Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4Cerenkov.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4Cerenkov.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4Cerenkov.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Cerenkov.cc,v 1.27 2010-06-16 15:34:15 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: not supported by cvs2svn $
                                                   >>  29 //
 26 //////////////////////////////////////////////     30 ////////////////////////////////////////////////////////////////////////
 27 // Cerenkov Radiation Class Implementation         31 // Cerenkov Radiation Class Implementation
 28 //////////////////////////////////////////////     32 ////////////////////////////////////////////////////////////////////////
 29 //                                                 33 //
 30 // File:        G4Cerenkov.cc                  <<  34 // File:        G4Cerenkov.cc 
 31 // Description: Discrete Process -- Generation     35 // Description: Discrete Process -- Generation of Cerenkov Photons
 32 // Version:     2.1                                36 // Version:     2.1
 33 // Created:     1996-02-21                     <<  37 // Created:     1996-02-21  
 34 // Author:      Juliet Armstrong                   38 // Author:      Juliet Armstrong
 35 // Updated:     2007-09-30 by Peter Gumplinger     39 // Updated:     2007-09-30 by Peter Gumplinger
 36 //              > change inheritance to G4VDis     40 //              > change inheritance to G4VDiscreteProcess
 37 //              GetContinuousStepLimit -> GetM     41 //              GetContinuousStepLimit -> GetMeanFreePath (StronglyForced)
 38 //              AlongStepDoIt -> PostStepDoIt      42 //              AlongStepDoIt -> PostStepDoIt
 39 //              2005-08-17 by Peter Gumplinger     43 //              2005-08-17 by Peter Gumplinger
 40 //              > change variable name MeanNum     44 //              > change variable name MeanNumPhotons -> MeanNumberOfPhotons
 41 //              2005-07-28 by Peter Gumplinger     45 //              2005-07-28 by Peter Gumplinger
 42 //              > add G4ProcessType to constru     46 //              > add G4ProcessType to constructor
 43 //              2001-09-17, migration of Mater <<  47 //              2001-09-17, migration of Materials to pure STL (mma) 
 44 //              2000-11-12 by Peter Gumplinger     48 //              2000-11-12 by Peter Gumplinger
 45 //              > add check on CerenkovAngleIn     49 //              > add check on CerenkovAngleIntegrals->IsFilledVectorExist()
 46 //              in method GetAverageNumberOfPh <<  50 //              in method GetAverageNumberOfPhotons 
 47 //              > and a test for MeanNumberOfP     51 //              > and a test for MeanNumberOfPhotons <= 0.0 in DoIt
 48 //              2000-09-18 by Peter Gumplinger     52 //              2000-09-18 by Peter Gumplinger
 49 //              > change: aSecondaryPosition=x     53 //              > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
 50 //                        aSecondaryTrack->Set     54 //                        aSecondaryTrack->SetTouchable(0);
 51 //              1999-10-29 by Peter Gumplinger     55 //              1999-10-29 by Peter Gumplinger
 52 //              > change: == into <= in GetCon     56 //              > change: == into <= in GetContinuousStepLimit
 53 //              1997-08-08 by Peter Gumplinger     57 //              1997-08-08 by Peter Gumplinger
 54 //              > add protection against /0        58 //              > add protection against /0
 55 //              > G4MaterialPropertiesTable; n     59 //              > G4MaterialPropertiesTable; new physics/tracking scheme
 56 //                                                 60 //
                                                   >>  61 // mail:        gum@triumf.ca
                                                   >>  62 //
 57 //////////////////////////////////////////////     63 ////////////////////////////////////////////////////////////////////////
 58                                                    64 
 59 #include "G4Cerenkov.hh"                       << 
 60                                                << 
 61 #include "G4ios.hh"                                65 #include "G4ios.hh"
                                                   >>  66 #include "G4Poisson.hh"
                                                   >>  67 #include "G4EmProcessSubType.hh"
                                                   >>  68 
 62 #include "G4LossTableManager.hh"                   69 #include "G4LossTableManager.hh"
 63 #include "G4Material.hh"                       << 
 64 #include "G4MaterialCutsCouple.hh"                 70 #include "G4MaterialCutsCouple.hh"
 65 #include "G4MaterialPropertiesTable.hh"        << 
 66 #include "G4OpticalParameters.hh"              << 
 67 #include "G4OpticalPhoton.hh"                  << 
 68 #include "G4ParticleDefinition.hh"                 71 #include "G4ParticleDefinition.hh"
 69 #include "G4ParticleMomentum.hh"               << 
 70 #include "G4PhysicalConstants.hh"              << 
 71 #include "G4PhysicsFreeVector.hh"              << 
 72 #include "G4Poisson.hh"                        << 
 73 #include "G4SystemOfUnits.hh"                  << 
 74 #include "G4ThreeVector.hh"                    << 
 75 #include "Randomize.hh"                        << 
 76 #include "G4PhysicsModelCatalog.hh"            << 
 77                                                    72 
 78 //....oooOO0OOooo........oooOO0OOooo........oo <<  73 #include "G4Cerenkov.hh"
                                                   >>  74 
                                                   >>  75 /////////////////////////
                                                   >>  76 // Class Implementation  
                                                   >>  77 /////////////////////////
                                                   >>  78 
                                                   >>  79         //////////////
                                                   >>  80         // Operators
                                                   >>  81         //////////////
                                                   >>  82 
                                                   >>  83 // G4Cerenkov::operator=(const G4Cerenkov &right)
                                                   >>  84 // {
                                                   >>  85 // }
                                                   >>  86 
                                                   >>  87         /////////////////
                                                   >>  88         // Constructors
                                                   >>  89         /////////////////
                                                   >>  90 
 79 G4Cerenkov::G4Cerenkov(const G4String& process     91 G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type)
 80   : G4VProcess(processName, type)              <<  92            : G4VProcess(processName, type)
 81   , fNumPhotons(0)                             << 
 82 {                                                  93 {
 83   secID = G4PhysicsModelCatalog::GetModelID("m <<  94         G4cout << "G4Cerenkov::G4Cerenkov constructor" << G4endl;
 84   SetProcessSubType(fCerenkov);                <<  95         G4cout << "NOTE: this is now a G4VProcess!" << G4endl;
                                                   >>  96         G4cout << "Required change in UserPhysicsList: " << G4endl;
                                                   >>  97         G4cout << "change: pmanager->AddContinuousProcess(theCerenkovProcess);" << G4endl;
                                                   >>  98         G4cout << "to:     pmanager->AddProcess(theCerenkovProcess);" << G4endl;
                                                   >>  99         G4cout << "        pmanager->SetProcessOrdering(theCerenkovProcess,idxPostStep);" << G4endl;
 85                                                   100 
 86   thePhysicsTable = nullptr;                   << 101         SetProcessSubType(fCerenkov);
 87                                                   102 
 88   if(verboseLevel > 0)                         << 103   fTrackSecondariesFirst = false;
 89   {                                            << 104         fMaxBetaChange = 0.;
 90     G4cout << GetProcessName() << " is created << 105   fMaxPhotons = 0;
 91   }                                            << 
 92   Initialise();                                << 
 93 }                                              << 
 94                                                   106 
 95 //....oooOO0OOooo........oooOO0OOooo........oo << 107         thePhysicsTable = NULL;
 96 G4Cerenkov::~G4Cerenkov()                      << 
 97 {                                              << 
 98   if(thePhysicsTable != nullptr)               << 
 99   {                                            << 
100     thePhysicsTable->clearAndDestroy();        << 
101     delete thePhysicsTable;                    << 
102   }                                            << 
103 }                                              << 
104                                                   108 
105 void G4Cerenkov::ProcessDescription(std::ostre << 109   if (verboseLevel>0) {
106 {                                              << 110            G4cout << GetProcessName() << " is created " << G4endl;
107   out << "The Cerenkov effect simulates optica << 111   }
108   out << "passage of charged particles through << 
109   out << "to have the property RINDEX (refract << 
110   G4VProcess::DumpInfo();                      << 
111                                                << 
112   G4OpticalParameters* params = G4OpticalParam << 
113   out << "Maximum beta change per step: " << p << 
114   out << "Maximum photons per step: " << param << 
115   out << "Track secondaries first: "           << 
116       << params->GetCerenkovTrackSecondariesFi << 
117   out << "Stack photons: " << params->GetCeren << 
118   out << "Verbose level: " << params->GetCeren << 
119 }                                              << 
120                                                   112 
121 //....oooOO0OOooo........oooOO0OOooo........oo << 113   BuildThePhysicsTable();
122 G4bool G4Cerenkov::IsApplicable(const G4Partic << 
123 {                                              << 
124   return (aParticleType.GetPDGCharge() != 0.0  << 
125           aParticleType.GetPDGMass() != 0.0 && << 
126           aParticleType.GetParticleName() != " << 
127           !aParticleType.IsShortLived())       << 
128            ? true                              << 
129            : false;                            << 
130 }                                                 114 }
131                                                   115 
132 //....oooOO0OOooo........oooOO0OOooo........oo << 116 // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right)
133 void G4Cerenkov::Initialise()                  << 117 // {
                                                   >> 118 // }
                                                   >> 119 
                                                   >> 120         ////////////////
                                                   >> 121         // Destructors
                                                   >> 122         ////////////////
                                                   >> 123 
                                                   >> 124 G4Cerenkov::~G4Cerenkov() 
134 {                                                 125 {
135   G4OpticalParameters* params = G4OpticalParam << 126   if (thePhysicsTable != NULL) {
136   SetMaxBetaChangePerStep(params->GetCerenkovM << 127      thePhysicsTable->clearAndDestroy();
137   SetMaxNumPhotonsPerStep(params->GetCerenkovM << 128            delete thePhysicsTable;
138   SetTrackSecondariesFirst(params->GetCerenkov << 129   }
139   SetStackPhotons(params->GetCerenkovStackPhot << 
140   SetVerboseLevel(params->GetCerenkovVerboseLe << 
141 }                                                 130 }
142                                                   131 
143 //....oooOO0OOooo........oooOO0OOooo........oo << 132         ////////////
144 void G4Cerenkov::BuildPhysicsTable(const G4Par << 133         // Methods
                                                   >> 134         ////////////
                                                   >> 135 
                                                   >> 136 // PostStepDoIt
                                                   >> 137 // -------------
                                                   >> 138 //
                                                   >> 139 G4VParticleChange*
                                                   >> 140 G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
                                                   >> 141 
                                                   >> 142 // This routine is called for each tracking Step of a charged particle
                                                   >> 143 // in a radiator. A Poisson-distributed number of photons is generated
                                                   >> 144 // according to the Cerenkov formula, distributed evenly along the track
                                                   >> 145 // segment and uniformly azimuth w.r.t. the particle direction. The 
                                                   >> 146 // parameters are then transformed into the Master Reference System, and 
                                                   >> 147 // they are added to the particle change. 
                                                   >> 148 
145 {                                                 149 {
146   if(thePhysicsTable)                          << 150   //////////////////////////////////////////////////////
147     return;                                    << 151   // Should we ensure that the material is dispersive?
                                                   >> 152   //////////////////////////////////////////////////////
                                                   >> 153 
                                                   >> 154         aParticleChange.Initialize(aTrack);
                                                   >> 155 
                                                   >> 156         const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
                                                   >> 157         const G4Material* aMaterial = aTrack.GetMaterial();
                                                   >> 158 
                                                   >> 159   G4StepPoint* pPreStepPoint  = aStep.GetPreStepPoint();
                                                   >> 160   G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
                                                   >> 161 
                                                   >> 162   G4ThreeVector x0 = pPreStepPoint->GetPosition();
                                                   >> 163         G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
                                                   >> 164   G4double t0 = pPreStepPoint->GetGlobalTime();
                                                   >> 165 
                                                   >> 166         G4MaterialPropertiesTable* aMaterialPropertiesTable =
                                                   >> 167                                aMaterial->GetMaterialPropertiesTable();
                                                   >> 168         if (!aMaterialPropertiesTable) return pParticleChange;
148                                                   169 
149   const G4MaterialTable* theMaterialTable = G4 << 170   G4MaterialPropertyVector* Rindex = 
150   std::size_t numOfMaterials              = G4 << 171                 aMaterialPropertiesTable->GetProperty("RINDEX"); 
                                                   >> 172         if (!Rindex) return pParticleChange;
151                                                   173 
152   thePhysicsTable = new G4PhysicsTable(numOfMa << 174         // particle charge
                                                   >> 175         const G4double charge = aParticle->GetDefinition()->GetPDGCharge();
                                                   >> 176 
                                                   >> 177         // particle beta
                                                   >> 178         const G4double beta = (pPreStepPoint ->GetBeta() +
                                                   >> 179                                pPostStepPoint->GetBeta())/2.;
                                                   >> 180 
                                                   >> 181   G4double MeanNumberOfPhotons = 
                                                   >> 182                  GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
                                                   >> 183 
                                                   >> 184         if (MeanNumberOfPhotons <= 0.0) {
                                                   >> 185 
                                                   >> 186                 // return unchanged particle and no secondaries
                                                   >> 187 
                                                   >> 188                 aParticleChange.SetNumberOfSecondaries(0);
                                                   >> 189  
                                                   >> 190                 return pParticleChange;
153                                                   191 
154   // loop over materials                       << 
155   for(std::size_t i = 0; i < numOfMaterials; + << 
156   {                                            << 
157     G4PhysicsFreeVector* cerenkovIntegral = nu << 
158                                                << 
159     // Retrieve vector of refraction indices f << 
160     // from the material's optical properties  << 
161     G4Material* aMaterial          = (*theMate << 
162     G4MaterialPropertiesTable* MPT = aMaterial << 
163                                                << 
164     if(MPT)                                    << 
165     {                                          << 
166       cerenkovIntegral                         << 
167       G4MaterialPropertyVector* refractiveInde << 
168                                                << 
169       if(refractiveIndex)                      << 
170       {                                        << 
171         // Retrieve the first refraction index << 
172         // of (photon energy, refraction index << 
173         G4double currentRI = (*refractiveIndex << 
174         if(currentRI > 1.0)                    << 
175         {                                      << 
176           // Create first (photon energy, Cere << 
177           G4double currentPM  = refractiveInde << 
178           G4double currentCAI = 0.0;           << 
179                                                << 
180           cerenkovIntegral->InsertValues(curre << 
181                                                << 
182           // Set previous values to current on << 
183           G4double prevPM  = currentPM;        << 
184           G4double prevCAI = currentCAI;       << 
185           G4double prevRI  = currentRI;        << 
186                                                << 
187           // loop over all (photon energy, ref << 
188           // pairs stored for this material    << 
189           for(std::size_t ii = 1; ii < refract << 
190           {                                    << 
191             currentRI  = (*refractiveIndex)[ii << 
192             currentPM  = refractiveIndex->Ener << 
193             currentCAI = prevCAI + (currentPM  << 
194                                      (1.0 / (p << 
195                                       1.0 / (c << 
196                                                << 
197             cerenkovIntegral->InsertValues(cur << 
198                                                << 
199             prevPM  = currentPM;               << 
200             prevCAI = currentCAI;              << 
201             prevRI  = currentRI;               << 
202           }                                    << 
203         }                                         192         }
204       }                                        << 
205     }                                          << 
206                                                   193 
207     // The Cerenkov integral for a given mater << 194         G4double step_length;
208     // thePhysicsTable according to the positi << 195         step_length = aStep.GetStepLength();
209     // the material table.                     << 
210     thePhysicsTable->insertAt(i, cerenkovInteg << 
211   }                                            << 
212 }                                              << 
213                                                   196 
214 //....oooOO0OOooo........oooOO0OOooo........oo << 197   MeanNumberOfPhotons = MeanNumberOfPhotons * step_length;
215 G4VParticleChange* G4Cerenkov::PostStepDoIt(co << 
216                                             co << 
217 // This routine is called for each tracking St << 
218 // in a radiator. A Poisson-distributed number << 
219 // according to the Cerenkov formula, distribu << 
220 // segment and uniformly azimuth w.r.t. the pa << 
221 // parameters are then transformed into the Ma << 
222 // they are added to the particle change.      << 
223                                                   198 
224 {                                              << 199   G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons);
225   aParticleChange.Initialize(aTrack);          << 200 
                                                   >> 201   if (NumPhotons <= 0) {
                                                   >> 202 
                                                   >> 203     // return unchanged particle and no secondaries  
                                                   >> 204 
                                                   >> 205     aParticleChange.SetNumberOfSecondaries(0);
                                                   >> 206     
                                                   >> 207                 return pParticleChange;
                                                   >> 208   }
                                                   >> 209 
                                                   >> 210   ////////////////////////////////////////////////////////////////
                                                   >> 211 
                                                   >> 212   aParticleChange.SetNumberOfSecondaries(NumPhotons);
                                                   >> 213 
                                                   >> 214         if (fTrackSecondariesFirst) {
                                                   >> 215            if (aTrack.GetTrackStatus() == fAlive )
                                                   >> 216                    aParticleChange.ProposeTrackStatus(fSuspend);
                                                   >> 217         }
                                                   >> 218   
                                                   >> 219   ////////////////////////////////////////////////////////////////
                                                   >> 220 
                                                   >> 221   G4double Pmin = Rindex->GetMinLowEdgeEnergy();
                                                   >> 222   G4double Pmax = Rindex->GetMaxLowEdgeEnergy();
                                                   >> 223   G4double dp = Pmax - Pmin;
                                                   >> 224 
                                                   >> 225   G4double nMax = Rindex->GetMaxValue();
                                                   >> 226 
                                                   >> 227         G4double BetaInverse = 1./beta;
                                                   >> 228 
                                                   >> 229   G4double maxCos = BetaInverse / nMax; 
                                                   >> 230   G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos);
                                                   >> 231 
                                                   >> 232         const G4double beta1 = pPreStepPoint ->GetBeta();
                                                   >> 233         const G4double beta2 = pPostStepPoint->GetBeta();
                                                   >> 234 
                                                   >> 235         G4double MeanNumberOfPhotons1 =
                                                   >> 236                      GetAverageNumberOfPhotons(charge,beta1,aMaterial,Rindex);
                                                   >> 237         G4double MeanNumberOfPhotons2 =
                                                   >> 238                      GetAverageNumberOfPhotons(charge,beta2,aMaterial,Rindex);
                                                   >> 239 
                                                   >> 240   for (G4int i = 0; i < NumPhotons; i++) {
                                                   >> 241 
                                                   >> 242     // Determine photon energy
                                                   >> 243 
                                                   >> 244     G4double rand;
                                                   >> 245     G4double sampledEnergy, sampledRI; 
                                                   >> 246     G4double cosTheta, sin2Theta;
                                                   >> 247     
                                                   >> 248     // sample an energy
                                                   >> 249 
                                                   >> 250     do {
                                                   >> 251       rand = G4UniformRand(); 
                                                   >> 252       sampledEnergy = Pmin + rand * dp; 
                                                   >> 253       sampledRI = Rindex->Value(sampledEnergy);
                                                   >> 254       cosTheta = BetaInverse / sampledRI;  
                                                   >> 255 
                                                   >> 256       sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta);
                                                   >> 257       rand = G4UniformRand(); 
                                                   >> 258 
                                                   >> 259     } while (rand*maxSin2 > sin2Theta);
                                                   >> 260 
                                                   >> 261     // Generate random position of photon on cone surface 
                                                   >> 262     // defined by Theta 
                                                   >> 263 
                                                   >> 264     rand = G4UniformRand();
                                                   >> 265 
                                                   >> 266     G4double phi = twopi*rand;
                                                   >> 267     G4double sinPhi = std::sin(phi);
                                                   >> 268     G4double cosPhi = std::cos(phi);
                                                   >> 269 
                                                   >> 270     // calculate x,y, and z components of photon energy
                                                   >> 271     // (in coord system with primary particle direction 
                                                   >> 272     //  aligned with the z axis)
                                                   >> 273 
                                                   >> 274     G4double sinTheta = std::sqrt(sin2Theta); 
                                                   >> 275     G4double px = sinTheta*cosPhi;
                                                   >> 276     G4double py = sinTheta*sinPhi;
                                                   >> 277     G4double pz = cosTheta;
                                                   >> 278 
                                                   >> 279     // Create photon momentum direction vector 
                                                   >> 280     // The momentum direction is still with respect
                                                   >> 281     // to the coordinate system where the primary
                                                   >> 282     // particle direction is aligned with the z axis  
                                                   >> 283 
                                                   >> 284     G4ParticleMomentum photonMomentum(px, py, pz);
                                                   >> 285 
                                                   >> 286     // Rotate momentum direction back to global reference
                                                   >> 287     // system 
                                                   >> 288 
                                                   >> 289                 photonMomentum.rotateUz(p0);
                                                   >> 290 
                                                   >> 291     // Determine polarization of new photon 
                                                   >> 292 
                                                   >> 293     G4double sx = cosTheta*cosPhi;
                                                   >> 294     G4double sy = cosTheta*sinPhi; 
                                                   >> 295     G4double sz = -sinTheta;
                                                   >> 296 
                                                   >> 297     G4ThreeVector photonPolarization(sx, sy, sz);
                                                   >> 298 
                                                   >> 299     // Rotate back to original coord system 
                                                   >> 300 
                                                   >> 301                 photonPolarization.rotateUz(p0);
                                                   >> 302     
                                                   >> 303                 // Generate a new photon:
                                                   >> 304 
                                                   >> 305                 G4DynamicParticle* aCerenkovPhoton =
                                                   >> 306                   new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(), 
                                                   >> 307                              photonMomentum);
                                                   >> 308     aCerenkovPhoton->SetPolarization
                                                   >> 309              (photonPolarization.x(),
                                                   >> 310               photonPolarization.y(),
                                                   >> 311               photonPolarization.z());
                                                   >> 312 
                                                   >> 313     aCerenkovPhoton->SetKineticEnergy(sampledEnergy);
                                                   >> 314 
                                                   >> 315                 // Generate new G4Track object:
                                                   >> 316 
                                                   >> 317                 G4double delta, NumberOfPhotons, N;
                                                   >> 318 
                                                   >> 319                 do {
                                                   >> 320                    rand = G4UniformRand();
                                                   >> 321                    delta = rand * aStep.GetStepLength();
                                                   >> 322                    NumberOfPhotons = MeanNumberOfPhotons1 - delta *
                                                   >> 323                                 (MeanNumberOfPhotons1-MeanNumberOfPhotons2)/
                                                   >> 324                                               aStep.GetStepLength();
                                                   >> 325                    N = G4UniformRand() *
                                                   >> 326                        std::max(MeanNumberOfPhotons1,MeanNumberOfPhotons2);
                                                   >> 327                 } while (N > NumberOfPhotons);
                                                   >> 328 
                                                   >> 329     G4double deltaTime = delta /
                                                   >> 330                        ((pPreStepPoint->GetVelocity()+
                                                   >> 331                          pPostStepPoint->GetVelocity())/2.);
                                                   >> 332 
                                                   >> 333                 G4double aSecondaryTime = t0 + deltaTime;
226                                                   334 
227   const G4DynamicParticle* aParticle = aTrack. << 335                 G4ThreeVector aSecondaryPosition =
228   const G4Material* aMaterial        = aTrack. << 336                                     x0 + rand * aStep.GetDeltaPosition();
229                                                   337 
230   G4StepPoint* pPreStepPoint  = aStep.GetPreSt << 338     G4Track* aSecondaryTrack = 
231   G4StepPoint* pPostStepPoint = aStep.GetPostS << 339     new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition);
232                                                   340 
233   G4ThreeVector x0 = pPreStepPoint->GetPositio << 341                 aSecondaryTrack->SetTouchableHandle(
234   G4ThreeVector p0 = aStep.GetDeltaPosition(). << 342                                  aStep.GetPreStepPoint()->GetTouchableHandle());
235   G4double t0      = pPreStepPoint->GetGlobalT << 
236                                                << 
237   G4MaterialPropertiesTable* MPT = aMaterial-> << 
238   if(!MPT)                                     << 
239     return pParticleChange;                    << 
240                                                << 
241   G4MaterialPropertyVector* Rindex = MPT->GetP << 
242   if(!Rindex)                                  << 
243     return pParticleChange;                    << 
244                                                << 
245   G4double charge = aParticle->GetDefinition() << 
246                                                << 
247   G4double beta1 = pPreStepPoint->GetBeta();   << 
248   G4double beta2 = pPostStepPoint->GetBeta();  << 
249   G4double beta = (beta1 + beta2) * 0.5;       << 
250                                                << 
251   G4double MeanNumberOfPhotons =               << 
252     GetAverageNumberOfPhotons(charge, beta, aM << 
253   G4double MeanNumberOfPhotons1 =              << 
254     GetAverageNumberOfPhotons(charge, beta1, a << 
255   G4double MeanNumberOfPhotons2 =              << 
256     GetAverageNumberOfPhotons(charge, beta2, a << 
257                                                << 
258   if(MeanNumberOfPhotons <= 0.0)               << 
259   {                                            << 
260     // return unchanged particle and no second << 
261     aParticleChange.SetNumberOfSecondaries(0); << 
262     return pParticleChange;                    << 
263   }                                            << 
264                                                << 
265   MeanNumberOfPhotons *= aStep.GetStepLength() << 
266   fNumPhotons         = (G4int) G4Poisson(Mean << 
267                                                << 
268   // third condition added to prevent infinite << 
269   // see bugzilla 2555                         << 
270   if(fNumPhotons <= 0 || !fStackingFlag ||     << 
271      std::max(MeanNumberOfPhotons1, MeanNumber << 
272   {                                            << 
273     // return unchanged particle and no second << 
274     aParticleChange.SetNumberOfSecondaries(0); << 
275     return pParticleChange;                    << 
276   }                                            << 
277                                                << 
278   //////////////////////////////////////////// << 
279   aParticleChange.SetNumberOfSecondaries(fNumP << 
280                                                << 
281   if(fTrackSecondariesFirst)                   << 
282   {                                            << 
283     if(aTrack.GetTrackStatus() == fAlive)      << 
284       aParticleChange.ProposeTrackStatus(fSusp << 
285   }                                            << 
286                                                << 
287   //////////////////////////////////////////// << 
288   G4double Pmin = Rindex->Energy(0);           << 
289   G4double Pmax = Rindex->GetMaxEnergy();      << 
290   G4double dp   = Pmax - Pmin;                 << 
291                                                << 
292   G4double nMax        = Rindex->GetMaxValue() << 
293   G4double BetaInverse = 1. / beta;            << 
294                                                << 
295   G4double maxCos  = BetaInverse / nMax;       << 
296   G4double maxSin2 = (1.0 - maxCos) * (1.0 + m << 
297                                                << 
298   for(G4int i = 0; i < fNumPhotons; ++i)       << 
299   {                                            << 
300     // Determine photon energy                 << 
301     G4double rand;                             << 
302     G4double sampledEnergy, sampledRI;         << 
303     G4double cosTheta, sin2Theta;              << 
304                                                << 
305     // sample an energy                        << 
306     do                                         << 
307     {                                          << 
308       rand          = G4UniformRand();         << 
309       sampledEnergy = Pmin + rand * dp;        << 
310       sampledRI     = Rindex->Value(sampledEne << 
311       cosTheta      = BetaInverse / sampledRI; << 
312                                                << 
313       sin2Theta = (1.0 - cosTheta) * (1.0 + co << 
314       rand      = G4UniformRand();             << 
315                                                << 
316       // Loop checking, 07-Aug-2015, Vladimir  << 
317     } while(rand * maxSin2 > sin2Theta);       << 
318                                                << 
319     // Create photon momentum direction vector << 
320     // with respect to the coordinate system w << 
321     // direction is aligned with the z axis    << 
322     rand              = G4UniformRand();       << 
323     G4double phi      = twopi * rand;          << 
324     G4double sinPhi   = std::sin(phi);         << 
325     G4double cosPhi   = std::cos(phi);         << 
326     G4double sinTheta = std::sqrt(sin2Theta);  << 
327     G4ParticleMomentum photonMomentum(sinTheta << 
328                                       cosTheta << 
329                                                << 
330     // Rotate momentum direction back to globa << 
331     photonMomentum.rotateUz(p0);               << 
332                                                << 
333     // Determine polarization of new photon    << 
334     G4ThreeVector photonPolarization(cosTheta  << 
335                                      -sinTheta << 
336                                                << 
337     // Rotate back to original coord system    << 
338     photonPolarization.rotateUz(p0);           << 
339                                                << 
340     // Generate a new photon:                  << 
341     auto aCerenkovPhoton =                     << 
342       new G4DynamicParticle(G4OpticalPhoton::O << 
343                                                << 
344     aCerenkovPhoton->SetPolarization(photonPol << 
345     aCerenkovPhoton->SetKineticEnergy(sampledE << 
346                                                << 
347     G4double NumberOfPhotons, N;               << 
348                                                << 
349     do                                         << 
350     {                                          << 
351       rand            = G4UniformRand();       << 
352       NumberOfPhotons = MeanNumberOfPhotons1 - << 
353                         rand * (MeanNumberOfPh << 
354       N =                                      << 
355         G4UniformRand() * std::max(MeanNumberO << 
356       // Loop checking, 07-Aug-2015, Vladimir  << 
357     } while(N > NumberOfPhotons);              << 
358                                                << 
359     G4double delta = rand * aStep.GetStepLengt << 
360     G4double deltaTime =                       << 
361       delta /                                  << 
362       (pPreStepPoint->GetVelocity() +          << 
363        rand * (pPostStepPoint->GetVelocity() - << 
364          0.5);                                 << 
365                                                << 
366     G4double aSecondaryTime          = t0 + de << 
367     G4ThreeVector aSecondaryPosition = x0 + ra << 
368                                                << 
369     // Generate new G4Track object:            << 
370     G4Track* aSecondaryTrack =                 << 
371       new G4Track(aCerenkovPhoton, aSecondaryT << 
372                                                << 
373     aSecondaryTrack->SetTouchableHandle(       << 
374       aStep.GetPreStepPoint()->GetTouchableHan << 
375     aSecondaryTrack->SetParentID(aTrack.GetTra << 
376     aSecondaryTrack->SetCreatorModelID(secID); << 
377     aParticleChange.AddSecondary(aSecondaryTra << 
378   }                                            << 
379                                                << 
380   if(verboseLevel > 1)                         << 
381   {                                            << 
382     G4cout << "\n Exiting from G4Cerenkov::DoI << 
383            << aParticleChange.GetNumberOfSecon << 
384   }                                            << 
385                                                   343 
386   return pParticleChange;                      << 344                 aSecondaryTrack->SetParentID(aTrack.GetTrackID());
                                                   >> 345 
                                                   >> 346     aParticleChange.AddSecondary(aSecondaryTrack);
                                                   >> 347   }
                                                   >> 348 
                                                   >> 349   if (verboseLevel>0) {
                                                   >> 350   G4cout << "\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = " 
                                                   >> 351        << aParticleChange.GetNumberOfSecondaries() << G4endl;
                                                   >> 352   }
                                                   >> 353 
                                                   >> 354         return pParticleChange;
387 }                                                 355 }
388                                                   356 
389 //....oooOO0OOooo........oooOO0OOooo........oo << 357 // BuildThePhysicsTable for the Cerenkov process
390 void G4Cerenkov::PreparePhysicsTable(const G4P << 358 // ---------------------------------------------
                                                   >> 359 //
                                                   >> 360 
                                                   >> 361 void G4Cerenkov::BuildThePhysicsTable()
391 {                                                 362 {
392   Initialise();                                << 363   if (thePhysicsTable) return;
                                                   >> 364 
                                                   >> 365   const G4MaterialTable* theMaterialTable=
                                                   >> 366              G4Material::GetMaterialTable();
                                                   >> 367   G4int numOfMaterials = G4Material::GetNumberOfMaterials();
                                                   >> 368 
                                                   >> 369   // create new physics table
                                                   >> 370   
                                                   >> 371   thePhysicsTable = new G4PhysicsTable(numOfMaterials);
                                                   >> 372 
                                                   >> 373   // loop for materials
                                                   >> 374 
                                                   >> 375   for (G4int i=0 ; i < numOfMaterials; i++)
                                                   >> 376   {
                                                   >> 377     G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector =
                                                   >> 378           new G4PhysicsOrderedFreeVector();
                                                   >> 379 
                                                   >> 380     // Retrieve vector of refraction indices for the material
                                                   >> 381     // from the material's optical properties table 
                                                   >> 382 
                                                   >> 383     G4Material* aMaterial = (*theMaterialTable)[i];
                                                   >> 384 
                                                   >> 385     G4MaterialPropertiesTable* aMaterialPropertiesTable =
                                                   >> 386         aMaterial->GetMaterialPropertiesTable();
                                                   >> 387 
                                                   >> 388     if (aMaterialPropertiesTable) {
                                                   >> 389 
                                                   >> 390        G4MaterialPropertyVector* theRefractionIndexVector = 
                                                   >> 391              aMaterialPropertiesTable->GetProperty("RINDEX");
                                                   >> 392 
                                                   >> 393        if (theRefractionIndexVector) {
                                                   >> 394     
                                                   >> 395           // Retrieve the first refraction index in vector
                                                   >> 396           // of (photon energy, refraction index) pairs 
                                                   >> 397 
                                                   >> 398                       G4double currentRI = (*theRefractionIndexVector)[0];
                                                   >> 399 
                                                   >> 400           if (currentRI > 1.0) {
                                                   >> 401 
                                                   >> 402        // Create first (photon energy, Cerenkov Integral)
                                                   >> 403        // pair  
                                                   >> 404 
                                                   >> 405                          G4double currentPM = theRefractionIndexVector->
                                                   >> 406                                                  Energy(0);
                                                   >> 407        G4double currentCAI = 0.0;
                                                   >> 408 
                                                   >> 409        aPhysicsOrderedFreeVector->
                                                   >> 410          InsertValues(currentPM , currentCAI);
                                                   >> 411 
                                                   >> 412        // Set previous values to current ones prior to loop
                                                   >> 413 
                                                   >> 414        G4double prevPM  = currentPM;
                                                   >> 415        G4double prevCAI = currentCAI;
                                                   >> 416                    G4double prevRI  = currentRI;
                                                   >> 417 
                                                   >> 418        // loop over all (photon energy, refraction index)
                                                   >> 419        // pairs stored for this material  
                                                   >> 420 
                                                   >> 421                          for (size_t i = 1;
                                                   >> 422                               i < theRefractionIndexVector->GetVectorLength();
                                                   >> 423                               i++)
                                                   >> 424        {
                                                   >> 425                                 currentRI = (*theRefractionIndexVector)[i];
                                                   >> 426                                 currentPM = theRefractionIndexVector->Energy(i);
                                                   >> 427 
                                                   >> 428         currentCAI = 0.5*(1.0/(prevRI*prevRI) +
                                                   >> 429                     1.0/(currentRI*currentRI));
                                                   >> 430 
                                                   >> 431         currentCAI = prevCAI + 
                                                   >> 432                (currentPM - prevPM) * currentCAI;
                                                   >> 433 
                                                   >> 434         aPhysicsOrderedFreeVector->
                                                   >> 435             InsertValues(currentPM, currentCAI);
                                                   >> 436 
                                                   >> 437         prevPM  = currentPM;
                                                   >> 438         prevCAI = currentCAI;
                                                   >> 439         prevRI  = currentRI;
                                                   >> 440        }
                                                   >> 441 
                                                   >> 442           }
                                                   >> 443        }
                                                   >> 444     }
                                                   >> 445 
                                                   >> 446   // The Cerenkov integral for a given material
                                                   >> 447   // will be inserted in thePhysicsTable
                                                   >> 448   // according to the position of the material in
                                                   >> 449   // the material table. 
                                                   >> 450 
                                                   >> 451   thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector); 
                                                   >> 452 
                                                   >> 453   }
393 }                                                 454 }
394                                                   455 
395 //....oooOO0OOooo........oooOO0OOooo........oo << 456 // GetMeanFreePath
396 G4double G4Cerenkov::GetMeanFreePath(const G4T << 457 // ---------------
397                                      G4ForceCo << 458 //
                                                   >> 459 
                                                   >> 460 G4double G4Cerenkov::GetMeanFreePath(const G4Track&,
                                                   >> 461                                            G4double,
                                                   >> 462                                            G4ForceCondition*)
398 {                                                 463 {
399   return 1.;                                   << 464         return 1.;
400 }                                                 465 }
401                                                   466 
402 //....oooOO0OOooo........oooOO0OOooo........oo << 
403 G4double G4Cerenkov::PostStepGetPhysicalIntera    467 G4double G4Cerenkov::PostStepGetPhysicalInteractionLength(
404   const G4Track& aTrack, G4double, G4ForceCond << 468                                            const G4Track& aTrack,
405 {                                              << 469                                            G4double,
406   *condition         = NotForced;              << 470                                            G4ForceCondition* condition)
407   G4double StepLimit = DBL_MAX;                << 471 {
408   fNumPhotons        = 0;                      << 472         *condition = NotForced;
409                                                << 473         G4double StepLimit = DBL_MAX;
410   const G4Material* aMaterial = aTrack.GetMate << 474 
411   std::size_t materialIndex   = aMaterial->Get << 475         const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
412                                                << 476         const G4Material* aMaterial = aTrack.GetMaterial();
413   // If Physics Vector is not defined no Ceren << 477         const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
414   if(!(*thePhysicsTable)[materialIndex])       << 478 
415   {                                            << 479         const G4double kineticEnergy = aParticle->GetKineticEnergy();
416     return StepLimit;                          << 480         const G4ParticleDefinition* particleType = aParticle->GetDefinition();
417   }                                            << 481         const G4double mass = particleType->GetPDGMass();
418                                                << 482 
419   const G4DynamicParticle* aParticle = aTrack. << 483         // particle beta
420   const G4MaterialCutsCouple* couple = aTrack. << 484         const G4double beta = aParticle->GetTotalMomentum() /
421                                                << 485                               aParticle->GetTotalEnergy();
422   G4double kineticEnergy                   = a << 486         // particle gamma
423   const G4ParticleDefinition* particleType = a << 487         const G4double gamma = 1./std::sqrt(1.-beta*beta);
424   G4double mass                            = p << 488 
425                                                << 489         G4MaterialPropertiesTable* aMaterialPropertiesTable =
426   G4double beta  = aParticle->GetTotalMomentum << 490                             aMaterial->GetMaterialPropertiesTable();
427   G4double gamma = aParticle->GetTotalEnergy() << 491 
428                                                << 492         G4MaterialPropertyVector* Rindex = NULL;
429   G4MaterialPropertiesTable* aMaterialProperti << 493 
430     aMaterial->GetMaterialPropertiesTable();   << 494         if (aMaterialPropertiesTable)
431                                                << 495                      Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
432   G4MaterialPropertyVector* Rindex = nullptr;  << 496 
433                                                << 497         G4double nMax;
434   if(aMaterialPropertiesTable)                 << 498         if (Rindex) {
435     Rindex = aMaterialPropertiesTable->GetProp << 499            nMax = Rindex->GetMaxValue();
436                                                << 500         } else {
437   G4double nMax;                               << 501            return StepLimit;
438   if(Rindex)                                   << 502         }
439   {                                            << 503 
440     nMax = Rindex->GetMaxValue();              << 504         G4double BetaMin = 1./nMax;
441   }                                            << 505         if ( BetaMin >= 1. ) return StepLimit;
442   else                                         << 506 
443   {                                            << 507         G4double GammaMin = 1./std::sqrt(1.-BetaMin*BetaMin);
444     return StepLimit;                          << 508 
445   }                                            << 509         if (gamma < GammaMin ) return StepLimit;
446                                                << 510 
447   G4double BetaMin = 1. / nMax;                << 511         G4double kinEmin = mass*(GammaMin-1.);
448   if(BetaMin >= 1.)                            << 
449     return StepLimit;                          << 
450                                                << 
451   G4double GammaMin = 1. / std::sqrt(1. - Beta << 
452   if(gamma < GammaMin)                         << 
453     return StepLimit;                          << 
454                                                << 
455   G4double kinEmin = mass * (GammaMin - 1.);   << 
456   G4double RangeMin =                          << 
457     G4LossTableManager::Instance()->GetRange(p << 
458   G4double Range = G4LossTableManager::Instanc << 
459     particleType, kineticEnergy, couple);      << 
460   G4double Step = Range - RangeMin;            << 
461                                                << 
462   // If the step is smaller than G4ThreeVector << 
463   // that the particle does not move. See bug  << 
464   static const G4double minAllowedStep = G4Thr << 
465   if(Step < minAllowedStep)                    << 
466     return StepLimit;                          << 
467                                                << 
468   if(Step < StepLimit)                         << 
469     StepLimit = Step;                          << 
470                                                << 
471   // If user has defined an average maximum nu << 
472   // a Step, then calculate the Step length fo << 
473   if(fMaxPhotons > 0)                          << 
474   {                                            << 
475     const G4double charge = aParticle->GetDefi << 
476     G4double MeanNumberOfPhotons =             << 
477       GetAverageNumberOfPhotons(charge, beta,  << 
478     Step = 0.;                                 << 
479     if(MeanNumberOfPhotons > 0.0)              << 
480       Step = fMaxPhotons / MeanNumberOfPhotons << 
481     if(Step > 0. && Step < StepLimit)          << 
482       StepLimit = Step;                        << 
483   }                                            << 
484                                                << 
485   // If user has defined an maximum allowed ch << 
486   if(fMaxBetaChange > 0.)                      << 
487   {                                            << 
488     G4double dedx = G4LossTableManager::Instan << 
489       particleType, kineticEnergy, couple);    << 
490     G4double deltaGamma =                      << 
491       gamma - 1. / std::sqrt(1. - beta * beta  << 
492                                     (1. - fMax << 
493                                                << 
494     Step = mass * deltaGamma / dedx;           << 
495     if(Step > 0. && Step < StepLimit)          << 
496       StepLimit = Step;                        << 
497   }                                            << 
498                                                   512 
499   *condition = StronglyForced;                 << 513         G4double RangeMin = G4LossTableManager::Instance()->
500   return StepLimit;                            << 514                                                    GetRange(particleType,
                                                   >> 515                                                             kinEmin,
                                                   >> 516                                                             couple);
                                                   >> 517         G4double Range    = G4LossTableManager::Instance()->
                                                   >> 518                                                    GetRange(particleType,
                                                   >> 519                                                             kineticEnergy,
                                                   >> 520                                                             couple);
                                                   >> 521 
                                                   >> 522         G4double Step = Range - RangeMin;
                                                   >> 523         if (Step < 1.*um ) return StepLimit;
                                                   >> 524 
                                                   >> 525         if (Step > 0. && Step < StepLimit) StepLimit = Step; 
                                                   >> 526 
                                                   >> 527         // If user has defined an average maximum number of photons to
                                                   >> 528         // be generated in a Step, then calculate the Step length for
                                                   >> 529         // that number of photons. 
                                                   >> 530  
                                                   >> 531         if (fMaxPhotons > 0) {
                                                   >> 532 
                                                   >> 533            // particle charge
                                                   >> 534            const G4double charge = aParticle->
                                                   >> 535                                    GetDefinition()->GetPDGCharge();
                                                   >> 536 
                                                   >> 537      G4double MeanNumberOfPhotons = 
                                                   >> 538                     GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
                                                   >> 539 
                                                   >> 540            G4double Step = 0.;
                                                   >> 541            if (MeanNumberOfPhotons > 0.0) Step = fMaxPhotons /
                                                   >> 542                                                  MeanNumberOfPhotons;
                                                   >> 543 
                                                   >> 544            if (Step > 0. && Step < StepLimit) StepLimit = Step;
                                                   >> 545         }
                                                   >> 546 
                                                   >> 547         // If user has defined an maximum allowed change in beta per step
                                                   >> 548         if (fMaxBetaChange > 0.) {
                                                   >> 549 
                                                   >> 550            G4double dedx = G4LossTableManager::Instance()->
                                                   >> 551                                                    GetDEDX(particleType,
                                                   >> 552                                                            kineticEnergy,
                                                   >> 553                                                            couple);
                                                   >> 554 
                                                   >> 555            G4double deltaGamma = gamma - 
                                                   >> 556                                  1./std::sqrt(1.-beta*beta*
                                                   >> 557                                                  (1.-fMaxBetaChange)*
                                                   >> 558                                                  (1.-fMaxBetaChange));
                                                   >> 559 
                                                   >> 560            G4double Step = mass * deltaGamma / dedx;
                                                   >> 561 
                                                   >> 562            if (Step > 0. && Step < StepLimit) StepLimit = Step;
                                                   >> 563 
                                                   >> 564         }
                                                   >> 565 
                                                   >> 566         *condition = StronglyForced;
                                                   >> 567         return StepLimit;
501 }                                                 568 }
502                                                   569 
503 //....oooOO0OOooo........oooOO0OOooo........oo << 570 // GetAverageNumberOfPhotons
504 G4double G4Cerenkov::GetAverageNumberOfPhotons << 571 // -------------------------
505   const G4double charge, const G4double beta,  << 
506   G4MaterialPropertyVector* Rindex) const      << 
507 // This routine computes the number of Cerenko    572 // This routine computes the number of Cerenkov photons produced per
508 // Geant4-unit (millimeter) in the current med << 573 // GEANT-unit (millimeter) in the current medium. 
                                                   >> 574 //             ^^^^^^^^^^
                                                   >> 575 
                                                   >> 576 G4double 
                                                   >> 577 G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge,
                                                   >> 578                               const G4double beta, 
                                                   >> 579             const G4Material* aMaterial,
                                                   >> 580             G4MaterialPropertyVector* Rindex) const
509 {                                                 581 {
510   constexpr G4double Rfact = 369.81 / (eV * cm << 582   const G4double Rfact = 369.81/(eV * cm);
511   if(beta <= 0.0)                              << 
512     return 0.0;                                << 
513   G4double BetaInverse = 1. / beta;            << 
514                                                << 
515   // Vectors used in computation of Cerenkov A << 
516   //  - Refraction Indices for the current mat << 
517   //  - new G4PhysicsFreeVector allocated to h << 
518   std::size_t materialIndex = aMaterial->GetIn << 
519                                                << 
520   // Retrieve the Cerenkov Angle Integrals for << 
521   G4PhysicsVector* CerenkovAngleIntegrals = (( << 
522                                                << 
523   std::size_t length = CerenkovAngleIntegrals- << 
524   if(0 == length)                              << 
525     return 0.0;                                << 
526                                                << 
527   // Min and Max photon energies               << 
528   G4double Pmin = Rindex->Energy(0);           << 
529   G4double Pmax = Rindex->GetMaxEnergy();      << 
530                                                << 
531   // Min and Max Refraction Indices            << 
532   G4double nMin = Rindex->GetMinValue();       << 
533   G4double nMax = Rindex->GetMaxValue();       << 
534                                                << 
535   // Max Cerenkov Angle Integral               << 
536   G4double CAImax = (*CerenkovAngleIntegrals)[ << 
537                                                << 
538   G4double dp, ge;                             << 
539   // If n(Pmax) < 1/Beta -- no photons generat << 
540   if(nMax < BetaInverse)                       << 
541   {                                            << 
542     dp = 0.0;                                  << 
543     ge = 0.0;                                  << 
544   }                                            << 
545   // otherwise if n(Pmin) >= 1/Beta -- photons << 
546   else if(nMin > BetaInverse)                  << 
547   {                                            << 
548     dp = Pmax - Pmin;                          << 
549     ge = CAImax;                               << 
550   }                                            << 
551   // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Bet << 
552   // that the value of n(P) == 1/Beta. Interpo << 
553   // GetEnergy() and Value() methods of the G4 << 
554   // the Value() method of G4PhysicsVector.    << 
555   else                                         << 
556   {                                            << 
557     Pmin = Rindex->GetEnergy(BetaInverse);     << 
558     dp   = Pmax - Pmin;                        << 
559                                                << 
560     G4double CAImin = CerenkovAngleIntegrals-> << 
561     ge              = CAImax - CAImin;         << 
562                                                << 
563     if(verboseLevel > 1)                       << 
564     {                                          << 
565       G4cout << "CAImin = " << CAImin << G4end << 
566     }                                          << 
567   }                                            << 
568                                                << 
569   // Calculate number of photons               << 
570   G4double NumPhotons = Rfact * charge / eplus << 
571                         (dp - ge * BetaInverse << 
572                                                   583 
573   return NumPhotons;                           << 584         if(beta <= 0.0)return 0.0;
574 }                                              << 
575                                                   585 
576 //....oooOO0OOooo........oooOO0OOooo........oo << 586         G4double BetaInverse = 1./beta;
577 void G4Cerenkov::SetTrackSecondariesFirst(cons << 
578 {                                              << 
579   fTrackSecondariesFirst = state;              << 
580   G4OpticalParameters::Instance()->SetCerenkov << 
581     fTrackSecondariesFirst);                   << 
582 }                                              << 
583                                                   587 
584 //....oooOO0OOooo........oooOO0OOooo........oo << 588   // Vectors used in computation of Cerenkov Angle Integral:
585 void G4Cerenkov::SetMaxBetaChangePerStep(const << 589   //  - Refraction Indices for the current material
586 {                                              << 590   //  - new G4PhysicsOrderedFreeVector allocated to hold CAI's
587   fMaxBetaChange = value * CLHEP::perCent;     << 591  
588   G4OpticalParameters::Instance()->SetCerenkov << 592   G4int materialIndex = aMaterial->GetIndex();
589 }                                              << 
590                                                   593 
591 //....oooOO0OOooo........oooOO0OOooo........oo << 594   // Retrieve the Cerenkov Angle Integrals for this material  
592 void G4Cerenkov::SetMaxNumPhotonsPerStep(const << 
593 {                                              << 
594   fMaxPhotons = NumPhotons;                    << 
595   G4OpticalParameters::Instance()->SetCerenkov << 
596 }                                              << 
597                                                   595 
598 void G4Cerenkov::SetStackPhotons(const G4bool  << 596   G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals =
599 {                                              << 597   (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex));
600   fStackingFlag = stackingFlag;                << 
601   G4OpticalParameters::Instance()->SetCerenkov << 
602 }                                              << 
603                                                   598 
604 //....oooOO0OOooo........oooOO0OOooo........oo << 599         if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0;
605 void G4Cerenkov::DumpPhysicsTable() const      << 
606 {                                              << 
607   G4cout << "Dump Physics Table!" << G4endl;   << 
608   for(std::size_t i = 0; i < thePhysicsTable-> << 
609   {                                            << 
610     (*thePhysicsTable)[i]->DumpValues();       << 
611   }                                            << 
612 }                                              << 
613                                                   600 
614 //....oooOO0OOooo........oooOO0OOooo........oo << 601   // Min and Max photon energies 
615 void G4Cerenkov::SetVerboseLevel(G4int verbose << 602   G4double Pmin = Rindex->GetMinLowEdgeEnergy();
616 {                                              << 603   G4double Pmax = Rindex->GetMaxLowEdgeEnergy();
617   verboseLevel = verbose;                      << 604 
618   G4OpticalParameters::Instance()->SetCerenkov << 605   // Min and Max Refraction Indices 
                                                   >> 606   G4double nMin = Rindex->GetMinValue();  
                                                   >> 607   G4double nMax = Rindex->GetMaxValue();
                                                   >> 608 
                                                   >> 609   // Max Cerenkov Angle Integral 
                                                   >> 610   G4double CAImax = CerenkovAngleIntegrals->GetMaxValue();
                                                   >> 611 
                                                   >> 612   G4double dp, ge;
                                                   >> 613 
                                                   >> 614   // If n(Pmax) < 1/Beta -- no photons generated 
                                                   >> 615 
                                                   >> 616   if (nMax < BetaInverse) {
                                                   >> 617     dp = 0;
                                                   >> 618     ge = 0;
                                                   >> 619   } 
                                                   >> 620 
                                                   >> 621   // otherwise if n(Pmin) >= 1/Beta -- photons generated  
                                                   >> 622 
                                                   >> 623   else if (nMin > BetaInverse) {
                                                   >> 624     dp = Pmax - Pmin; 
                                                   >> 625     ge = CAImax; 
                                                   >> 626   } 
                                                   >> 627 
                                                   >> 628   // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then
                                                   >> 629   // we need to find a P such that the value of n(P) == 1/Beta.
                                                   >> 630   // Interpolation is performed by the GetEnergy() and
                                                   >> 631   // Value() methods of the G4MaterialPropertiesTable and
                                                   >> 632   // the GetValue() method of G4PhysicsVector.  
                                                   >> 633 
                                                   >> 634   else {
                                                   >> 635     Pmin = Rindex->GetEnergy(BetaInverse);
                                                   >> 636     dp = Pmax - Pmin;
                                                   >> 637 
                                                   >> 638     // need boolean for current implementation of G4PhysicsVector
                                                   >> 639     // ==> being phased out
                                                   >> 640     G4bool isOutRange;
                                                   >> 641     G4double CAImin = CerenkovAngleIntegrals->
                                                   >> 642                                   GetValue(Pmin, isOutRange);
                                                   >> 643     ge = CAImax - CAImin;
                                                   >> 644 
                                                   >> 645     if (verboseLevel>0) {
                                                   >> 646       G4cout << "CAImin = " << CAImin << G4endl;
                                                   >> 647       G4cout << "ge = " << ge << G4endl;
                                                   >> 648     }
                                                   >> 649   }
                                                   >> 650   
                                                   >> 651   // Calculate number of photons 
                                                   >> 652   G4double NumPhotons = Rfact * charge/eplus * charge/eplus *
                                                   >> 653                                  (dp - ge * BetaInverse*BetaInverse);
                                                   >> 654 
                                                   >> 655   return NumPhotons;    
619 }                                                 656 }
620                                                   657