Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4Cerenkov.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/xrays/src/G4Cerenkov.cc (Version 11.3.0) and /processes/electromagnetic/xrays/src/G4Cerenkov.cc (Version 10.1.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Cerenkov.cc 85355 2014-10-28 09:58:59Z gcosmo $
                                                   >>  28 //
 26 //////////////////////////////////////////////     29 ////////////////////////////////////////////////////////////////////////
 27 // Cerenkov Radiation Class Implementation         30 // Cerenkov Radiation Class Implementation
 28 //////////////////////////////////////////////     31 ////////////////////////////////////////////////////////////////////////
 29 //                                                 32 //
 30 // File:        G4Cerenkov.cc                  <<  33 // File:        G4Cerenkov.cc 
 31 // Description: Discrete Process -- Generation     34 // Description: Discrete Process -- Generation of Cerenkov Photons
 32 // Version:     2.1                                35 // Version:     2.1
 33 // Created:     1996-02-21                     <<  36 // Created:     1996-02-21  
 34 // Author:      Juliet Armstrong                   37 // Author:      Juliet Armstrong
 35 // Updated:     2007-09-30 by Peter Gumplinger     38 // Updated:     2007-09-30 by Peter Gumplinger
 36 //              > change inheritance to G4VDis     39 //              > change inheritance to G4VDiscreteProcess
 37 //              GetContinuousStepLimit -> GetM     40 //              GetContinuousStepLimit -> GetMeanFreePath (StronglyForced)
 38 //              AlongStepDoIt -> PostStepDoIt      41 //              AlongStepDoIt -> PostStepDoIt
 39 //              2005-08-17 by Peter Gumplinger     42 //              2005-08-17 by Peter Gumplinger
 40 //              > change variable name MeanNum     43 //              > change variable name MeanNumPhotons -> MeanNumberOfPhotons
 41 //              2005-07-28 by Peter Gumplinger     44 //              2005-07-28 by Peter Gumplinger
 42 //              > add G4ProcessType to constru     45 //              > add G4ProcessType to constructor
 43 //              2001-09-17, migration of Mater <<  46 //              2001-09-17, migration of Materials to pure STL (mma) 
 44 //              2000-11-12 by Peter Gumplinger     47 //              2000-11-12 by Peter Gumplinger
 45 //              > add check on CerenkovAngleIn     48 //              > add check on CerenkovAngleIntegrals->IsFilledVectorExist()
 46 //              in method GetAverageNumberOfPh <<  49 //              in method GetAverageNumberOfPhotons 
 47 //              > and a test for MeanNumberOfP     50 //              > and a test for MeanNumberOfPhotons <= 0.0 in DoIt
 48 //              2000-09-18 by Peter Gumplinger     51 //              2000-09-18 by Peter Gumplinger
 49 //              > change: aSecondaryPosition=x     52 //              > change: aSecondaryPosition=x0+rand*aStep.GetDeltaPosition();
 50 //                        aSecondaryTrack->Set     53 //                        aSecondaryTrack->SetTouchable(0);
 51 //              1999-10-29 by Peter Gumplinger     54 //              1999-10-29 by Peter Gumplinger
 52 //              > change: == into <= in GetCon     55 //              > change: == into <= in GetContinuousStepLimit
 53 //              1997-08-08 by Peter Gumplinger     56 //              1997-08-08 by Peter Gumplinger
 54 //              > add protection against /0        57 //              > add protection against /0
 55 //              > G4MaterialPropertiesTable; n     58 //              > G4MaterialPropertiesTable; new physics/tracking scheme
 56 //                                                 59 //
                                                   >>  60 // mail:        gum@triumf.ca
                                                   >>  61 //
 57 //////////////////////////////////////////////     62 ////////////////////////////////////////////////////////////////////////
 58                                                    63 
 59 #include "G4Cerenkov.hh"                       << 
 60                                                << 
 61 #include "G4ios.hh"                                64 #include "G4ios.hh"
                                                   >>  65 #include "G4PhysicalConstants.hh"
                                                   >>  66 #include "G4SystemOfUnits.hh"
                                                   >>  67 #include "G4Poisson.hh"
                                                   >>  68 #include "G4EmProcessSubType.hh"
                                                   >>  69 
 62 #include "G4LossTableManager.hh"                   70 #include "G4LossTableManager.hh"
 63 #include "G4Material.hh"                       << 
 64 #include "G4MaterialCutsCouple.hh"                 71 #include "G4MaterialCutsCouple.hh"
 65 #include "G4MaterialPropertiesTable.hh"        << 
 66 #include "G4OpticalParameters.hh"              << 
 67 #include "G4OpticalPhoton.hh"                  << 
 68 #include "G4ParticleDefinition.hh"                 72 #include "G4ParticleDefinition.hh"
 69 #include "G4ParticleMomentum.hh"               << 
 70 #include "G4PhysicalConstants.hh"              << 
 71 #include "G4PhysicsFreeVector.hh"              << 
 72 #include "G4Poisson.hh"                        << 
 73 #include "G4SystemOfUnits.hh"                  << 
 74 #include "G4ThreeVector.hh"                    << 
 75 #include "Randomize.hh"                        << 
 76 #include "G4PhysicsModelCatalog.hh"            << 
 77                                                    73 
 78 //....oooOO0OOooo........oooOO0OOooo........oo <<  74 #include "G4Cerenkov.hh"
                                                   >>  75 
                                                   >>  76 /////////////////////////
                                                   >>  77 // Class Implementation  
                                                   >>  78 /////////////////////////
                                                   >>  79 
                                                   >>  80         //////////////////////
                                                   >>  81         // static data members
                                                   >>  82         //////////////////////
                                                   >>  83 
                                                   >>  84 //G4bool G4Cerenkov::fTrackSecondariesFirst = false;
                                                   >>  85 //G4double G4Cerenkov::fMaxBetaChange = 0.;
                                                   >>  86 //G4int G4Cerenkov::fMaxPhotons = 0;
                                                   >>  87 
                                                   >>  88         //////////////
                                                   >>  89         // Operators
                                                   >>  90         //////////////
                                                   >>  91 
                                                   >>  92 // G4Cerenkov::operator=(const G4Cerenkov &right)
                                                   >>  93 // {
                                                   >>  94 // }
                                                   >>  95 
                                                   >>  96         /////////////////
                                                   >>  97         // Constructors
                                                   >>  98         /////////////////
                                                   >>  99 
 79 G4Cerenkov::G4Cerenkov(const G4String& process    100 G4Cerenkov::G4Cerenkov(const G4String& processName, G4ProcessType type)
 80   : G4VProcess(processName, type)              << 101            : G4VProcess(processName, type) ,
 81   , fNumPhotons(0)                             << 102             fTrackSecondariesFirst(false),
                                                   >> 103             fMaxBetaChange(0),
                                                   >> 104             fMaxPhotons(0)
 82 {                                                 105 {
 83   secID = G4PhysicsModelCatalog::GetModelID("m << 106         SetProcessSubType(fCerenkov);
 84   SetProcessSubType(fCerenkov);                << 
 85                                                   107 
 86   thePhysicsTable = nullptr;                   << 108         thePhysicsTable = NULL;
 87                                                   109 
 88   if(verboseLevel > 0)                         << 110   if (verboseLevel>0) {
 89   {                                            << 111            G4cout << GetProcessName() << " is created " << G4endl;
 90     G4cout << GetProcessName() << " is created << 112   }
 91   }                                            << 
 92   Initialise();                                << 
 93 }                                                 113 }
 94                                                   114 
 95 //....oooOO0OOooo........oooOO0OOooo........oo << 115 // G4Cerenkov::G4Cerenkov(const G4Cerenkov &right)
 96 G4Cerenkov::~G4Cerenkov()                      << 116 // {
                                                   >> 117 // }
                                                   >> 118 
                                                   >> 119         ////////////////
                                                   >> 120         // Destructors
                                                   >> 121         ////////////////
                                                   >> 122 
                                                   >> 123 G4Cerenkov::~G4Cerenkov() 
 97 {                                                 124 {
 98   if(thePhysicsTable != nullptr)               << 125   if (thePhysicsTable != NULL) {
 99   {                                            << 126      thePhysicsTable->clearAndDestroy();
100     thePhysicsTable->clearAndDestroy();        << 127            delete thePhysicsTable;
101     delete thePhysicsTable;                    << 128   }
102   }                                            << 
103 }                                                 129 }
104                                                   130 
105 void G4Cerenkov::ProcessDescription(std::ostre << 131         ////////////
                                                   >> 132         // Methods
                                                   >> 133         ////////////
                                                   >> 134 
                                                   >> 135 G4bool G4Cerenkov::IsApplicable(const G4ParticleDefinition& aParticleType)
106 {                                                 136 {
107   out << "The Cerenkov effect simulates optica << 137     G4bool result = false;
108   out << "passage of charged particles through << 138     if (aParticleType.GetPDGCharge() != 0.0 && 
109   out << "to have the property RINDEX (refract << 139   aParticleType.GetPDGMass() != 0.0 &&
110   G4VProcess::DumpInfo();                      << 140   aParticleType.GetParticleName() != "chargedgeantino" &&
                                                   >> 141   !aParticleType.IsShortLived() ) { result = true; }
111                                                   142 
112   G4OpticalParameters* params = G4OpticalParam << 143     return result;
113   out << "Maximum beta change per step: " << p << 
114   out << "Maximum photons per step: " << param << 
115   out << "Track secondaries first: "           << 
116       << params->GetCerenkovTrackSecondariesFi << 
117   out << "Stack photons: " << params->GetCeren << 
118   out << "Verbose level: " << params->GetCeren << 
119 }                                                 144 }
120                                                   145 
121 //....oooOO0OOooo........oooOO0OOooo........oo << 146 void G4Cerenkov::SetTrackSecondariesFirst(const G4bool state)
122 G4bool G4Cerenkov::IsApplicable(const G4Partic << 
123 {                                                 147 {
124   return (aParticleType.GetPDGCharge() != 0.0  << 148         fTrackSecondariesFirst = state;
125           aParticleType.GetPDGMass() != 0.0 && << 
126           aParticleType.GetParticleName() != " << 
127           !aParticleType.IsShortLived())       << 
128            ? true                              << 
129            : false;                            << 
130 }                                              << 
131                                                << 
132 //....oooOO0OOooo........oooOO0OOooo........oo << 
133 void G4Cerenkov::Initialise()                  << 
134 {                                              << 
135   G4OpticalParameters* params = G4OpticalParam << 
136   SetMaxBetaChangePerStep(params->GetCerenkovM << 
137   SetMaxNumPhotonsPerStep(params->GetCerenkovM << 
138   SetTrackSecondariesFirst(params->GetCerenkov << 
139   SetStackPhotons(params->GetCerenkovStackPhot << 
140   SetVerboseLevel(params->GetCerenkovVerboseLe << 
141 }                                                 149 }
142                                                   150 
143 //....oooOO0OOooo........oooOO0OOooo........oo << 151 void G4Cerenkov::SetMaxBetaChangePerStep(const G4double value)
144 void G4Cerenkov::BuildPhysicsTable(const G4Par << 
145 {                                                 152 {
146   if(thePhysicsTable)                          << 153         fMaxBetaChange = value*CLHEP::perCent;
147     return;                                    << 154 }
148                                                << 
149   const G4MaterialTable* theMaterialTable = G4 << 
150   std::size_t numOfMaterials              = G4 << 
151                                                << 
152   thePhysicsTable = new G4PhysicsTable(numOfMa << 
153                                                   155 
154   // loop over materials                       << 156 void G4Cerenkov::SetMaxNumPhotonsPerStep(const G4int NumPhotons)
155   for(std::size_t i = 0; i < numOfMaterials; + << 157 {
156   {                                            << 158         fMaxPhotons = NumPhotons;
157     G4PhysicsFreeVector* cerenkovIntegral = nu << 159 }
158                                                << 
159     // Retrieve vector of refraction indices f << 
160     // from the material's optical properties  << 
161     G4Material* aMaterial          = (*theMate << 
162     G4MaterialPropertiesTable* MPT = aMaterial << 
163                                                << 
164     if(MPT)                                    << 
165     {                                          << 
166       cerenkovIntegral                         << 
167       G4MaterialPropertyVector* refractiveInde << 
168                                                << 
169       if(refractiveIndex)                      << 
170       {                                        << 
171         // Retrieve the first refraction index << 
172         // of (photon energy, refraction index << 
173         G4double currentRI = (*refractiveIndex << 
174         if(currentRI > 1.0)                    << 
175         {                                      << 
176           // Create first (photon energy, Cere << 
177           G4double currentPM  = refractiveInde << 
178           G4double currentCAI = 0.0;           << 
179                                                << 
180           cerenkovIntegral->InsertValues(curre << 
181                                                << 
182           // Set previous values to current on << 
183           G4double prevPM  = currentPM;        << 
184           G4double prevCAI = currentCAI;       << 
185           G4double prevRI  = currentRI;        << 
186                                                << 
187           // loop over all (photon energy, ref << 
188           // pairs stored for this material    << 
189           for(std::size_t ii = 1; ii < refract << 
190           {                                    << 
191             currentRI  = (*refractiveIndex)[ii << 
192             currentPM  = refractiveIndex->Ener << 
193             currentCAI = prevCAI + (currentPM  << 
194                                      (1.0 / (p << 
195                                       1.0 / (c << 
196                                                << 
197             cerenkovIntegral->InsertValues(cur << 
198                                                << 
199             prevPM  = currentPM;               << 
200             prevCAI = currentCAI;              << 
201             prevRI  = currentRI;               << 
202           }                                    << 
203         }                                      << 
204       }                                        << 
205     }                                          << 
206                                                   160 
207     // The Cerenkov integral for a given mater << 161 void G4Cerenkov::BuildPhysicsTable(const G4ParticleDefinition&)
208     // thePhysicsTable according to the positi << 162 {
209     // the material table.                     << 163     if (!thePhysicsTable) BuildThePhysicsTable();
210     thePhysicsTable->insertAt(i, cerenkovInteg << 
211   }                                            << 
212 }                                                 164 }
213                                                   165 
214 //....oooOO0OOooo........oooOO0OOooo........oo << 166 // PostStepDoIt
215 G4VParticleChange* G4Cerenkov::PostStepDoIt(co << 167 // -------------
216                                             co << 168 //
                                                   >> 169 G4VParticleChange*
                                                   >> 170 G4Cerenkov::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
                                                   >> 171 
217 // This routine is called for each tracking St    172 // This routine is called for each tracking Step of a charged particle
218 // in a radiator. A Poisson-distributed number    173 // in a radiator. A Poisson-distributed number of photons is generated
219 // according to the Cerenkov formula, distribu    174 // according to the Cerenkov formula, distributed evenly along the track
220 // segment and uniformly azimuth w.r.t. the pa << 175 // segment and uniformly azimuth w.r.t. the particle direction. The 
221 // parameters are then transformed into the Ma << 176 // parameters are then transformed into the Master Reference System, and 
222 // they are added to the particle change.      << 177 // they are added to the particle change. 
223                                                << 
224 {                                              << 
225   aParticleChange.Initialize(aTrack);          << 
226                                                << 
227   const G4DynamicParticle* aParticle = aTrack. << 
228   const G4Material* aMaterial        = aTrack. << 
229                                                << 
230   G4StepPoint* pPreStepPoint  = aStep.GetPreSt << 
231   G4StepPoint* pPostStepPoint = aStep.GetPostS << 
232                                                << 
233   G4ThreeVector x0 = pPreStepPoint->GetPositio << 
234   G4ThreeVector p0 = aStep.GetDeltaPosition(). << 
235   G4double t0      = pPreStepPoint->GetGlobalT << 
236                                                << 
237   G4MaterialPropertiesTable* MPT = aMaterial-> << 
238   if(!MPT)                                     << 
239     return pParticleChange;                    << 
240                                                << 
241   G4MaterialPropertyVector* Rindex = MPT->GetP << 
242   if(!Rindex)                                  << 
243     return pParticleChange;                    << 
244                                                << 
245   G4double charge = aParticle->GetDefinition() << 
246                                                << 
247   G4double beta1 = pPreStepPoint->GetBeta();   << 
248   G4double beta2 = pPostStepPoint->GetBeta();  << 
249   G4double beta = (beta1 + beta2) * 0.5;       << 
250                                                << 
251   G4double MeanNumberOfPhotons =               << 
252     GetAverageNumberOfPhotons(charge, beta, aM << 
253   G4double MeanNumberOfPhotons1 =              << 
254     GetAverageNumberOfPhotons(charge, beta1, a << 
255   G4double MeanNumberOfPhotons2 =              << 
256     GetAverageNumberOfPhotons(charge, beta2, a << 
257                                                << 
258   if(MeanNumberOfPhotons <= 0.0)               << 
259   {                                            << 
260     // return unchanged particle and no second << 
261     aParticleChange.SetNumberOfSecondaries(0); << 
262     return pParticleChange;                    << 
263   }                                            << 
264                                                << 
265   MeanNumberOfPhotons *= aStep.GetStepLength() << 
266   fNumPhotons         = (G4int) G4Poisson(Mean << 
267                                                << 
268   // third condition added to prevent infinite << 
269   // see bugzilla 2555                         << 
270   if(fNumPhotons <= 0 || !fStackingFlag ||     << 
271      std::max(MeanNumberOfPhotons1, MeanNumber << 
272   {                                            << 
273     // return unchanged particle and no second << 
274     aParticleChange.SetNumberOfSecondaries(0); << 
275     return pParticleChange;                    << 
276   }                                            << 
277                                                << 
278   //////////////////////////////////////////// << 
279   aParticleChange.SetNumberOfSecondaries(fNumP << 
280                                                << 
281   if(fTrackSecondariesFirst)                   << 
282   {                                            << 
283     if(aTrack.GetTrackStatus() == fAlive)      << 
284       aParticleChange.ProposeTrackStatus(fSusp << 
285   }                                            << 
286                                                << 
287   //////////////////////////////////////////// << 
288   G4double Pmin = Rindex->Energy(0);           << 
289   G4double Pmax = Rindex->GetMaxEnergy();      << 
290   G4double dp   = Pmax - Pmin;                 << 
291                                                << 
292   G4double nMax        = Rindex->GetMaxValue() << 
293   G4double BetaInverse = 1. / beta;            << 
294                                                << 
295   G4double maxCos  = BetaInverse / nMax;       << 
296   G4double maxSin2 = (1.0 - maxCos) * (1.0 + m << 
297                                                << 
298   for(G4int i = 0; i < fNumPhotons; ++i)       << 
299   {                                            << 
300     // Determine photon energy                 << 
301     G4double rand;                             << 
302     G4double sampledEnergy, sampledRI;         << 
303     G4double cosTheta, sin2Theta;              << 
304                                                << 
305     // sample an energy                        << 
306     do                                         << 
307     {                                          << 
308       rand          = G4UniformRand();         << 
309       sampledEnergy = Pmin + rand * dp;        << 
310       sampledRI     = Rindex->Value(sampledEne << 
311       cosTheta      = BetaInverse / sampledRI; << 
312                                                << 
313       sin2Theta = (1.0 - cosTheta) * (1.0 + co << 
314       rand      = G4UniformRand();             << 
315                                                << 
316       // Loop checking, 07-Aug-2015, Vladimir  << 
317     } while(rand * maxSin2 > sin2Theta);       << 
318                                                << 
319     // Create photon momentum direction vector << 
320     // with respect to the coordinate system w << 
321     // direction is aligned with the z axis    << 
322     rand              = G4UniformRand();       << 
323     G4double phi      = twopi * rand;          << 
324     G4double sinPhi   = std::sin(phi);         << 
325     G4double cosPhi   = std::cos(phi);         << 
326     G4double sinTheta = std::sqrt(sin2Theta);  << 
327     G4ParticleMomentum photonMomentum(sinTheta << 
328                                       cosTheta << 
329                                                << 
330     // Rotate momentum direction back to globa << 
331     photonMomentum.rotateUz(p0);               << 
332                                                << 
333     // Determine polarization of new photon    << 
334     G4ThreeVector photonPolarization(cosTheta  << 
335                                      -sinTheta << 
336                                                << 
337     // Rotate back to original coord system    << 
338     photonPolarization.rotateUz(p0);           << 
339                                                << 
340     // Generate a new photon:                  << 
341     auto aCerenkovPhoton =                     << 
342       new G4DynamicParticle(G4OpticalPhoton::O << 
343                                                << 
344     aCerenkovPhoton->SetPolarization(photonPol << 
345     aCerenkovPhoton->SetKineticEnergy(sampledE << 
346                                                << 
347     G4double NumberOfPhotons, N;               << 
348                                                << 
349     do                                         << 
350     {                                          << 
351       rand            = G4UniformRand();       << 
352       NumberOfPhotons = MeanNumberOfPhotons1 - << 
353                         rand * (MeanNumberOfPh << 
354       N =                                      << 
355         G4UniformRand() * std::max(MeanNumberO << 
356       // Loop checking, 07-Aug-2015, Vladimir  << 
357     } while(N > NumberOfPhotons);              << 
358                                                << 
359     G4double delta = rand * aStep.GetStepLengt << 
360     G4double deltaTime =                       << 
361       delta /                                  << 
362       (pPreStepPoint->GetVelocity() +          << 
363        rand * (pPostStepPoint->GetVelocity() - << 
364          0.5);                                 << 
365                                                << 
366     G4double aSecondaryTime          = t0 + de << 
367     G4ThreeVector aSecondaryPosition = x0 + ra << 
368                                                << 
369     // Generate new G4Track object:            << 
370     G4Track* aSecondaryTrack =                 << 
371       new G4Track(aCerenkovPhoton, aSecondaryT << 
372                                                << 
373     aSecondaryTrack->SetTouchableHandle(       << 
374       aStep.GetPreStepPoint()->GetTouchableHan << 
375     aSecondaryTrack->SetParentID(aTrack.GetTra << 
376     aSecondaryTrack->SetCreatorModelID(secID); << 
377     aParticleChange.AddSecondary(aSecondaryTra << 
378   }                                            << 
379                                                << 
380   if(verboseLevel > 1)                         << 
381   {                                            << 
382     G4cout << "\n Exiting from G4Cerenkov::DoI << 
383            << aParticleChange.GetNumberOfSecon << 
384   }                                            << 
385                                                << 
386   return pParticleChange;                      << 
387 }                                              << 
388                                                << 
389 //....oooOO0OOooo........oooOO0OOooo........oo << 
390 void G4Cerenkov::PreparePhysicsTable(const G4P << 
391 {                                              << 
392   Initialise();                                << 
393 }                                              << 
394                                                << 
395 //....oooOO0OOooo........oooOO0OOooo........oo << 
396 G4double G4Cerenkov::GetMeanFreePath(const G4T << 
397                                      G4ForceCo << 
398 {                                              << 
399   return 1.;                                   << 
400 }                                              << 
401                                                   178 
402 //....oooOO0OOooo........oooOO0OOooo........oo << 
403 G4double G4Cerenkov::PostStepGetPhysicalIntera << 
404   const G4Track& aTrack, G4double, G4ForceCond << 
405 {                                              << 
406   *condition         = NotForced;              << 
407   G4double StepLimit = DBL_MAX;                << 
408   fNumPhotons        = 0;                      << 
409                                                << 
410   const G4Material* aMaterial = aTrack.GetMate << 
411   std::size_t materialIndex   = aMaterial->Get << 
412                                                << 
413   // If Physics Vector is not defined no Ceren << 
414   if(!(*thePhysicsTable)[materialIndex])       << 
415   {                                            << 
416     return StepLimit;                          << 
417   }                                            << 
418                                                << 
419   const G4DynamicParticle* aParticle = aTrack. << 
420   const G4MaterialCutsCouple* couple = aTrack. << 
421                                                << 
422   G4double kineticEnergy                   = a << 
423   const G4ParticleDefinition* particleType = a << 
424   G4double mass                            = p << 
425                                                << 
426   G4double beta  = aParticle->GetTotalMomentum << 
427   G4double gamma = aParticle->GetTotalEnergy() << 
428                                                << 
429   G4MaterialPropertiesTable* aMaterialProperti << 
430     aMaterial->GetMaterialPropertiesTable();   << 
431                                                << 
432   G4MaterialPropertyVector* Rindex = nullptr;  << 
433                                                << 
434   if(aMaterialPropertiesTable)                 << 
435     Rindex = aMaterialPropertiesTable->GetProp << 
436                                                << 
437   G4double nMax;                               << 
438   if(Rindex)                                   << 
439   {                                            << 
440     nMax = Rindex->GetMaxValue();              << 
441   }                                            << 
442   else                                         << 
443   {                                            << 
444     return StepLimit;                          << 
445   }                                            << 
446                                                << 
447   G4double BetaMin = 1. / nMax;                << 
448   if(BetaMin >= 1.)                            << 
449     return StepLimit;                          << 
450                                                << 
451   G4double GammaMin = 1. / std::sqrt(1. - Beta << 
452   if(gamma < GammaMin)                         << 
453     return StepLimit;                          << 
454                                                << 
455   G4double kinEmin = mass * (GammaMin - 1.);   << 
456   G4double RangeMin =                          << 
457     G4LossTableManager::Instance()->GetRange(p << 
458   G4double Range = G4LossTableManager::Instanc << 
459     particleType, kineticEnergy, couple);      << 
460   G4double Step = Range - RangeMin;            << 
461                                                << 
462   // If the step is smaller than G4ThreeVector << 
463   // that the particle does not move. See bug  << 
464   static const G4double minAllowedStep = G4Thr << 
465   if(Step < minAllowedStep)                    << 
466     return StepLimit;                          << 
467                                                << 
468   if(Step < StepLimit)                         << 
469     StepLimit = Step;                          << 
470                                                << 
471   // If user has defined an average maximum nu << 
472   // a Step, then calculate the Step length fo << 
473   if(fMaxPhotons > 0)                          << 
474   {                                            << 
475     const G4double charge = aParticle->GetDefi << 
476     G4double MeanNumberOfPhotons =             << 
477       GetAverageNumberOfPhotons(charge, beta,  << 
478     Step = 0.;                                 << 
479     if(MeanNumberOfPhotons > 0.0)              << 
480       Step = fMaxPhotons / MeanNumberOfPhotons << 
481     if(Step > 0. && Step < StepLimit)          << 
482       StepLimit = Step;                        << 
483   }                                            << 
484                                                << 
485   // If user has defined an maximum allowed ch << 
486   if(fMaxBetaChange > 0.)                      << 
487   {                                            << 
488     G4double dedx = G4LossTableManager::Instan << 
489       particleType, kineticEnergy, couple);    << 
490     G4double deltaGamma =                      << 
491       gamma - 1. / std::sqrt(1. - beta * beta  << 
492                                     (1. - fMax << 
493                                                << 
494     Step = mass * deltaGamma / dedx;           << 
495     if(Step > 0. && Step < StepLimit)          << 
496       StepLimit = Step;                        << 
497   }                                            << 
498                                                << 
499   *condition = StronglyForced;                 << 
500   return StepLimit;                            << 
501 }                                              << 
502                                                << 
503 //....oooOO0OOooo........oooOO0OOooo........oo << 
504 G4double G4Cerenkov::GetAverageNumberOfPhotons << 
505   const G4double charge, const G4double beta,  << 
506   G4MaterialPropertyVector* Rindex) const      << 
507 // This routine computes the number of Cerenko << 
508 // Geant4-unit (millimeter) in the current med << 
509 {                                                 179 {
510   constexpr G4double Rfact = 369.81 / (eV * cm << 180   //////////////////////////////////////////////////////
511   if(beta <= 0.0)                              << 181   // Should we ensure that the material is dispersive?
512     return 0.0;                                << 182   //////////////////////////////////////////////////////
513   G4double BetaInverse = 1. / beta;            << 
514                                                << 
515   // Vectors used in computation of Cerenkov A << 
516   //  - Refraction Indices for the current mat << 
517   //  - new G4PhysicsFreeVector allocated to h << 
518   std::size_t materialIndex = aMaterial->GetIn << 
519                                                << 
520   // Retrieve the Cerenkov Angle Integrals for << 
521   G4PhysicsVector* CerenkovAngleIntegrals = (( << 
522                                                << 
523   std::size_t length = CerenkovAngleIntegrals- << 
524   if(0 == length)                              << 
525     return 0.0;                                << 
526                                                << 
527   // Min and Max photon energies               << 
528   G4double Pmin = Rindex->Energy(0);           << 
529   G4double Pmax = Rindex->GetMaxEnergy();      << 
530                                                << 
531   // Min and Max Refraction Indices            << 
532   G4double nMin = Rindex->GetMinValue();       << 
533   G4double nMax = Rindex->GetMaxValue();       << 
534                                                << 
535   // Max Cerenkov Angle Integral               << 
536   G4double CAImax = (*CerenkovAngleIntegrals)[ << 
537                                                << 
538   G4double dp, ge;                             << 
539   // If n(Pmax) < 1/Beta -- no photons generat << 
540   if(nMax < BetaInverse)                       << 
541   {                                            << 
542     dp = 0.0;                                  << 
543     ge = 0.0;                                  << 
544   }                                            << 
545   // otherwise if n(Pmin) >= 1/Beta -- photons << 
546   else if(nMin > BetaInverse)                  << 
547   {                                            << 
548     dp = Pmax - Pmin;                          << 
549     ge = CAImax;                               << 
550   }                                            << 
551   // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Bet << 
552   // that the value of n(P) == 1/Beta. Interpo << 
553   // GetEnergy() and Value() methods of the G4 << 
554   // the Value() method of G4PhysicsVector.    << 
555   else                                         << 
556   {                                            << 
557     Pmin = Rindex->GetEnergy(BetaInverse);     << 
558     dp   = Pmax - Pmin;                        << 
559                                                << 
560     G4double CAImin = CerenkovAngleIntegrals-> << 
561     ge              = CAImax - CAImin;         << 
562                                                << 
563     if(verboseLevel > 1)                       << 
564     {                                          << 
565       G4cout << "CAImin = " << CAImin << G4end << 
566     }                                          << 
567   }                                            << 
568                                                << 
569   // Calculate number of photons               << 
570   G4double NumPhotons = Rfact * charge / eplus << 
571                         (dp - ge * BetaInverse << 
572                                                   183 
573   return NumPhotons;                           << 184         aParticleChange.Initialize(aTrack);
574 }                                              << 
575                                                   185 
576 //....oooOO0OOooo........oooOO0OOooo........oo << 186         const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
577 void G4Cerenkov::SetTrackSecondariesFirst(cons << 187         const G4Material* aMaterial = aTrack.GetMaterial();
578 {                                              << 
579   fTrackSecondariesFirst = state;              << 
580   G4OpticalParameters::Instance()->SetCerenkov << 
581     fTrackSecondariesFirst);                   << 
582 }                                              << 
583                                                   188 
584 //....oooOO0OOooo........oooOO0OOooo........oo << 189   G4StepPoint* pPreStepPoint  = aStep.GetPreStepPoint();
585 void G4Cerenkov::SetMaxBetaChangePerStep(const << 190   G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
586 {                                              << 191 
587   fMaxBetaChange = value * CLHEP::perCent;     << 192   G4ThreeVector x0 = pPreStepPoint->GetPosition();
588   G4OpticalParameters::Instance()->SetCerenkov << 193         G4ThreeVector p0 = aStep.GetDeltaPosition().unit();
                                                   >> 194   G4double t0 = pPreStepPoint->GetGlobalTime();
                                                   >> 195 
                                                   >> 196         G4MaterialPropertiesTable* aMaterialPropertiesTable =
                                                   >> 197                                aMaterial->GetMaterialPropertiesTable();
                                                   >> 198         if (!aMaterialPropertiesTable) return pParticleChange;
                                                   >> 199 
                                                   >> 200   G4MaterialPropertyVector* Rindex = 
                                                   >> 201                 aMaterialPropertiesTable->GetProperty("RINDEX"); 
                                                   >> 202         if (!Rindex) return pParticleChange;
                                                   >> 203 
                                                   >> 204         // particle charge
                                                   >> 205         const G4double charge = aParticle->GetDefinition()->GetPDGCharge();
                                                   >> 206 
                                                   >> 207         // particle beta
                                                   >> 208         const G4double beta = (pPreStepPoint ->GetBeta() +
                                                   >> 209                                pPostStepPoint->GetBeta())/2.;
                                                   >> 210 
                                                   >> 211   G4double MeanNumberOfPhotons = 
                                                   >> 212                  GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
                                                   >> 213 
                                                   >> 214         if (MeanNumberOfPhotons <= 0.0) {
                                                   >> 215 
                                                   >> 216                 // return unchanged particle and no secondaries
                                                   >> 217 
                                                   >> 218                 aParticleChange.SetNumberOfSecondaries(0);
                                                   >> 219  
                                                   >> 220                 return pParticleChange;
                                                   >> 221 
                                                   >> 222         }
                                                   >> 223 
                                                   >> 224         G4double step_length;
                                                   >> 225         step_length = aStep.GetStepLength();
                                                   >> 226 
                                                   >> 227   MeanNumberOfPhotons = MeanNumberOfPhotons * step_length;
                                                   >> 228 
                                                   >> 229   G4int NumPhotons = (G4int) G4Poisson(MeanNumberOfPhotons);
                                                   >> 230 
                                                   >> 231   if (NumPhotons <= 0) {
                                                   >> 232 
                                                   >> 233     // return unchanged particle and no secondaries  
                                                   >> 234 
                                                   >> 235     aParticleChange.SetNumberOfSecondaries(0);
                                                   >> 236     
                                                   >> 237                 return pParticleChange;
                                                   >> 238   }
                                                   >> 239 
                                                   >> 240   ////////////////////////////////////////////////////////////////
                                                   >> 241 
                                                   >> 242   aParticleChange.SetNumberOfSecondaries(NumPhotons);
                                                   >> 243 
                                                   >> 244         if (fTrackSecondariesFirst) {
                                                   >> 245            if (aTrack.GetTrackStatus() == fAlive )
                                                   >> 246                    aParticleChange.ProposeTrackStatus(fSuspend);
                                                   >> 247         }
                                                   >> 248   
                                                   >> 249   ////////////////////////////////////////////////////////////////
                                                   >> 250 
                                                   >> 251   G4double Pmin = Rindex->GetMinLowEdgeEnergy();
                                                   >> 252   G4double Pmax = Rindex->GetMaxLowEdgeEnergy();
                                                   >> 253   G4double dp = Pmax - Pmin;
                                                   >> 254 
                                                   >> 255   G4double nMax = Rindex->GetMaxValue();
                                                   >> 256 
                                                   >> 257         G4double BetaInverse = 1./beta;
                                                   >> 258 
                                                   >> 259   G4double maxCos = BetaInverse / nMax; 
                                                   >> 260   G4double maxSin2 = (1.0 - maxCos) * (1.0 + maxCos);
                                                   >> 261 
                                                   >> 262         const G4double beta1 = pPreStepPoint ->GetBeta();
                                                   >> 263         const G4double beta2 = pPostStepPoint->GetBeta();
                                                   >> 264 
                                                   >> 265         G4double MeanNumberOfPhotons1 =
                                                   >> 266                      GetAverageNumberOfPhotons(charge,beta1,aMaterial,Rindex);
                                                   >> 267         G4double MeanNumberOfPhotons2 =
                                                   >> 268                      GetAverageNumberOfPhotons(charge,beta2,aMaterial,Rindex);
                                                   >> 269 
                                                   >> 270   for (G4int i = 0; i < NumPhotons; i++) {
                                                   >> 271 
                                                   >> 272     // Determine photon energy
                                                   >> 273 
                                                   >> 274     G4double rand;
                                                   >> 275     G4double sampledEnergy, sampledRI; 
                                                   >> 276     G4double cosTheta, sin2Theta;
                                                   >> 277     
                                                   >> 278     // sample an energy
                                                   >> 279 
                                                   >> 280     do {
                                                   >> 281       rand = G4UniformRand(); 
                                                   >> 282       sampledEnergy = Pmin + rand * dp; 
                                                   >> 283       sampledRI = Rindex->Value(sampledEnergy);
                                                   >> 284       cosTheta = BetaInverse / sampledRI;  
                                                   >> 285 
                                                   >> 286       sin2Theta = (1.0 - cosTheta)*(1.0 + cosTheta);
                                                   >> 287       rand = G4UniformRand(); 
                                                   >> 288 
                                                   >> 289     } while (rand*maxSin2 > sin2Theta);
                                                   >> 290 
                                                   >> 291     // Generate random position of photon on cone surface 
                                                   >> 292     // defined by Theta 
                                                   >> 293 
                                                   >> 294     rand = G4UniformRand();
                                                   >> 295 
                                                   >> 296     G4double phi = twopi*rand;
                                                   >> 297     G4double sinPhi = std::sin(phi);
                                                   >> 298     G4double cosPhi = std::cos(phi);
                                                   >> 299 
                                                   >> 300     // calculate x,y, and z components of photon energy
                                                   >> 301     // (in coord system with primary particle direction 
                                                   >> 302     //  aligned with the z axis)
                                                   >> 303 
                                                   >> 304     G4double sinTheta = std::sqrt(sin2Theta); 
                                                   >> 305     G4double px = sinTheta*cosPhi;
                                                   >> 306     G4double py = sinTheta*sinPhi;
                                                   >> 307     G4double pz = cosTheta;
                                                   >> 308 
                                                   >> 309     // Create photon momentum direction vector 
                                                   >> 310     // The momentum direction is still with respect
                                                   >> 311     // to the coordinate system where the primary
                                                   >> 312     // particle direction is aligned with the z axis  
                                                   >> 313 
                                                   >> 314     G4ParticleMomentum photonMomentum(px, py, pz);
                                                   >> 315 
                                                   >> 316     // Rotate momentum direction back to global reference
                                                   >> 317     // system 
                                                   >> 318 
                                                   >> 319                 photonMomentum.rotateUz(p0);
                                                   >> 320 
                                                   >> 321     // Determine polarization of new photon 
                                                   >> 322 
                                                   >> 323     G4double sx = cosTheta*cosPhi;
                                                   >> 324     G4double sy = cosTheta*sinPhi; 
                                                   >> 325     G4double sz = -sinTheta;
                                                   >> 326 
                                                   >> 327     G4ThreeVector photonPolarization(sx, sy, sz);
                                                   >> 328 
                                                   >> 329     // Rotate back to original coord system 
                                                   >> 330 
                                                   >> 331                 photonPolarization.rotateUz(p0);
                                                   >> 332     
                                                   >> 333                 // Generate a new photon:
                                                   >> 334 
                                                   >> 335                 G4DynamicParticle* aCerenkovPhoton =
                                                   >> 336                   new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(), 
                                                   >> 337                              photonMomentum);
                                                   >> 338     aCerenkovPhoton->SetPolarization
                                                   >> 339              (photonPolarization.x(),
                                                   >> 340               photonPolarization.y(),
                                                   >> 341               photonPolarization.z());
                                                   >> 342 
                                                   >> 343     aCerenkovPhoton->SetKineticEnergy(sampledEnergy);
                                                   >> 344 
                                                   >> 345                 // Generate new G4Track object:
                                                   >> 346 
                                                   >> 347                 G4double delta, NumberOfPhotons, N;
                                                   >> 348 
                                                   >> 349                 do {
                                                   >> 350                    rand = G4UniformRand();
                                                   >> 351                    delta = rand * aStep.GetStepLength();
                                                   >> 352                    NumberOfPhotons = MeanNumberOfPhotons1 - delta *
                                                   >> 353                                 (MeanNumberOfPhotons1-MeanNumberOfPhotons2)/
                                                   >> 354                                               aStep.GetStepLength();
                                                   >> 355                    N = G4UniformRand() *
                                                   >> 356                        std::max(MeanNumberOfPhotons1,MeanNumberOfPhotons2);
                                                   >> 357                 } while (N > NumberOfPhotons);
                                                   >> 358 
                                                   >> 359     G4double deltaTime = delta /
                                                   >> 360                        ((pPreStepPoint->GetVelocity()+
                                                   >> 361                          pPostStepPoint->GetVelocity())/2.);
                                                   >> 362 
                                                   >> 363                 G4double aSecondaryTime = t0 + deltaTime;
                                                   >> 364 
                                                   >> 365                 G4ThreeVector aSecondaryPosition =
                                                   >> 366                                     x0 + rand * aStep.GetDeltaPosition();
                                                   >> 367 
                                                   >> 368     G4Track* aSecondaryTrack = 
                                                   >> 369     new G4Track(aCerenkovPhoton,aSecondaryTime,aSecondaryPosition);
                                                   >> 370 
                                                   >> 371                 aSecondaryTrack->SetTouchableHandle(
                                                   >> 372                                  aStep.GetPreStepPoint()->GetTouchableHandle());
                                                   >> 373 
                                                   >> 374                 aSecondaryTrack->SetParentID(aTrack.GetTrackID());
                                                   >> 375 
                                                   >> 376     aParticleChange.AddSecondary(aSecondaryTrack);
                                                   >> 377   }
                                                   >> 378 
                                                   >> 379   if (verboseLevel>0) {
                                                   >> 380      G4cout <<"\n Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = "
                                                   >> 381             << aParticleChange.GetNumberOfSecondaries() << G4endl;
                                                   >> 382   }
                                                   >> 383 
                                                   >> 384         return pParticleChange;
589 }                                                 385 }
590                                                   386 
591 //....oooOO0OOooo........oooOO0OOooo........oo << 387 // BuildThePhysicsTable for the Cerenkov process
592 void G4Cerenkov::SetMaxNumPhotonsPerStep(const << 388 // ---------------------------------------------
                                                   >> 389 //
                                                   >> 390 
                                                   >> 391 void G4Cerenkov::BuildThePhysicsTable()
593 {                                                 392 {
594   fMaxPhotons = NumPhotons;                    << 393   if (thePhysicsTable) return;
595   G4OpticalParameters::Instance()->SetCerenkov << 394 
                                                   >> 395   const G4MaterialTable* theMaterialTable=
                                                   >> 396              G4Material::GetMaterialTable();
                                                   >> 397   G4int numOfMaterials = G4Material::GetNumberOfMaterials();
                                                   >> 398 
                                                   >> 399   // create new physics table
                                                   >> 400   
                                                   >> 401   thePhysicsTable = new G4PhysicsTable(numOfMaterials);
                                                   >> 402 
                                                   >> 403   // loop for materials
                                                   >> 404 
                                                   >> 405   for (G4int i=0 ; i < numOfMaterials; i++)
                                                   >> 406   {
                                                   >> 407           G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector = 0;
                                                   >> 408 
                                                   >> 409     // Retrieve vector of refraction indices for the material
                                                   >> 410     // from the material's optical properties table 
                                                   >> 411 
                                                   >> 412     G4Material* aMaterial = (*theMaterialTable)[i];
                                                   >> 413 
                                                   >> 414     G4MaterialPropertiesTable* aMaterialPropertiesTable =
                                                   >> 415         aMaterial->GetMaterialPropertiesTable();
                                                   >> 416 
                                                   >> 417     if (aMaterialPropertiesTable) {
                                                   >> 418 
                                                   >> 419        aPhysicsOrderedFreeVector = new G4PhysicsOrderedFreeVector();
                                                   >> 420        G4MaterialPropertyVector* theRefractionIndexVector = 
                                                   >> 421              aMaterialPropertiesTable->GetProperty("RINDEX");
                                                   >> 422 
                                                   >> 423        if (theRefractionIndexVector) {
                                                   >> 424     
                                                   >> 425           // Retrieve the first refraction index in vector
                                                   >> 426           // of (photon energy, refraction index) pairs 
                                                   >> 427 
                                                   >> 428                       G4double currentRI = (*theRefractionIndexVector)[0];
                                                   >> 429 
                                                   >> 430           if (currentRI > 1.0) {
                                                   >> 431 
                                                   >> 432        // Create first (photon energy, Cerenkov Integral)
                                                   >> 433        // pair  
                                                   >> 434 
                                                   >> 435                          G4double currentPM = theRefractionIndexVector->
                                                   >> 436                                                  Energy(0);
                                                   >> 437        G4double currentCAI = 0.0;
                                                   >> 438 
                                                   >> 439        aPhysicsOrderedFreeVector->
                                                   >> 440          InsertValues(currentPM , currentCAI);
                                                   >> 441 
                                                   >> 442        // Set previous values to current ones prior to loop
                                                   >> 443 
                                                   >> 444        G4double prevPM  = currentPM;
                                                   >> 445        G4double prevCAI = currentCAI;
                                                   >> 446                    G4double prevRI  = currentRI;
                                                   >> 447 
                                                   >> 448        // loop over all (photon energy, refraction index)
                                                   >> 449        // pairs stored for this material  
                                                   >> 450 
                                                   >> 451                          for (size_t ii = 1;
                                                   >> 452                               ii < theRefractionIndexVector->GetVectorLength();
                                                   >> 453                               ++ii)
                                                   >> 454        {
                                                   >> 455                                 currentRI = (*theRefractionIndexVector)[ii];
                                                   >> 456                                 currentPM = theRefractionIndexVector->Energy(ii);
                                                   >> 457 
                                                   >> 458         currentCAI = 0.5*(1.0/(prevRI*prevRI) +
                                                   >> 459                     1.0/(currentRI*currentRI));
                                                   >> 460 
                                                   >> 461         currentCAI = prevCAI + 
                                                   >> 462                (currentPM - prevPM) * currentCAI;
                                                   >> 463 
                                                   >> 464         aPhysicsOrderedFreeVector->
                                                   >> 465             InsertValues(currentPM, currentCAI);
                                                   >> 466 
                                                   >> 467         prevPM  = currentPM;
                                                   >> 468         prevCAI = currentCAI;
                                                   >> 469         prevRI  = currentRI;
                                                   >> 470        }
                                                   >> 471 
                                                   >> 472           }
                                                   >> 473        }
                                                   >> 474     }
                                                   >> 475 
                                                   >> 476   // The Cerenkov integral for a given material
                                                   >> 477   // will be inserted in thePhysicsTable
                                                   >> 478   // according to the position of the material in
                                                   >> 479   // the material table. 
                                                   >> 480 
                                                   >> 481   thePhysicsTable->insertAt(i,aPhysicsOrderedFreeVector); 
                                                   >> 482 
                                                   >> 483   }
596 }                                                 484 }
597                                                   485 
598 void G4Cerenkov::SetStackPhotons(const G4bool  << 486 // GetMeanFreePath
                                                   >> 487 // ---------------
                                                   >> 488 //
                                                   >> 489 
                                                   >> 490 G4double G4Cerenkov::GetMeanFreePath(const G4Track&,
                                                   >> 491                                            G4double,
                                                   >> 492                                            G4ForceCondition*)
599 {                                                 493 {
600   fStackingFlag = stackingFlag;                << 494         return 1.;
601   G4OpticalParameters::Instance()->SetCerenkov << 
602 }                                                 495 }
603                                                   496 
604 //....oooOO0OOooo........oooOO0OOooo........oo << 497 G4double G4Cerenkov::PostStepGetPhysicalInteractionLength(
605 void G4Cerenkov::DumpPhysicsTable() const      << 498                                            const G4Track& aTrack,
606 {                                              << 499                                            G4double,
607   G4cout << "Dump Physics Table!" << G4endl;   << 500                                            G4ForceCondition* condition)
608   for(std::size_t i = 0; i < thePhysicsTable-> << 501 {
609   {                                            << 502         *condition = NotForced;
610     (*thePhysicsTable)[i]->DumpValues();       << 503         G4double StepLimit = DBL_MAX;
611   }                                            << 504 
                                                   >> 505         const G4Material* aMaterial = aTrack.GetMaterial();
                                                   >> 506   G4int materialIndex = aMaterial->GetIndex();
                                                   >> 507 
                                                   >> 508   // If Physics Vector is not defined no Cerenkov photons
                                                   >> 509   //    this check avoid string comparison below
                                                   >> 510   if(!(*thePhysicsTable)[materialIndex]) { return StepLimit; }
                                                   >> 511 
                                                   >> 512         const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
                                                   >> 513         const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
                                                   >> 514 
                                                   >> 515         G4double kineticEnergy = aParticle->GetKineticEnergy();
                                                   >> 516         const G4ParticleDefinition* particleType = aParticle->GetDefinition();
                                                   >> 517         G4double mass = particleType->GetPDGMass();
                                                   >> 518 
                                                   >> 519         // particle beta
                                                   >> 520         G4double beta = aParticle->GetTotalMomentum() /
                                                   >> 521                   aParticle->GetTotalEnergy();
                                                   >> 522         // particle gamma
                                                   >> 523         G4double gamma = aParticle->GetTotalEnergy()/mass;
                                                   >> 524 
                                                   >> 525         G4MaterialPropertiesTable* aMaterialPropertiesTable =
                                                   >> 526                             aMaterial->GetMaterialPropertiesTable();
                                                   >> 527 
                                                   >> 528         G4MaterialPropertyVector* Rindex = NULL;
                                                   >> 529 
                                                   >> 530         if (aMaterialPropertiesTable)
                                                   >> 531                      Rindex = aMaterialPropertiesTable->GetProperty("RINDEX");
                                                   >> 532 
                                                   >> 533         G4double nMax;
                                                   >> 534         if (Rindex) {
                                                   >> 535            nMax = Rindex->GetMaxValue();
                                                   >> 536         } else {
                                                   >> 537            return StepLimit;
                                                   >> 538         }
                                                   >> 539 
                                                   >> 540         G4double BetaMin = 1./nMax;
                                                   >> 541         if ( BetaMin >= 1. ) return StepLimit;
                                                   >> 542 
                                                   >> 543         G4double GammaMin = 1./std::sqrt(1.-BetaMin*BetaMin);
                                                   >> 544 
                                                   >> 545         if (gamma < GammaMin ) return StepLimit;
                                                   >> 546 
                                                   >> 547         G4double kinEmin = mass*(GammaMin-1.);
                                                   >> 548 
                                                   >> 549         G4double RangeMin = G4LossTableManager::Instance()->
                                                   >> 550                                                    GetRange(particleType,
                                                   >> 551                                                             kinEmin,
                                                   >> 552                                                             couple);
                                                   >> 553         G4double Range    = G4LossTableManager::Instance()->
                                                   >> 554                                                    GetRange(particleType,
                                                   >> 555                                                             kineticEnergy,
                                                   >> 556                                                             couple);
                                                   >> 557 
                                                   >> 558         G4double Step = Range - RangeMin;
                                                   >> 559         if (Step < 1.*um ) return StepLimit;
                                                   >> 560 
                                                   >> 561         if (Step > 0. && Step < StepLimit) StepLimit = Step; 
                                                   >> 562 
                                                   >> 563         // If user has defined an average maximum number of photons to
                                                   >> 564         // be generated in a Step, then calculate the Step length for
                                                   >> 565         // that number of photons. 
                                                   >> 566  
                                                   >> 567         if (fMaxPhotons > 0) {
                                                   >> 568 
                                                   >> 569            // particle charge
                                                   >> 570            const G4double charge = aParticle->
                                                   >> 571                                    GetDefinition()->GetPDGCharge();
                                                   >> 572 
                                                   >> 573      G4double MeanNumberOfPhotons = 
                                                   >> 574                     GetAverageNumberOfPhotons(charge,beta,aMaterial,Rindex);
                                                   >> 575 
                                                   >> 576            Step = 0.;
                                                   >> 577            if (MeanNumberOfPhotons > 0.0) Step = fMaxPhotons /
                                                   >> 578                                                  MeanNumberOfPhotons;
                                                   >> 579 
                                                   >> 580            if (Step > 0. && Step < StepLimit) StepLimit = Step;
                                                   >> 581         }
                                                   >> 582 
                                                   >> 583         // If user has defined an maximum allowed change in beta per step
                                                   >> 584         if (fMaxBetaChange > 0.) {
                                                   >> 585 
                                                   >> 586            G4double dedx = G4LossTableManager::Instance()->
                                                   >> 587                                                    GetDEDX(particleType,
                                                   >> 588                                                            kineticEnergy,
                                                   >> 589                                                            couple);
                                                   >> 590 
                                                   >> 591            G4double deltaGamma = gamma - 
                                                   >> 592                                  1./std::sqrt(1.-beta*beta*
                                                   >> 593                                                  (1.-fMaxBetaChange)*
                                                   >> 594                                                  (1.-fMaxBetaChange));
                                                   >> 595 
                                                   >> 596            Step = mass * deltaGamma / dedx;
                                                   >> 597 
                                                   >> 598            if (Step > 0. && Step < StepLimit) StepLimit = Step;
                                                   >> 599 
                                                   >> 600         }
                                                   >> 601 
                                                   >> 602         *condition = StronglyForced;
                                                   >> 603         return StepLimit;
612 }                                                 604 }
613                                                   605 
614 //....oooOO0OOooo........oooOO0OOooo........oo << 606 // GetAverageNumberOfPhotons
615 void G4Cerenkov::SetVerboseLevel(G4int verbose << 607 // -------------------------
                                                   >> 608 // This routine computes the number of Cerenkov photons produced per
                                                   >> 609 // GEANT-unit (millimeter) in the current medium. 
                                                   >> 610 //             ^^^^^^^^^^
                                                   >> 611 
                                                   >> 612 G4double 
                                                   >> 613 G4Cerenkov::GetAverageNumberOfPhotons(const G4double charge,
                                                   >> 614                               const G4double beta, 
                                                   >> 615             const G4Material* aMaterial,
                                                   >> 616             G4MaterialPropertyVector* Rindex) const
616 {                                                 617 {
617   verboseLevel = verbose;                      << 618   const G4double Rfact = 369.81/(eV * cm);
618   G4OpticalParameters::Instance()->SetCerenkov << 619 
                                                   >> 620         if(beta <= 0.0)return 0.0;
                                                   >> 621 
                                                   >> 622         G4double BetaInverse = 1./beta;
                                                   >> 623 
                                                   >> 624   // Vectors used in computation of Cerenkov Angle Integral:
                                                   >> 625   //  - Refraction Indices for the current material
                                                   >> 626   //  - new G4PhysicsOrderedFreeVector allocated to hold CAI's
                                                   >> 627  
                                                   >> 628   G4int materialIndex = aMaterial->GetIndex();
                                                   >> 629 
                                                   >> 630   // Retrieve the Cerenkov Angle Integrals for this material  
                                                   >> 631 
                                                   >> 632   G4PhysicsOrderedFreeVector* CerenkovAngleIntegrals =
                                                   >> 633   (G4PhysicsOrderedFreeVector*)((*thePhysicsTable)(materialIndex));
                                                   >> 634 
                                                   >> 635         if(!(CerenkovAngleIntegrals->IsFilledVectorExist()))return 0.0;
                                                   >> 636 
                                                   >> 637   // Min and Max photon energies 
                                                   >> 638   G4double Pmin = Rindex->GetMinLowEdgeEnergy();
                                                   >> 639   G4double Pmax = Rindex->GetMaxLowEdgeEnergy();
                                                   >> 640 
                                                   >> 641   // Min and Max Refraction Indices 
                                                   >> 642   G4double nMin = Rindex->GetMinValue();  
                                                   >> 643   G4double nMax = Rindex->GetMaxValue();
                                                   >> 644 
                                                   >> 645   // Max Cerenkov Angle Integral 
                                                   >> 646   G4double CAImax = CerenkovAngleIntegrals->GetMaxValue();
                                                   >> 647 
                                                   >> 648   G4double dp, ge;
                                                   >> 649 
                                                   >> 650   // If n(Pmax) < 1/Beta -- no photons generated 
                                                   >> 651 
                                                   >> 652   if (nMax < BetaInverse) {
                                                   >> 653     dp = 0;
                                                   >> 654     ge = 0;
                                                   >> 655   } 
                                                   >> 656 
                                                   >> 657   // otherwise if n(Pmin) >= 1/Beta -- photons generated  
                                                   >> 658 
                                                   >> 659   else if (nMin > BetaInverse) {
                                                   >> 660     dp = Pmax - Pmin; 
                                                   >> 661     ge = CAImax; 
                                                   >> 662   } 
                                                   >> 663 
                                                   >> 664   // If n(Pmin) < 1/Beta, and n(Pmax) >= 1/Beta, then
                                                   >> 665   // we need to find a P such that the value of n(P) == 1/Beta.
                                                   >> 666   // Interpolation is performed by the GetEnergy() and
                                                   >> 667   // Value() methods of the G4MaterialPropertiesTable and
                                                   >> 668   // the GetValue() method of G4PhysicsVector.  
                                                   >> 669 
                                                   >> 670   else {
                                                   >> 671     Pmin = Rindex->GetEnergy(BetaInverse);
                                                   >> 672     dp = Pmax - Pmin;
                                                   >> 673 
                                                   >> 674     // need boolean for current implementation of G4PhysicsVector
                                                   >> 675     // ==> being phased out
                                                   >> 676     G4bool isOutRange;
                                                   >> 677     G4double CAImin = CerenkovAngleIntegrals->
                                                   >> 678                                   GetValue(Pmin, isOutRange);
                                                   >> 679     ge = CAImax - CAImin;
                                                   >> 680 
                                                   >> 681     if (verboseLevel>0) {
                                                   >> 682       G4cout << "CAImin = " << CAImin << G4endl;
                                                   >> 683       G4cout << "ge = " << ge << G4endl;
                                                   >> 684     }
                                                   >> 685   }
                                                   >> 686   
                                                   >> 687   // Calculate number of photons 
                                                   >> 688   G4double NumPhotons = Rfact * charge/eplus * charge/eplus *
                                                   >> 689                                  (dp - ge * BetaInverse*BetaInverse);
                                                   >> 690 
                                                   >> 691   return NumPhotons;    
619 }                                                 692 }
620                                                   693