Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Cerenkov.hh,v 1.8 2006/06/29 19:55:31 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-01-patch-01 $ >> 29 // >> 30 // 26 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 27 // Cerenkov Radiation Class Definition << 32 // Cerenkov Radiation Class Definition 28 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////////////////////// 29 // 34 // 30 // File: G4Cerenkov.hh << 35 // File: G4Cerenkov.hh 31 // Description: Discrete Process - Generation << 36 // Description: Continuous Process -- Generation of Cerenkov Photons 32 // Version: 2.0 37 // Version: 2.0 33 // Created: 1996-02-21 38 // Created: 1996-02-21 34 // Author: Juliet Armstrong 39 // Author: Juliet Armstrong 35 // Updated: 2007-09-30 change inheritance << 40 // Updated: 2005-07-28 add G4ProcessType to constructor 36 // 2005-07-28 add G4ProcessType t << 37 // 1999-10-29 add method and clas 41 // 1999-10-29 add method and class descriptors 38 // 1997-04-09 by Peter Gumplinger 42 // 1997-04-09 by Peter Gumplinger 39 // > G4MaterialPropertiesTable; n 43 // > G4MaterialPropertiesTable; new physics/tracking scheme >> 44 // mail: gum@triumf.ca 40 // 45 // 41 ////////////////////////////////////////////// 46 //////////////////////////////////////////////////////////////////////// 42 47 43 #ifndef G4Cerenkov_h 48 #ifndef G4Cerenkov_h 44 #define G4Cerenkov_h 1 49 #define G4Cerenkov_h 1 45 50 >> 51 ///////////// >> 52 // Includes >> 53 ///////////// >> 54 46 #include "globals.hh" 55 #include "globals.hh" >> 56 #include "templates.hh" >> 57 #include "Randomize.hh" >> 58 #include "G4ThreeVector.hh" >> 59 #include "G4ParticleMomentum.hh" >> 60 #include "G4Step.hh" >> 61 #include "G4VContinuousProcess.hh" >> 62 #include "G4OpticalPhoton.hh" 47 #include "G4DynamicParticle.hh" 63 #include "G4DynamicParticle.hh" 48 #include "G4ForceCondition.hh" << 64 #include "G4Material.hh" 49 #include "G4GPILSelection.hh" << 65 #include "G4PhysicsTable.hh" 50 #include "G4MaterialPropertyVector.hh" << 66 #include "G4MaterialPropertiesTable.hh" 51 #include "G4VProcess.hh" << 67 #include "G4PhysicsOrderedFreeVector.hh" 52 << 68 53 class G4Material; << 69 // Class Description: 54 class G4ParticleDefinition; << 70 // Continuous Process -- Generation of Cerenkov Photons. 55 class G4PhysicsTable; << 71 // Class inherits publicly from G4VContinuousProcess. 56 class G4Step; << 72 // Class Description - End: 57 class G4Track; << 73 58 class G4VParticleChange; << 74 ///////////////////// >> 75 // Class Definition >> 76 ///////////////////// 59 77 60 class G4Cerenkov : public G4VProcess << 78 class G4Cerenkov : public G4VContinuousProcess 61 { 79 { 62 public: << 63 explicit G4Cerenkov(const G4String& processN << 64 G4ProcessType type << 65 ~G4Cerenkov(); << 66 << 67 explicit G4Cerenkov(const G4Cerenkov& right) << 68 << 69 G4Cerenkov& operator=(const G4Cerenkov& righ << 70 << 71 G4bool IsApplicable(const G4ParticleDefiniti << 72 // Returns true -> 'is applicable', for all << 73 // except short-lived particles. << 74 << 75 void BuildPhysicsTable(const G4ParticleDefin << 76 // Build table at a right time << 77 << 78 void PreparePhysicsTable(const G4ParticleDef << 79 void Initialise(); << 80 << 81 G4double GetMeanFreePath(const G4Track& aTra << 82 // Returns the discrete step limit and sets << 83 // condition for the DoIt to be invoked at e << 84 << 85 G4double PostStepGetPhysicalInteractionLengt << 86 << 87 // Returns the discrete step limit and sets << 88 // condition for the DoIt to be invoked at e << 89 << 90 G4VParticleChange* PostStepDoIt(const G4Trac << 91 const G4Step << 92 // This is the method implementing the Ceren << 93 << 94 // no operation in AtRestDoIt and AlongSt << 95 virtual G4double AlongStepGetPhysicalInterac << 96 const G4Track&, G4double, G4double, G4doub << 97 { << 98 return -1.0; << 99 }; << 100 << 101 virtual G4double AtRestGetPhysicalInteractio << 102 const G4Track&, G4ForceCondition*) overrid << 103 { << 104 return -1.0; << 105 }; << 106 << 107 // no operation in AtRestDoIt and AlongSt << 108 virtual G4VParticleChange* AtRestDoIt(const << 109 { << 110 return nullptr; << 111 }; << 112 << 113 virtual G4VParticleChange* AlongStepDoIt(con << 114 con << 115 { << 116 return nullptr; << 117 }; << 118 << 119 void SetTrackSecondariesFirst(const G4bool s << 120 // If set, the primary particle tracking is << 121 // produced Cerenkov photons are tracked nex << 122 // been tracked, the tracking of the primary << 123 << 124 G4bool GetTrackSecondariesFirst() const; << 125 // Returns the boolean flag for tracking sec << 126 << 127 void SetMaxBetaChangePerStep(const G4double << 128 // Set the maximum allowed change in beta = << 129 << 130 G4double GetMaxBetaChangePerStep() const; << 131 // Returns the maximum allowed change in bet << 132 << 133 void SetMaxNumPhotonsPerStep(const G4int Num << 134 // Set the maximum number of Cerenkov photon << 135 // a tracking step. This is an average ONLY; << 136 // around this average. If invoked, the maxi << 137 // of the size set. If not called, the step << 138 // photons generated. << 139 << 140 G4int GetMaxNumPhotonsPerStep() const; << 141 // Returns the maximum number of Cerenkov ph << 142 // generated during a tracking step. << 143 << 144 void SetStackPhotons(const G4bool); << 145 // Call by the user to set the flag for stac << 146 << 147 G4bool GetStackPhotons() const; << 148 // Return the boolean for whether or not the << 149 << 150 G4int GetNumPhotons() const; << 151 // Returns the current number of scint. phot << 152 << 153 G4PhysicsTable* GetPhysicsTable() const; << 154 // Returns the address of the physics table. << 155 << 156 void DumpPhysicsTable() const; << 157 // Prints the physics table. << 158 << 159 G4double GetAverageNumberOfPhotons(const G4d << 160 const G4M << 161 G4Materia << 162 << 163 void DumpInfo() const override {ProcessDescr << 164 void ProcessDescription(std::ostream& out) c << 165 << 166 void SetVerboseLevel(G4int); << 167 // sets verbosity << 168 << 169 protected: << 170 G4PhysicsTable* thePhysicsTable; << 171 << 172 private: << 173 G4double fMaxBetaChange; << 174 << 175 G4int fMaxPhotons; << 176 G4int fNumPhotons; << 177 80 178 G4bool fStackingFlag; << 81 private: 179 G4bool fTrackSecondariesFirst; << 82 >> 83 ////////////// >> 84 // Operators >> 85 ////////////// >> 86 >> 87 // G4Cerenkov& operator=(const G4Cerenkov &right); >> 88 >> 89 public: // Without description >> 90 >> 91 //////////////////////////////// >> 92 // Constructors and Destructor >> 93 //////////////////////////////// >> 94 >> 95 G4Cerenkov(const G4String& processName = "Cerenkov", >> 96 G4ProcessType type = fElectromagnetic); >> 97 >> 98 // G4Cerenkov(const G4Cerenkov &right); >> 99 >> 100 ~G4Cerenkov(); >> 101 >> 102 //////////// >> 103 // Methods >> 104 //////////// >> 105 >> 106 public: // With description >> 107 >> 108 G4bool IsApplicable(const G4ParticleDefinition& aParticleType); >> 109 // Returns true -> 'is applicable', for all charged particles. >> 110 >> 111 G4double GetContinuousStepLimit(const G4Track& aTrack, >> 112 G4double , >> 113 G4double , >> 114 G4double& ); >> 115 // Returns the continuous step limit defined by the Cerenkov >> 116 // process. >> 117 >> 118 G4VParticleChange* AlongStepDoIt(const G4Track& aTrack, >> 119 const G4Step& aStep); >> 120 // This is the method implementing the Cerenkov process. 180 121 181 G4int secID = -1; // creator modelID << 122 void SetTrackSecondariesFirst(const G4bool state); >> 123 // If set, the primary particle tracking is interrupted and any >> 124 // produced Cerenkov photons are tracked next. When all have >> 125 // been tracked, the tracking of the primary resumes. >> 126 >> 127 void SetMaxNumPhotonsPerStep(const G4int NumPhotons); >> 128 // Set the maximum number of Cerenkov photons allowed to be >> 129 // generated during a tracking step. This is an average ONLY; >> 130 // the actual number will vary around this average. If invoked, >> 131 // the maximum photon stack will roughly be of the size set. >> 132 // If not called, the step is not limited by the number of >> 133 // photons generated. 182 134 >> 135 G4PhysicsTable* GetPhysicsTable() const; >> 136 // Returns the address of the physics table. >> 137 >> 138 void DumpPhysicsTable() const; >> 139 // Prints the physics table. >> 140 >> 141 private: >> 142 >> 143 void BuildThePhysicsTable(); >> 144 >> 145 ///////////////////// >> 146 // Helper Functions >> 147 ///////////////////// >> 148 >> 149 G4double GetAverageNumberOfPhotons(const G4DynamicParticle *aParticle, >> 150 const G4Material *aMaterial, >> 151 const G4MaterialPropertyVector* Rindex) const; >> 152 >> 153 /////////////////////// >> 154 // Class Data Members >> 155 /////////////////////// >> 156 >> 157 protected: >> 158 >> 159 G4PhysicsTable* thePhysicsTable; >> 160 // A Physics Table can be either a cross-sections table or >> 161 // an energy table (or can be used for other specific >> 162 // purposes). >> 163 >> 164 private: >> 165 >> 166 G4bool fTrackSecondariesFirst; >> 167 G4int fMaxPhotons; 183 }; 168 }; 184 169 185 inline G4bool G4Cerenkov::GetTrackSecondariesF << 170 //////////////////// >> 171 // Inline methods >> 172 //////////////////// >> 173 >> 174 inline >> 175 G4bool G4Cerenkov::IsApplicable(const G4ParticleDefinition& aParticleType) 186 { 176 { 187 return fTrackSecondariesFirst; << 177 if (aParticleType.GetParticleName() != "chargedgeantino" ) { >> 178 return (aParticleType.GetPDGCharge() != 0); >> 179 } else { >> 180 return false; >> 181 } 188 } 182 } 189 183 190 inline G4double G4Cerenkov::GetMaxBetaChangePe << 184 inline 191 { << 185 void G4Cerenkov::SetTrackSecondariesFirst(const G4bool state) 192 return fMaxBetaChange; << 186 { >> 187 fTrackSecondariesFirst = state; 193 } 188 } 194 189 195 inline G4int G4Cerenkov::GetMaxNumPhotonsPerSt << 190 inline >> 191 void G4Cerenkov::SetMaxNumPhotonsPerStep(const G4int NumPhotons) >> 192 { >> 193 fMaxPhotons = NumPhotons; >> 194 } 196 195 197 inline G4bool G4Cerenkov::GetStackPhotons() co << 196 inline >> 197 void G4Cerenkov::DumpPhysicsTable() const >> 198 { >> 199 G4int PhysicsTableSize = thePhysicsTable->entries(); >> 200 G4PhysicsOrderedFreeVector *v; 198 201 199 inline G4int G4Cerenkov::GetNumPhotons() const << 202 for (G4int i = 0 ; i < PhysicsTableSize ; i++ ) >> 203 { >> 204 v = (G4PhysicsOrderedFreeVector*)(*thePhysicsTable)[i]; >> 205 v->DumpValues(); >> 206 } >> 207 } 200 208 201 inline G4PhysicsTable* G4Cerenkov::GetPhysicsT 209 inline G4PhysicsTable* G4Cerenkov::GetPhysicsTable() const 202 { 210 { 203 return thePhysicsTable; 211 return thePhysicsTable; 204 } 212 } 205 213 206 #endif /* G4Cerenkov_h */ 214 #endif /* G4Cerenkov_h */ 207 215