Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4ForwardXrayTR.cc,v 1.7 2001/10/24 16:40:54 maire Exp $ >> 25 // GEANT4 tag $Name: geant4-04-01 $ >> 26 // >> 27 // G4ForwardXrayTR class -- implementation file >> 28 >> 29 // GEANT 4 class implementation file --- Copyright CERN 1995 >> 30 // CERN Geneva Switzerland >> 31 >> 32 // For information related to this code, please, contact >> 33 // CERN, CN Division, ASD Group 26 // History: 34 // History: 27 // 1st version 11.09.97 V. Grichine (Vladimir. 35 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch ) 28 // 2nd version 17.12.97 V. Grichine 36 // 2nd version 17.12.97 V. Grichine 29 // 17-09-01, migration of Materials to pure ST << 37 // 17-09-01, migration of Materials to pure STL (mma) 30 // 10-03-03, migration to "cut per region" (V. << 31 // 03.06.03, V.Ivanchenko fix compilation warn << 32 38 33 #include "G4ForwardXrayTR.hh" << 34 39 35 #include "globals.hh" << 40 #include <math.h> 36 #include "G4Gamma.hh" << 41 37 #include "G4GeometryTolerance.hh" << 42 // #include "G4ios.hh" >> 43 // #include <fstream.h> >> 44 // #include <stdlib.h> >> 45 >> 46 #include "G4ForwardXrayTR.hh" 38 #include "G4Material.hh" 47 #include "G4Material.hh" 39 #include "G4PhysicalConstants.hh" << 48 #include "globals.hh" 40 #include "G4PhysicsLinearVector.hh" << 41 #include "G4PhysicsLogVector.hh" << 42 #include "G4PhysicsTable.hh" 49 #include "G4PhysicsTable.hh" 43 #include "G4PhysicsVector.hh" 50 #include "G4PhysicsVector.hh" 44 #include "G4Poisson.hh" << 51 #include "G4PhysicsLinearVector.hh" 45 #include "G4ProductionCutsTable.hh" << 52 #include "G4PhysicsLogVector.hh" 46 #include "G4SystemOfUnits.hh" << 53 47 #include "G4PhysicsModelCatalog.hh" << 54 // Table initialization >> 55 >> 56 // G4PhysicsTable* G4ForwardXrayTR::fAngleDistrTable = NULL ; >> 57 // G4PhysicsTable* G4ForwardXrayTR::fEnergyDistrTable = NULL ; >> 58 >> 59 >> 60 // Initialization of local constants >> 61 >> 62 G4int G4ForwardXrayTR::fSympsonNumber = 100 ; >> 63 >> 64 G4double G4ForwardXrayTR::fTheMinEnergyTR = 1.0*keV ; >> 65 G4double G4ForwardXrayTR::fTheMaxEnergyTR = 100.0*keV ; >> 66 G4double G4ForwardXrayTR::fTheMaxAngle = 1.0e-3 ; >> 67 G4double G4ForwardXrayTR::fTheMinAngle = 5.0e-6 ; >> 68 G4int G4ForwardXrayTR::fBinTR = 50 ; >> 69 >> 70 G4double G4ForwardXrayTR::fMinProtonTkin = 100.0*GeV ; >> 71 G4double G4ForwardXrayTR::fMaxProtonTkin = 100.0*TeV ; >> 72 G4int G4ForwardXrayTR::fTotBin = 50 ; >> 73 // Proton energy vector initialization >> 74 >> 75 G4PhysicsLogVector* G4ForwardXrayTR:: >> 76 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 77 fMaxProtonTkin, >> 78 fTotBin ) ; >> 79 >> 80 G4double G4ForwardXrayTR::fPlasmaCof = 4.0*pi*fine_structure_const* >> 81 hbarc*hbarc*hbarc/electron_mass_c2 ; >> 82 >> 83 G4double G4ForwardXrayTR::fCofTR = fine_structure_const/pi ; >> 84 >> 85 >> 86 /* ************************************************************************ >> 87 >> 88 >> 89 /////////////////////////////////////////////////////////////////////// >> 90 // >> 91 // Constructor for preparation tables with angle and energy TR distributions >> 92 // in all materials involved in test program. Lorentz factors correspond to >> 93 // kinetic energies of protons between 100*GeV and 100*TeV, ~ 10^2-10^5 >> 94 // >> 95 // Recommended only for use in applications with >> 96 // few light materials involved !!!!!!!!!!!!!! >> 97 >> 98 G4ForwardXrayTR::G4ForwardXrayTR() >> 99 : G4TransitionRadiation("XrayTR") >> 100 { >> 101 G4int iMat, jMat, iTkin, iTR, iPlace ; >> 102 static >> 103 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); >> 104 G4int numOfMat = G4Material::GetNumberOfMaterials(); >> 105 fGammaCutInKineticEnergy = new G4double[numOfMat] ; >> 106 fGammaCutInKineticEnergy = fPtrGamma->GetEnergyCuts() ; >> 107 fMatIndex1 = -1 ; >> 108 fMatIndex2 = -1 ; >> 109 fAngleDistrTable = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ; >> 110 fEnergyDistrTable = new G4PhysicsTable(numOfMat*(numOfMat - 1)*fTotBin) ; >> 111 >> 112 G4PhysicsLogVector* aVector = new G4PhysicsLogVector(fMinProtonTkin, >> 113 fMaxProtonTkin, >> 114 fTotBin ) ; >> 115 >> 116 for(iMat=0;iMat<numOfMat;iMat++) // loop over pairs of different materials >> 117 { >> 118 for(jMat=0;jMat<numOfMat;jMat++) // transition iMat -> jMat !!! >> 119 { >> 120 if(iMat == jMat) continue ; // no TR !! >> 121 else >> 122 { >> 123 const G4Material* mat1 = (*theMaterialTable)[iMat] ; >> 124 const G4Material* mat2 = (*theMaterialTable)[jMat] ; >> 125 >> 126 fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ; >> 127 fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ; >> 128 >> 129 // fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat ! >> 130 fGammaTkinCut = 0.0 ; >> 131 >> 132 if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies >> 133 { >> 134 fMinEnergyTR = fGammaTkinCut ; >> 135 } >> 136 else >> 137 { >> 138 fMinEnergyTR = fTheMinEnergyTR ; >> 139 } >> 140 if(fGammaTkinCut > fTheMaxEnergyTR) >> 141 { >> 142 fMaxEnergyTR = 2.0*fGammaTkinCut ; // usually very low TR rate >> 143 } >> 144 else >> 145 { >> 146 fMaxEnergyTR = fTheMaxEnergyTR ; >> 147 } >> 148 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop >> 149 { >> 150 G4PhysicsLogVector* >> 151 energyVector = new G4PhysicsLogVector(fMinEnergyTR, >> 152 fMaxEnergyTR, >> 153 fBinTR ) ; >> 154 G4PhysicsLinearVector* >> 155 angleVector = new G4PhysicsLinearVector( 0.0, >> 156 fMaxThetaTR, >> 157 fBinTR ) ; >> 158 G4double energySum = 0.0 ; >> 159 G4double angleSum = 0.0 ; >> 160 fGamma = 1.0 + (aVector->GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; >> 161 fMaxThetaTR = 10000.0/(fGamma*fGamma) ; >> 162 if(fMaxThetaTR > fTheMaxAngle) >> 163 { >> 164 fMaxThetaTR = fTheMaxAngle ; >> 165 } >> 166 else >> 167 { >> 168 if(fMaxThetaTR < fTheMinAngle) >> 169 { >> 170 fMaxThetaTR = fTheMinAngle ; >> 171 } >> 172 } >> 173 energyVector->PutValue(fBinTR-1,energySum) ; >> 174 angleVector->PutValue(fBinTR-1,angleSum) ; >> 175 >> 176 for(iTR=fBinTR-2;iTR>=0;iTR--) >> 177 { >> 178 energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR), >> 179 energyVector->GetLowEdgeEnergy(iTR+1)) ; >> 180 >> 181 angleSum += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR), >> 182 angleVector->GetLowEdgeEnergy(iTR+1)) ; >> 183 energyVector->PutValue(iTR,energySum) ; >> 184 angleVector->PutValue(iTR,angleSum) ; >> 185 } >> 186 if(jMat < iMat) >> 187 { >> 188 iPlace = (iMat*(numOfMat-1)+jMat)*fTotBin+iTkin ; >> 189 } >> 190 else // jMat > iMat right part of matrices (jMat-1) ! >> 191 { >> 192 iPlace = (iMat*(numOfMat-1)+jMat-1)*fTotBin+iTkin ; >> 193 } >> 194 fEnergyDistrTable->insertAt(iPlace,energyVector) ; >> 195 fAngleDistrTable->insertAt(iPlace,angleVector) ; >> 196 } // iTkin >> 197 } // jMat != iMat >> 198 } // jMat >> 199 } // iMat >> 200 } >> 201 >> 202 >> 203 **************************************************************** */ >> 204 48 205 49 ////////////////////////////////////////////// 206 ////////////////////////////////////////////////////////////////////// 50 // 207 // 51 // Constructor for creation of physics tables << 208 // Constructor for creation of physics tables (angle and energy TR 52 // distributions) for a couple of selected mat 209 // distributions) for a couple of selected materials. 53 // 210 // 54 // Recommended for use in applications with ma 211 // Recommended for use in applications with many materials involved, 55 // when only few (usually couple) materials ar 212 // when only few (usually couple) materials are interested for generation 56 // of TR on the interface between them 213 // of TR on the interface between them 57 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 214 58 const G4Strin << 215 59 const G4Strin << 216 G4ForwardXrayTR:: 60 : G4TransitionRadiation(processName) << 217 G4ForwardXrayTR( const G4String& matName1, // G4Material* pMat1, 61 { << 218 const G4String& matName2, // G4Material* pMat2, 62 secID = G4PhysicsModelCatalog::GetModelID("m << 219 const G4String& processName ) 63 fPtrGamma = nullptr; << 220 : G4TransitionRadiation(processName) 64 fGammaCutInKineticEnergy = nullptr; << 221 { 65 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 222 // fMatIndex1 = pMat1->GetIndex() ; 66 fGamma = fSigma1 = fSigma2 = 0.0; << 223 // fMatIndex2 = pMat2->GetIndex() ; 67 fAngleDistrTable = nullptr; << 68 fEnergyDistrTable = nullptr; << 69 fMatIndex1 = fMatIndex2 = 0; << 70 << 71 // Proton energy vector initialization << 72 fProtonEnergyVector = << 73 new G4PhysicsLogVector(fMinProtonTkin, fMa << 74 G4int iMat; 224 G4int iMat; 75 const G4ProductionCutsTable* theCoupleTable << 225 static 76 G4ProductionCutsTable::GetProductionCutsTa << 226 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable() ; 77 G4int numOfCouples = (G4int)theCoupleTable-> << 78 227 79 G4bool build = true; << 228 G4int numOfMat = G4Material::GetNumberOfMaterials(); 80 229 81 for(iMat = 0; iMat < numOfCouples; ++iMat) << 230 for(iMat=0;iMat<numOfMat;iMat++) // check first material name 82 { 231 { 83 const G4MaterialCutsCouple* couple = << 232 if( matName1 == (*theMaterialTable)[iMat]->GetName() ) 84 theCoupleTable->GetMaterialCutsCouple(iM << 85 if(matName1 == couple->GetMaterial()->GetN << 86 { 233 { 87 fMatIndex1 = couple->GetIndex(); << 234 fMatIndex1 = (*theMaterialTable)[iMat]->GetIndex() ; 88 break; << 235 break ; 89 } 236 } 90 } 237 } 91 if(iMat == numOfCouples) << 238 if(iMat == numOfMat) 92 { 239 { 93 G4Exception("G4ForwardXrayTR::G4ForwardXra << 240 G4Exception("Invalid first material name in G4ForwardXrayTR constructor") ; 94 JustWarning, << 95 "Invalid first material name i << 96 build = false; << 97 } 241 } 98 242 99 if(build) << 243 for(iMat=0;iMat<numOfMat;iMat++) // check second material name 100 { 244 { 101 for(iMat = 0; iMat < numOfCouples; ++iMat) << 245 if( matName2 == (*theMaterialTable)[iMat]->GetName() ) 102 { 246 { 103 const G4MaterialCutsCouple* couple = << 247 fMatIndex2 = (*theMaterialTable)[iMat]->GetIndex() ; 104 theCoupleTable->GetMaterialCutsCouple( << 248 break ; 105 if(matName2 == couple->GetMaterial()->Ge << 106 { << 107 fMatIndex2 = couple->GetIndex(); << 108 break; << 109 } << 110 } << 111 if(iMat == numOfCouples) << 112 { << 113 G4Exception( << 114 "G4ForwardXrayTR::G4ForwardXrayTR", "F << 115 "Invalid second material name in G4For << 116 build = false; << 117 } 249 } 118 } 250 } 119 if(build) << 251 if(iMat == numOfMat) 120 { 252 { 121 BuildXrayTRtables(); << 253 G4Exception("Invalid second material name in G4ForwardXrayTR constructor") ; 122 } 254 } >> 255 // G4cout<<"G4ForwardXray constructor is called"<<G4endl ; >> 256 BuildXrayTRtables() ; 123 } 257 } 124 258 125 ////////////////////////////////////////////// 259 ///////////////////////////////////////////////////////////////////////// >> 260 // 126 // Constructor used by X-ray transition radiat 261 // Constructor used by X-ray transition radiation parametrisation models 127 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 262 128 : G4TransitionRadiation(processName) << 263 G4ForwardXrayTR:: >> 264 G4ForwardXrayTR( const G4String& processName ) >> 265 : G4TransitionRadiation(processName) 129 { 266 { 130 fPtrGamma = nullptr; << 267 ; 131 fGammaCutInKineticEnergy = nullptr; << 132 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 133 fGamma = fSigma1 = fSigma2 = 0.0; << 134 fAngleDistrTable = nullptr; << 135 fEnergyDistrTable = nullptr; << 136 fMatIndex1 = fMatIndex2 = 0; << 137 << 138 // Proton energy vector initialization << 139 fProtonEnergyVector = << 140 new G4PhysicsLogVector(fMinProtonTkin, fMa << 141 } 268 } 142 269 >> 270 143 ////////////////////////////////////////////// 271 ////////////////////////////////////////////////////////////////////// >> 272 // 144 // Destructor 273 // Destructor 145 G4ForwardXrayTR::~G4ForwardXrayTR() << 274 // 146 { << 147 delete fAngleDistrTable; << 148 delete fEnergyDistrTable; << 149 delete fProtonEnergyVector; << 150 } << 151 << 152 void G4ForwardXrayTR::ProcessDescription(std:: << 153 { << 154 out << "Simulation of forward X-ray transiti << 155 "relativistic charged particles cross << 156 "two materials.\n"; << 157 } << 158 275 159 G4double G4ForwardXrayTR::GetMeanFreePath(cons << 276 G4ForwardXrayTR::~G4ForwardXrayTR() 160 G4Fo << 161 { 277 { 162 *condition = Forced; << 278 ; 163 return DBL_MAX; // so TR doesn't limit mean << 164 } 279 } 165 280 166 ////////////////////////////////////////////// 281 ////////////////////////////////////////////////////////////////////////////// >> 282 // 167 // Build physics tables for energy and angular 283 // Build physics tables for energy and angular distributions of X-ray TR photon >> 284 168 void G4ForwardXrayTR::BuildXrayTRtables() 285 void G4ForwardXrayTR::BuildXrayTRtables() 169 { 286 { 170 G4int iMat, jMat, iTkin, iTR, iPlace; << 287 G4int iMat, jMat, iTkin, iTR, iPlace ; 171 const G4ProductionCutsTable* theCoupleTable << 288 static 172 G4ProductionCutsTable::GetProductionCutsTa << 289 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable() ; 173 G4int numOfCouples = (G4int)theCoupleTable-> << 290 >> 291 G4int numOfMat = G4Material::GetNumberOfMaterials() ; >> 292 >> 293 fGammaCutInKineticEnergy = new G4double[numOfMat] ; >> 294 fGammaCutInKineticEnergy = fPtrGamma->GetEnergyCuts() ; 174 295 175 fGammaCutInKineticEnergy = theCoupleTable->G << 296 fAngleDistrTable = new G4PhysicsTable(2*fTotBin) ; >> 297 fEnergyDistrTable = new G4PhysicsTable(2*fTotBin) ; 176 298 177 fAngleDistrTable = new G4PhysicsTable(2 * f << 178 fEnergyDistrTable = new G4PhysicsTable(2 * f << 179 299 180 for(iMat = 0; iMat < numOfCouples; << 300 for(iMat=0;iMat<numOfMat;iMat++) // loop over pairs of different materials 181 ++iMat) // loop over pairs of different << 182 { 301 { 183 if(iMat != fMatIndex1 && iMat != fMatIndex << 302 if( iMat != fMatIndex1 && iMat != fMatIndex2 ) continue ; 184 continue; << 185 303 186 for(jMat = 0; jMat < numOfCouples; ++jMat) << 304 for(jMat=0;jMat<numOfMat;jMat++) // transition iMat -> jMat !!! 187 { 305 { 188 if(iMat == jMat || (jMat != fMatIndex1 & << 306 if( iMat == jMat || ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 189 { << 307 { 190 continue; << 308 continue ; 191 } << 309 } 192 else 310 else 193 { 311 { 194 const G4MaterialCutsCouple* iCouple = << 312 const G4Material* mat1 = (*theMaterialTable)[iMat] ; 195 theCoupleTable->GetMaterialCutsCoupl << 313 const G4Material* mat2 = (*theMaterialTable)[jMat] ; 196 const G4MaterialCutsCouple* jCouple = << 197 theCoupleTable->GetMaterialCutsCoupl << 198 const G4Material* mat1 = iCouple->GetM << 199 const G4Material* mat2 = jCouple->GetM << 200 314 201 fSigma1 = fPlasmaCof * (mat1->GetElect << 315 fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()) ; 202 fSigma2 = fPlasmaCof * (mat2->GetElect << 316 fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()) ; 203 317 204 fGammaTkinCut = 0.0; << 318 // fGammaTkinCut = fGammaCutInKineticEnergy[jMat] ; // TR photon in jMat ! 205 319 206 if(fGammaTkinCut > fTheMinEnergyTR) / << 320 fGammaTkinCut = 0.0 ; 207 { << 321 208 fMinEnergyTR = fGammaTkinCut; << 322 if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies 209 } << 323 { >> 324 fMinEnergyTR = fGammaTkinCut ; >> 325 } 210 else 326 else 211 { << 327 { 212 fMinEnergyTR = fTheMinEnergyTR; << 328 fMinEnergyTR = fTheMinEnergyTR ; 213 } << 329 } 214 if(fGammaTkinCut > fTheMaxEnergyTR) 330 if(fGammaTkinCut > fTheMaxEnergyTR) 215 { << 331 { 216 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 332 fMaxEnergyTR = 2.0*fGammaTkinCut ; // usually very low TR rate 217 } << 333 } 218 else 334 else 219 { << 335 { 220 fMaxEnergyTR = fTheMaxEnergyTR; << 336 fMaxEnergyTR = fTheMaxEnergyTR ; 221 } << 337 } 222 for(iTkin = 0; iTkin < fTotBin; ++iTki << 338 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 223 { << 339 { 224 auto energyVector = << 340 G4PhysicsLogVector* 225 new G4PhysicsLogVector(fMinEnergyT << 341 energyVector = new G4PhysicsLogVector( fMinEnergyTR, 226 << 342 fMaxEnergyTR, 227 fGamma = 1.0 + (fProtonEnergyVector- << 343 fBinTR ) ; 228 proton_mass_c2); << 229 344 230 fMaxThetaTR = 10000.0 / (fGamma * fG << 345 fGamma = 1.0 + (fProtonEnergyVector-> >> 346 GetLowEdgeEnergy(iTkin)/proton_mass_c2) ; 231 347 >> 348 fMaxThetaTR = 10000.0/(fGamma*fGamma) ; >> 349 232 if(fMaxThetaTR > fTheMaxAngle) 350 if(fMaxThetaTR > fTheMaxAngle) 233 { << 351 { 234 fMaxThetaTR = fTheMaxAngle; << 352 fMaxThetaTR = fTheMaxAngle ; 235 } << 353 } 236 else 354 else 237 { << 355 { 238 if(fMaxThetaTR < fTheMinAngle) 356 if(fMaxThetaTR < fTheMinAngle) 239 { << 357 { 240 fMaxThetaTR = fTheMinAngle; << 358 fMaxThetaTR = fTheMinAngle ; 241 } << 359 } 242 } << 360 } 243 auto angleVector = << 361 // G4cout<<G4endl<<"fGamma = "<<fGamma<<" fMaxThetaTR = "<<fMaxThetaTR<<G4endl ; 244 new G4PhysicsLinearVector(0.0, fMa << 362 G4PhysicsLinearVector* 245 G4double energySum = 0.0; << 363 angleVector = new G4PhysicsLinearVector( 0.0, 246 G4double angleSum = 0.0; << 364 fMaxThetaTR, 247 << 365 fBinTR ) ; 248 energyVector->PutValue(fBinTR - 1, e << 366 G4double energySum = 0.0 ; 249 angleVector->PutValue(fBinTR - 1, an << 367 G4double angleSum = 0.0 ; 250 << 368 251 for(iTR = fBinTR - 2; iTR >= 0; --iT << 369 energyVector->PutValue(fBinTR-1,energySum) ; 252 { << 370 angleVector->PutValue(fBinTR-1,angleSum) ; 253 energySum += << 371 254 fCofTR * EnergySum(energyVector- << 372 for(iTR=fBinTR-2;iTR>=0;iTR--) 255 energyVector- << 373 { 256 << 374 energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR), 257 angleSum += << 375 energyVector->GetLowEdgeEnergy(iTR+1)) ; 258 fCofTR * AngleSum(angleVector->G << 376 259 angleVector->G << 377 angleSum += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR), 260 << 378 angleVector->GetLowEdgeEnergy(iTR+1)) ; 261 energyVector->PutValue(iTR, energy << 379 262 angleVector->PutValue(iTR, angleSu << 380 energyVector->PutValue(iTR,energySum) ; 263 } << 381 angleVector ->PutValue(iTR,angleSum) ; >> 382 } >> 383 // G4cout<<"sumE = "<<energySum<<" ; sumA = "<<angleSum<<G4endl ; 264 384 265 if(jMat < iMat) 385 if(jMat < iMat) 266 { << 386 { 267 iPlace = fTotBin + iTkin; << 387 iPlace = fTotBin+iTkin ; // (iMat*(numOfMat-1)+jMat)* 268 } << 388 } 269 else // jMat > iMat right part of m << 389 else // jMat > iMat right part of matrices (jMat-1) ! 270 { << 390 { 271 iPlace = iTkin; << 391 iPlace = iTkin ; // (iMat*(numOfMat-1)+jMat-1)*fTotBin+ 272 } << 392 } 273 fEnergyDistrTable->insertAt(iPlace, << 393 fEnergyDistrTable->insertAt(iPlace,energyVector) ; 274 fAngleDistrTable->insertAt(iPlace, a << 394 fAngleDistrTable->insertAt(iPlace,angleVector) ; 275 } // iTkin << 395 } // iTkin 276 } // jMat != iMat << 396 } // jMat != iMat 277 } // jMat << 397 } // jMat 278 } // iMat << 398 } // iMat >> 399 // G4cout<<"G4ForwardXrayTR::BuildXrayTRtables have been called"<<G4endl ; 279 } 400 } 280 401 281 ////////////////////////////////////////////// 402 /////////////////////////////////////////////////////////////////////// 282 // 403 // 283 // This function returns the spectral and angl 404 // This function returns the spectral and angle density of TR quanta 284 // in X-ray energy region generated forward wh 405 // in X-ray energy region generated forward when a relativistic 285 // charged particle crosses interface between 406 // charged particle crosses interface between two materials. 286 // The high energy small theta approximation i 407 // The high energy small theta approximation is applied. 287 // (matter1 -> matter2) 408 // (matter1 -> matter2) 288 // varAngle =2* (1 - std::cos(Theta)) or appro << 409 // varAngle =2* (1 - cos(Theta)) or approximately = Theta*Theta 289 // 410 // 290 G4double G4ForwardXrayTR::SpectralAngleTRdensi << 411 291 << 412 G4double 292 { << 413 G4ForwardXrayTR::SpectralAngleTRdensity( G4double energy, 293 G4double formationLength1, formationLength2; << 414 G4double varAngle ) const 294 formationLength1 = << 415 { 295 1.0 / (1.0 / (fGamma * fGamma) + fSigma1 / << 416 G4double formationLength1, formationLength2 ; 296 formationLength2 = << 417 formationLength1 = 1.0/ 297 1.0 / (1.0 / (fGamma * fGamma) + fSigma2 / << 418 (1.0/(fGamma*fGamma) 298 return (varAngle / energy) * (formationLengt << 419 + fSigma1/(energy*energy) 299 (formationLength1 - formationLength2) << 420 + varAngle) ; >> 421 formationLength2 = 1.0/ >> 422 (1.0/(fGamma*fGamma) >> 423 + fSigma2/(energy*energy) >> 424 + varAngle) ; >> 425 return (varAngle/energy)*(formationLength1 - formationLength2) >> 426 *(formationLength1 - formationLength2) ; >> 427 300 } 428 } 301 429 >> 430 302 ////////////////////////////////////////////// 431 ////////////////////////////////////////////////////////////////// >> 432 // 303 // Analytical formula for angular density of X 433 // Analytical formula for angular density of X-ray TR photons 304 G4double G4ForwardXrayTR::AngleDensity(G4doubl << 434 // >> 435 >> 436 G4double G4ForwardXrayTR::AngleDensity( G4double energy, >> 437 G4double varAngle ) const 305 { 438 { 306 G4double x, x2, c, d, f, a2, b2, a4, b4; << 439 G4double x, x2, a, b, c, d, f, a2, b2, a4, b4 ; 307 G4double cof1, cof2, cof3; << 440 G4double cof1, cof2, cof3 ; 308 x = 1.0 / energy; << 441 x = 1.0/energy ; 309 x2 = x * x; << 442 x2 = x*x ; 310 c = 1.0 / fSigma1; << 443 c = 1.0/fSigma1 ; 311 d = 1.0 / fSigma2; << 444 d = 1.0/fSigma2 ; 312 f = (varAngle + 1.0 / (fGamma * fGamma)); << 445 f = (varAngle + 1.0/(fGamma*fGamma)) ; 313 a2 = c * f; << 446 a2 = c*f ; 314 b2 = d * f; << 447 b2 = d*f ; 315 a4 = a2 * a2; << 448 a4 = a2*a2 ; 316 b4 = b2 * b2; << 449 b4 = b2*b2 ; 317 cof1 = c * c * (0.5 / (a2 * (x2 + a2)) + 0.5 << 450 a = sqrt(a2) ; 318 cof3 = d * d * (0.5 / (b2 * (x2 + b2)) + 0.5 << 451 b = sqrt(b2) ; 319 cof2 = -c * d * << 452 cof1 = c*c*(0.5/(a2*(x2 +a2)) +0.5*log(x2/(x2 +a2))/a4) ; 320 (std::log(x2 / (x2 + b2)) / b2 - std: << 453 cof3 = d*d*(0.5/(b2*(x2 +b2)) +0.5*log(x2/(x2 +b2))/b4) ; 321 (a2 - b2); << 454 cof2 = -c*d*(log(x2/(x2 +b2))/b2 - log(x2/(x2 +a2))/a2)/(a2 - b2) ; 322 return -varAngle * (cof1 + cof2 + cof3); << 455 return -varAngle*(cof1 + cof2 + cof3) ; 323 } 456 } 324 457 325 ////////////////////////////////////////////// 458 ///////////////////////////////////////////////////////////////////// >> 459 // 326 // Definite integral of X-ray TR spectral-angl 460 // Definite integral of X-ray TR spectral-angle density from energy1 327 // to energy2 461 // to energy2 328 G4double G4ForwardXrayTR::EnergyInterval(G4dou << 462 // 329 G4dou << 463 >> 464 G4double G4ForwardXrayTR::EnergyInterval( G4double energy1, >> 465 G4double energy2, >> 466 G4double varAngle ) const 330 { 467 { 331 return AngleDensity(energy2, varAngle) - Ang << 468 return AngleDensity(energy2,varAngle) >> 469 - AngleDensity(energy1,varAngle) ; 332 } 470 } 333 471 334 ////////////////////////////////////////////// 472 ////////////////////////////////////////////////////////////////////// >> 473 // 335 // Integral angle distribution of X-ray TR pho 474 // Integral angle distribution of X-ray TR photons based on analytical 336 // formula for angle density 475 // formula for angle density 337 G4double G4ForwardXrayTR::AngleSum(G4double va << 476 // >> 477 >> 478 G4double G4ForwardXrayTR::AngleSum( G4double varAngle1, >> 479 G4double varAngle2 ) const 338 { 480 { 339 G4int i; << 481 G4int i ; 340 G4double h, sumEven = 0.0, sumOdd = 0.0; << 482 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; 341 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 483 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber ; 342 for(i = 1; i < fSympsonNumber; ++i) << 484 for(i=1;i<fSympsonNumber;i++) 343 { << 485 { 344 sumEven += << 486 sumEven += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1 + 2*i*h ) ; 345 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 487 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 346 sumOdd += << 488 varAngle1 + (2*i - 1)*h ) ; 347 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 489 } 348 } << 490 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 349 sumOdd += EnergyInterval(fMinEnergyTR, fMaxE << 491 varAngle1 + (2*fSympsonNumber - 1)*h ) ; 350 varAngle1 + (2 * fS << 492 351 << 493 return h*(EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1) 352 return h * << 494 + EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle2) 353 (EnergyInterval(fMinEnergyTR, fMaxEne << 495 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 354 EnergyInterval(fMinEnergyTR, fMaxEne << 355 2.0 * sumEven) / << 356 3.0; << 357 } 496 } 358 497 359 ////////////////////////////////////////////// 498 ///////////////////////////////////////////////////////////////////// >> 499 // 360 // Analytical Expression for spectral densit 500 // Analytical Expression for spectral density of Xray TR photons 361 // x = 2*(1 - std::cos(Theta)) ~ Theta^2 << 501 // x = 2*(1 - cos(Theta)) ~ Theta^2 362 G4double G4ForwardXrayTR::SpectralDensity(G4do << 502 // >> 503 >> 504 G4double G4ForwardXrayTR::SpectralDensity( G4double energy, >> 505 G4double x ) const 363 { 506 { 364 G4double a, b; << 507 G4double a, b ; 365 a = 1.0 / (fGamma * fGamma) + fSigma1 / (ene << 508 a = 1.0/(fGamma*fGamma) 366 b = 1.0 / (fGamma * fGamma) + fSigma2 / (ene << 509 + fSigma1/(energy*energy) ; 367 return ((a + b) * std::log((x + b) / (x + a) << 510 b = 1.0/(fGamma*fGamma) 368 b / (x + b)) / << 511 + fSigma2/(energy*energy) ; 369 energy; << 512 return ( (a + b)*log((x + b)/(x + a))/(a - b) >> 513 + a/(x + a) + b/(x + b) )/energy ; >> 514 370 } 515 } 371 516 372 ////////////////////////////////////////////// 517 //////////////////////////////////////////////////////////////////// >> 518 // 373 // The spectral density in some angle interva 519 // The spectral density in some angle interval from varAngle1 to 374 // varAngle2 520 // varAngle2 375 G4double G4ForwardXrayTR::AngleInterval(G4doub << 521 // 376 G4doub << 522 >> 523 G4double G4ForwardXrayTR::AngleInterval( G4double energy, >> 524 G4double varAngle1, >> 525 G4double varAngle2 ) const 377 { 526 { 378 return SpectralDensity(energy, varAngle2) - << 527 return SpectralDensity(energy,varAngle2) 379 SpectralDensity(energy, varAngle1); << 528 - SpectralDensity(energy,varAngle1) ; 380 } 529 } 381 530 382 ////////////////////////////////////////////// 531 //////////////////////////////////////////////////////////////////// >> 532 // 383 // Integral spectral distribution of X-ray TR 533 // Integral spectral distribution of X-ray TR photons based on 384 // analytical formula for spectral density 534 // analytical formula for spectral density 385 G4double G4ForwardXrayTR::EnergySum(G4double e << 535 // >> 536 >> 537 G4double G4ForwardXrayTR::EnergySum( G4double energy1, >> 538 G4double energy2 ) const 386 { 539 { 387 G4int i; << 540 G4int i ; 388 G4double h, sumEven = 0.0, sumOdd = 0.0; << 541 G4double h , sumEven = 0.0 , sumOdd = 0.0 ; 389 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 542 h = 0.5*(energy2 - energy1)/fSympsonNumber ; 390 for(i = 1; i < fSympsonNumber; ++i) << 543 for(i=1;i<fSympsonNumber;i++) 391 { << 544 { 392 sumEven += AngleInterval(energy1 + 2 * i * << 545 sumEven += AngleInterval(energy1 + 2*i*h,0.0,fMaxThetaTR); 393 sumOdd += AngleInterval(energy1 + (2 * i - << 546 sumOdd += AngleInterval(energy1 + (2*i - 1)*h,0.0,fMaxThetaTR) ; 394 } << 547 } 395 sumOdd += << 548 sumOdd += AngleInterval(energy1 + (2*fSympsonNumber - 1)*h, 396 AngleInterval(energy1 + (2 * fSympsonNumbe << 549 0.0,fMaxThetaTR) ; 397 << 550 398 return h * << 551 return h*( AngleInterval(energy1,0.0,fMaxThetaTR) 399 (AngleInterval(energy1, 0.0, fMaxThet << 552 + AngleInterval(energy2,0.0,fMaxThetaTR) 400 AngleInterval(energy2, 0.0, fMaxThet << 553 + 4.0*sumOdd + 2.0*sumEven )/3.0 ; 401 2.0 * sumEven) / << 402 3.0; << 403 } 554 } 404 555 405 ////////////////////////////////////////////// 556 ///////////////////////////////////////////////////////////////////////// >> 557 // 406 // PostStepDoIt function for creation of forwa 558 // PostStepDoIt function for creation of forward X-ray photons in TR process 407 // on boundary between two materials with real << 559 // on boubndary between two materials with really different plasma energies >> 560 // >> 561 408 G4VParticleChange* G4ForwardXrayTR::PostStepDo 562 G4VParticleChange* G4ForwardXrayTR::PostStepDoIt(const G4Track& aTrack, 409 << 563 const G4Step& aStep) 410 { 564 { 411 aParticleChange.Initialize(aTrack); 565 aParticleChange.Initialize(aTrack); 412 G4int iMat, jMat, iTkin, iPlace, numOfTR, iT << 566 // G4cout<<"call G4ForwardXrayTR::PostStepDoIt"<<G4endl ; >> 567 G4int iMat, jMat, iTkin, iPlace, numOfMat, numOfTR, iTR, iTransfer ; 413 568 414 G4double energyPos, anglePos, energyTR, thet << 569 G4double energyPos, anglePos, energyTR, theta, phi, dirX, dirY, dirZ ; 415 G4double W, W1, W2, E1, E2; << 570 G4double W, W1, W2, E1, E2 ; >> 571 static >> 572 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable() ; >> 573 numOfMat = G4Material::GetNumberOfMaterials() ; 416 574 417 G4StepPoint* pPreStepPoint = aStep.GetPreSt 575 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 418 G4StepPoint* pPostStepPoint = aStep.GetPostS 576 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 419 G4double tol = << 420 0.5 * G4GeometryTolerance::GetInstance()-> << 421 577 422 if(pPostStepPoint->GetStepStatus() != fGeomB << 578 if (pPostStepPoint->GetStepStatus() != fGeomBoundary) 423 { 579 { 424 return G4VDiscreteProcess::PostStepDoIt(aT 580 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 425 } 581 } 426 if(aTrack.GetStepLength() <= tol) << 582 if (aTrack.GetStepLength() <= kCarTolerance*0.5) >> 583 427 { 584 { 428 return G4VDiscreteProcess::PostStepDoIt(aT 585 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 429 } 586 } 430 // Arrived at boundary, so begin to try TR << 587 // Come on boundary, so begin to try TR 431 588 432 const G4MaterialCutsCouple* iCouple = pPreSt << 589 iMat = pPreStepPoint ->GetPhysicalVolume()-> 433 ->Ge << 590 GetLogicalVolume()->GetMaterial()->GetIndex() ; 434 ->Ge << 591 jMat = pPostStepPoint->GetPhysicalVolume()-> 435 const G4MaterialCutsCouple* jCouple = pPostS << 592 GetLogicalVolume()->GetMaterial()->GetIndex() ; 436 ->Ge << 437 ->Ge << 438 const G4Material* iMaterial = iCouple->GetMa << 439 const G4Material* jMaterial = jCouple->GetMa << 440 iMat = iCouple->GetIn << 441 jMat = jCouple->GetIn << 442 593 443 // The case of equal or approximate (in term 594 // The case of equal or approximate (in terms of plasma energy) materials 444 // No TR photons ?! 595 // No TR photons ?! 445 596 446 if(iMat == jMat || << 597 if ( iMat == jMat 447 ((fMatIndex1 >= 0 && fMatIndex2 >= 0) && << 598 || ( (fMatIndex1 >= 0 && fMatIndex1 >= 0) 448 (iMat != fMatIndex1 && iMat != fMatIndex << 599 && ( iMat != fMatIndex1 && iMat != fMatIndex2 ) 449 (jMat != fMatIndex1 && jMat != fMatIndex << 600 && ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 450 << 601 451 || iMaterial->GetState() == jMaterial->Ge << 602 || (*theMaterialTable)[iMat]->GetState() == 452 << 603 (*theMaterialTable)[jMat]->GetState() 453 || (iMaterial->GetState() == kStateSolid << 604 454 jMaterial->GetState() == kStateLiquid << 605 ||( (*theMaterialTable)[iMat]->GetState() == kStateSolid 455 << 606 && (*theMaterialTable)[jMat]->GetState() == kStateLiquid ) 456 || (iMaterial->GetState() == kStateLiquid << 607 457 jMaterial->GetState() == kStateSolid) << 608 ||( (*theMaterialTable)[iMat]->GetState() == kStateLiquid >> 609 && (*theMaterialTable)[jMat]->GetState() == kStateSolid ) ) 458 { 610 { 459 return G4VDiscreteProcess::PostStepDoIt(aT << 611 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep) ; 460 } 612 } 461 613 462 const G4DynamicParticle* aParticle = aTrack. 614 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 463 G4double charge = aParticle->GetDefinition() 615 G4double charge = aParticle->GetDefinition()->GetPDGCharge(); 464 << 616 465 if(charge == 0.0) // Uncharged particle doe << 617 if(charge == 0.0) // Uncharged particle doesn't Generate TR photons 466 { 618 { 467 return G4VDiscreteProcess::PostStepDoIt(aT 619 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 468 } 620 } 469 // Now we are ready to Generate TR photons 621 // Now we are ready to Generate TR photons 470 622 471 G4double chargeSq = charge * charge; << 623 G4double chargeSq = charge*charge ; 472 G4double kinEnergy = aParticle->GetKineticEn << 624 G4double kinEnergy = aParticle->GetKineticEnergy() ; 473 G4double massRatio = << 625 G4double massRatio = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass() ; 474 proton_mass_c2 / aParticle->GetDefinition( << 626 G4double TkinScaled = kinEnergy*massRatio ; 475 G4double TkinScaled = kinEnergy * massRatio; << 627 for(iTkin=0;iTkin<fTotBin;iTkin++) 476 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 477 { 628 { 478 if(TkinScaled < fProtonEnergyVector->GetLo << 629 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) // <= ? 479 { 630 { 480 break; << 631 break ; 481 } << 632 } 482 } 633 } 483 if(jMat < iMat) 634 if(jMat < iMat) 484 { 635 { 485 iPlace = fTotBin + iTkin - 1; << 636 iPlace = fTotBin + iTkin - 1 ; // (iMat*(numOfMat - 1) + jMat)* 486 } 637 } 487 else 638 else 488 { 639 { 489 iPlace = iTkin - 1; << 640 iPlace = iTkin - 1 ; // (iMat*(numOfMat - 1) + jMat - 1)*fTotBin + 490 } 641 } >> 642 // G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; >> 643 // G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ; 491 644 492 G4ParticleMomentum particleDir = aParticle-> << 645 // G4PhysicsVector* angleVector1 = (*fAngleDistrTable)(iPlace) ; >> 646 // G4PhysicsVector* angleVector2 = (*fAngleDistrTable)(iPlace + 1) ; 493 647 494 if(iTkin == fTotBin) // TR plato, try from << 648 G4ParticleMomentum particleDir = aParticle->GetMomentumDirection() ; >> 649 >> 650 if(iTkin == fTotBin) // TR plato, try from left 495 { 651 { 496 numOfTR = (G4int)G4Poisson( << 652 // G4cout<<iTkin<<" mean TR number = "<<( (*(*fEnergyDistrTable)(iPlace))(0) + 497 ((*(*fEnergyDistrTable)(iPlace))(0) + (* << 653 // (*(*fAngleDistrTable)(iPlace))(0) ) 498 chargeSq * 0.5); << 654 // *chargeSq*0.5<<G4endl ; >> 655 >> 656 numOfTR = RandPoisson::shoot( ( (*(*fEnergyDistrTable)(iPlace))(0) + >> 657 (*(*fAngleDistrTable)(iPlace))(0) ) >> 658 *chargeSq*0.5 ) ; 499 if(numOfTR == 0) 659 if(numOfTR == 0) 500 { 660 { 501 return G4VDiscreteProcess::PostStepDoIt( 661 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 502 } 662 } 503 else 663 else 504 { 664 { >> 665 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 666 505 aParticleChange.SetNumberOfSecondaries(n 667 aParticleChange.SetNumberOfSecondaries(numOfTR); 506 668 507 for(iTR = 0; iTR < numOfTR; ++iTR) << 669 for(iTR=0;iTR<numOfTR;iTR++) 508 { 670 { 509 energyPos = (*(*fEnergyDistrTable)(iPl << 671 energyPos = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand() ; 510 for(iTransfer = 0; iTransfer < fBinTR << 672 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 511 { << 673 { 512 if(energyPos >= (*(*fEnergyDistrTabl << 674 if(energyPos >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break ; 513 break; << 675 } 514 } << 676 energyTR = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer) ; 515 energyTR = (*fEnergyDistrTable)(iPlace << 677 516 << 678 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 517 kinEnergy -= energyTR; << 679 518 aParticleChange.ProposeEnergy(kinEnerg << 680 kinEnergy -= energyTR ; 519 << 681 aParticleChange.SetEnergyChange(kinEnergy); 520 anglePos = (*(*fAngleDistrTable)(iPlac << 682 521 for(iTransfer = 0; iTransfer < fBinTR << 683 anglePos = (*(*fAngleDistrTable)(iPlace))(0)*G4UniformRand() ; 522 { << 684 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 523 if(anglePos > (*(*fAngleDistrTable)( << 685 { 524 break; << 686 if(anglePos > (*(*fAngleDistrTable)(iPlace))(iTransfer)) break ; 525 } << 687 } 526 theta = std::sqrt( << 688 theta = sqrt((*fAngleDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1)) ; 527 (*fAngleDistrTable)(iPlace)->GetLowE << 689 528 << 690 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl ; 529 phi = twopi * G4UniformRand(); << 691 530 dirX = std::sin(theta) * std::cos(phi) << 692 phi = twopi*G4UniformRand() ; 531 dirY = std::sin(theta) * std::sin(phi) << 693 dirX = sin(theta)*cos(phi) ; 532 dirZ = std::cos(theta); << 694 dirY = sin(theta)*sin(phi) ; 533 G4ThreeVector directionTR(dirX, dirY, << 695 dirZ = cos(theta) ; 534 directionTR.rotateUz(particleDir); << 696 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 535 auto aPhotonTR = new G4DynamicParticle << 697 directionTR.rotateUz(particleDir) ; 536 << 698 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 537 // Create the G4Track << 699 directionTR, 538 auto aSecondaryTrack = new G4Track(aPhotonTR << 700 energyTR ) ; 539 aSecondaryTrack->SetTouchableHandle(aStep.Ge << 701 aParticleChange.AddSecondary(aPhotonTR) ; 540 aSecondaryTrack->SetParentID(aTrack.GetTrack << 541 aSecondaryTrack->SetCreatorModelID(secID); << 542 aParticleChange.AddSecondary(aSecondaryTrack << 543 } 702 } 544 } 703 } 545 } 704 } 546 else 705 else 547 { 706 { 548 if(iTkin == 0) // Tkin is too small, negl << 707 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 549 { 708 { 550 return G4VDiscreteProcess::PostStepDoIt( 709 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 551 } << 710 } 552 else // general case: Tkin between two ve << 711 else // general case: Tkin between two vectors of the material 553 { 712 { 554 E1 = fProtonEnergyVector->GetLowEdgeEner << 713 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1) ; 555 E2 = fProtonEnergyVector->GetLowEdgeEner << 714 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; 556 W = 1.0 / (E2 - E1); << 715 W = 1.0/(E2 - E1) ; 557 W1 = (E2 - TkinScaled) * W; << 716 W1 = (E2 - TkinScaled)*W ; 558 W2 = (TkinScaled - E1) * W; << 717 W2 = (TkinScaled - E1)*W ; 559 << 718 560 numOfTR = (G4int)G4Poisson((((*(*fEnergy << 719 // G4cout<<iTkin<<" mean TR number = "<<(((*(*fEnergyDistrTable)(iPlace))(0)+ 561 (*(*fAngleD << 720 // (*(*fAngleDistrTable)(iPlace))(0))*W1 + 562 W1 + << 721 // ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ 563 ((*(*fEnergy << 722 // (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) 564 (*(*fAngleD << 723 // *chargeSq*0.5<<G4endl ; 565 W2) * << 724 566 chargeSq * 0. << 725 numOfTR = RandPoisson::shoot((((*(*fEnergyDistrTable)(iPlace))(0)+ >> 726 (*(*fAngleDistrTable)(iPlace))(0))*W1 + >> 727 ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ >> 728 (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) >> 729 *chargeSq*0.5 ) ; 567 if(numOfTR == 0) 730 if(numOfTR == 0) 568 { 731 { 569 return G4VDiscreteProcess::PostStepDoI 732 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 570 } 733 } 571 else 734 else 572 { 735 { >> 736 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl ; >> 737 573 aParticleChange.SetNumberOfSecondaries 738 aParticleChange.SetNumberOfSecondaries(numOfTR); 574 for(iTR = 0; iTR < numOfTR; ++iTR) << 739 for(iTR=0;iTR<numOfTR;iTR++) 575 { 740 { 576 energyPos = ((*(*fEnergyDistrTable)( << 741 energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+ 577 (*(*fEnergyDistrTable)( << 742 (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; 578 G4UniformRand(); << 743 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 579 for(iTransfer = 0; iTransfer < fBinT << 744 { 580 { << 745 if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+ 581 if(energyPos >= << 746 (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; 582 ((*(*fEnergyDistrTable)(iPlace) << 747 } 583 (*(*fEnergyDistrTable)(iPlace << 748 energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+ 584 break; << 749 ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2 ; 585 } << 750 586 energyTR = << 751 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl ; 587 ((*fEnergyDistrTable)(iPlace)->Get << 752 588 ((*fEnergyDistrTable)(iPlace + 1)- << 753 kinEnergy -= energyTR ; 589 W2; << 754 aParticleChange.SetEnergyChange(kinEnergy); 590 << 755 591 kinEnergy -= energyTR; << 756 anglePos = ((*(*fAngleDistrTable)(iPlace))(0)*W1+ 592 aParticleChange.ProposeEnergy(kinEne << 757 (*(*fAngleDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand() ; 593 << 758 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 594 anglePos = ((*(*fAngleDistrTable)(iP << 759 { 595 (*(*fAngleDistrTable)(iP << 760 if(anglePos > ((*(*fAngleDistrTable)(iPlace))(iTransfer)*W1+ 596 G4UniformRand(); << 761 (*(*fAngleDistrTable)(iPlace + 1))(iTransfer)*W2)) break ; 597 for(iTransfer = 0; iTransfer < fBinT << 762 } 598 { << 763 theta = sqrt(((*fAngleDistrTable)(iPlace)-> 599 if(anglePos > ((*(*fAngleDistrTabl << 764 GetLowEdgeEnergy(iTransfer-1))*W1+ 600 (*(*fAngleDistrTabl << 765 ((*fAngleDistrTable)(iPlace + 1)-> 601 break; << 766 GetLowEdgeEnergy(iTransfer-1))*W2) ; 602 } << 767 603 theta = std::sqrt( << 768 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl ; 604 ((*fAngleDistrTable)(iPlace)->GetL << 769 605 W1 + << 770 phi = twopi*G4UniformRand() ; 606 ((*fAngleDistrTable)(iPlace + 1)-> << 771 dirX = sin(theta)*cos(phi) ; 607 W2); << 772 dirY = sin(theta)*sin(phi) ; 608 << 773 dirZ = cos(theta) ; 609 phi = twopi * G4UniformRand(); << 774 G4ThreeVector directionTR(dirX,dirY,dirZ) ; 610 dirX = std::sin(theta) * std::cos(ph << 775 directionTR.rotateUz(particleDir) ; 611 dirY = std::sin(theta) * std::sin(ph << 776 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 612 dirZ = std::cos(theta); << 777 directionTR, 613 G4ThreeVector directionTR(dirX, dirY << 778 energyTR ) ; 614 directionTR.rotateUz(particleDir); << 779 aParticleChange.AddSecondary(aPhotonTR) ; 615 auto aPhotonTR = << 616 new G4DynamicParticle(G4Gamma::Gam << 617 << 618 // Create the G4Track << 619 G4Track* aSecondaryTrack = new G4Track(aPh << 620 aSecondaryTrack->SetTouchableHandle(aStep. << 621 aSecondaryTrack->SetParentID(aTrack.GetTra << 622 aSecondaryTrack->SetCreatorModelID(secID); << 623 aParticleChange.AddSecondary(aSecondaryTra << 624 } 780 } 625 } 781 } 626 } 782 } 627 } 783 } 628 return &aParticleChange; << 784 return &aParticleChange ; 629 } 785 } 630 786 631 ////////////////////////////////////////////// 787 //////////////////////////////////////////////////////////////////////////// >> 788 // 632 // Test function for checking of PostStepDoIt 789 // Test function for checking of PostStepDoIt random preparation of TR photon 633 // energy 790 // energy 634 G4double G4ForwardXrayTR::GetEnergyTR(G4int iM << 791 // >> 792 >> 793 G4double >> 794 G4ForwardXrayTR::GetEnergyTR(G4int iMat, G4int jMat, G4int iTkin) const 635 { 795 { 636 G4int iPlace, numOfTR, iTR, iTransfer; << 796 G4int iPlace, numOfMat, numOfTR, iTR, iTransfer ; 637 G4double energyTR = 0.0; // return this val << 797 G4double energyTR = 0.0 ; // return this value for no TR photons 638 G4double energyPos; << 798 G4double energyPos ; 639 G4double W1, W2; << 799 G4double W1, W2; 640 << 800 641 const G4ProductionCutsTable* theCoupleTable << 801 static 642 G4ProductionCutsTable::GetProductionCutsTa << 802 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable() ; 643 G4int numOfCouples = (G4int)theCoupleTable-> << 803 numOfMat = G4Material::GetNumberOfMaterials() ; >> 804 644 805 645 // The case of equal or approximate (in term 806 // The case of equal or approximate (in terms of plasma energy) materials 646 // No TR photons ?! 807 // No TR photons ?! 647 808 648 const G4MaterialCutsCouple* iCouple = << 649 theCoupleTable->GetMaterialCutsCouple(iMat << 650 const G4MaterialCutsCouple* jCouple = << 651 theCoupleTable->GetMaterialCutsCouple(jMat << 652 const G4Material* iMaterial = iCouple->GetMa << 653 const G4Material* jMaterial = jCouple->GetMa << 654 809 655 if(iMat == jMat << 810 if ( iMat == jMat 656 << 657 || iMaterial->GetState() == jMaterial->Ge << 658 << 659 || (iMaterial->GetState() == kStateSolid << 660 jMaterial->GetState() == kStateLiquid << 661 << 662 || (iMaterial->GetState() == kStateLiquid << 663 jMaterial->GetState() == kStateSolid) << 664 811 >> 812 || (*theMaterialTable)[iMat]->GetState() == >> 813 (*theMaterialTable)[jMat]->GetState() >> 814 >> 815 ||( (*theMaterialTable)[iMat]->GetState() == kStateSolid >> 816 && (*theMaterialTable)[jMat]->GetState() == kStateLiquid ) >> 817 >> 818 ||( (*theMaterialTable)[iMat]->GetState() == kStateLiquid >> 819 && (*theMaterialTable)[jMat]->GetState() == kStateSolid ) ) 665 { 820 { 666 return energyTR; << 821 return energyTR ; 667 } 822 } 668 823 669 if(jMat < iMat) 824 if(jMat < iMat) 670 { 825 { 671 iPlace = (iMat * (numOfCouples - 1) + jMat << 826 iPlace = (iMat*(numOfMat - 1) + jMat)*fTotBin + iTkin - 1 ; 672 } 827 } 673 else 828 else 674 { 829 { 675 iPlace = (iMat * (numOfCouples - 1) + jMat << 830 iPlace = (iMat*(numOfMat - 1) + jMat - 1)*fTotBin + iTkin - 1 ; 676 } 831 } 677 G4PhysicsVector* energyVector1 = (*fEnergyDi << 832 G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; 678 G4PhysicsVector* energyVector2 = (*fEnergyDi << 833 G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1) ; 679 834 680 if(iTkin == fTotBin) // TR plato, try from << 835 if(iTkin == fTotBin) // TR plato, try from left 681 { 836 { 682 numOfTR = (G4int)G4Poisson((*energyVector1 << 837 numOfTR = RandPoisson::shoot( (*energyVector1)(0) ) ; 683 if(numOfTR == 0) 838 if(numOfTR == 0) 684 { 839 { 685 return energyTR; << 840 return energyTR ; 686 } 841 } 687 else 842 else 688 { 843 { 689 for(iTR = 0; iTR < numOfTR; ++iTR) << 844 for(iTR=0;iTR<numOfTR;iTR++) 690 { 845 { 691 energyPos = (*energyVector1)(0) * G4Un << 846 energyPos = (*energyVector1)(0)*G4UniformRand() ; 692 for(iTransfer = 0; iTransfer < fBinTR << 847 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 693 { << 848 { 694 if(energyPos >= (*energyVector1)(iTr << 849 if(energyPos >= (*energyVector1)(iTransfer)) break ; 695 break; << 850 } 696 } << 851 energyTR += energyVector1->GetLowEdgeEnergy(iTransfer) ; 697 energyTR += energyVector1->GetLowEdgeE << 698 } 852 } 699 } 853 } 700 } 854 } 701 else 855 else 702 { 856 { 703 if(iTkin == 0) // Tkin is too small, negl << 857 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 704 { 858 { 705 return energyTR; << 859 return energyTR ; 706 } << 860 } 707 else // general case: Tkin between two ve << 861 else // general case: Tkin between two vectors of the material 708 { // use trivial mean half/half << 862 { // use trivial mean half/half 709 W1 = 0.5; << 863 W1 = 0.5 ; 710 W2 = 0.5; << 864 W2 = 0.5 ; 711 numOfTR = (G4int)G4Poisson((*energyVecto << 865 numOfTR = RandPoisson::shoot( (*energyVector1)(0)*W1 + >> 866 (*energyVector2)(0)*W2 ) ; 712 if(numOfTR == 0) 867 if(numOfTR == 0) 713 { 868 { 714 return energyTR; << 869 return energyTR ; 715 } 870 } 716 else 871 else 717 { 872 { 718 G4cout << "It is still OK in GetEnergy << 873 G4cout<<"It is still OK in GetEnergyTR(int,int,int)"<<G4endl; 719 for(iTR = 0; iTR < numOfTR; ++iTR) << 874 for(iTR=0;iTR<numOfTR;iTR++) 720 { 875 { 721 energyPos = ((*energyVector1)(0) * W << 876 energyPos = ((*energyVector1)(0)*W1+ 722 G4UniformRand(); << 877 (*energyVector2)(0)*W2)*G4UniformRand() ; 723 for(iTransfer = 0; iTransfer < fBinT << 878 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 724 { << 879 { 725 if(energyPos >= ((*energyVector1)( << 880 if(energyPos >= ((*energyVector1)(iTransfer)*W1+ 726 (*energyVector2)( << 881 (*energyVector2)(iTransfer)*W2)) break ; 727 break; << 882 } 728 } << 883 energyTR += (energyVector1->GetLowEdgeEnergy(iTransfer))*W1+ 729 energyTR += (energyVector1->GetLowEd << 884 (energyVector2->GetLowEdgeEnergy(iTransfer))*W2 ; 730 (energyVector2->GetLowEd << 885 731 } 886 } 732 } 887 } 733 } 888 } 734 } 889 } 735 890 736 return energyTR; << 891 return energyTR ; 737 } 892 } 738 893 739 ////////////////////////////////////////////// 894 //////////////////////////////////////////////////////////////////////////// >> 895 // 740 // Test function for checking of PostStepDoIt 896 // Test function for checking of PostStepDoIt random preparation of TR photon 741 // theta angle relative to particle direction 897 // theta angle relative to particle direction 742 G4double G4ForwardXrayTR::GetThetaTR(G4int, G4 << 898 // 743 << 899 744 G4int G4ForwardXrayTR::GetSympsonNumber() { re << 900 >> 901 G4double >> 902 G4ForwardXrayTR::GetThetaTR(G4int iMat, G4int jMat, G4int iTkin) const >> 903 { >> 904 G4double theta = 0.0 ; 745 905 746 G4int G4ForwardXrayTR::GetBinTR() { return fBi << 906 return theta ; >> 907 } 747 908 748 G4double G4ForwardXrayTR::GetMinProtonTkin() { << 749 909 750 G4double G4ForwardXrayTR::GetMaxProtonTkin() { << 751 910 752 G4int G4ForwardXrayTR::GetTotBin() { return fT << 911 // end of G4ForwardXrayTR implementation file >> 912 // >> 913 /////////////////////////////////////////////////////////////////////////// 753 914