Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Cerenkov.cc,v 1.26 2008/11/14 20:16:51 gum Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02 $ >> 29 // 26 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 27 // Cerenkov Radiation Class Implementation 31 // Cerenkov Radiation Class Implementation 28 ////////////////////////////////////////////// 32 //////////////////////////////////////////////////////////////////////// 29 // 33 // 30 // File: G4Cerenkov.cc << 34 // File: G4Cerenkov.cc 31 // Description: Discrete Process -- Generation 35 // Description: Discrete Process -- Generation of Cerenkov Photons 32 // Version: 2.1 36 // Version: 2.1 33 // Created: 1996-02-21 << 37 // Created: 1996-02-21 34 // Author: Juliet Armstrong 38 // Author: Juliet Armstrong 35 // Updated: 2007-09-30 by Peter Gumplinger 39 // Updated: 2007-09-30 by Peter Gumplinger 36 // > change inheritance to G4VDis 40 // > change inheritance to G4VDiscreteProcess 37 // GetContinuousStepLimit -> GetM 41 // GetContinuousStepLimit -> GetMeanFreePath (StronglyForced) 38 // AlongStepDoIt -> PostStepDoIt 42 // AlongStepDoIt -> PostStepDoIt 39 // 2005-08-17 by Peter Gumplinger 43 // 2005-08-17 by Peter Gumplinger 40 // > change variable name MeanNum 44 // > change variable name MeanNumPhotons -> MeanNumberOfPhotons 41 // 2005-07-28 by Peter Gumplinger 45 // 2005-07-28 by Peter Gumplinger 42 // > add G4ProcessType to constru 46 // > add G4ProcessType to constructor 43 // 2001-09-17, migration of Mater << 47 // 2001-09-17, migration of Materials to pure STL (mma) 44 // 2000-11-12 by Peter Gumplinger 48 // 2000-11-12 by Peter Gumplinger 45 // > add check on CerenkovAngleIn 49 // > add check on CerenkovAngleIntegrals->IsFilledVectorExist() 46 // in method GetAverageNumberOfPh << 50 // in method GetAverageNumberOfPhotons 47 // > and a test for MeanNumberOfP 51 // > and a test for MeanNumberOfPhotons <= 0.0 in DoIt 48 // 2000-09-18 by Peter Gumplinger 52 // 2000-09-18 by Peter Gumplinger 49 // > change: aSecondaryPosition=x 53 // > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition(); 50 // aSecondaryTrack->Set 54 // aSecondaryTrack->SetTouchable(0); 51 // 1999-10-29 by Peter Gumplinger 55 // 1999-10-29 by Peter Gumplinger 52 // > change: == into <= in GetCon 56 // > change: == into <= in GetContinuousStepLimit 53 // 1997-08-08 by Peter Gumplinger 57 // 1997-08-08 by Peter Gumplinger 54 // > add protection against /0 58 // > add protection against /0 55 // > G4MaterialPropertiesTable; n 59 // > G4MaterialPropertiesTable; new physics/tracking scheme 56 // 60 // >> 61 // mail: gum@triumf.ca >> 62 // 57 ////////////////////////////////////////////// 63 //////////////////////////////////////////////////////////////////////// 58 64 59 #include "G4Cerenkov.hh" << 60 << 61 #include "G4ios.hh" 65 #include "G4ios.hh" >> 66 #include "G4Poisson.hh" >> 67 #include "G4EmProcessSubType.hh" >> 68 62 #include "G4LossTableManager.hh" 69 #include "G4LossTableManager.hh" 63 #include "G4Material.hh" << 64 #include "G4MaterialCutsCouple.hh" 70 #include "G4MaterialCutsCouple.hh" 65 #include "G4MaterialPropertiesTable.hh" << 66 #include "G4OpticalParameters.hh" << 67 #include "G4OpticalPhoton.hh" << 68 #include "G4ParticleDefinition.hh" 71 #include "G4ParticleDefinition.hh" 69 #include "G4ParticleMomentum.hh" << 70 #include "G4PhysicalConstants.hh" << 71 #include "G4PhysicsFreeVector.hh" << 72 #include "G4Poisson.hh" << 73 #include "G4SystemOfUnits.hh" << 74 #include "G4ThreeVector.hh" << 75 #include "Randomize.hh" << 76 #include "G4PhysicsModelCatalog.hh" << 77 72 78 //....oooOO0OOooo........oooOO0OOooo........oo << 73 #include "G4Cerenkov.hh" >> 74 >> 75 using namespace std; >> 76 >> 77 ///////////////////////// >> 78 // Class Implementation >> 79 ///////////////////////// >> 80 >> 81 ////////////// >> 82 // Operators >> 83 ////////////// >> 84 >> 85 // G4Cerenkov::operator=(const G4Cerenkov &right) >> 86 // { >> 87 // } >> 88 >> 89 ///////////////// >> 90 // Constructors >> 91 ///////////////// >> 92 79 G4Cerenkov::G4Cerenkov(const G4String& process 93 G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type) 80 : G4VProcess(processName, type) << 94 : G4VProcess(processName, type) 81 , fNumPhotons(0) << 82 { 95 { 83 secID = G4PhysicsModelCatalog::GetModelID("m << 96 G4cout << "G4Cerenkov::G4Cerenkov constructor" << G4endl; 84 SetProcessSubType(fCerenkov); << 97 G4cout << "NOTE: this is now a G4VProcess!" << G4endl; >> 98 G4cout << "Required change in UserPhysicsList: " << G4endl; >> 99 G4cout << "change: pmanager->AddContinuousProcess(theCerenkovProcess);" << G4endl; >> 100 G4cout << "to: pmanager->AddProcess(theCerenkovProcess);" << G4endl; >> 101 G4cout << " pmanager->SetProcessOrdering(theCerenkovProcess,idxPostStep);" << G4endl; 85 102 86 thePhysicsTable = nullptr; << 103 SetProcessSubType(fCerenkov); 87 104 88 if(verboseLevel > 0) << 105 fTrackSecondariesFirst = false; 89 { << 106 fMaxBetaChange = 0.; 90 G4cout << GetProcessName() << " is created << 107 fMaxPhotons = 0; 91 } << 92 Initialise(); << 93 } << 94 108 95 //....oooOO0OOooo........oooOO0OOooo........oo << 109 thePhysicsTable = NULL; 96 G4Cerenkov::~G4Cerenkov() << 97 { << 98 if(thePhysicsTable != nullptr) << 99 { << 100 thePhysicsTable->clearAndDestroy(); << 101 delete thePhysicsTable; << 102 } << 103 } << 104 110 105 void G4Cerenkov::ProcessDescription(std::ostre << 111 if (verboseLevel>0) { 106 { << 112 G4cout << GetProcessName() << " is created " << G4endl; 107 out << "The Cerenkov effect simulates optica << 113 } 108 out << "passage of charged particles through << 109 out << "to have the property RINDEX (refract << 110 G4VProcess::DumpInfo(); << 111 << 112 G4OpticalParameters* params = G4OpticalParam << 113 out << "Maximum beta change per step: " << p << 114 out << "Maximum photons per step: " << param << 115 out << "Track secondaries first: " << 116 << params->GetCerenkovTrackSecondariesFi << 117 out << "Stack photons: " << params->GetCeren << 118 out << "Verbose level: " << params->GetCeren << 119 } << 120 114 121 //....oooOO0OOooo........oooOO0OOooo........oo << 115 BuildThePhysicsTable(); 122 G4bool G4Cerenkov::IsApplicable(const G4Partic << 123 { << 124 return (aParticleType.GetPDGCharge() != 0.0 << 125 aParticleType.GetPDGMass() != 0.0 && << 126 aParticleType.GetParticleName() != " << 127 !aParticleType.IsShortLived()) << 128 ? true << 129 : false; << 130 } 116 } 131 117 132 //....oooOO0OOooo........oooOO0OOooo........oo << 118 // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right) 133 void G4Cerenkov::Initialise() << 119 // { >> 120 // } >> 121 >> 122 //////////////// >> 123 // Destructors >> 124 //////////////// >> 125 >> 126 G4Cerenkov::~G4Cerenkov() 134 { 127 { 135 G4OpticalParameters* params = G4OpticalParam << 128 if (thePhysicsTable != NULL) { 136 SetMaxBetaChangePerStep(params->GetCerenkovM << 129 thePhysicsTable->clearAndDestroy(); 137 SetMaxNumPhotonsPerStep(params->GetCerenkovM << 130 delete thePhysicsTable; 138 SetTrackSecondariesFirst(params->GetCerenkov << 131 } 139 SetStackPhotons(params->GetCerenkovStackPhot << 140 SetVerboseLevel(params->GetCerenkovVerboseLe << 141 } 132 } 142 133 143 //....oooOO0OOooo........oooOO0OOooo........oo << 134 //////////// 144 void G4Cerenkov::BuildPhysicsTable(const G4Par << 135 // Methods >> 136 //////////// >> 137 >> 138 // PostStepDoIt >> 139 // ------------- >> 140 // >> 141 G4VParticleChange* >> 142 G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) >> 143 >> 144 // This routine is called for each tracking Step of a charged particle >> 145 // in a radiator. A Poisson-distributed number of photons is generated >> 146 // according to the Cerenkov formula, distributed evenly along the track >> 147 // segment and uniformly azimuth w.r.t. the particle direction. The >> 148 // parameters are then transformed into the Master Reference System, and >> 149 // they are added to the particle change. >> 150 145 { 151 { 146 if(thePhysicsTable) << 152 ////////////////////////////////////////////////////// 147 return; << 153 // Should we ensure that the material is dispersive? >> 154 ////////////////////////////////////////////////////// >> 155 >> 156 aParticleChange.Initialize(aTrack); >> 157 >> 158 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 159 const G4Material* aMaterial = aTrack.GetMaterial(); >> 160 >> 161 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint(); >> 162 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); >> 163 >> 164 G4ThreeVector x0 = pPreStepPoint->GetPosition(); >> 165 G4ThreeVector p0 = aStep.GetDeltaPosition().unit(); >> 166 G4double t0 = pPreStepPoint->GetGlobalTime(); 148 167 149 const G4MaterialTable* theMaterialTable = G4 << 168 G4MaterialPropertiesTable* aMaterialPropertiesTable = 150 std::size_t numOfMaterials = G4 << 169 aMaterial->GetMaterialPropertiesTable(); >> 170 if (!aMaterialPropertiesTable) return pParticleChange; 151 171 152 thePhysicsTable = new G4PhysicsTable(numOfMa << 172 const G4MaterialPropertyVector* Rindex = >> 173 aMaterialPropertiesTable->GetProperty("RINDEX"); >> 174 if (!Rindex) return pParticleChange; >> 175 >> 176 // particle charge >> 177 const G4double charge = aParticle->GetDefinition()->GetPDGCharge(); >> 178 >> 179 // particle beta >> 180 const G4double beta = (pPreStepPoint ->GetBeta() + >> 181 pPostStepPoint->GetBeta())/2.; >> 182 >> 183 G4double MeanNumberOfPhotons = >> 184 GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex); >> 185 >> 186 if (MeanNumberOfPhotons <= 0.0) { >> 187 >> 188 // return unchanged particle and no secondaries >> 189 >> 190 aParticleChange.SetNumberOfSecondaries(0); >> 191 >> 192 return pParticleChange; 153 193 154 // loop over materials << 155 for(std::size_t i = 0; i < numOfMaterials; + << 156 { << 157 G4PhysicsFreeVector* cerenkovIntegral = nu << 158 << 159 // Retrieve vector of refraction indices f << 160 // from the material's optical properties << 161 G4Material* aMaterial = (*theMate << 162 G4MaterialPropertiesTable* MPT = aMaterial << 163 << 164 if(MPT) << 165 { << 166 cerenkovIntegral << 167 G4MaterialPropertyVector* refractiveInde << 168 << 169 if(refractiveIndex) << 170 { << 171 // Retrieve the first refraction index << 172 // of (photon energy, refraction index << 173 G4double currentRI = (*refractiveIndex << 174 if(currentRI > 1.0) << 175 { << 176 // Create first (photon energy, Cere << 177 G4double currentPM = refractiveInde << 178 G4double currentCAI = 0.0; << 179 << 180 cerenkovIntegral->InsertValues(curre << 181 << 182 // Set previous values to current on << 183 G4double prevPM = currentPM; << 184 G4double prevCAI = currentCAI; << 185 G4double prevRI = currentRI; << 186 << 187 // loop over all (photon energy, ref << 188 // pairs stored for this material << 189 for(std::size_t ii = 1; ii < refract << 190 { << 191 currentRI = (*refractiveIndex)[ii << 192 currentPM = refractiveIndex->Ener << 193 currentCAI = prevCAI + (currentPM << 194 (1.0 / (p << 195 1.0 / (c << 196 << 197 cerenkovIntegral->InsertValues(cur << 198 << 199 prevPM = currentPM; << 200 prevCAI = currentCAI; << 201 prevRI = currentRI; << 202 } << 203 } 194 } 204 } << 205 } << 206 195 207 // The Cerenkov integral for a given mater << 196 G4double step_length; 208 // thePhysicsTable according to the positi << 197 step_length = aStep.GetStepLength(); 209 // the material table. << 210 thePhysicsTable->insertAt(i, cerenkovInteg << 211 } << 212 } << 213 198 214 //....oooOO0OOooo........oooOO0OOooo........oo << 199 MeanNumberOfPhotons = MeanNumberOfPhotons * step_length; 215 G4VParticleChange* G4Cerenkov::PostStepDoIt(co << 216 co << 217 // This routine is called for each tracking St << 218 // in a radiator. A Poisson-distributed number << 219 // according to the Cerenkov formula, distribu << 220 // segment and uniformly azimuth w.r.t. the pa << 221 // parameters are then transformed into the Ma << 222 // they are added to the particle change. << 223 200 224 { << 201 G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons); 225 aParticleChange.Initialize(aTrack); << 202 >> 203 if (NumPhotons <= 0) { >> 204 >> 205 // return unchanged particle and no secondaries >> 206 >> 207 aParticleChange.SetNumberOfSecondaries(0); >> 208 >> 209 return pParticleChange; >> 210 } >> 211 >> 212 //////////////////////////////////////////////////////////////// >> 213 >> 214 aParticleChange.SetNumberOfSecondaries(NumPhotons); >> 215 >> 216 if (fTrackSecondariesFirst) { >> 217 if (aTrack.GetTrackStatus() == fAlive ) >> 218 aParticleChange.ProposeTrackStatus(fSuspend); >> 219 } >> 220 >> 221 //////////////////////////////////////////////////////////////// >> 222 >> 223 G4double Pmin = Rindex->GetMinPhotonEnergy(); >> 224 G4double Pmax = Rindex->GetMaxPhotonEnergy(); >> 225 G4double dp = Pmax - Pmin; >> 226 >> 227 G4double nMax = Rindex->GetMaxProperty(); >> 228 >> 229 G4double BetaInverse = 1./beta; >> 230 >> 231 G4double maxCos = BetaInverse / nMax; >> 232 G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos); >> 233 >> 234 const G4double beta1 = pPreStepPoint ->GetBeta(); >> 235 const G4double beta2 = pPostStepPoint->GetBeta(); >> 236 >> 237 G4double MeanNumberOfPhotons1 = >> 238 GetAverageNumberOfPhotons(charge,beta1,aMaterial,Rindex); >> 239 G4double MeanNumberOfPhotons2 = >> 240 GetAverageNumberOfPhotons(charge,beta2,aMaterial,Rindex); >> 241 >> 242 for (G4int i = 0; i < NumPhotons; i++) { >> 243 >> 244 // Determine photon energy >> 245 >> 246 G4double rand; >> 247 G4double sampledEnergy, sampledRI; >> 248 G4double cosTheta, sin2Theta; >> 249 >> 250 // sample an energy >> 251 >> 252 do { >> 253 rand = G4UniformRand(); >> 254 sampledEnergy = Pmin + rand * dp; >> 255 sampledRI = Rindex->GetProperty(sampledEnergy); >> 256 cosTheta = BetaInverse / sampledRI; >> 257 >> 258 sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta); >> 259 rand = G4UniformRand(); >> 260 >> 261 } while (rand*maxSin2 > sin2Theta); >> 262 >> 263 // Generate random position of photon on cone surface >> 264 // defined by Theta >> 265 >> 266 rand = G4UniformRand(); >> 267 >> 268 G4double phi = twopi*rand; >> 269 G4double sinPhi = sin(phi); >> 270 G4double cosPhi = cos(phi); >> 271 >> 272 // calculate x,y, and z components of photon energy >> 273 // (in coord system with primary particle direction >> 274 // aligned with the z axis) >> 275 >> 276 G4double sinTheta = sqrt(sin2Theta); >> 277 G4double px = sinTheta*cosPhi; >> 278 G4double py = sinTheta*sinPhi; >> 279 G4double pz = cosTheta; >> 280 >> 281 // Create photon momentum direction vector >> 282 // The momentum direction is still with respect >> 283 // to the coordinate system where the primary >> 284 // particle direction is aligned with the z axis >> 285 >> 286 G4ParticleMomentum photonMomentum(px, py, pz); >> 287 >> 288 // Rotate momentum direction back to global reference >> 289 // system >> 290 >> 291 photonMomentum.rotateUz(p0); >> 292 >> 293 // Determine polarization of new photon >> 294 >> 295 G4double sx = cosTheta*cosPhi; >> 296 G4double sy = cosTheta*sinPhi; >> 297 G4double sz = -sinTheta; >> 298 >> 299 G4ThreeVector photonPolarization(sx, sy, sz); >> 300 >> 301 // Rotate back to original coord system >> 302 >> 303 photonPolarization.rotateUz(p0); >> 304 >> 305 // Generate a new photon: >> 306 >> 307 G4DynamicParticle* aCerenkovPhoton = >> 308 new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(), >> 309 photonMomentum); >> 310 aCerenkovPhoton->SetPolarization >> 311 (photonPolarization.x(), >> 312 photonPolarization.y(), >> 313 photonPolarization.z()); >> 314 >> 315 aCerenkovPhoton->SetKineticEnergy(sampledEnergy); >> 316 >> 317 // Generate new G4Track object: >> 318 >> 319 G4double delta, NumberOfPhotons, N; >> 320 >> 321 do { >> 322 rand = G4UniformRand(); >> 323 delta = rand * aStep.GetStepLength(); >> 324 NumberOfPhotons = MeanNumberOfPhotons1 - delta * >> 325 (MeanNumberOfPhotons1-MeanNumberOfPhotons2)/ >> 326 aStep.GetStepLength(); >> 327 N = G4UniformRand() * >> 328 std::max(MeanNumberOfPhotons1,MeanNumberOfPhotons2); >> 329 } while (N > NumberOfPhotons); >> 330 >> 331 G4double deltaTime = delta / >> 332 ((pPreStepPoint->GetVelocity()+ >> 333 pPostStepPoint->GetVelocity())/2.); >> 334 >> 335 G4double aSecondaryTime = t0 + deltaTime; 226 336 227 const G4DynamicParticle* aParticle = aTrack. << 337 G4ThreeVector aSecondaryPosition = 228 const G4Material* aMaterial = aTrack. << 338 x0 + rand * aStep.GetDeltaPosition(); 229 339 230 G4StepPoint* pPreStepPoint = aStep.GetPreSt << 340 G4Track* aSecondaryTrack = 231 G4StepPoint* pPostStepPoint = aStep.GetPostS << 341 new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition); 232 342 233 G4ThreeVector x0 = pPreStepPoint->GetPositio << 343 aSecondaryTrack->SetTouchableHandle( 234 G4ThreeVector p0 = aStep.GetDeltaPosition(). << 344 aStep.GetPreStepPoint()->GetTouchableHandle()); 235 G4double t0 = pPreStepPoint->GetGlobalT << 236 << 237 G4MaterialPropertiesTable* MPT = aMaterial-> << 238 if(!MPT) << 239 return pParticleChange; << 240 << 241 G4MaterialPropertyVector* Rindex = MPT->GetP << 242 if(!Rindex) << 243 return pParticleChange; << 244 << 245 G4double charge = aParticle->GetDefinition() << 246 << 247 G4double beta1 = pPreStepPoint->GetBeta(); << 248 G4double beta2 = pPostStepPoint->GetBeta(); << 249 G4double beta = (beta1 + beta2) * 0.5; << 250 << 251 G4double MeanNumberOfPhotons = << 252 GetAverageNumberOfPhotons(charge, beta, aM << 253 G4double MeanNumberOfPhotons1 = << 254 GetAverageNumberOfPhotons(charge, beta1, a << 255 G4double MeanNumberOfPhotons2 = << 256 GetAverageNumberOfPhotons(charge, beta2, a << 257 << 258 if(MeanNumberOfPhotons <= 0.0) << 259 { << 260 // return unchanged particle and no second << 261 aParticleChange.SetNumberOfSecondaries(0); << 262 return pParticleChange; << 263 } << 264 << 265 MeanNumberOfPhotons *= aStep.GetStepLength() << 266 fNumPhotons = (G4int) G4Poisson(Mean << 267 << 268 // third condition added to prevent infinite << 269 // see bugzilla 2555 << 270 if(fNumPhotons <= 0 || !fStackingFlag || << 271 std::max(MeanNumberOfPhotons1, MeanNumber << 272 { << 273 // return unchanged particle and no second << 274 aParticleChange.SetNumberOfSecondaries(0); << 275 return pParticleChange; << 276 } << 277 << 278 //////////////////////////////////////////// << 279 aParticleChange.SetNumberOfSecondaries(fNumP << 280 << 281 if(fTrackSecondariesFirst) << 282 { << 283 if(aTrack.GetTrackStatus() == fAlive) << 284 aParticleChange.ProposeTrackStatus(fSusp << 285 } << 286 << 287 //////////////////////////////////////////// << 288 G4double Pmin = Rindex->Energy(0); << 289 G4double Pmax = Rindex->GetMaxEnergy(); << 290 G4double dp = Pmax - Pmin; << 291 << 292 G4double nMax = Rindex->GetMaxValue() << 293 G4double BetaInverse = 1. / beta; << 294 << 295 G4double maxCos = BetaInverse / nMax; << 296 G4double maxSin2 = (1.0 - maxCos) * (1.0 + m << 297 << 298 for(G4int i = 0; i < fNumPhotons; ++i) << 299 { << 300 // Determine photon energy << 301 G4double rand; << 302 G4double sampledEnergy, sampledRI; << 303 G4double cosTheta, sin2Theta; << 304 << 305 // sample an energy << 306 do << 307 { << 308 rand = G4UniformRand(); << 309 sampledEnergy = Pmin + rand * dp; << 310 sampledRI = Rindex->Value(sampledEne << 311 cosTheta = BetaInverse / sampledRI; << 312 << 313 sin2Theta = (1.0 - cosTheta) * (1.0 + co << 314 rand = G4UniformRand(); << 315 << 316 // Loop checking, 07-Aug-2015, Vladimir << 317 } while(rand * maxSin2 > sin2Theta); << 318 << 319 // Create photon momentum direction vector << 320 // with respect to the coordinate system w << 321 // direction is aligned with the z axis << 322 rand = G4UniformRand(); << 323 G4double phi = twopi * rand; << 324 G4double sinPhi = std::sin(phi); << 325 G4double cosPhi = std::cos(phi); << 326 G4double sinTheta = std::sqrt(sin2Theta); << 327 G4ParticleMomentum photonMomentum(sinTheta << 328 cosTheta << 329 << 330 // Rotate momentum direction back to globa << 331 photonMomentum.rotateUz(p0); << 332 << 333 // Determine polarization of new photon << 334 G4ThreeVector photonPolarization(cosTheta << 335 -sinTheta << 336 << 337 // Rotate back to original coord system << 338 photonPolarization.rotateUz(p0); << 339 << 340 // Generate a new photon: << 341 auto aCerenkovPhoton = << 342 new G4DynamicParticle(G4OpticalPhoton::O << 343 << 344 aCerenkovPhoton->SetPolarization(photonPol << 345 aCerenkovPhoton->SetKineticEnergy(sampledE << 346 << 347 G4double NumberOfPhotons, N; << 348 << 349 do << 350 { << 351 rand = G4UniformRand(); << 352 NumberOfPhotons = MeanNumberOfPhotons1 - << 353 rand * (MeanNumberOfPh << 354 N = << 355 G4UniformRand() * std::max(MeanNumberO << 356 // Loop checking, 07-Aug-2015, Vladimir << 357 } while(N > NumberOfPhotons); << 358 << 359 G4double delta = rand * aStep.GetStepLengt << 360 G4double deltaTime = << 361 delta / << 362 (pPreStepPoint->GetVelocity() + << 363 rand * (pPostStepPoint->GetVelocity() - << 364 0.5); << 365 << 366 G4double aSecondaryTime = t0 + de << 367 G4ThreeVector aSecondaryPosition = x0 + ra << 368 << 369 // Generate new G4Track object: << 370 G4Track* aSecondaryTrack = << 371 new G4Track(aCerenkovPhoton, aSecondaryT << 372 << 373 aSecondaryTrack->SetTouchableHandle( << 374 aStep.GetPreStepPoint()->GetTouchableHan << 375 aSecondaryTrack->SetParentID(aTrack.GetTra << 376 aSecondaryTrack->SetCreatorModelID(secID); << 377 aParticleChange.AddSecondary(aSecondaryTra << 378 } << 379 << 380 if(verboseLevel > 1) << 381 { << 382 G4cout << "\n Exiting from G4Cerenkov::DoI << 383 << aParticleChange.GetNumberOfSecon << 384 } << 385 345 386 return pParticleChange; << 346 aSecondaryTrack->SetParentID(aTrack.GetTrackID()); >> 347 >> 348 aParticleChange.AddSecondary(aSecondaryTrack); >> 349 } >> 350 >> 351 if (verboseLevel>0) { >> 352 G4cout << "\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = " >> 353 << aParticleChange.GetNumberOfSecondaries() << G4endl; >> 354 } >> 355 >> 356 return pParticleChange; 387 } 357 } 388 358 389 //....oooOO0OOooo........oooOO0OOooo........oo << 359 // BuildThePhysicsTable for the Cerenkov process 390 void G4Cerenkov::PreparePhysicsTable(const G4P << 360 // --------------------------------------------- >> 361 // >> 362 >> 363 void G4Cerenkov::BuildThePhysicsTable() 391 { 364 { 392 Initialise(); << 365 if (thePhysicsTable) return; >> 366 >> 367 const G4MaterialTable* theMaterialTable= >> 368 G4Material::GetMaterialTable(); >> 369 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); >> 370 >> 371 // create new physics table >> 372 >> 373 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 374 >> 375 // loop for materials >> 376 >> 377 for (G4int i=0 ; i < numOfMaterials; i++) >> 378 { >> 379 G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector = >> 380 new G4PhysicsOrderedFreeVector(); >> 381 >> 382 // Retrieve vector of refraction indices for the material >> 383 // from the material's optical properties table >> 384 >> 385 G4Material* aMaterial = (*theMaterialTable)[i]; >> 386 >> 387 G4MaterialPropertiesTable* aMaterialPropertiesTable = >> 388 aMaterial->GetMaterialPropertiesTable(); >> 389 >> 390 if (aMaterialPropertiesTable) { >> 391 >> 392 G4MaterialPropertyVector* theRefractionIndexVector = >> 393 aMaterialPropertiesTable->GetProperty("RINDEX"); >> 394 >> 395 if (theRefractionIndexVector) { >> 396 >> 397 // Retrieve the first refraction index in vector >> 398 // of (photon energy, refraction index) pairs >> 399 >> 400 theRefractionIndexVector->ResetIterator(); >> 401 ++(*theRefractionIndexVector); // advance to 1st entry >> 402 >> 403 G4double currentRI = theRefractionIndexVector-> >> 404 GetProperty(); >> 405 >> 406 if (currentRI > 1.0) { >> 407 >> 408 // Create first (photon energy, Cerenkov Integral) >> 409 // pair >> 410 >> 411 G4double currentPM = theRefractionIndexVector-> >> 412 GetPhotonEnergy(); >> 413 G4double currentCAI = 0.0; >> 414 >> 415 aPhysicsOrderedFreeVector-> >> 416 InsertValues(currentPM , currentCAI); >> 417 >> 418 // Set previous values to current ones prior to loop >> 419 >> 420 G4double prevPM = currentPM; >> 421 G4double prevCAI = currentCAI; >> 422 G4double prevRI = currentRI; >> 423 >> 424 // loop over all (photon energy, refraction index) >> 425 // pairs stored for this material >> 426 >> 427 while(++(*theRefractionIndexVector)) >> 428 { >> 429 currentRI=theRefractionIndexVector-> >> 430 GetProperty(); >> 431 >> 432 currentPM = theRefractionIndexVector-> >> 433 GetPhotonEnergy(); >> 434 >> 435 currentCAI = 0.5*(1.0/(prevRI*prevRI) + >> 436 1.0/(currentRI*currentRI)); >> 437 >> 438 currentCAI = prevCAI + >> 439 (currentPM - prevPM) * currentCAI; >> 440 >> 441 aPhysicsOrderedFreeVector-> >> 442 InsertValues(currentPM, currentCAI); >> 443 >> 444 prevPM = currentPM; >> 445 prevCAI = currentCAI; >> 446 prevRI = currentRI; >> 447 } >> 448 >> 449 } >> 450 } >> 451 } >> 452 >> 453 // The Cerenkov integral for a given material >> 454 // will be inserted in thePhysicsTable >> 455 // according to the position of the material in >> 456 // the material table. >> 457 >> 458 thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector); >> 459 >> 460 } 393 } 461 } 394 462 395 //....oooOO0OOooo........oooOO0OOooo........oo << 463 // GetMeanFreePath 396 G4double G4Cerenkov::GetMeanFreePath(const G4T << 464 // --------------- 397 G4ForceCo << 465 // >> 466 >> 467 G4double G4Cerenkov::GetMeanFreePath(const G4Track&, >> 468 G4double, >> 469 G4ForceCondition*) 398 { 470 { 399 return 1.; << 471 return 1.; 400 } 472 } 401 473 402 //....oooOO0OOooo........oooOO0OOooo........oo << 403 G4double G4Cerenkov::PostStepGetPhysicalIntera 474 G4double G4Cerenkov::PostStepGetPhysicalInteractionLength( 404 const G4Track& aTrack, G4double, G4ForceCond << 475 const G4Track& aTrack, 405 { << 476 G4double, 406 *condition = NotForced; << 477 G4ForceCondition* condition) 407 G4double StepLimit = DBL_MAX; << 478 { 408 fNumPhotons = 0; << 479 *condition = NotForced; 409 << 480 G4double StepLimit = DBL_MAX; 410 const G4Material* aMaterial = aTrack.GetMate << 481 411 std::size_t materialIndex = aMaterial->Get << 482 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 412 << 483 const G4Material* aMaterial = aTrack.GetMaterial(); 413 // If Physics Vector is not defined no Ceren << 484 const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple(); 414 if(!(*thePhysicsTable)[materialIndex]) << 485 415 { << 486 const G4double kineticEnergy = aParticle->GetKineticEnergy(); 416 return StepLimit; << 487 const G4ParticleDefinition* particleType = aParticle->GetDefinition(); 417 } << 488 const G4double mass = particleType->GetPDGMass(); 418 << 489 419 const G4DynamicParticle* aParticle = aTrack. << 490 // particle beta 420 const G4MaterialCutsCouple* couple = aTrack. << 491 const G4double beta = aParticle->GetTotalMomentum() / 421 << 492 aParticle->GetTotalEnergy(); 422 G4double kineticEnergy = a << 493 // particle gamma 423 const G4ParticleDefinition* particleType = a << 494 const G4double gamma = 1./std::sqrt(1.-beta*beta); 424 G4double mass = p << 495 425 << 496 G4MaterialPropertiesTable* aMaterialPropertiesTable = 426 G4double beta = aParticle->GetTotalMomentum << 497 aMaterial->GetMaterialPropertiesTable(); 427 G4double gamma = aParticle->GetTotalEnergy() << 498 428 << 499 const G4MaterialPropertyVector* Rindex = NULL; 429 G4MaterialPropertiesTable* aMaterialProperti << 500 430 aMaterial->GetMaterialPropertiesTable(); << 501 if (aMaterialPropertiesTable) 431 << 502 Rindex = aMaterialPropertiesTable->GetProperty("RINDEX"); 432 G4MaterialPropertyVector* Rindex = nullptr; << 503 433 << 504 G4double nMax; 434 if(aMaterialPropertiesTable) << 505 if (Rindex) { 435 Rindex = aMaterialPropertiesTable->GetProp << 506 nMax = Rindex->GetMaxProperty(); 436 << 507 } else { 437 G4double nMax; << 508 return StepLimit; 438 if(Rindex) << 509 } 439 { << 510 440 nMax = Rindex->GetMaxValue(); << 511 G4double BetaMin = 1./nMax; 441 } << 512 if ( BetaMin >= 1. ) return StepLimit; 442 else << 513 443 { << 514 G4double GammaMin = 1./std::sqrt(1.-BetaMin*BetaMin); 444 return StepLimit; << 515 445 } << 516 if (gamma < GammaMin ) return StepLimit; 446 << 447 G4double BetaMin = 1. / nMax; << 448 if(BetaMin >= 1.) << 449 return StepLimit; << 450 << 451 G4double GammaMin = 1. / std::sqrt(1. - Beta << 452 if(gamma < GammaMin) << 453 return StepLimit; << 454 << 455 G4double kinEmin = mass * (GammaMin - 1.); << 456 G4double RangeMin = << 457 G4LossTableManager::Instance()->GetRange(p << 458 G4double Range = G4LossTableManager::Instanc << 459 particleType, kineticEnergy, couple); << 460 G4double Step = Range - RangeMin; << 461 << 462 // If the step is smaller than G4ThreeVector << 463 // that the particle does not move. See bug << 464 static const G4double minAllowedStep = G4Thr << 465 if(Step < minAllowedStep) << 466 return StepLimit; << 467 << 468 if(Step < StepLimit) << 469 StepLimit = Step; << 470 << 471 // If user has defined an average maximum nu << 472 // a Step, then calculate the Step length fo << 473 if(fMaxPhotons > 0) << 474 { << 475 const G4double charge = aParticle->GetDefi << 476 G4double MeanNumberOfPhotons = << 477 GetAverageNumberOfPhotons(charge, beta, << 478 Step = 0.; << 479 if(MeanNumberOfPhotons > 0.0) << 480 Step = fMaxPhotons / MeanNumberOfPhotons << 481 if(Step > 0. && Step < StepLimit) << 482 StepLimit = Step; << 483 } << 484 << 485 // If user has defined an maximum allowed ch << 486 if(fMaxBetaChange > 0.) << 487 { << 488 G4double dedx = G4LossTableManager::Instan << 489 particleType, kineticEnergy, couple); << 490 G4double deltaGamma = << 491 gamma - 1. / std::sqrt(1. - beta * beta << 492 (1. - fMax << 493 << 494 Step = mass * deltaGamma / dedx; << 495 if(Step > 0. && Step < StepLimit) << 496 StepLimit = Step; << 497 } << 498 517 499 *condition = StronglyForced; << 518 G4double kinEmin = mass*(GammaMin-1.); 500 return StepLimit; << 519 >> 520 G4double RangeMin = G4LossTableManager::Instance()-> >> 521 GetRange(particleType, >> 522 kinEmin, >> 523 couple); >> 524 G4double Range = G4LossTableManager::Instance()-> >> 525 GetRange(particleType, >> 526 kineticEnergy, >> 527 couple); >> 528 >> 529 G4double Step = Range - RangeMin; >> 530 if (Step < 1.*um ) return StepLimit; >> 531 >> 532 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 533 >> 534 // If user has defined an average maximum number of photons to >> 535 // be generated in a Step, then calculate the Step length for >> 536 // that number of photons. >> 537 >> 538 if (fMaxPhotons > 0) { >> 539 >> 540 // particle charge >> 541 const G4double charge = aParticle-> >> 542 GetDefinition()->GetPDGCharge(); >> 543 >> 544 G4double MeanNumberOfPhotons = >> 545 GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex); >> 546 >> 547 G4double Step = 0.; >> 548 if (MeanNumberOfPhotons > 0.0) Step = fMaxPhotons / >> 549 MeanNumberOfPhotons; >> 550 >> 551 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 552 } >> 553 >> 554 // If user has defined an maximum allowed change in beta per step >> 555 if (fMaxBetaChange > 0.) { >> 556 >> 557 G4double dedx = G4LossTableManager::Instance()-> >> 558 GetDEDX(particleType, >> 559 kineticEnergy, >> 560 couple); >> 561 >> 562 G4double deltaGamma = gamma - >> 563 1./std::sqrt(1.-beta*beta* >> 564 (1.-fMaxBetaChange)* >> 565 (1.-fMaxBetaChange)); >> 566 >> 567 G4double Step = mass * deltaGamma / dedx; >> 568 >> 569 if (Step > 0. && Step < StepLimit) StepLimit = Step; >> 570 >> 571 } >> 572 >> 573 *condition = StronglyForced; >> 574 return StepLimit; 501 } 575 } 502 576 503 //....oooOO0OOooo........oooOO0OOooo........oo << 577 // GetAverageNumberOfPhotons 504 G4double G4Cerenkov::GetAverageNumberOfPhotons << 578 // ------------------------- 505 const G4double charge, const G4double beta, << 506 G4MaterialPropertyVector* Rindex) const << 507 // This routine computes the number of Cerenko 579 // This routine computes the number of Cerenkov photons produced per 508 // Geant4-unit (millimeter) in the current med << 580 // GEANT-unit (millimeter) in the current medium. >> 581 // ^^^^^^^^^^ >> 582 >> 583 G4double >> 584 G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge, >> 585 const G4double beta, >> 586 const G4Material* aMaterial, >> 587 const G4MaterialPropertyVector* Rindex) const 509 { 588 { 510 constexpr G4double Rfact = 369.81 / (eV * cm << 589 const G4double Rfact = 369.81/(eV * cm); 511 if(beta <= 0.0) << 512 return 0.0; << 513 G4double BetaInverse = 1. / beta; << 514 << 515 // Vectors used in computation of Cerenkov A << 516 // - Refraction Indices for the current mat << 517 // - new G4PhysicsFreeVector allocated to h << 518 std::size_t materialIndex = aMaterial->GetIn << 519 << 520 // Retrieve the Cerenkov Angle Integrals for << 521 G4PhysicsVector* CerenkovAngleIntegrals = (( << 522 << 523 std::size_t length = CerenkovAngleIntegrals- << 524 if(0 == length) << 525 return 0.0; << 526 << 527 // Min and Max photon energies << 528 G4double Pmin = Rindex->Energy(0); << 529 G4double Pmax = Rindex->GetMaxEnergy(); << 530 << 531 // Min and Max Refraction Indices << 532 G4double nMin = Rindex->GetMinValue(); << 533 G4double nMax = Rindex->GetMaxValue(); << 534 << 535 // Max Cerenkov Angle Integral << 536 G4double CAImax = (*CerenkovAngleIntegrals)[ << 537 << 538 G4double dp, ge; << 539 // If n(Pmax) < 1/Beta -- no photons generat << 540 if(nMax < BetaInverse) << 541 { << 542 dp = 0.0; << 543 ge = 0.0; << 544 } << 545 // otherwise if n(Pmin) >= 1/Beta -- photons << 546 else if(nMin > BetaInverse) << 547 { << 548 dp = Pmax - Pmin; << 549 ge = CAImax; << 550 } << 551 // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Bet << 552 // that the value of n(P) == 1/Beta. Interpo << 553 // GetEnergy() and Value() methods of the G4 << 554 // the Value() method of G4PhysicsVector. << 555 else << 556 { << 557 Pmin = Rindex->GetEnergy(BetaInverse); << 558 dp = Pmax - Pmin; << 559 << 560 G4double CAImin = CerenkovAngleIntegrals-> << 561 ge = CAImax - CAImin; << 562 << 563 if(verboseLevel > 1) << 564 { << 565 G4cout << "CAImin = " << CAImin << G4end << 566 } << 567 } << 568 << 569 // Calculate number of photons << 570 G4double NumPhotons = Rfact * charge / eplus << 571 (dp - ge * BetaInverse << 572 590 573 return NumPhotons; << 591 if(beta <= 0.0)return 0.0; 574 } << 575 592 576 //....oooOO0OOooo........oooOO0OOooo........oo << 593 G4double BetaInverse = 1./beta; 577 void G4Cerenkov::SetTrackSecondariesFirst(cons << 578 { << 579 fTrackSecondariesFirst = state; << 580 G4OpticalParameters::Instance()->SetCerenkov << 581 fTrackSecondariesFirst); << 582 } << 583 594 584 //....oooOO0OOooo........oooOO0OOooo........oo << 595 // Vectors used in computation of Cerenkov Angle Integral: 585 void G4Cerenkov::SetMaxBetaChangePerStep(const << 596 // - Refraction Indices for the current material 586 { << 597 // - new G4PhysicsOrderedFreeVector allocated to hold CAI's 587 fMaxBetaChange = value * CLHEP::perCent; << 598 588 G4OpticalParameters::Instance()->SetCerenkov << 599 G4int materialIndex = aMaterial->GetIndex(); 589 } << 590 600 591 //....oooOO0OOooo........oooOO0OOooo........oo << 601 // Retrieve the Cerenkov Angle Integrals for this material 592 void G4Cerenkov::SetMaxNumPhotonsPerStep(const << 593 { << 594 fMaxPhotons = NumPhotons; << 595 G4OpticalParameters::Instance()->SetCerenkov << 596 } << 597 602 598 void G4Cerenkov::SetStackPhotons(const G4bool << 603 G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals = 599 { << 604 (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex)); 600 fStackingFlag = stackingFlag; << 601 G4OpticalParameters::Instance()->SetCerenkov << 602 } << 603 605 604 //....oooOO0OOooo........oooOO0OOooo........oo << 606 if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0; 605 void G4Cerenkov::DumpPhysicsTable() const << 606 { << 607 G4cout << "Dump Physics Table!" << G4endl; << 608 for(std::size_t i = 0; i < thePhysicsTable-> << 609 { << 610 (*thePhysicsTable)[i]->DumpValues(); << 611 } << 612 } << 613 607 614 //....oooOO0OOooo........oooOO0OOooo........oo << 608 // Min and Max photon energies 615 void G4Cerenkov::SetVerboseLevel(G4int verbose << 609 G4double Pmin = Rindex->GetMinPhotonEnergy(); 616 { << 610 G4double Pmax = Rindex->GetMaxPhotonEnergy(); 617 verboseLevel = verbose; << 611 618 G4OpticalParameters::Instance()->SetCerenkov << 612 // Min and Max Refraction Indices >> 613 G4double nMin = Rindex->GetMinProperty(); >> 614 G4double nMax = Rindex->GetMaxProperty(); >> 615 >> 616 // Max Cerenkov Angle Integral >> 617 G4double CAImax = CerenkovAngleIntegrals->GetMaxValue(); >> 618 >> 619 G4double dp, ge; >> 620 >> 621 // If n(Pmax) < 1/Beta -- no photons generated >> 622 >> 623 if (nMax < BetaInverse) { >> 624 dp = 0; >> 625 ge = 0; >> 626 } >> 627 >> 628 // otherwise if n(Pmin) >= 1/Beta -- photons generated >> 629 >> 630 else if (nMin > BetaInverse) { >> 631 dp = Pmax - Pmin; >> 632 ge = CAImax; >> 633 } >> 634 >> 635 // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then >> 636 // we need to find a P such that the value of n(P) == 1/Beta. >> 637 // Interpolation is performed by the GetPhotonEnergy() and >> 638 // GetProperty() methods of the G4MaterialPropertiesTable and >> 639 // the GetValue() method of G4PhysicsVector. >> 640 >> 641 else { >> 642 Pmin = Rindex->GetPhotonEnergy(BetaInverse); >> 643 dp = Pmax - Pmin; >> 644 >> 645 // need boolean for current implementation of G4PhysicsVector >> 646 // ==> being phased out >> 647 G4bool isOutRange; >> 648 G4double CAImin = CerenkovAngleIntegrals-> >> 649 GetValue(Pmin, isOutRange); >> 650 ge = CAImax - CAImin; >> 651 >> 652 if (verboseLevel>0) { >> 653 G4cout << "CAImin = " << CAImin << G4endl; >> 654 G4cout << "ge = " << ge << G4endl; >> 655 } >> 656 } >> 657 >> 658 // Calculate number of photons >> 659 G4double NumPhotons = Rfact * charge/eplus * charge/eplus * >> 660 (dp - ge * BetaInverse*BetaInverse); >> 661 >> 662 return NumPhotons; 619 } 663 } 620 664