Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 7 // 6 // * the Geant4 Collaboration. It is provided << 8 // $Id: G4TransitionRadiation.hh,v 1.5 2000/04/03 13:45:28 grichine Exp $ 7 // * conditions of the Geant4 Software License << 9 // GEANT4 tag $Name: geant4-02-00 $ 8 // * LICENSE and available at http://cern.ch/ << 10 // 9 // * include a list of copyright holders. << 11 // G4TransitionRadiation -- header file 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 12 // 26 // Class for description of transition radiat 13 // Class for description of transition radiation generated 27 // by charged particle crossed interface betw 14 // by charged particle crossed interface between material 1 28 // and material 2 (1 -> 2). Transition radiati 15 // and material 2 (1 -> 2). Transition radiation could be of kind: 29 // - optical back 16 // - optical back 30 // - optical forward 17 // - optical forward 31 // - X-ray forward (for relativistic case Tk 18 // - X-ray forward (for relativistic case Tkin/mass >= 10^2) 32 // 19 // 33 // GEANT 4 class header file --- Copyright CER 20 // GEANT 4 class header file --- Copyright CERN 1995 >> 21 // CERB Geneva Switzerland 34 // 22 // >> 23 // for information related to this code, please, contact >> 24 // CERN, CN Division, ASD Group 35 // History: 25 // History: 36 // 18.12.97, V. Grichine (Vladimir.Grichine@ce 26 // 18.12.97, V. Grichine (Vladimir.Grichine@cern.ch) 37 // 02.02.00, V.Grichine, new data fEnergy and << 27 // 02.02.00, V.Grichine, new data fEnergy and fVarAngle for double 38 // numerical integration 28 // numerical integration in inherited classes 39 // 03.06.03, V.Ivanchenko fix compilation warn << 40 // 28.07.05, P.Gumplinger add G4ProcessType to << 41 29 42 #ifndef G4TransitionRadiation_h 30 #ifndef G4TransitionRadiation_h 43 #define G4TransitionRadiation_h 31 #define G4TransitionRadiation_h 44 32 45 #include "globals.hh" << 33 46 #include "G4ParticleDefinition.hh" << 47 #include "G4Step.hh" << 48 #include "G4Track.hh" << 49 #include "G4VDiscreteProcess.hh" 34 #include "G4VDiscreteProcess.hh" 50 #include "G4VParticleChange.hh" << 35 #include "G4Material.hh" >> 36 // #include "G4OpBoundaryProcess.hh" 51 37 52 class G4TransitionRadiation : public G4VDiscre << 38 class G4TransitionRadiation : public G4VDiscreteProcess 53 { 39 { 54 public: << 40 public: 55 explicit G4TransitionRadiation(const G4Strin << 41 56 G4ProcessType << 42 // Constructors >> 43 >> 44 >> 45 G4TransitionRadiation( const G4String& processName = "TR") ; >> 46 >> 47 >> 48 // G4TransitionRadiation(const G4TransitionRadiation& right) ; >> 49 >> 50 // Destructor >> 51 >> 52 virtual ~G4TransitionRadiation() ; >> 53 >> 54 // Operators >> 55 // G4TransitionRadiation& operator=(const G4TransitionRadiation& right) ; >> 56 // G4int operator==(const G4TransitionRadiation& right)const ; >> 57 // G4int operator!=(const G4TransitionRadiation& right)const ; >> 58 >> 59 // Methods >> 60 >> 61 G4bool IsApplicable(const G4ParticleDefinition& aParticleType) >> 62 { >> 63 return ( aParticleType.GetPDGCharge() != 0.0 ); >> 64 } >> 65 >> 66 G4double GetMeanFreePath(const G4Track& aTrack, >> 67 G4double previousStepSize, >> 68 G4ForceCondition* condition) >> 69 { >> 70 *condition = Forced; >> 71 return DBL_MAX; // so TR doesn't limit mean free path >> 72 } >> 73 >> 74 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, >> 75 const G4Step& aStep) >> 76 { >> 77 ClearNumberOfInteractionLengthLeft(); >> 78 return &aParticleChange; >> 79 } >> 80 >> 81 >> 82 >> 83 >> 84 virtual >> 85 G4double SpectralAngleTRdensity( G4double energy, >> 86 G4double varAngle ) const = 0 ; 57 87 58 virtual ~G4TransitionRadiation(); << 88 G4double IntegralOverEnergy( G4double energy1, >> 89 G4double energy2, >> 90 G4double varAngle ) const ; 59 91 60 G4TransitionRadiation(const G4TransitionRadi << 92 G4double IntegralOverAngle( G4double energy, 61 G4TransitionRadiation& operator=(const G4Tra << 93 G4double varAngle1, >> 94 G4double varAngle2 ) const ; 62 95 63 // Methods << 96 G4double AngleIntegralDistribution( G4double varAngle1, >> 97 G4double varAngle2 ) const ; 64 98 65 G4bool IsApplicable(const G4ParticleDefiniti << 99 G4double EnergyIntegralDistribution( G4double energy1, >> 100 G4double energy2 ) const ; 66 101 67 virtual G4double GetMeanFreePath(const G4Tra << 68 G4ForceCond << 69 102 70 virtual G4VParticleChange* PostStepDoIt(cons << 71 cons << 72 103 73 virtual void ProcessDescription(std::ostream << 104 // Access functions 74 virtual void DumpInfo() const override { Pro << 75 105 76 virtual G4double SpectralAngleTRdensity(G4do << 77 G4do << 78 106 79 G4double IntegralOverEnergy(G4double energy1 << 107 protected : 80 G4double varAngl << 81 108 82 G4double IntegralOverAngle(G4double energy, << 109 G4int fMatIndex1 ; // index of the 1st material 83 G4double varAngle << 110 G4int fMatIndex2 ; // index of the 2nd material 84 111 85 G4double AngleIntegralDistribution(G4double << 112 // private : 86 G4double << 87 113 88 G4double EnergyIntegralDistribution(G4double << 114 G4double fGamma ; >> 115 G4double fEnergy ; >> 116 G4double fVarAngle ; 89 117 90 protected: << 118 // Local constants 91 // Local constants << 119 static const G4int fSympsonNumber ; // Accuracy of Sympson integration 10 92 // Accuracy of Sympson integration << 120 static const G4int fGammaNumber ; // = 15 93 static constexpr G4int fSympsonNumber = 100; << 121 static const G4int fPointNumber ; // = 100 94 static constexpr G4int fGammaNumber = 15; << 95 static constexpr G4int fPointNumber = 100; << 96 122 97 G4double fGamma; << 123 G4double fMinEnergy ; // min TR energy 98 G4double fEnergy; << 124 G4double fMaxEnergy ; // max TR energy 99 G4double fVarAngle; << 125 G4double fMaxTheta ; // max theta of TR quanta 100 126 101 G4double fMinEnergy; // min TR energy << 127 G4double fSigma1 ; // plasma energy Sq of matter1 102 G4double fMaxEnergy; // max TR energy << 128 G4double fSigma2 ; // plasma energy Sq of matter2 103 G4double fMaxTheta; // max theta of TR qu << 104 129 105 G4double fSigma1; // plasma energy Sq of ma << 106 G4double fSigma2; // plasma energy Sq of ma << 107 130 108 G4int fMatIndex1; // index of the 1st mater << 131 } ; 109 G4int fMatIndex2; // index of the 2nd mater << 110 }; << 111 132 112 #endif // G4TransitionRadiation_h << 133 #endif // G4TransitionRadiation_h 113 134