4Poisson((*energyVecto << 864 numOfTR = G4Poisson( (*energyVector1)(0)*W1 + >> 865 (*energyVector2)(0)*W2 ) ; 712 if(numOfTR == 0) 866 if(numOfTR == 0) 713 { 867 { 714 return energyTR; << 868 return energyTR ; 715 } 869 } 716 else 870 else 717 { 871 { 718 G4cout << "It is still OK in GetEnergy << 872 G4cout<<"It is still OK in GetEnergyTR(int,int,int)"<<G4endl; 719 for(iTR = 0; iTR < numOfTR; ++iTR) << 873 for(iTR=0;iTR<numOfTR;iTR++) 720 { 874 { 721 energyPos = ((*energyVector1)(0) * W << 875 energyPos = ((*energyVector1)(0)*W1+ 722 G4UniformRand(); << 876 (*energyVector2)(0)*W2)*G4UniformRand() ; 723 for(iTransfer = 0; iTransfer < fBinT << 877 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 724 { << 878 { 725 if(energyPos >= ((*energyVector1)( << 879 if(energyPos >= ((*energyVector1)(iTransfer)*W1+ 726 (*energyVector2)( << 880 (*energyVector2)(iTransfer)*W2)) break ; 727 break; << 881 } 728 } << 882 energyTR += (energyVector1->GetLowEdgeEnergy(iTransfer))*W1+ 729 energyTR += (energyVector1->GetLowEd << 883 (energyVector2->GetLowEdgeEnergy(iTransfer))*W2 ; 730 (energyVector2->GetLowEd << 884 731 } 885 } 732 } 886 } 733 } 887 } 734 } 888 } 735 889 736 return energyTR; << 890 return energyTR ; 737 } 891 } 738 892 739 ////////////////////////////////////////////// 893 //////////////////////////////////////////////////////////////////////////// >> 894 // 740 // Test function for checking of PostStepDoIt 895 // Test function for checking of PostStepDoIt random preparation of TR photon 741 // theta angle relative to particle direction 896 // theta angle relative to particle direction 742 G4double G4ForwardXrayTR::GetThetaTR(G4int, G4 << 897 // 743 898 744 G4int G4ForwardXrayTR::GetSympsonNumber() { re << 745 899 746 G4int G4ForwardXrayTR::GetBinTR() { return fBi << 900 G4double >> 901 G4ForwardXrayTR::GetThetaTR(G4int, G4int, G4int) const >> 902 { >> 903 G4double theta = 0.0 ; >> 904 >> 905 return theta ; >> 906 } 747 907 748 G4double G4ForwardXrayTR::GetMinProtonTkin() { << 749 908 750 G4double G4ForwardXrayTR::GetMaxProtonTkin() { << 751 909 752 G4int G4ForwardXrayTR::GetTotBin() { return fT << 910 // end of G4ForwardXrayTR implementation file >> 911 // >> 912 /////////////////////////////////////////////////////////////////////////// 753 913