Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Cerenkov.cc,v 1.27 2010-06-16 15:34:15 gcosmo Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // 26 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 27 // Cerenkov Radiation Class Implementation 31 // Cerenkov Radiation Class Implementation 28 ////////////////////////////////////////////// 32 //////////////////////////////////////////////////////////////////////// 29 // 33 // 30 // File: G4Cerenkov.cc << 34 // File: G4Cerenkov.cc 31 // Description: Discrete Process -- Generation 35 // Description: Discrete Process -- Generation of Cerenkov Photons 32 // Version: 2.1 36 // Version: 2.1 33 // Created: 1996-02-21 << 37 // Created: 1996-02-21 34 // Author: Juliet Armstrong 38 // Author: Juliet Armstrong 35 // Updated: 2007-09-30 by Peter Gumplinger 39 // Updated: 2007-09-30 by Peter Gumplinger 36 // > change inheritance to G4VDis 40 // > change inheritance to G4VDiscreteProcess 37 // GetContinuousStepLimit -> GetM 41 // GetContinuousStepLimit -> GetMeanFreePath (StronglyForced) 38 // AlongStepDoIt -> PostStepDoIt 42 // AlongStepDoIt -> PostStepDoIt 39 // 2005-08-17 by Peter Gumplinger 43 // 2005-08-17 by Peter Gumplinger 40 // > change variable name MeanNum 44 // > change variable name MeanNumPhotons -> MeanNumberOfPhotons 41 // 2005-07-28 by Peter Gumplinger 45 // 2005-07-28 by Peter Gumplinger 42 // > add G4ProcessType to constru 46 // > add G4ProcessType to constructor 43 // 2001-09-17, migration of Mater << 47 // 2001-09-17, migration of Materials to pure STL (mma) 44 // 2000-11-12 by Peter Gumplinger 48 // 2000-11-12 by Peter Gumplinger 45 // > add check on CerenkovAngleIn 49 // > add check on CerenkovAngleIntegrals->IsFilledVectorExist() 46 // in method GetAverageNumberOfPh << 50 // in method GetAverageNumberOfPhotons 47 // > and a test for MeanNumberOfP 51 // > and a test for MeanNumberOfPhotons <= 0.0 in DoIt 48 // 2000-09-18 by Peter Gumplinger 52 // 2000-09-18 by Peter Gumplinger 49 // > change: aSecondaryPosition=x 53 // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition(); 50 // aSecondaryTrack->Set 54 // aSecondaryTrack->SetTouchable(0); 51 // 1999-10-29 by Peter Gumplinger 55 // 1999-10-29 by Peter Gumplinger 52 // > change: == into <= in GetCon 56 // > change: == into <= in GetContinuousStepLimit 53 // 1997-08-08 by Peter Gumplinger 57 // 1997-08-08 by Peter Gumplinger 54 // > add protection against /0 58 // > add protection against /0 55 // > G4MaterialPropertiesTable; n 59 // > G4MaterialPropertiesTable; new physics/tracking scheme 56 // 60 // >> 61 // mail: gum@triumf.ca >> 62 // 57 ////////////////////////////////////////////// 63 //////////////////////////////////////////////////////////////////////// 58 64 59 #include "G4Cerenkov.hh" << 60 << 61 #include "G4ios.hh" 65 #include "G4ios.hh" >> 66 #include "G4Poisson.hh" >> 67 #include "G4EmProcessSubType.hh" >> 68 62 #include "G4LossTableManager.hh" 69 #include "G4LossTableManager.hh" 63 #include "G4Material.hh" << 64 #include "G4MaterialCutsCouple.hh" 70 #include "G4MaterialCutsCouple.hh" 65 #include "G4MaterialPropertiesTable.hh" << 66 #include "G4OpticalParameters.hh" << 67 #include "G4OpticalPhoton.hh" << 68 #include "G4ParticleDefinition.hh" 71 #include "G4ParticleDefinition.hh" 69 #include "G4ParticleMomentum.hh" << 70 #include "G4PhysicalConstants.hh" << 71 #include "G4PhysicsFreeVector.hh" << 72 #include "G4Poisson.hh" << 73 #include "G4SystemOfUnits.hh" << 74 #include "G4ThreeVector.hh" << 75 #include "Randomize.hh" << 76 #include "G4PhysicsModelCatalog.hh" << 77 72 78 //....oooOO0OOooo........oooOO0OOooo........oo << 73 #include "G4Cerenkov.hh" >> 74 >> 75 ///////////////////////// >> 76 // Class Implementation >> 77 ///////////////////////// >> 78 >> 79 ////////////// >> 80 // Operators >> 81 ////////////// >> 82 >> 83 // G4Cerenkov::operator=(const G4Cerenkov &right) >> 84 // { >> 85 // } >> 86 >> 87 ///////////////// >> 88 // Constructors >> 89 ///////////////// >> 90 79 G4Cerenkov::G4Cerenkov(const G4String& process 91 G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type) 80 : G4VProcess(processName, type) << 92 : G4VProcess(processName, type) 81 , fNumPhotons(0) << 82 { 93 { 83 secID = G4PhysicsModelCatalog::GetModelID("m << 94 G4cout << "G4Cerenkov::G4Cerenkov constructor" << G4endl; 84 SetProcessSubType(fCerenkov); << 95 G4cout << "NOTE: this is now a G4VProcess!" << G4endl; >> 96 G4cout << "Required change in UserPhysicsList: " << G4endl; >> 97 G4cout << "change: pmanager->AddContinuousProcess(theCerenkovProcess);" << G4endl; >> 98 G4cout << "to: pmanager->AddProcess(theCerenkovProcess);" << G4endl; >> 99 G4cout << " pmanager->SetProcessOrdering(theCerenkovProcess,idxPostStep);" << G4endl; 85 100 86 thePhysicsTable = nullptr; << 101 SetProcessSubType(fCerenkov); 87 102 88 if(verboseLevel > 0) << 103 fTrackSecondariesFirst = false; 89 { << 104 fMaxBetaChange = 0.; 90 G4cout << GetProcessName() << " is created << 105 fMaxPhotons = 0; 91 } << 92 Initialise(); << 93 } << 94 106 95 //....oooOO0OOooo........oooOO0OOooo........oo << 107 thePhysicsTable = NULL; 96 G4Cerenkov::~G4Cerenkov() << 97 { << 98 if(thePhysicsTable != nullptr) << 99 { << 100 thePhysicsTable->clearAndDestroy(); << 101 delete thePhysicsTable; << 102 } << 103 } << 104 108 105 void G4Cerenkov::ProcessDescription(std::ostre << 109 if (verboseLevel>0) { 106 { << 110 G4cout << GetProcessName() << " is created " << G4endl; 107 out << "The Cerenkov effect simulates optica << 111 } 108 out << "passage of charged particles through << 109 out << "to have the property RINDEX (refract << 110 G4VProcess::DumpInfo(); << 111 << 112 G4OpticalParameters* params = G4OpticalParam << 113 out << "Maximum beta change per step: " << p << 114 out << "Maximum photons per step: " << param << 115 out << "Track secondaries first: " << 116 << params->GetCerenkovTrackSecondariesFi << 117 out << "Stack photons: " << params->GetCeren << 118 out << "Verbose level: " << params->GetCeren << 119 } << 120 112 121 //....oooOO0OOooo........oooOO0OOooo........oo << 113 BuildThePhysicsTable(); 122 G4bool G4Cerenkov::IsApplicable(const G4Partic << 123 { << 124 return (aParticleType.GetPDGCharge() != 0.0 << 125 aParticleType.GetPDGMass() != 0.0 && << 126 aParticleType.GetParticleName() != " << 127 !aParticleType.IsShortLived()) << 128 ? true << 129 : false; << 130 } 114 } 131 115 132 //....oooOO0OOooo........oooOO0OOooo........oo << 116 // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right) 133 void G4Cerenkov::Initialise() << 117 // { >> 118 // } >> 119 >> 120 //////////////// >> 121 // Destructors >> 122 //////////////// >> 123 >> 124 G4Cerenkov::~G4Cerenkov() 134 { 125 { 135 G4OpticalParameters* params = G4OpticalParam << 126 if (thePhysicsTable != NULL) { 136 SetMaxBetaChangePerStep(params->GetCerenkovM << 127 thePhysicsTable->clearAndDestroy(); 137 SetMaxNumPhotonsPerStep(params->GetCerenkovM << 128 delete thePhysicsTable; 138 SetTrackSecondariesFirst(params->GetCerenkov << 129 } 139 SetStackPhotons(params->GetCerenkovStackPhot << 140 SetVerboseLevel(params->GetCerenkovVerboseLe << 141 } 130 } 142 131 143 //....oooOO0OOooo........oooOO0OOooo........oo << 132 //////////// 144 void G4Cerenkov::BuildPhysicsTable(const G4Par << 133 // Methods >> 134 //////////// >> 135 >> 136 // PostStepDoIt >> 137 // ------------- >> 138 // >> 139 G4VParticleChange* >> 140 G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) >> 141 >> 142 // This routine is called for each tracking Step of a charged particle >> 143 // in a radiator. A Poisson-distributed number of photons is generated >> 144 // according to the Cerenkov formula, distributed evenly along the track >> 145 // segment and uniformly azimuth w.r.t. the particle direction. The >> 146 // parameters are then transformed into the Master Reference System, and >> 147 // they are added to the particle change. >> 148 145 { 149 { 146 if(thePhysicsTable) << 150 ////////////////////////////////////////////////////// 147 return; << 151 // Should we ensure that the material is dispersive? >> 152 ////////////////////////////////////////////////////// >> 153 >> 154 aParticleChange.Initialize(aTrack); >> 155 >> 156 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 157 const G4Material* aMaterial = aTrack.GetMaterial(); >> 158 >> 159 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); >> 160 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); >> 161 >> 162 G4ThreeVector x0 = pPreStepPoint->GetPosition(); >> 163 G4ThreeVector p0 = aStep.GetDeltaPosition().unit(); >> 164 G4double t0 = pPreStepPoint->GetGlobalTime(); >> 165 >> 166 G4MaterialPropertiesTable* aMaterialPropertiesTable = >> 167 aMaterial->GetMaterialPropertiesTable(); >> 168 if (!aMaterialPropertiesTable) return pParticleChange; 148 169 149 const G4MaterialTable* theMaterialTable = G4 << 170 G4MaterialPropertyVector* Rindex = 150 std::size_t numOfMaterials = G4 << 171 aMaterialPropertiesTable->GetProperty("RINDEX"); >> 172 if (!Rindex) return pParticleChange; 151 173 152 thePhysicsTable = new G4PhysicsTable(numOfMa << 174 // particle charge >> 175 const G4double charge = aParticle->GetDefinition()->GetPDGCharge(); >> 176 >> 177 // particle beta >> 178 const G4double beta = (pPreStepPoint ->GetBeta() + >> 179 pPostStepPoint->GetBeta())/2.; >> 180 >> 181 G4double MeanNumberOfPhotons = >> 182 GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex); >> 183 >> 184 if (MeanNumberOfPhotons <= 0.0) { >> 185 >> 186 // return unchanged particle and no secondaries >> 187 >> 188 aParticleChange.SetNumberOfSecondaries(0); >> 189 >> 190 return pParticleChange; 153 191 154 // loop over materials << 155 for(std::size_t i = 0; i < numOfMaterials; + << 156 { << 157 G4PhysicsFreeVector* cerenkovIntegral = nu << 158 << 159 // Retrieve vector of refraction indices f << 160 // from the material's optical properties << 161 G4Material* aMaterial = (*theMate << 162 G4MaterialPropertiesTable* MPT = aMaterial << 163 << 164 if(MPT) << 165 { << 166 cerenkovIntegral << 167 G4MaterialPropertyVector* refractiveInde << 168 << 169 if(refractiveIndex) << 170 { << 171 // Retrieve the first refraction index << 172 // of (photon energy, refraction index << 173 G4double currentRI = (*refractiveIndex << 174 if(currentRI > 1.0) << 175 { << 176 // Create first (photon energy, Cere << 177 G4double currentPM = refractiveInde << 178 G4double currentCAI = 0.0; << 179 << 180 cerenkovIntegral->InsertValues(curre << 181 << 182 // Set previous values to current on << 183 G4double prevPM = currentPM; << 184 G4double prevCAI = currentCAI; << 185 G4double prevRI = currentRI; << 186 << 187 // loop over all (photon energy, ref << 188 // pairs stored for this material << 189 for(std::size_t ii = 1; ii < refract << 190 { << 191 currentRI = (*refractiveIndex)[ii << 192 currentPM = refractiveIndex->Ener << 193 currentCAI = prevCAI + (currentPM << 194 (1.0 / (p << 195 1.0 / (c << 196 << 197 cerenkovIntegral->InsertValues(cur << 198 << 199 prevPM = currentPM; << 200 prevCAI = currentCAI; << 201 prevRI = currentRI; << 202 } << 203 } 192 } 204 } << 205 } << 206 193 207 // The Cerenkov integral for a given mater << 194 G4double step_length; 208 // thePhysicsTable according to the positi << 195 step_length = aStep.GetStepLength(); 209 // the material table. << 210 thePhysicsTable->insertAt(i, cerenkovInteg << 211 } << 212 } << 213 196 214 //....oooOO0OOooo........oooOO0OOooo........oo << 197 MeanNumberOfPhotons = MeanNumberOfPhotons * step_length; 215 G4VParticleChange* G4Cerenkov::PostStepDoIt(co << 216 co << 217 // This routine is called for each tracking St << 218 // in a radiator. A Poisson-distributed number << 219 // according to the Cerenkov formula, distribu << 220 // segment and uniformly azimuth w.r.t. the pa << 221 // parameters are then transformed into the Ma << 222 // they are added to the particle change. << 223 198 224 { << 199 G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons); 225 aParticleChange.Initialize(aTrack); << 200 >> 201 if (NumPhotons <= 0) { >> 202 >> 203 // return unchanged particle and no secondaries >> 204 >> 205 aParticleChange.SetNumberOfSecondaries(0); >> 206 >> 207 return pParticleChange; >> 208 } >> 209 >> 210 //////////////////////////////////////////////////////////////// >> 211 >> 212 aParticleChange.SetNumberOfSecondaries(NumPhotons); >> 213 >> 214 if (fTrackSecondariesFirst) { >> 215 if (aTrack.GetTrackStatus() == fAlive ) >> 216 aParticleChange.ProposeTrackStatus(fSuspend); >> 217 } >> 218 >> 219 //////////////////////////////////////////////////////////////// >> 220 >> 221 G4double Pmin = Rindex->GetMinLowEdgeEnergy(); >> 222 G4double Pmax = Rindex->GetMaxLowEdgeEnergy(); >> 223 G4double dp = Pmax - Pmin; >> 224 >> 225 G4double nMax = Rindex->GetMaxValue(); >> 226 >> 227 G4double BetaInverse = 1./beta; >> 228 >> 229 G4double maxCos = BetaInverse / nMax; >> 230 G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos); >> 231 >> 232 const G4double beta1 = pPreStepPoint ->GetBeta(); >> 233 const G4double beta2 = pPostStepPoint->GetBeta(); >> 234 >> 235 G4double MeanNumberOfPhotons1 = >> 236 GetAverageNumberOfPhotons(charge,beta1,aMaterial,Rindex); >> 237 G4double MeanNumberOfPhotons2 = >> 238 GetAverageNumberOfPhotons(charge,beta2,aMaterial,Rindex); >> 239 >> 240 for (G4int i = 0; i < NumPhotons; i++) { >> 241 >> 242 // Determine photon energy >> 243 >> 244 G4double rand; >> 245 G4double sampledEnergy, sampledRI; >> 246 G4double cosTheta, sin2Theta; >> 247 >> 248 // sample an energy >> 249 >> 250 do { >> 251 rand = G4UniformRand(); >> 252 sampledEnergy = Pmin + rand * dp; >> 253 sampledRI = Rindex->Value(sampledEnergy); >> 254 cosTheta = BetaInverse / sampledRI; >> 255 >> 256 sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta); >> 257 rand = G4UniformRand(); >> 258 >> 259 } while (rand*maxSin2 > sin2Theta); >> 260 >> 261 // Generate random position of photon on cone surface >> 262 // defined by Theta >> 263 >> 264 rand = G4UniformRand(); >> 265 >> 266 G4double phi = twopi*rand; >> 267 G4double sinPhi = std::sin(phi); >> 268 G4double cosPhi = std::cos(phi); >> 269 >> 270 // calculate x,y, and z components of photon energy >> 271 // (in coord system with primary particle direction >> 272 // aligned with the z axis) >> 273 >> 274 G4double sinTheta = std::sqrt(sin2Theta); >> 275 G4double px = sinTheta*cosPhi; >> 276 G4double py = sinTheta*sinPhi; >> 277 G4double pz = cosTheta; >> 278 >> 279 // Create photon momentum direction vector >> 280 // The momentum direction is still with respect >> 281 // to the coordinate system where the primary >> 282 // particle direction is aligned with the z axis >> 283 >> 284 G4ParticleMomentum photonMomentum(px, py, pz); >> 285 >> 286 // Rotate momentum direction back to global reference >> 287 // system >> 288 >> 289 photonMomentum.rotateUz(p0); >> 290 >> 291 // Determine polarization of new photon >> 292 >> 293 G4double sx = cosTheta*cosPhi; >> 294 G4double sy = cosTheta*sinPhi; >> 295 G4double sz = -sinTheta; >> 296 >> 297 G4ThreeVector photonPolarization(sx, sy, sz); >> 298 >> 299 // Rotate back to original coord system >> 300 >> 301 photonPolarization.rotateUz(p0); >> 302 >> 303 // Generate a new photon: >> 304 >> 305 G4DynamicParticle* aCerenkovPhoton = >> 306 new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(), >> 307 photonMomentum); >> 308 aCerenkovPhoton->SetPolarization >> 309 (photonPolarization.x(), >> 310 photonPolarization.y(), >> 311 photonPolarization.z()); >> 312 >> 313 aCerenkovPhoton->SetKineticEnergy(sampledEnergy); >> 314 >> 315 // Generate new G4Track object: >> 316 >> 317 G4double delta, NumberOfPhotons, N; >> 318 >> 319 do { >> 320 rand = G4UniformRand(); >> 321 delta = rand * aStep.GetStepLength(); >> 322 NumberOfPhotons = MeanNumberOfPhotons1 - delta * >> 323 (MeanNumberOfPhotons1-MeanNumberOfPhotons2)/ >> 324 aStep.GetStepLength(); >> 325 N = G4UniformRand() * >> 326 std::max(MeanNumberOfPhotons1,MeanNumberOfPhotons2); >> 327 } while (N > NumberOfPhotons); >> 328 >> 329 G4double deltaTime = delta / >> 330 ((pPreStepPoint->GetVelocity()+ >> 331 pPostStepPoint->GetVelocity())/2.); >> 332 >> 333 G4double aSecondaryTime = t0 + deltaTime; 226 334 227 const G4DynamicParticle* aParticle = aTrack. << 335 G4ThreeVector aSecondaryPosition = 228 const G4Material* aMaterial = aTrack. << 336 x0 + rand * aStep.GetDeltaPosition(); 229 337 230 G4StepPoint* pPreStepPoint = aStep.GetPreSt << 338 G4Track* aSecondaryTrack = 231 G4StepPoint* pPostStepPoint = aStep.GetPostS << 339 new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition); 232 340 233 G4ThreeVector x0 = pPreStepPoint->GetPositio << 341 aSecondaryTrack->SetTouchableHandle( 234 G4ThreeVector p0 = aStep.GetDeltaPosition(). << 342 aStep.GetPreStepPoint()->GetTouchableHandle()); 235 G4double t0 = pPreStepPoint->GetGlobalT << 236 << 237 G4MaterialPropertiesTable* MPT = aMaterial-> << 238 if(!MPT) << 239 return pParticleChange; << 240 << 241 G4MaterialPropertyVector* Rindex = MPT->GetP << 242 if(!Rindex) << 243 return pParticleChange; << 244 << 245 G4double charge = aParticle->GetDefinition() << 246 << 247 G4double beta1 = pPreStepPoint->GetBeta(); << 248 G4double beta2 = pPostStepPoint->GetBeta(); << 249 G4double beta = (beta1 + beta2) * 0.5; << 250 << 251 G4double MeanNumberOfPhotons = << 252 GetAverageNumberOfPhotons(charge, beta, aM << 253 G4double MeanNumberOfPhotons1 = << 254 GetAverageNumberOfPhotons(charge, beta1, a << 255 G4double MeanNumberOfPhotons2 = << 256 GetAverageNumberOfPhotons(charge, beta2, a << 257 << 258 if(MeanNumberOfPhotons <= 0.0) << 259 { << 260 // return unchanged particle and no second << 261 aParticleChange.SetNumberOfSecondaries(0); << 262 return pParticleChange; << 263 } << 264 << 265 MeanNumberOfPhotons *= aStep.GetStepLength() << 266 fNumPhotons = (G4int) G4Poisson(Mean << 267 << 268 // third condition added to prevent infinite << 269 // see bugzilla 2555 << 270 if(fNumPhotons <= 0 || !fStackingFlag || << 271 std::max(MeanNumberOfPhotons1, MeanNumber << 272 { << 273 // return unchanged particle and no second << 274 aParticleChange.SetNumberOfSecondaries(0); << 275 return pParticleChange; << 276 } << 277 << 278 //////////////////////////////////////////// << 279 aParticleChange.SetNumberOfSecondaries(fNumP << 280 << 281 if(fTrackSecondariesFirst) << 282 { << 283 if(aTrack.GetTrackStatus() == fAlive) << 284 aParticleChange.ProposeTrackStatus(fSusp << 285 } << 286 << 287 //////////////////////////////////////////// << 288 G4double Pmin = Rindex->Energy(0); << 289 G4double Pmax = Rindex->GetMaxEnergy(); << 290 G4double dp = Pmax - Pmin; << 291 << 292 G4double nMax = Rindex->GetMaxValue() << 293 G4double BetaInverse = 1. / beta; << 294 << 295 G4double maxCos = BetaInverse / nMax; << 296 G4double maxSin2 = (1.0 - maxCos) * (1.0 + m << 297 << 298 for(G4int i = 0; i < fNumPhotons; ++i) << 299 { << 300 // Determine photon energy << 301 G4double rand; << 302 G4double sampledEnergy, sampledRI; << 303 G4double cosTheta, sin2Theta; << 304 << 305 // sample an energy << 306 do << 307 { << 308 rand = G4UniformRand(); << 309 sampledEnergy = Pmin + rand * dp; << 310 sampledRI = Rindex->Value(sampledEne << 311 cosTheta = BetaInverse / sampledRI; << 312 << 313 sin2Theta = (1.0 - cosTheta) * (1.0 + co << 314 rand = G4UniformRand(); << 315 << 316 // Loop checking, 07-Aug-2015, Vladimir << 317 } while(rand * maxSin2 > sin2Theta); << 318 << 319 // Create photon momentum direction vector << 320 // with respect to the coordinate system w << 321 // direction is aligned with the z axis << 322 rand = G4UniformRand(); << 323 G4double phi = twopi * rand; << 324 G4double sinPhi = std::sin(phi); << 325 G4double cosPhi = std::cos(phi); << 326 G4double sinTheta = std::sqrt(sin2Theta); << 327 G4ParticleMomentum photonMomentum(sinTheta << 328 cosTheta << 329 << 330 // Rotate momentum direction back to globa << 331 photonMomentum.rotateUz(p0); << 332 << 333 // Determine polarization of new photon << 334 G4ThreeVector photonPolarization(cosTheta << 335 -sinTheta << 336 << 337 // Rotate back to original coord system << 338 photonPolarization.rotateUz(p0); << 339 << 340 // Generate a new photon: << 341 auto aCerenkovPhoton = << 342 new G4DynamicParticle(G4OpticalPhoton::O << 343 << 344 aCerenkovPhoton->SetPolarization(photonPol << 345 aCerenkovPhoton->SetKineticEnergy(sampledE << 346 << 347 G4double NumberOfPhotons, N; << 348 << 349 do << 350 { << 351 rand = G4UniformRand(); << 352 NumberOfPhotons = MeanNumberOfPhotons1 - << 353 rand * (MeanNumberOfPh << 354 N = << 355 G4UniformRand() * std::max(MeanNumberO << 356 // Loop checking, 07-Aug-2015, Vladimir << 357 } while(N > NumberOfPhotons); << 358 << 359 G4double delta = rand * aStep.GetStepLengt << 360 G4double deltaTime = << 361 delta / << 362 (pPreStepPoint->GetVelocity() + << 363 rand * (pPostStepPoint->GetVelocity() - << 364 0.5); << 365 << 366 G4double aSecondaryTime = t0 + de << 367 G4ThreeVector aSecondaryPosition = x0 + ra << 368 << 369 // Generate new G4Track object: << 370 G4Track* aSecondaryTrack = << 371 new G4Track(aCerenkovPhoton, aSecondaryT << 372 << 373 aSecondaryTrack->SetTouchableHandle( << 374 aStep.GetPreStepPoint()->GetTouchableHan << 375 aSecondaryTrack->SetParentID(aTrack.GetTra << 376 aSecondaryTrack->SetCreatorModelID(secID); << 377 aParticleChange.AddSecondary(aSecondaryTra << 378 } << 379 << 380 if(verboseLevel > 1) << 381 { << 382 G4cout << "\n Exiting from G4Cerenkov::DoI << 383 << aParticleChange.GetNumberOfSecon << 384 } << 385 343 386 return pParticleChange; << 344 aSecondaryTrack->SetParentID(aTrack.GetTrackID()); >> 345 >> 346 aParticleChange.AddSecondary(aSecondaryTrack); >> 347 } >> 348 >> 349 if (verboseLevel>0) { >> 350 G4cout << "\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = " >> 351 << aParticleChange.GetNumberOfSecondaries() << G4endl; >> 352 } >> 353 >> 354 return pParticleChange; 387 } 355 } 388 356 389 //....oooOO0OOooo........oooOO0OOooo........oo << 357 // BuildThePhysicsTable for the Cerenkov process 390 void G4Cerenkov::PreparePhysicsTable(const G4P << 358 // --------------------------------------------- >> 359 // >> 360 >> 361 void G4Cerenkov::BuildThePhysicsTable() 391 { 362 { 392 Initialise(); << 363 if (thePhysicsTable) return; >> 364 >> 365 const G4MaterialTable* theMaterialTable= >> 366 G4Material::GetMaterialTable(); >> 367 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); >> 368 >> 369 // create new physics table >> 370 >> 371 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 372 >> 373 // loop for materials >> 374 >> 375 for (G4int i=0 ; i < numOfMaterials; i++) >> 376 { >> 377 G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector = >> 378 new G4PhysicsOrderedFreeVector(); >> 379 >> 380 // Retrieve vector of refraction indices for the material >> 381 // from the material's optical properties table >> 382 >> 383 G4Material* aMaterial = (*theMaterialTable)[i]; >> 384 >> 385 G4MaterialPropertiesTable* aMaterialPropertiesTable = >> 386 aMaterial->GetMaterialPropertiesTable(); >> 387 >> 388 if (aMaterialPropertiesTable) { >> 389 >> 390 G4MaterialPropertyVector* theRefractionIndexVector = >> 391 aMaterialPropertiesTable->GetProperty("RINDEX"); >> 392 >> 393 if (theRefractionIndexVector) { >> 394 >> 395 // Retrieve the first refraction index in vector >> 396 // of (photon energy, refraction index) pairs >> 397 >> 398 G4double currentRI = (*theRefractionIndexVector)[0]; >> 399 >> 400 if (currentRI > 1.0) { >> 401 >> 402 // Create first (photon energy, Cerenkov Integral) >> 403 // pair >> 404 >> 405 G4double currentPM = theRefractionIndexVector-> >> 406 Energy(0); >> 407 G4double currentCAI = 0.0; >> 408 >> 409 aPhysicsOrderedFreeVector-> >> 410 InsertValues(currentPM , currentCAI); >> 411 >> 412 // Set previous values to current ones prior to loop >> 413 >> 414 G4double prevPM = currentPM; >> 415 G4double prevCAI = currentCAI; >> 416 G4double prevRI = currentRI; >> 417 >> 418 // loop over all (photon energy, refraction index) >> 419 // pairs stored for this material >> 420 >> 421 for (size_t i = 1; >> 422 i < theRefractionIndexVector->GetVectorLength(); >> 423 i++) >> 424 { >> 425 currentRI = (*theRefractionIndexVector)[i]; >> 426 currentPM = theRefractionIndexVector->Energy(i); >> 427 >> 428 currentCAI = 0.5*(1.0/(prevRI*prevRI) + >> 429 1.0/(currentRI*currentRI)); >> 430 >> 431 currentCAI = prevCAI + >> 432 (currentPM - prevPM) * currentCAI; >> 433 >> 434 aPhysicsOrderedFreeVector-> >> 435 InsertValues(currentPM, currentCAI); >> 436 >> 437 prevPM = currentPM; >> 438 prevCAI = currentCAI; >> 439 prevRI = currentRI; >> 440 } >> 441 >> 442 } >> 443 } >> 444 } >> 445 >> 446 // The Cerenkov integral for a given material >> 447 // will be inserted in thePhysicsTable >> 448 // according to the position of the material in >> 449 // the material table. >> 450 >> 451 thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector); >> 452 >> 453 } 393 } 454 } 394 455 395 //....oooOO0OOooo........oooOO0OOooo........oo << 456 // GetMeanFreePath 396 G4double G4Cerenkov::GetMeanFreePath(const G4T << 457 // --------------- 397 G4ForceCo << 458 // >> 459 >> 460 G4double G4Cerenkov::GetMeanFreePath(const G4Track&, >> 461 G4double, >> 462 G4ForceCondition*) 398 { 463 { 399 return 1.; << 464 return 1.; 400 } 465 } 401 466 402 //....oooOO0OOooo........oooOO0OOooo........oo << 403 G4double G4Cerenkov::PostStepGetPhysicalIntera 467 G4double G4Cerenkov::PostStepGetPhysicalInteractionLength( 404 const G4Track& aTrack, G4double, G4ForceCond << 468 const G4Track& aTrack, 405 { << 469 G4double, 406 *condition = NotForced; << 470 G4ForceCondition* condition) 407 G4double StepLimit = DBL_MAX; << 471 { 408 fNumPhotons = 0; << 472 *condition = NotForced; 409 << 473 G4double StepLimit = DBL_MAX; 410 const G4Material* aMaterial = aTrack.GetMate << 474 411 std::size_t materialIndex = aMaterial->Get << 475 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 412 << 476 const G4Material* aMaterial = aTrack.GetMaterial(); 413 // If Physics Vector is not defined no Ceren << 477 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); 414 if(!(*thePhysicsTable)[materialIndex]) << 478 415 { << 479 const G4double kineticEnergy = aParticle->GetKineticEnergy(); 416 return StepLimit; << 480 const G4ParticleDefinition* particleType = aParticle->GetDefinition(); 417 } << 481 const G4double mass = particleType->GetPDGMass(); 418 << 482 419 const G4DynamicParticle* aParticle = aTrack. << 483 // particle beta 420 const G4MaterialCutsCouple* couple = aTrack. << 484 const G4double beta = aParticle->GetTotalMomentum() / 421 << 485 aParticle->GetTotalEnergy(); 422 G4double kineticEnergy = a << 486 // particle gamma 423 const G4ParticleDefinition* particleType = a << 487 const G4double gamma = 1./std::sqrt(1.-beta*beta); 424 G4double mass = p << 488 425 << 489 G4MaterialPropertiesTable* aMaterialPropertiesTable = 426 G4double beta = aParticle->GetTotalMomentum << 490 aMaterial->GetMaterialPropertiesTable(); 427 G4double gamma = aParticle->GetTotalEnergy() << 491 428 << 492 G4MaterialPropertyVector* Rindex = NULL; 429 G4MaterialPropertiesTable* aMaterialProperti << 493 430 aMaterial->GetMaterialPropertiesTable(); << 494 if (aMaterialPropertiesTable) 431 << 495 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 432 G4MaterialPropertyVector* Rindex = nullptr; << 496 433 << 497 G4double nMax; 434 if(aMaterialPropertiesTable) << 498 if (Rindex) { 435 Rindex = aMaterialPropertiesTable->GetProp << 499 nMax = Rindex->GetMaxValue(); 436 << 500 } else { 437 G4double nMax; << 501 return StepLimit; 438 if(Rindex) << 502 } 439 { << 503 440 nMax = Rindex->GetMaxValue(); << 504 G4double BetaMin = 1./nMax; 441 } << 505 if ( BetaMin >= 1. ) return StepLimit; 442 else << 506 443 { << 507 G4double GammaMin = 1./std::sqrt(1.-BetaMin*BetaMin); 444 return StepLimit; << 508 445 } << 509 if (gamma < GammaMin ) return StepLimit; 446 << 510 447 G4double BetaMin = 1. / nMax; << 511 G4double kinEmin = mass*(GammaMin-1.); 448 if(BetaMin >= 1.) << 449 return StepLimit; << 450 << 451 G4double GammaMin = 1. / std::sqrt(1. - Beta << 452 if(gamma < GammaMin) << 453 return StepLimit; << 454 << 455 G4double kinEmin = mass * (GammaMin - 1.); << 456 G4double RangeMin = << 457 G4LossTableManager::Instance()->GetRange(p << 458 G4double Range = G4LossTableManager::Instanc << 459 particleType, kineticEnergy, couple); << 460 G4double Step = Range - RangeMin; << 461 << 462 // If the step is smaller than G4ThreeVector << 463 // that the particle does not move. See bug << 464 static const G4double minAllowedStep = G4Thr << 465 if(Step < minAllowedStep) << 466 return StepLimit; << 467 << 468 if(Step < StepLimit) << 469 StepLimit = Step; << 470 << 471 // If user has defined an average maximum nu << 472 // a Step, then calculate the Step length fo << 473 if(fMaxPhotons > 0) << 474 { << 475 const G4double charge = aParticle->GetDefi << 476 G4double MeanNumberOfPhotons = << 477 GetAverageNumberOfPhotons(charge, beta, << 478 Step = 0.; << 479 if(MeanNumberOfPhotons > 0.0) << 480 Step = fMaxPhotons / MeanNumberOfPhotons << 481 if(Step > 0. && Step < StepLimit) << 482 StepLimit = Step; << 483 } << 484 << 485 // If user has defined an maximum allowed ch << 486 if(fMaxBetaChange > 0.) << 487 { << 488 G4double dedx = G4LossTableManager::Instan << 489 particleType, kineticEnergy, couple); << 490 G4double deltaGamma = << 491 gamma - 1. / std::sqrt(1. - beta * beta << 492 (1. - fMax << 493 << 494 Step = mass * deltaGamma / dedx; << 495 if(Step > 0. && Step < StepLimit) << 496 StepLimit = Step; << 497 } << 498 512 499 *condition = StronglyForced; << 513 G4double RangeMin = G4LossTableManager::Instance()-> 500 return StepLimit; << 514 GetRange(particleType, >> 515 kinEmin, >> 516 couple); >> 517 G4double Range = G4LossTableManager::Instance()-> >> 518 GetRange(particleType, >> 519 kineticEnergy, >> 520 couple); >> 521 >> 522 G4double Step = Range - RangeMin; >> 523 if (Step < 1.*um ) return StepLimit; >> 524 >> 525 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 526 >> 527 // If user has defined an average maximum number of photons to >> 528 // be generated in a Step, then calculate the Step length for >> 529 // that number of photons. >> 530 >> 531 if (fMaxPhotons > 0) { >> 532 >> 533 // particle charge >> 534 const G4double charge = aParticle-> >> 535 GetDefinition()->GetPDGCharge(); >> 536 >> 537 G4double MeanNumberOfPhotons = >> 538 GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex); >> 539 >> 540 G4double Step = 0.; >> 541 if (MeanNumberOfPhotons > 0.0) Step = fMaxPhotons / >> 542 MeanNumberOfPhotons; >> 543 >> 544 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 545 } >> 546 >> 547 // If user has defined an maximum allowed change in beta per step >> 548 if (fMaxBetaChange > 0.) { >> 549 >> 550 G4double dedx = G4LossTableManager::Instance()-> >> 551 GetDEDX(particleType, >> 552 kineticEnergy, >> 553 couple); >> 554 >> 555 G4double deltaGamma = gamma - >> 556 1./std::sqrt(1.-beta*beta* >> 557 (1.-fMaxBetaChange)* >> 558 (1.-fMaxBetaChange)); >> 559 >> 560 G4double Step = mass * deltaGamma / dedx; >> 561 >> 562 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 563 >> 564 } >> 565 >> 566 *condition = StronglyForced; >> 567 return StepLimit; 501 } 568 } 502 569 503 //....oooOO0OOooo........oooOO0OOooo........oo << 570 // GetAverageNumberOfPhotons 504 G4double G4Cerenkov::GetAverageNumberOfPhotons << 571 // ------------------------- 505 const G4double charge, const G4double beta, << 506 G4MaterialPropertyVector* Rindex) const << 507 // This routine computes the number of Cerenko 572 // This routine computes the number of Cerenkov photons produced per 508 // Geant4-unit (millimeter) in the current med << 573 // GEANT-unit (millimeter) in the current medium. >> 574 // ^^^^^^^^^^ >> 575 >> 576 G4double >> 577 G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge, >> 578 const G4double beta, >> 579 const G4Material* aMaterial, >> 580 G4MaterialPropertyVector* Rindex) const 509 { 581 { 510 constexpr G4double Rfact = 369.81 / (eV * cm << 582 const G4double Rfact = 369.81/(eV * cm); 511 if(beta <= 0.0) << 512 return 0.0; << 513 G4double BetaInverse = 1. / beta; << 514 << 515 // Vectors used in computation of Cerenkov A << 516 // - Refraction Indices for the current mat << 517 // - new G4PhysicsFreeVector allocated to h << 518 std::size_t materialIndex = aMaterial->GetIn << 519 << 520 // Retrieve the Cerenkov Angle Integrals for << 521 G4PhysicsVector* CerenkovAngleIntegrals = (( << 522 << 523 std::size_t length = CerenkovAngleIntegrals- << 524 if(0 == length) << 525 return 0.0; << 526 << 527 // Min and Max photon energies << 528 G4double Pmin = Rindex->Energy(0); << 529 G4double Pmax = Rindex->GetMaxEnergy(); << 530 << 531 // Min and Max Refraction Indices << 532 G4double nMin = Rindex->GetMinValue(); << 533 G4double nMax = Rindex->GetMaxValue(); << 534 << 535 // Max Cerenkov Angle Integral << 536 G4double CAImax = (*CerenkovAngleIntegrals)[ << 537 << 538 G4double dp, ge; << 539 // If n(Pmax) < 1/Beta -- no photons generat << 540 if(nMax < BetaInverse) << 541 { << 542 dp = 0.0; << 543 ge = 0.0; << 544 } << 545 // otherwise if n(Pmin) >= 1/Beta -- photons << 546 else if(nMin > BetaInverse) << 547 { << 548 dp = Pmax - Pmin; << 549 ge = CAImax; << 550 } << 551 // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Bet << 552 // that the value of n(P) == 1/Beta. Interpo << 553 // GetEnergy() and Value() methods of the G4 << 554 // the Value() method of G4PhysicsVector. << 555 else << 556 { << 557 Pmin = Rindex->GetEnergy(BetaInverse); << 558 dp = Pmax - Pmin; << 559 << 560 G4double CAImin = CerenkovAngleIntegrals-> << 561 ge = CAImax - CAImin; << 562 << 563 if(verboseLevel > 1) << 564 { << 565 G4cout << "CAImin = " << CAImin << G4end << 566 } << 567 } << 568 << 569 // Calculate number of photons << 570 G4double NumPhotons = Rfact * charge / eplus << 571 (dp - ge * BetaInverse << 572 583 573 return NumPhotons; << 584 if(beta <= 0.0)return 0.0; 574 } << 575 585 576 //....oooOO0OOooo........oooOO0OOooo........oo << 586 G4double BetaInverse = 1./beta; 577 void G4Cerenkov::SetTrackSecondariesFirst(cons << 578 { << 579 fTrackSecondariesFirst = state; << 580 G4OpticalParameters::Instance()->SetCerenkov << 581 fTrackSecondariesFirst); << 582 } << 583 587 584 //....oooOO0OOooo........oooOO0OOooo........oo << 588 // Vectors used in computation of Cerenkov Angle Integral: 585 void G4Cerenkov::SetMaxBetaChangePerStep(const << 589 // - Refraction Indices for the current material 586 { << 590 // - new G4PhysicsOrderedFreeVector allocated to hold CAI's 587 fMaxBetaChange = value * CLHEP::perCent; << 591 588 G4OpticalParameters::Instance()->SetCerenkov << 592 G4int materialIndex = aMaterial->GetIndex(); 589 } << 590 593 591 //....oooOO0OOooo........oooOO0OOooo........oo << 594 // Retrieve the Cerenkov Angle Integrals for this material 592 void G4Cerenkov::SetMaxNumPhotonsPerStep(const << 593 { << 594 fMaxPhotons = NumPhotons; << 595 G4OpticalParameters::Instance()->SetCerenkov << 596 } << 597 595 598 void G4Cerenkov::SetStackPhotons(const G4bool << 596 G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals = 599 { << 597 (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex)); 600 fStackingFlag = stackingFlag; << 601 G4OpticalParameters::Instance()->SetCerenkov << 602 } << 603 598 604 //....oooOO0OOooo........oooOO0OOooo........oo << 599 if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0; 605 void G4Cerenkov::DumpPhysicsTable() const << 606 { << 607 G4cout << "Dump Physics Table!" << G4endl; << 608 for(std::size_t i = 0; i < thePhysicsTable-> << 609 { << 610 (*thePhysicsTable)[i]->DumpValues(); << 611 } << 612 } << 613 600 614 //....oooOO0OOooo........oooOO0OOooo........oo << 601 // Min and Max photon energies 615 void G4Cerenkov::SetVerboseLevel(G4int verbose << 602 G4double Pmin = Rindex->GetMinLowEdgeEnergy(); 616 { << 603 G4double Pmax = Rindex->GetMaxLowEdgeEnergy(); 617 verboseLevel = verbose; << 604 618 G4OpticalParameters::Instance()->SetCerenkov << 605 // Min and Max Refraction Indices >> 606 G4double nMin = Rindex->GetMinValue(); >> 607 G4double nMax = Rindex->GetMaxValue(); >> 608 >> 609 // Max Cerenkov Angle Integral >> 610 G4double CAImax = CerenkovAngleIntegrals->GetMaxValue(); >> 611 >> 612 G4double dp, ge; >> 613 >> 614 // If n(Pmax) < 1/Beta -- no photons generated >> 615 >> 616 if (nMax < BetaInverse) { >> 617 dp = 0; >> 618 ge = 0; >> 619 } >> 620 >> 621 // otherwise if n(Pmin) >= 1/Beta -- photons generated >> 622 >> 623 else if (nMin > BetaInverse) { >> 624 dp = Pmax - Pmin; >> 625 ge = CAImax; >> 626 } >> 627 >> 628 // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then >> 629 // we need to find a P such that the value of n(P) == 1/Beta. >> 630 // Interpolation is performed by the GetEnergy() and >> 631 // Value() methods of the G4MaterialPropertiesTable and >> 632 // the GetValue() method of G4PhysicsVector. >> 633 >> 634 else { >> 635 Pmin = Rindex->GetEnergy(BetaInverse); >> 636 dp = Pmax - Pmin; >> 637 >> 638 // need boolean for current implementation of G4PhysicsVector >> 639 // ==> being phased out >> 640 G4bool isOutRange; >> 641 G4double CAImin = CerenkovAngleIntegrals-> >> 642 GetValue(Pmin, isOutRange); >> 643 ge = CAImax - CAImin; >> 644 >> 645 if (verboseLevel>0) { >> 646 G4cout << "CAImin = " << CAImin << G4endl; >> 647 G4cout << "ge = " << ge << G4endl; >> 648 } >> 649 } >> 650 >> 651 // Calculate number of photons >> 652 G4double NumPhotons = Rfact * charge/eplus * charge/eplus * >> 653 (dp - ge * BetaInverse*BetaInverse); >> 654 >> 655 return NumPhotons; 619 } 656 } 620 657