Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4ForwardXrayTR.cc 68037 2013-03-13 14:15:08Z gcosmo $ >> 28 // >> 29 // G4ForwardXrayTR class -- implementation file >> 30 // 26 // History: 31 // History: 27 // 1st version 11.09.97 V. Grichine (Vladimir. 32 // 1st version 11.09.97 V. Grichine (Vladimir.Grichine@cern.ch ) 28 // 2nd version 17.12.97 V. Grichine 33 // 2nd version 17.12.97 V. Grichine 29 // 17-09-01, migration of Materials to pure ST 34 // 17-09-01, migration of Materials to pure STL (mma) 30 // 10-03-03, migration to "cut per region" (V. 35 // 10-03-03, migration to "cut per region" (V.Ivanchenko) 31 // 03.06.03, V.Ivanchenko fix compilation warn 36 // 03.06.03, V.Ivanchenko fix compilation warnings 32 37 33 #include "G4ForwardXrayTR.hh" 38 #include "G4ForwardXrayTR.hh" 34 39 35 #include "globals.hh" 40 #include "globals.hh" 36 #include "G4Gamma.hh" << 37 #include "G4GeometryTolerance.hh" << 38 #include "G4Material.hh" << 39 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 40 #include "G4PhysicsLinearVector.hh" << 42 #include "G4SystemOfUnits.hh" 41 #include "G4PhysicsLogVector.hh" << 43 #include "G4Poisson.hh" >> 44 #include "G4Material.hh" 42 #include "G4PhysicsTable.hh" 45 #include "G4PhysicsTable.hh" 43 #include "G4PhysicsVector.hh" 46 #include "G4PhysicsVector.hh" 44 #include "G4Poisson.hh" << 47 #include "G4PhysicsLinearVector.hh" >> 48 #include "G4PhysicsLogVector.hh" 45 #include "G4ProductionCutsTable.hh" 49 #include "G4ProductionCutsTable.hh" 46 #include "G4SystemOfUnits.hh" << 50 #include "G4GeometryTolerance.hh" 47 #include "G4PhysicsModelCatalog.hh" << 51 >> 52 // Initialization of local constants >> 53 >> 54 G4int G4ForwardXrayTR::fSympsonNumber = 100; >> 55 >> 56 G4double G4ForwardXrayTR::fTheMinEnergyTR = 1.0*keV; >> 57 G4double G4ForwardXrayTR::fTheMaxEnergyTR = 100.0*keV; >> 58 G4double G4ForwardXrayTR::fTheMaxAngle = 1.0e-3; >> 59 G4double G4ForwardXrayTR::fTheMinAngle = 5.0e-6; >> 60 G4int G4ForwardXrayTR::fBinTR = 50; >> 61 >> 62 G4double G4ForwardXrayTR::fMinProtonTkin = 100.0*GeV; >> 63 G4double G4ForwardXrayTR::fMaxProtonTkin = 100.0*TeV; >> 64 G4int G4ForwardXrayTR::fTotBin = 50; >> 65 >> 66 G4double G4ForwardXrayTR::fPlasmaCof = 4.0*pi*fine_structure_const* >> 67 hbarc*hbarc*hbarc/electron_mass_c2; >> 68 >> 69 G4double G4ForwardXrayTR::fCofTR = fine_structure_const/pi; >> 70 48 71 49 ////////////////////////////////////////////// 72 ////////////////////////////////////////////////////////////////////// 50 // 73 // 51 // Constructor for creation of physics tables 74 // Constructor for creation of physics tables (angle and energy TR 52 // distributions) for a couple of selected mat 75 // distributions) for a couple of selected materials. 53 // 76 // 54 // Recommended for use in applications with ma 77 // Recommended for use in applications with many materials involved, 55 // when only few (usually couple) materials ar 78 // when only few (usually couple) materials are interested for generation 56 // of TR on the interface between them 79 // of TR on the interface between them 57 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 80 58 const G4Strin << 81 59 const G4Strin << 82 G4ForwardXrayTR:: 60 : G4TransitionRadiation(processName) << 83 G4ForwardXrayTR( const G4String& matName1, // G4Material* pMat1, 61 { << 84 const G4String& matName2, // G4Material* pMat2, 62 secID = G4PhysicsModelCatalog::GetModelID("m << 85 const G4String& processName ) 63 fPtrGamma = nullptr; << 86 : G4TransitionRadiation(processName) 64 fGammaCutInKineticEnergy = nullptr; << 87 { 65 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 88 fPtrGamma = 0; 66 fGamma = fSigma1 = fSigma2 = 0.0; << 89 fGammaCutInKineticEnergy = 0; 67 fAngleDistrTable = nullptr; << 90 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = fGamma = 68 fEnergyDistrTable = nullptr; << 91 fSigma1 = fSigma2 = 0.0; >> 92 fAngleDistrTable = 0; >> 93 fEnergyDistrTable = 0; 69 fMatIndex1 = fMatIndex2 = 0; 94 fMatIndex1 = fMatIndex2 = 0; 70 95 71 // Proton energy vector initialization 96 // Proton energy vector initialization 72 fProtonEnergyVector = << 97 // 73 new G4PhysicsLogVector(fMinProtonTkin, fMa << 98 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 99 fMaxProtonTkin, fTotBin ); 74 G4int iMat; 100 G4int iMat; 75 const G4ProductionCutsTable* theCoupleTable << 101 const G4ProductionCutsTable* theCoupleTable= 76 G4ProductionCutsTable::GetProductionCutsTa << 102 G4ProductionCutsTable::GetProductionCutsTable(); 77 G4int numOfCouples = (G4int)theCoupleTable-> << 103 G4int numOfCouples = theCoupleTable->GetTableSize(); 78 104 79 G4bool build = true; 105 G4bool build = true; 80 106 81 for(iMat = 0; iMat < numOfCouples; ++iMat) << 107 for(iMat=0;iMat<numOfCouples;iMat++) // check first material name 82 { 108 { 83 const G4MaterialCutsCouple* couple = << 109 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat); 84 theCoupleTable->GetMaterialCutsCouple(iM << 110 if( matName1 == couple->GetMaterial()->GetName() ) 85 if(matName1 == couple->GetMaterial()->GetN << 86 { 111 { 87 fMatIndex1 = couple->GetIndex(); 112 fMatIndex1 = couple->GetIndex(); 88 break; 113 break; 89 } 114 } 90 } 115 } 91 if(iMat == numOfCouples) 116 if(iMat == numOfCouples) 92 { 117 { 93 G4Exception("G4ForwardXrayTR::G4ForwardXra << 118 G4Exception("G4ForwardXrayTR::G4ForwardXrayTR", "ForwardXrayTR01", JustWarning, "Invalid first material name in G4ForwardXrayTR constructor!"); 94 JustWarning, << 95 "Invalid first material name i << 96 build = false; 119 build = false; 97 } 120 } 98 121 99 if(build) << 122 if(build) { 100 { << 123 for(iMat=0;iMat<numOfCouples;iMat++) // check second material name 101 for(iMat = 0; iMat < numOfCouples; ++iMat) << 102 { << 103 const G4MaterialCutsCouple* couple = << 104 theCoupleTable->GetMaterialCutsCouple( << 105 if(matName2 == couple->GetMaterial()->Ge << 106 { 124 { 107 fMatIndex2 = couple->GetIndex(); << 125 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(iMat); 108 break; << 126 if( matName2 == couple->GetMaterial()->GetName() ) >> 127 { >> 128 fMatIndex2 = couple->GetIndex(); >> 129 break; >> 130 } 109 } 131 } 110 } << 111 if(iMat == numOfCouples) 132 if(iMat == numOfCouples) 112 { << 133 { 113 G4Exception( << 134 G4Exception("G4ForwardXrayTR::G4ForwardXrayTR", "ForwardXrayTR02", JustWarning, "Invalid second material name in G4ForwardXrayTR constructor!"); 114 "G4ForwardXrayTR::G4ForwardXrayTR", "F << 135 build = false; 115 "Invalid second material name in G4For << 136 } 116 build = false; << 117 } << 118 } << 119 if(build) << 120 { << 121 BuildXrayTRtables(); << 122 } 137 } >> 138 // G4cout<<"G4ForwardXray constructor is called"<<G4endl; >> 139 if(build) { BuildXrayTRtables(); } 123 } 140 } 124 141 125 ////////////////////////////////////////////// 142 ///////////////////////////////////////////////////////////////////////// >> 143 // 126 // Constructor used by X-ray transition radiat 144 // Constructor used by X-ray transition radiation parametrisation models 127 G4ForwardXrayTR::G4ForwardXrayTR(const G4Strin << 145 128 : G4TransitionRadiation(processName) << 146 G4ForwardXrayTR:: 129 { << 147 G4ForwardXrayTR( const G4String& processName ) 130 fPtrGamma = nullptr; << 148 : G4TransitionRadiation(processName) 131 fGammaCutInKineticEnergy = nullptr; << 149 { 132 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR << 150 fPtrGamma = 0; 133 fGamma = fSigma1 = fSigma2 = 0.0; << 151 fGammaCutInKineticEnergy = 0; 134 fAngleDistrTable = nullptr; << 152 fGammaTkinCut = fMinEnergyTR = fMaxEnergyTR = fMaxThetaTR = fGamma = 135 fEnergyDistrTable = nullptr; << 153 fSigma1 = fSigma2 = 0.0; >> 154 fAngleDistrTable = 0; >> 155 fEnergyDistrTable = 0; 136 fMatIndex1 = fMatIndex2 = 0; 156 fMatIndex1 = fMatIndex2 = 0; 137 157 138 // Proton energy vector initialization 158 // Proton energy vector initialization 139 fProtonEnergyVector = << 159 // 140 new G4PhysicsLogVector(fMinProtonTkin, fMa << 160 fProtonEnergyVector = new G4PhysicsLogVector(fMinProtonTkin, >> 161 fMaxProtonTkin, fTotBin ); 141 } 162 } 142 163 >> 164 143 ////////////////////////////////////////////// 165 ////////////////////////////////////////////////////////////////////// >> 166 // 144 // Destructor 167 // Destructor >> 168 // >> 169 145 G4ForwardXrayTR::~G4ForwardXrayTR() 170 G4ForwardXrayTR::~G4ForwardXrayTR() 146 { 171 { 147 delete fAngleDistrTable; 172 delete fAngleDistrTable; 148 delete fEnergyDistrTable; 173 delete fEnergyDistrTable; 149 delete fProtonEnergyVector; 174 delete fProtonEnergyVector; 150 } 175 } 151 176 152 void G4ForwardXrayTR::ProcessDescription(std:: << 177 G4double G4ForwardXrayTR::GetMeanFreePath(const G4Track&, 153 { << 178 G4double, 154 out << "Simulation of forward X-ray transiti << 179 G4ForceCondition* condition) 155 "relativistic charged particles cross << 156 "two materials.\n"; << 157 } << 158 << 159 G4double G4ForwardXrayTR::GetMeanFreePath(cons << 160 G4Fo << 161 { 180 { 162 *condition = Forced; 181 *condition = Forced; 163 return DBL_MAX; // so TR doesn't limit mean << 182 return DBL_MAX; // so TR doesn't limit mean free path 164 } 183 } 165 184 166 ////////////////////////////////////////////// 185 ////////////////////////////////////////////////////////////////////////////// >> 186 // 167 // Build physics tables for energy and angular 187 // Build physics tables for energy and angular distributions of X-ray TR photon >> 188 168 void G4ForwardXrayTR::BuildXrayTRtables() 189 void G4ForwardXrayTR::BuildXrayTRtables() 169 { 190 { 170 G4int iMat, jMat, iTkin, iTR, iPlace; 191 G4int iMat, jMat, iTkin, iTR, iPlace; 171 const G4ProductionCutsTable* theCoupleTable << 192 const G4ProductionCutsTable* theCoupleTable= 172 G4ProductionCutsTable::GetProductionCutsTa << 193 G4ProductionCutsTable::GetProductionCutsTable(); 173 G4int numOfCouples = (G4int)theCoupleTable-> << 194 G4int numOfCouples = theCoupleTable->GetTableSize(); 174 195 175 fGammaCutInKineticEnergy = theCoupleTable->G 196 fGammaCutInKineticEnergy = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); 176 197 177 fAngleDistrTable = new G4PhysicsTable(2 * f << 198 fAngleDistrTable = new G4PhysicsTable(2*fTotBin); 178 fEnergyDistrTable = new G4PhysicsTable(2 * f << 199 fEnergyDistrTable = new G4PhysicsTable(2*fTotBin); 179 200 180 for(iMat = 0; iMat < numOfCouples; << 201 181 ++iMat) // loop over pairs of different << 202 for(iMat=0;iMat<numOfCouples;iMat++) // loop over pairs of different materials 182 { 203 { 183 if(iMat != fMatIndex1 && iMat != fMatIndex << 204 if( iMat != fMatIndex1 && iMat != fMatIndex2 ) continue; 184 continue; << 185 205 186 for(jMat = 0; jMat < numOfCouples; ++jMat) << 206 for(jMat=0;jMat<numOfCouples;jMat++) // transition iMat -> jMat !!! 187 { 207 { 188 if(iMat == jMat || (jMat != fMatIndex1 & << 208 if( iMat == jMat || ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 189 { 209 { 190 continue; 210 continue; 191 } 211 } 192 else 212 else 193 { 213 { 194 const G4MaterialCutsCouple* iCouple = << 214 const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat); 195 theCoupleTable->GetMaterialCutsCoupl << 215 const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat); 196 const G4MaterialCutsCouple* jCouple = << 197 theCoupleTable->GetMaterialCutsCoupl << 198 const G4Material* mat1 = iCouple->GetM 216 const G4Material* mat1 = iCouple->GetMaterial(); 199 const G4Material* mat2 = jCouple->GetM 217 const G4Material* mat2 = jCouple->GetMaterial(); 200 218 201 fSigma1 = fPlasmaCof * (mat1->GetElect << 219 fSigma1 = fPlasmaCof*(mat1->GetElectronDensity()); 202 fSigma2 = fPlasmaCof * (mat2->GetElect << 220 fSigma2 = fPlasmaCof*(mat2->GetElectronDensity()); >> 221 >> 222 // fGammaTkinCut = fGammaCutInKineticEnergy[jMat]; // TR photon in jMat ! 203 223 204 fGammaTkinCut = 0.0; 224 fGammaTkinCut = 0.0; 205 225 206 if(fGammaTkinCut > fTheMinEnergyTR) / << 226 if(fGammaTkinCut > fTheMinEnergyTR) // setting of min/max TR energies 207 { << 227 { 208 fMinEnergyTR = fGammaTkinCut; 228 fMinEnergyTR = fGammaTkinCut; 209 } << 229 } 210 else 230 else 211 { << 231 { 212 fMinEnergyTR = fTheMinEnergyTR; 232 fMinEnergyTR = fTheMinEnergyTR; 213 } << 233 } 214 if(fGammaTkinCut > fTheMaxEnergyTR) 234 if(fGammaTkinCut > fTheMaxEnergyTR) 215 { << 235 { 216 fMaxEnergyTR = 2.0 * fGammaTkinCut; << 236 fMaxEnergyTR = 2.0*fGammaTkinCut; // usually very low TR rate 217 } << 237 } 218 else 238 else 219 { << 239 { 220 fMaxEnergyTR = fTheMaxEnergyTR; 240 fMaxEnergyTR = fTheMaxEnergyTR; 221 } << 241 } 222 for(iTkin = 0; iTkin < fTotBin; ++iTki << 242 for(iTkin=0;iTkin<fTotBin;iTkin++) // Lorentz factor loop 223 { << 243 { 224 auto energyVector = << 244 G4PhysicsLogVector* 225 new G4PhysicsLogVector(fMinEnergyT << 245 energyVector = new G4PhysicsLogVector( fMinEnergyTR, >> 246 fMaxEnergyTR, >> 247 fBinTR ); 226 248 227 fGamma = 1.0 + (fProtonEnergyVector- << 249 fGamma = 1.0 + (fProtonEnergyVector-> 228 proton_mass_c2); << 250 GetLowEdgeEnergy(iTkin)/proton_mass_c2); 229 251 230 fMaxThetaTR = 10000.0 / (fGamma * fG << 252 fMaxThetaTR = 10000.0/(fGamma*fGamma); 231 253 232 if(fMaxThetaTR > fTheMaxAngle) 254 if(fMaxThetaTR > fTheMaxAngle) 233 { 255 { 234 fMaxThetaTR = fTheMaxAngle; 256 fMaxThetaTR = fTheMaxAngle; 235 } << 257 } 236 else 258 else 237 { << 259 { 238 if(fMaxThetaTR < fTheMinAngle) 260 if(fMaxThetaTR < fTheMinAngle) 239 { << 261 { 240 fMaxThetaTR = fTheMinAngle; 262 fMaxThetaTR = fTheMinAngle; 241 } << 263 } 242 } << 264 } 243 auto angleVector = << 265 // G4cout<<G4endl<<"fGamma = "<<fGamma<<" fMaxThetaTR = "<<fMaxThetaTR<<G4endl; 244 new G4PhysicsLinearVector(0.0, fMa << 266 G4PhysicsLinearVector* >> 267 angleVector = new G4PhysicsLinearVector( 0.0, >> 268 fMaxThetaTR, >> 269 fBinTR ); 245 G4double energySum = 0.0; 270 G4double energySum = 0.0; 246 G4double angleSum = 0.0; 271 G4double angleSum = 0.0; 247 272 248 energyVector->PutValue(fBinTR - 1, e << 273 energyVector->PutValue(fBinTR-1,energySum); 249 angleVector->PutValue(fBinTR - 1, an << 274 angleVector->PutValue(fBinTR-1,angleSum); 250 275 251 for(iTR = fBinTR - 2; iTR >= 0; --iT << 276 for(iTR=fBinTR-2;iTR>=0;iTR--) 252 { << 277 { 253 energySum += << 278 energySum += fCofTR*EnergySum(energyVector->GetLowEdgeEnergy(iTR), 254 fCofTR * EnergySum(energyVector- << 279 energyVector->GetLowEdgeEnergy(iTR+1)); 255 energyVector- << 280 256 << 281 angleSum += fCofTR*AngleSum(angleVector->GetLowEdgeEnergy(iTR), 257 angleSum += << 282 angleVector->GetLowEdgeEnergy(iTR+1)); 258 fCofTR * AngleSum(angleVector->G << 283 259 angleVector->G << 284 energyVector->PutValue(iTR,energySum); 260 << 285 angleVector ->PutValue(iTR,angleSum); 261 energyVector->PutValue(iTR, energy << 286 } 262 angleVector->PutValue(iTR, angleSu << 287 // G4cout<<"sumE = "<<energySum<<"; sumA = "<<angleSum<<G4endl; 263 } << 264 288 265 if(jMat < iMat) 289 if(jMat < iMat) 266 { << 290 { 267 iPlace = fTotBin + iTkin; << 291 iPlace = fTotBin+iTkin; // (iMat*(numOfMat-1)+jMat)* 268 } << 292 } 269 else // jMat > iMat right part of m << 293 else // jMat > iMat right part of matrices (jMat-1) ! 270 { << 294 { 271 iPlace = iTkin; << 295 iPlace = iTkin; // (iMat*(numOfMat-1)+jMat-1)*fTotBin+ 272 } << 296 } 273 fEnergyDistrTable->insertAt(iPlace, << 297 fEnergyDistrTable->insertAt(iPlace,energyVector); 274 fAngleDistrTable->insertAt(iPlace, a << 298 fAngleDistrTable->insertAt(iPlace,angleVector); 275 } // iTkin << 299 } // iTkin 276 } // jMat != iMat << 300 } // jMat != iMat 277 } // jMat << 301 } // jMat 278 } // iMat << 302 } // iMat >> 303 // G4cout<<"G4ForwardXrayTR::BuildXrayTRtables have been called"<<G4endl; 279 } 304 } 280 305 281 ////////////////////////////////////////////// 306 /////////////////////////////////////////////////////////////////////// 282 // 307 // 283 // This function returns the spectral and angl 308 // This function returns the spectral and angle density of TR quanta 284 // in X-ray energy region generated forward wh 309 // in X-ray energy region generated forward when a relativistic 285 // charged particle crosses interface between 310 // charged particle crosses interface between two materials. 286 // The high energy small theta approximation i 311 // The high energy small theta approximation is applied. 287 // (matter1 -> matter2) 312 // (matter1 -> matter2) 288 // varAngle =2* (1 - std::cos(Theta)) or appro 313 // varAngle =2* (1 - std::cos(Theta)) or approximately = Theta*Theta 289 // 314 // 290 G4double G4ForwardXrayTR::SpectralAngleTRdensi << 315 291 << 316 G4double 292 { << 317 G4ForwardXrayTR::SpectralAngleTRdensity( G4double energy, 293 G4double formationLength1, formationLength2; << 318 G4double varAngle ) const 294 formationLength1 = << 319 { 295 1.0 / (1.0 / (fGamma * fGamma) + fSigma1 / << 320 G4double formationLength1, formationLength2; 296 formationLength2 = << 321 formationLength1 = 1.0/ 297 1.0 / (1.0 / (fGamma * fGamma) + fSigma2 / << 322 (1.0/(fGamma*fGamma) 298 return (varAngle / energy) * (formationLengt << 323 + fSigma1/(energy*energy) 299 (formationLength1 - formationLength2) << 324 + varAngle); >> 325 formationLength2 = 1.0/ >> 326 (1.0/(fGamma*fGamma) >> 327 + fSigma2/(energy*energy) >> 328 + varAngle); >> 329 return (varAngle/energy)*(formationLength1 - formationLength2) >> 330 *(formationLength1 - formationLength2); >> 331 300 } 332 } 301 333 >> 334 302 ////////////////////////////////////////////// 335 ////////////////////////////////////////////////////////////////// >> 336 // 303 // Analytical formula for angular density of X 337 // Analytical formula for angular density of X-ray TR photons 304 G4double G4ForwardXrayTR::AngleDensity(G4doubl << 338 // >> 339 >> 340 G4double G4ForwardXrayTR::AngleDensity( G4double energy, >> 341 G4double varAngle ) const 305 { 342 { 306 G4double x, x2, c, d, f, a2, b2, a4, b4; << 343 G4double x, x2, /*a, b,*/ c, d, f, a2, b2, a4, b4; 307 G4double cof1, cof2, cof3; 344 G4double cof1, cof2, cof3; 308 x = 1.0 / energy; << 345 x = 1.0/energy; 309 x2 = x * x; << 346 x2 = x*x; 310 c = 1.0 / fSigma1; << 347 c = 1.0/fSigma1; 311 d = 1.0 / fSigma2; << 348 d = 1.0/fSigma2; 312 f = (varAngle + 1.0 / (fGamma * fGamma)); << 349 f = (varAngle + 1.0/(fGamma*fGamma)); 313 a2 = c * f; << 350 a2 = c*f; 314 b2 = d * f; << 351 b2 = d*f; 315 a4 = a2 * a2; << 352 a4 = a2*a2; 316 b4 = b2 * b2; << 353 b4 = b2*b2; 317 cof1 = c * c * (0.5 / (a2 * (x2 + a2)) + 0.5 << 354 //a = std::sqrt(a2); 318 cof3 = d * d * (0.5 / (b2 * (x2 + b2)) + 0.5 << 355 // b = std::sqrt(b2); 319 cof2 = -c * d * << 356 cof1 = c*c*(0.5/(a2*(x2 +a2)) +0.5*std::log(x2/(x2 +a2))/a4); 320 (std::log(x2 / (x2 + b2)) / b2 - std: << 357 cof3 = d*d*(0.5/(b2*(x2 +b2)) +0.5*std::log(x2/(x2 +b2))/b4); 321 (a2 - b2); << 358 cof2 = -c*d*(std::log(x2/(x2 +b2))/b2 - std::log(x2/(x2 +a2))/a2)/(a2 - b2) ; 322 return -varAngle * (cof1 + cof2 + cof3); << 359 return -varAngle*(cof1 + cof2 + cof3); 323 } 360 } 324 361 325 ////////////////////////////////////////////// 362 ///////////////////////////////////////////////////////////////////// >> 363 // 326 // Definite integral of X-ray TR spectral-angl 364 // Definite integral of X-ray TR spectral-angle density from energy1 327 // to energy2 365 // to energy2 328 G4double G4ForwardXrayTR::EnergyInterval(G4dou << 366 // 329 G4dou << 367 >> 368 G4double G4ForwardXrayTR::EnergyInterval( G4double energy1, >> 369 G4double energy2, >> 370 G4double varAngle ) const 330 { 371 { 331 return AngleDensity(energy2, varAngle) - Ang << 372 return AngleDensity(energy2,varAngle) >> 373 - AngleDensity(energy1,varAngle); 332 } 374 } 333 375 334 ////////////////////////////////////////////// 376 ////////////////////////////////////////////////////////////////////// >> 377 // 335 // Integral angle distribution of X-ray TR pho 378 // Integral angle distribution of X-ray TR photons based on analytical 336 // formula for angle density 379 // formula for angle density 337 G4double G4ForwardXrayTR::AngleSum(G4double va << 380 // >> 381 >> 382 G4double G4ForwardXrayTR::AngleSum( G4double varAngle1, >> 383 G4double varAngle2 ) const 338 { 384 { 339 G4int i; 385 G4int i; 340 G4double h, sumEven = 0.0, sumOdd = 0.0; << 386 G4double h , sumEven = 0.0 , sumOdd = 0.0; 341 h = 0.5 * (varAngle2 - varAngle1) / fSympson << 387 h = 0.5*(varAngle2 - varAngle1)/fSympsonNumber; 342 for(i = 1; i < fSympsonNumber; ++i) << 388 for(i=1;i<fSympsonNumber;i++) 343 { << 389 { 344 sumEven += << 390 sumEven += EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1 + 2*i*h ); 345 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 391 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 346 sumOdd += << 392 varAngle1 + (2*i - 1)*h ); 347 EnergyInterval(fMinEnergyTR, fMaxEnergyT << 393 } 348 } << 394 sumOdd += EnergyInterval(fMinEnergyTR,fMaxEnergyTR, 349 sumOdd += EnergyInterval(fMinEnergyTR, fMaxE << 395 varAngle1 + (2*fSympsonNumber - 1)*h ); 350 varAngle1 + (2 * fS << 396 351 << 397 return h*(EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle1) 352 return h * << 398 + EnergyInterval(fMinEnergyTR,fMaxEnergyTR,varAngle2) 353 (EnergyInterval(fMinEnergyTR, fMaxEne << 399 + 4.0*sumOdd + 2.0*sumEven )/3.0; 354 EnergyInterval(fMinEnergyTR, fMaxEne << 355 2.0 * sumEven) / << 356 3.0; << 357 } 400 } 358 401 359 ////////////////////////////////////////////// 402 ///////////////////////////////////////////////////////////////////// >> 403 // 360 // Analytical Expression for spectral densit 404 // Analytical Expression for spectral density of Xray TR photons 361 // x = 2*(1 - std::cos(Theta)) ~ Theta^2 405 // x = 2*(1 - std::cos(Theta)) ~ Theta^2 362 G4double G4ForwardXrayTR::SpectralDensity(G4do << 406 // >> 407 >> 408 G4double G4ForwardXrayTR::SpectralDensity( G4double energy, >> 409 G4double x ) const 363 { 410 { 364 G4double a, b; 411 G4double a, b; 365 a = 1.0 / (fGamma * fGamma) + fSigma1 / (ene << 412 a = 1.0/(fGamma*fGamma) 366 b = 1.0 / (fGamma * fGamma) + fSigma2 / (ene << 413 + fSigma1/(energy*energy) ; 367 return ((a + b) * std::log((x + b) / (x + a) << 414 b = 1.0/(fGamma*fGamma) 368 b / (x + b)) / << 415 + fSigma2/(energy*energy) ; 369 energy; << 416 return ( (a + b)*std::log((x + b)/(x + a))/(a - b) >> 417 + a/(x + a) + b/(x + b) )/energy; >> 418 370 } 419 } 371 420 372 ////////////////////////////////////////////// 421 //////////////////////////////////////////////////////////////////// >> 422 // 373 // The spectral density in some angle interva 423 // The spectral density in some angle interval from varAngle1 to 374 // varAngle2 424 // varAngle2 375 G4double G4ForwardXrayTR::AngleInterval(G4doub << 425 // 376 G4doub << 426 >> 427 G4double G4ForwardXrayTR::AngleInterval( G4double energy, >> 428 G4double varAngle1, >> 429 G4double varAngle2 ) const 377 { 430 { 378 return SpectralDensity(energy, varAngle2) - << 431 return SpectralDensity(energy,varAngle2) 379 SpectralDensity(energy, varAngle1); << 432 - SpectralDensity(energy,varAngle1); 380 } 433 } 381 434 382 ////////////////////////////////////////////// 435 //////////////////////////////////////////////////////////////////// >> 436 // 383 // Integral spectral distribution of X-ray TR 437 // Integral spectral distribution of X-ray TR photons based on 384 // analytical formula for spectral density 438 // analytical formula for spectral density 385 G4double G4ForwardXrayTR::EnergySum(G4double e << 439 // >> 440 >> 441 G4double G4ForwardXrayTR::EnergySum( G4double energy1, >> 442 G4double energy2 ) const 386 { 443 { 387 G4int i; 444 G4int i; 388 G4double h, sumEven = 0.0, sumOdd = 0.0; << 445 G4double h , sumEven = 0.0 , sumOdd = 0.0; 389 h = 0.5 * (energy2 - energy1) / fSympsonNumb << 446 h = 0.5*(energy2 - energy1)/fSympsonNumber; 390 for(i = 1; i < fSympsonNumber; ++i) << 447 for(i=1;i<fSympsonNumber;i++) 391 { << 448 { 392 sumEven += AngleInterval(energy1 + 2 * i * << 449 sumEven += AngleInterval(energy1 + 2*i*h,0.0,fMaxThetaTR); 393 sumOdd += AngleInterval(energy1 + (2 * i - << 450 sumOdd += AngleInterval(energy1 + (2*i - 1)*h,0.0,fMaxThetaTR); 394 } << 451 } 395 sumOdd += << 452 sumOdd += AngleInterval(energy1 + (2*fSympsonNumber - 1)*h, 396 AngleInterval(energy1 + (2 * fSympsonNumbe << 453 0.0,fMaxThetaTR); 397 << 454 398 return h * << 455 return h*( AngleInterval(energy1,0.0,fMaxThetaTR) 399 (AngleInterval(energy1, 0.0, fMaxThet << 456 + AngleInterval(energy2,0.0,fMaxThetaTR) 400 AngleInterval(energy2, 0.0, fMaxThet << 457 + 4.0*sumOdd + 2.0*sumEven )/3.0; 401 2.0 * sumEven) / << 402 3.0; << 403 } 458 } 404 459 405 ////////////////////////////////////////////// 460 ///////////////////////////////////////////////////////////////////////// >> 461 // 406 // PostStepDoIt function for creation of forwa 462 // PostStepDoIt function for creation of forward X-ray photons in TR process 407 // on boundary between two materials with real << 463 // on boubndary between two materials with really different plasma energies >> 464 // >> 465 408 G4VParticleChange* G4ForwardXrayTR::PostStepDo 466 G4VParticleChange* G4ForwardXrayTR::PostStepDoIt(const G4Track& aTrack, 409 << 467 const G4Step& aStep) 410 { 468 { 411 aParticleChange.Initialize(aTrack); 469 aParticleChange.Initialize(aTrack); >> 470 // G4cout<<"call G4ForwardXrayTR::PostStepDoIt"<<G4endl; 412 G4int iMat, jMat, iTkin, iPlace, numOfTR, iT 471 G4int iMat, jMat, iTkin, iPlace, numOfTR, iTR, iTransfer; 413 472 414 G4double energyPos, anglePos, energyTR, thet 473 G4double energyPos, anglePos, energyTR, theta, phi, dirX, dirY, dirZ; 415 G4double W, W1, W2, E1, E2; 474 G4double W, W1, W2, E1, E2; 416 475 417 G4StepPoint* pPreStepPoint = aStep.GetPreSt 476 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); 418 G4StepPoint* pPostStepPoint = aStep.GetPostS 477 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 419 G4double tol = << 478 G4double tol=0.5*G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 420 0.5 * G4GeometryTolerance::GetInstance()-> << 421 479 422 if(pPostStepPoint->GetStepStatus() != fGeomB << 480 if (pPostStepPoint->GetStepStatus() != fGeomBoundary) 423 { 481 { 424 return G4VDiscreteProcess::PostStepDoIt(aT 482 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 425 } 483 } 426 if(aTrack.GetStepLength() <= tol) << 484 if (aTrack.GetStepLength() <= tol) 427 { 485 { 428 return G4VDiscreteProcess::PostStepDoIt(aT 486 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 429 } 487 } 430 // Arrived at boundary, so begin to try TR << 488 // Come on boundary, so begin to try TR 431 489 432 const G4MaterialCutsCouple* iCouple = pPreSt << 490 const G4MaterialCutsCouple* iCouple = pPreStepPoint ->GetPhysicalVolume()-> 433 ->Ge << 491 GetLogicalVolume()->GetMaterialCutsCouple(); 434 ->Ge << 492 const G4MaterialCutsCouple* jCouple = pPostStepPoint ->GetPhysicalVolume()-> 435 const G4MaterialCutsCouple* jCouple = pPostS << 493 GetLogicalVolume()->GetMaterialCutsCouple(); 436 ->Ge << 437 ->Ge << 438 const G4Material* iMaterial = iCouple->GetMa 494 const G4Material* iMaterial = iCouple->GetMaterial(); 439 const G4Material* jMaterial = jCouple->GetMa 495 const G4Material* jMaterial = jCouple->GetMaterial(); 440 iMat = iCouple->GetIn << 496 iMat = iCouple->GetIndex(); 441 jMat = jCouple->GetIn << 497 jMat = jCouple->GetIndex(); 442 498 443 // The case of equal or approximate (in term 499 // The case of equal or approximate (in terms of plasma energy) materials 444 // No TR photons ?! 500 // No TR photons ?! 445 501 446 if(iMat == jMat || << 502 if ( iMat == jMat 447 ((fMatIndex1 >= 0 && fMatIndex2 >= 0) && << 503 || ( (fMatIndex1 >= 0 && fMatIndex1 >= 0) 448 (iMat != fMatIndex1 && iMat != fMatIndex << 504 && ( iMat != fMatIndex1 && iMat != fMatIndex2 ) 449 (jMat != fMatIndex1 && jMat != fMatIndex << 505 && ( jMat != fMatIndex1 && jMat != fMatIndex2 ) ) 450 506 451 || iMaterial->GetState() == jMaterial->Ge << 507 || iMaterial->GetState() == jMaterial->GetState() 452 508 453 || (iMaterial->GetState() == kStateSolid << 509 ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid ) 454 jMaterial->GetState() == kStateLiquid << 455 510 456 || (iMaterial->GetState() == kStateLiquid << 511 ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid ) ) 457 jMaterial->GetState() == kStateSolid) << 458 { 512 { 459 return G4VDiscreteProcess::PostStepDoIt(aT 513 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 460 } 514 } 461 515 462 const G4DynamicParticle* aParticle = aTrack. 516 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 463 G4double charge = aParticle->GetDefinition() 517 G4double charge = aParticle->GetDefinition()->GetPDGCharge(); 464 518 465 if(charge == 0.0) // Uncharged particle doe << 519 if(charge == 0.0) // Uncharged particle doesn't Generate TR photons 466 { 520 { 467 return G4VDiscreteProcess::PostStepDoIt(aT 521 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 468 } 522 } 469 // Now we are ready to Generate TR photons 523 // Now we are ready to Generate TR photons 470 524 471 G4double chargeSq = charge * charge; << 525 G4double chargeSq = charge*charge; 472 G4double kinEnergy = aParticle->GetKineticEn << 526 G4double kinEnergy = aParticle->GetKineticEnergy(); 473 G4double massRatio = << 527 G4double massRatio = proton_mass_c2/aParticle->GetDefinition()->GetPDGMass(); 474 proton_mass_c2 / aParticle->GetDefinition( << 528 G4double TkinScaled = kinEnergy*massRatio; 475 G4double TkinScaled = kinEnergy * massRatio; << 529 for(iTkin=0;iTkin<fTotBin;iTkin++) 476 for(iTkin = 0; iTkin < fTotBin; ++iTkin) << 477 { 530 { 478 if(TkinScaled < fProtonEnergyVector->GetLo << 531 if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin)) // <= ? 479 { 532 { 480 break; 533 break; 481 } 534 } 482 } 535 } 483 if(jMat < iMat) 536 if(jMat < iMat) 484 { 537 { 485 iPlace = fTotBin + iTkin - 1; << 538 iPlace = fTotBin + iTkin - 1; // (iMat*(numOfMat - 1) + jMat)* 486 } 539 } 487 else 540 else 488 { 541 { 489 iPlace = iTkin - 1; << 542 iPlace = iTkin - 1; // (iMat*(numOfMat - 1) + jMat - 1)*fTotBin + 490 } 543 } >> 544 // G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; >> 545 // G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1); >> 546 >> 547 // G4PhysicsVector* angleVector1 = (*fAngleDistrTable)(iPlace) ; >> 548 // G4PhysicsVector* angleVector2 = (*fAngleDistrTable)(iPlace + 1) ; 491 549 492 G4ParticleMomentum particleDir = aParticle-> 550 G4ParticleMomentum particleDir = aParticle->GetMomentumDirection(); 493 551 494 if(iTkin == fTotBin) // TR plato, try from << 552 if(iTkin == fTotBin) // TR plato, try from left 495 { 553 { 496 numOfTR = (G4int)G4Poisson( << 554 // G4cout<<iTkin<<" mean TR number = "<<( (*(*fEnergyDistrTable)(iPlace))(0) + 497 ((*(*fEnergyDistrTable)(iPlace))(0) + (* << 555 // (*(*fAngleDistrTable)(iPlace))(0) ) 498 chargeSq * 0.5); << 556 // *chargeSq*0.5<<G4endl; >> 557 >> 558 numOfTR = G4Poisson( ( (*(*fEnergyDistrTable)(iPlace))(0) + >> 559 (*(*fAngleDistrTable)(iPlace))(0) ) >> 560 *chargeSq*0.5 ); 499 if(numOfTR == 0) 561 if(numOfTR == 0) 500 { 562 { 501 return G4VDiscreteProcess::PostStepDoIt( 563 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 502 } 564 } 503 else 565 else 504 { 566 { >> 567 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl; >> 568 505 aParticleChange.SetNumberOfSecondaries(n 569 aParticleChange.SetNumberOfSecondaries(numOfTR); 506 570 507 for(iTR = 0; iTR < numOfTR; ++iTR) << 571 for(iTR=0;iTR<numOfTR;iTR++) 508 { 572 { 509 energyPos = (*(*fEnergyDistrTable)(iPl << 573 energyPos = (*(*fEnergyDistrTable)(iPlace))(0)*G4UniformRand(); 510 for(iTransfer = 0; iTransfer < fBinTR << 574 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 511 { << 575 { 512 if(energyPos >= (*(*fEnergyDistrTabl << 576 if(energyPos >= (*(*fEnergyDistrTable)(iPlace))(iTransfer)) break; 513 break; << 577 } 514 } << 515 energyTR = (*fEnergyDistrTable)(iPlace 578 energyTR = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer); 516 579 >> 580 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl; >> 581 517 kinEnergy -= energyTR; 582 kinEnergy -= energyTR; 518 aParticleChange.ProposeEnergy(kinEnerg 583 aParticleChange.ProposeEnergy(kinEnergy); 519 584 520 anglePos = (*(*fAngleDistrTable)(iPlac << 585 anglePos = (*(*fAngleDistrTable)(iPlace))(0)*G4UniformRand(); 521 for(iTransfer = 0; iTransfer < fBinTR << 586 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 522 { << 587 { 523 if(anglePos > (*(*fAngleDistrTable)( << 588 if(anglePos > (*(*fAngleDistrTable)(iPlace))(iTransfer)) break; 524 break; << 589 } 525 } << 590 theta = std::sqrt((*fAngleDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1)); 526 theta = std::sqrt( << 591 527 (*fAngleDistrTable)(iPlace)->GetLowE << 592 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl; 528 << 593 529 phi = twopi * G4UniformRand(); << 594 phi = twopi*G4UniformRand(); 530 dirX = std::sin(theta) * std::cos(phi) << 595 dirX = std::sin(theta)*std::cos(phi) ; 531 dirY = std::sin(theta) * std::sin(phi) << 596 dirY = std::sin(theta)*std::sin(phi) ; 532 dirZ = std::cos(theta); << 597 dirZ = std::cos(theta) ; 533 G4ThreeVector directionTR(dirX, dirY, << 598 G4ThreeVector directionTR(dirX,dirY,dirZ); 534 directionTR.rotateUz(particleDir); 599 directionTR.rotateUz(particleDir); 535 auto aPhotonTR = new G4DynamicParticle << 600 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 536 << 601 directionTR, 537 // Create the G4Track << 602 energyTR ); 538 auto aSecondaryTrack = new G4Track(aPhotonTR << 603 aParticleChange.AddSecondary(aPhotonTR); 539 aSecondaryTrack->SetTouchableHandle(aStep.Ge << 540 aSecondaryTrack->SetParentID(aTrack.GetTrack << 541 aSecondaryTrack->SetCreatorModelID(secID); << 542 aParticleChange.AddSecondary(aSecondaryTrack << 543 } 604 } 544 } 605 } 545 } 606 } 546 else 607 else 547 { 608 { 548 if(iTkin == 0) // Tkin is too small, negl << 609 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 549 { 610 { 550 return G4VDiscreteProcess::PostStepDoIt( 611 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 551 } 612 } 552 else // general case: Tkin between two ve << 613 else // general case: Tkin between two vectors of the material 553 { 614 { 554 E1 = fProtonEnergyVector->GetLowEdgeEner 615 E1 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin - 1); 555 E2 = fProtonEnergyVector->GetLowEdgeEner << 616 E2 = fProtonEnergyVector->GetLowEdgeEnergy(iTkin) ; 556 W = 1.0 / (E2 - E1); << 617 W = 1.0/(E2 - E1); 557 W1 = (E2 - TkinScaled) * W; << 618 W1 = (E2 - TkinScaled)*W; 558 W2 = (TkinScaled - E1) * W; << 619 W2 = (TkinScaled - E1)*W; 559 << 620 560 numOfTR = (G4int)G4Poisson((((*(*fEnergy << 621 // G4cout<<iTkin<<" mean TR number = "<<(((*(*fEnergyDistrTable)(iPlace))(0)+ 561 (*(*fAngleD << 622 // (*(*fAngleDistrTable)(iPlace))(0))*W1 + 562 W1 + << 623 // ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ 563 ((*(*fEnergy << 624 // (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) 564 (*(*fAngleD << 625 // *chargeSq*0.5<<G4endl; 565 W2) * << 626 566 chargeSq * 0. << 627 numOfTR = G4Poisson((((*(*fEnergyDistrTable)(iPlace))(0)+ >> 628 (*(*fAngleDistrTable)(iPlace))(0))*W1 + >> 629 ((*(*fEnergyDistrTable)(iPlace + 1))(0)+ >> 630 (*(*fAngleDistrTable)(iPlace + 1))(0))*W2) >> 631 *chargeSq*0.5 ); 567 if(numOfTR == 0) 632 if(numOfTR == 0) 568 { 633 { 569 return G4VDiscreteProcess::PostStepDoI 634 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 570 } 635 } 571 else 636 else 572 { 637 { >> 638 // G4cout<<"Number of X-ray TR photons = "<<numOfTR<<G4endl; >> 639 573 aParticleChange.SetNumberOfSecondaries 640 aParticleChange.SetNumberOfSecondaries(numOfTR); 574 for(iTR = 0; iTR < numOfTR; ++iTR) << 641 for(iTR=0;iTR<numOfTR;iTR++) 575 { 642 { 576 energyPos = ((*(*fEnergyDistrTable)( << 643 energyPos = ((*(*fEnergyDistrTable)(iPlace))(0)*W1+ 577 (*(*fEnergyDistrTable)( << 644 (*(*fEnergyDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand(); 578 G4UniformRand(); << 645 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 579 for(iTransfer = 0; iTransfer < fBinT << 646 { 580 { << 647 if(energyPos >= ((*(*fEnergyDistrTable)(iPlace))(iTransfer)*W1+ 581 if(energyPos >= << 648 (*(*fEnergyDistrTable)(iPlace + 1))(iTransfer)*W2)) break; 582 ((*(*fEnergyDistrTable)(iPlace) << 649 } 583 (*(*fEnergyDistrTable)(iPlace << 650 energyTR = ((*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer))*W1+ 584 break; << 651 ((*fEnergyDistrTable)(iPlace + 1)->GetLowEdgeEnergy(iTransfer))*W2; 585 } << 652 586 energyTR = << 653 // G4cout<<"energyTR = "<<energyTR/keV<<"keV"<<G4endl; 587 ((*fEnergyDistrTable)(iPlace)->Get << 588 ((*fEnergyDistrTable)(iPlace + 1)- << 589 W2; << 590 654 591 kinEnergy -= energyTR; 655 kinEnergy -= energyTR; 592 aParticleChange.ProposeEnergy(kinEne 656 aParticleChange.ProposeEnergy(kinEnergy); 593 657 594 anglePos = ((*(*fAngleDistrTable)(iP << 658 anglePos = ((*(*fAngleDistrTable)(iPlace))(0)*W1+ 595 (*(*fAngleDistrTable)(iP << 659 (*(*fAngleDistrTable)(iPlace + 1))(0)*W2)*G4UniformRand(); 596 G4UniformRand(); << 660 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 597 for(iTransfer = 0; iTransfer < fBinT << 661 { 598 { << 662 if(anglePos > ((*(*fAngleDistrTable)(iPlace))(iTransfer)*W1+ 599 if(anglePos > ((*(*fAngleDistrTabl << 663 (*(*fAngleDistrTable)(iPlace + 1))(iTransfer)*W2)) break; 600 (*(*fAngleDistrTabl << 664 } 601 break; << 665 theta = std::sqrt(((*fAngleDistrTable)(iPlace)-> 602 } << 666 GetLowEdgeEnergy(iTransfer-1))*W1+ 603 theta = std::sqrt( << 667 ((*fAngleDistrTable)(iPlace + 1)-> 604 ((*fAngleDistrTable)(iPlace)->GetL << 668 GetLowEdgeEnergy(iTransfer-1))*W2); 605 W1 + << 669 606 ((*fAngleDistrTable)(iPlace + 1)-> << 670 // G4cout<<iTransfer<<" : theta = "<<theta<<G4endl; 607 W2); << 671 608 << 672 phi = twopi*G4UniformRand(); 609 phi = twopi * G4UniformRand(); << 673 dirX = std::sin(theta)*std::cos(phi) ; 610 dirX = std::sin(theta) * std::cos(ph << 674 dirY = std::sin(theta)*std::sin(phi) ; 611 dirY = std::sin(theta) * std::sin(ph << 675 dirZ = std::cos(theta) ; 612 dirZ = std::cos(theta); << 676 G4ThreeVector directionTR(dirX,dirY,dirZ); 613 G4ThreeVector directionTR(dirX, dirY << 614 directionTR.rotateUz(particleDir); 677 directionTR.rotateUz(particleDir); 615 auto aPhotonTR = << 678 G4DynamicParticle* aPhotonTR = new G4DynamicParticle(G4Gamma::Gamma(), 616 new G4DynamicParticle(G4Gamma::Gam << 679 directionTR, 617 << 680 energyTR ); 618 // Create the G4Track << 681 aParticleChange.AddSecondary(aPhotonTR); 619 G4Track* aSecondaryTrack = new G4Track(aPh << 620 aSecondaryTrack->SetTouchableHandle(aStep. << 621 aSecondaryTrack->SetParentID(aTrack.GetTra << 622 aSecondaryTrack->SetCreatorModelID(secID); << 623 aParticleChange.AddSecondary(aSecondaryTra << 624 } 682 } 625 } 683 } 626 } 684 } 627 } 685 } 628 return &aParticleChange; 686 return &aParticleChange; 629 } 687 } 630 688 631 ////////////////////////////////////////////// 689 //////////////////////////////////////////////////////////////////////////// >> 690 // 632 // Test function for checking of PostStepDoIt 691 // Test function for checking of PostStepDoIt random preparation of TR photon 633 // energy 692 // energy 634 G4double G4ForwardXrayTR::GetEnergyTR(G4int iM << 693 // >> 694 >> 695 G4double >> 696 G4ForwardXrayTR::GetEnergyTR(G4int iMat, G4int jMat, G4int iTkin) const 635 { 697 { 636 G4int iPlace, numOfTR, iTR, iTransfer; << 698 G4int iPlace, numOfTR, iTR, iTransfer; 637 G4double energyTR = 0.0; // return this val << 699 G4double energyTR = 0.0; // return this value for no TR photons 638 G4double energyPos; << 700 G4double energyPos ; 639 G4double W1, W2; << 701 G4double W1, W2; 640 << 702 641 const G4ProductionCutsTable* theCoupleTable << 703 const G4ProductionCutsTable* theCoupleTable= 642 G4ProductionCutsTable::GetProductionCutsTa << 704 G4ProductionCutsTable::GetProductionCutsTable(); 643 G4int numOfCouples = (G4int)theCoupleTable-> << 705 G4int numOfCouples = theCoupleTable->GetTableSize(); 644 706 645 // The case of equal or approximate (in term 707 // The case of equal or approximate (in terms of plasma energy) materials 646 // No TR photons ?! 708 // No TR photons ?! 647 709 648 const G4MaterialCutsCouple* iCouple = << 710 const G4MaterialCutsCouple* iCouple = theCoupleTable->GetMaterialCutsCouple(iMat); 649 theCoupleTable->GetMaterialCutsCouple(iMat << 711 const G4MaterialCutsCouple* jCouple = theCoupleTable->GetMaterialCutsCouple(jMat); 650 const G4MaterialCutsCouple* jCouple = << 651 theCoupleTable->GetMaterialCutsCouple(jMat << 652 const G4Material* iMaterial = iCouple->GetMa 712 const G4Material* iMaterial = iCouple->GetMaterial(); 653 const G4Material* jMaterial = jCouple->GetMa 713 const G4Material* jMaterial = jCouple->GetMaterial(); 654 714 655 if(iMat == jMat << 715 if ( iMat == jMat 656 716 657 || iMaterial->GetState() == jMaterial->Ge << 717 || iMaterial->GetState() == jMaterial->GetState() 658 718 659 || (iMaterial->GetState() == kStateSolid << 719 ||(iMaterial->GetState() == kStateSolid && jMaterial->GetState() == kStateLiquid ) 660 jMaterial->GetState() == kStateLiquid << 661 720 662 || (iMaterial->GetState() == kStateLiquid << 721 ||(iMaterial->GetState() == kStateLiquid && jMaterial->GetState() == kStateSolid ) ) 663 jMaterial->GetState() == kStateSolid) << 664 722 665 { 723 { 666 return energyTR; 724 return energyTR; 667 } 725 } 668 726 669 if(jMat < iMat) 727 if(jMat < iMat) 670 { 728 { 671 iPlace = (iMat * (numOfCouples - 1) + jMat << 729 iPlace = (iMat*(numOfCouples - 1) + jMat)*fTotBin + iTkin - 1; 672 } 730 } 673 else 731 else 674 { 732 { 675 iPlace = (iMat * (numOfCouples - 1) + jMat << 733 iPlace = (iMat*(numOfCouples - 1) + jMat - 1)*fTotBin + iTkin - 1; 676 } 734 } 677 G4PhysicsVector* energyVector1 = (*fEnergyDi << 735 G4PhysicsVector* energyVector1 = (*fEnergyDistrTable)(iPlace) ; 678 G4PhysicsVector* energyVector2 = (*fEnergyDi << 736 G4PhysicsVector* energyVector2 = (*fEnergyDistrTable)(iPlace + 1); 679 737 680 if(iTkin == fTotBin) // TR plato, try from << 738 if(iTkin == fTotBin) // TR plato, try from left 681 { 739 { 682 numOfTR = (G4int)G4Poisson((*energyVector1 << 740 numOfTR = G4Poisson( (*energyVector1)(0) ); 683 if(numOfTR == 0) 741 if(numOfTR == 0) 684 { 742 { 685 return energyTR; 743 return energyTR; 686 } 744 } 687 else 745 else 688 { 746 { 689 for(iTR = 0; iTR < numOfTR; ++iTR) << 747 for(iTR=0;iTR<numOfTR;iTR++) 690 { 748 { 691 energyPos = (*energyVector1)(0) * G4Un << 749 energyPos = (*energyVector1)(0)*G4UniformRand(); 692 for(iTransfer = 0; iTransfer < fBinTR << 750 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 693 { << 751 { 694 if(energyPos >= (*energyVector1)(iTr << 752 if(energyPos >= (*energyVector1)(iTransfer)) break; 695 break; << 753 } 696 } << 697 energyTR += energyVector1->GetLowEdgeE 754 energyTR += energyVector1->GetLowEdgeEnergy(iTransfer); 698 } 755 } 699 } 756 } 700 } 757 } 701 else 758 else 702 { 759 { 703 if(iTkin == 0) // Tkin is too small, negl << 760 if(iTkin == 0) // Tkin is too small, neglect of TR photon generation 704 { 761 { 705 return energyTR; 762 return energyTR; 706 } 763 } 707 else // general case: Tkin between two ve << 764 else // general case: Tkin between two vectors of the material 708 { // use trivial mean half/half << 765 { // use trivial mean half/half 709 W1 = 0.5; << 766 W1 = 0.5; 710 W2 = 0.5; << 767 W2 = 0.5; 711 numOfTR = (G4int)G4Poisson((*energyVecto << 768 numOfTR = G4Poisson( (*energyVector1)(0)*W1 + >> 769 (*energyVector2)(0)*W2 ); 712 if(numOfTR == 0) 770 if(numOfTR == 0) 713 { 771 { 714 return energyTR; 772 return energyTR; 715 } 773 } 716 else 774 else 717 { 775 { 718 G4cout << "It is still OK in GetEnergy << 776 G4cout<<"It is still OK in GetEnergyTR(int,int,int)"<<G4endl; 719 for(iTR = 0; iTR < numOfTR; ++iTR) << 777 for(iTR=0;iTR<numOfTR;iTR++) 720 { 778 { 721 energyPos = ((*energyVector1)(0) * W << 779 energyPos = ((*energyVector1)(0)*W1+ 722 G4UniformRand(); << 780 (*energyVector2)(0)*W2)*G4UniformRand(); 723 for(iTransfer = 0; iTransfer < fBinT << 781 for(iTransfer=0;iTransfer<fBinTR-1;iTransfer++) 724 { << 782 { 725 if(energyPos >= ((*energyVector1)( << 783 if(energyPos >= ((*energyVector1)(iTransfer)*W1+ 726 (*energyVector2)( << 784 (*energyVector2)(iTransfer)*W2)) break; 727 break; << 785 } 728 } << 786 energyTR += (energyVector1->GetLowEdgeEnergy(iTransfer))*W1+ 729 energyTR += (energyVector1->GetLowEd << 787 (energyVector2->GetLowEdgeEnergy(iTransfer))*W2; 730 (energyVector2->GetLowEd << 788 731 } 789 } 732 } 790 } 733 } 791 } 734 } 792 } 735 793 736 return energyTR; 794 return energyTR; 737 } 795 } 738 796 739 ////////////////////////////////////////////// 797 //////////////////////////////////////////////////////////////////////////// >> 798 // 740 // Test function for checking of PostStepDoIt 799 // Test function for checking of PostStepDoIt random preparation of TR photon 741 // theta angle relative to particle direction 800 // theta angle relative to particle direction 742 G4double G4ForwardXrayTR::GetThetaTR(G4int, G4 << 801 // 743 802 744 G4int G4ForwardXrayTR::GetSympsonNumber() { re << 745 803 746 G4int G4ForwardXrayTR::GetBinTR() { return fBi << 804 G4double >> 805 G4ForwardXrayTR::GetThetaTR(G4int, G4int, G4int) const >> 806 { >> 807 G4double theta = 0.0; >> 808 >> 809 return theta; >> 810 } 747 811 748 G4double G4ForwardXrayTR::GetMinProtonTkin() { << 749 812 750 G4double G4ForwardXrayTR::GetMaxProtonTkin() { << 751 813 752 G4int G4ForwardXrayTR::GetTotBin() { return fT << 814 // end of G4ForwardXrayTR implementation file >> 815 // >> 816 /////////////////////////////////////////////////////////////////////////// 753 817