Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4VEmProcess 33 // File name: G4VEmProcess 32 // 34 // 33 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 36 // 35 // Creation date: 01.10.2003 37 // Creation date: 01.10.2003 36 // 38 // 37 // Modifications: by V.Ivanchenko << 39 // Modifications: >> 40 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 41 // 30-09-08 optimise integral option (V.Ivanchenko) >> 42 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 43 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 44 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 46 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 47 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 48 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 49 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 50 // 12-09-06 add SetModel() (mma) >> 51 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) >> 52 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 53 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) >> 54 // 17-02-10 Added pointer currentParticle (VI) >> 55 // 30-05-12 allow Russian roulette, brem splitting (D. Sawkey) 38 // 56 // 39 // Class Description: based class for discrete << 57 // Class Description: 40 // 58 // 41 59 42 // ------------------------------------------- 60 // ------------------------------------------------------------------- 43 // 61 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 64 47 #include "G4VEmProcess.hh" 65 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" 66 #include "G4PhysicalConstants.hh" 49 #include "G4SystemOfUnits.hh" 67 #include "G4SystemOfUnits.hh" 50 #include "G4ProcessManager.hh" 68 #include "G4ProcessManager.hh" 51 #include "G4LossTableManager.hh" 69 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" 70 #include "G4LossTableBuilder.hh" 53 #include "G4Step.hh" 71 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 72 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 73 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 74 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 75 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 59 #include "G4PhysicsLogVector.hh" 76 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 77 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 78 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 79 #include "G4Region.hh" 63 #include "G4Gamma.hh" 80 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 81 #include "G4Electron.hh" 65 #include "G4Positron.hh" 82 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 83 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" 84 #include "G4EmBiasingManager.hh" 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" 85 #include "G4GenericIon.hh" 74 #include "G4Log.hh" << 75 #include <iostream> << 76 86 77 //....oooOO0OOooo........oooOO0OOooo........oo 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 88 79 G4VEmProcess::G4VEmProcess(const G4String& nam 89 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 90 G4VDiscreteProcess(name, type), >> 91 secondaryParticle(0), >> 92 buildLambdaTable(true), >> 93 numberOfModels(0), >> 94 theLambdaTable(0), >> 95 theLambdaTablePrim(0), >> 96 theDensityFactor(0), >> 97 theDensityIdx(0), >> 98 integral(false), >> 99 applyCuts(false), >> 100 startFromNull(false), >> 101 splineFlag(true), >> 102 currentModel(0), >> 103 particle(0), >> 104 currentParticle(0), >> 105 currentCouple(0) 81 { 106 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); 107 SetVerboseLevel(1); 84 108 85 // Size of tables << 109 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 110 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 111 maxKinEnergy = 10.0*TeV; >> 112 nLambdaBins = 77; >> 113 minKinEnergyPrim = DBL_MAX; 88 114 89 // default lambda factor 115 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 116 lambdaFactor = 0.8; >> 117 >> 118 // default limit on polar angle >> 119 polarAngleLimit = 0.0; >> 120 biasFactor = 1.0; 91 121 92 // particle types 122 // particle types 93 theGamma = G4Gamma::Gamma(); << 123 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 124 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 125 thePositron = G4Positron::Positron(); 96 126 97 pParticleChange = &fParticleChange; 127 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); 128 secParticles.reserve(5); 100 129 >> 130 preStepLambda = 0.0; >> 131 mfpKinEnergy = DBL_MAX; >> 132 101 modelManager = new G4EmModelManager(); 133 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 134 biasManager = 0; 103 lManager->Register(this); << 135 biasFlag = false; 104 isTheMaster = lManager->IsMaster(); << 136 weightFlag = false; 105 G4LossTableBuilder* bld = lManager->GetTable << 137 (G4LossTableManager::Instance())->Register(this); 106 theDensityFactor = bld->GetDensityFactors(); << 138 warn = 0; 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 139 } 109 140 110 //....oooOO0OOooo........oooOO0OOooo........oo 141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 142 112 G4VEmProcess::~G4VEmProcess() 143 G4VEmProcess::~G4VEmProcess() 113 { 144 { 114 if(isTheMaster) { << 145 if(1 < verboseLevel) { 115 delete theData; << 146 G4cout << "G4VEmProcess destruct " << GetProcessName() 116 delete theEnergyOfCrossSectionMax; << 147 << " " << this << " " << theLambdaTable <<G4endl; >> 148 } >> 149 Clear(); >> 150 if(theLambdaTable) { >> 151 theLambdaTable->clearAndDestroy(); >> 152 delete theLambdaTable; >> 153 } >> 154 if(theLambdaTablePrim) { >> 155 theLambdaTablePrim->clearAndDestroy(); >> 156 delete theLambdaTablePrim; 117 } 157 } 118 delete modelManager; 158 delete modelManager; 119 delete biasManager; 159 delete biasManager; 120 lManager->DeRegister(this); << 160 (G4LossTableManager::Instance())->DeRegister(this); 121 } 161 } 122 162 123 //....oooOO0OOooo........oooOO0OOooo........oo 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 164 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 165 void G4VEmProcess::Clear() 126 const G4Region* << 127 { 166 { 128 if(nullptr == ptr) { return; } << 167 currentCouple = 0; 129 G4VEmFluctuationModel* fm = nullptr; << 168 preStepLambda = 0.0; 130 modelManager->AddEmModel(order, ptr, fm, reg << 169 mfpKinEnergy = DBL_MAX; 131 ptr->SetParticleChange(pParticleChange); << 132 } 170 } 133 171 134 //....oooOO0OOooo........oooOO0OOooo........oo 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 173 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 174 G4double G4VEmProcess::MinPrimaryEnergy(const G4ParticleDefinition*, >> 175 const G4Material*) 137 { 176 { 138 if(nullptr == ptr) { return; } << 177 return 0.0; 139 if(!emModels.empty()) { << 178 } 140 for(auto & em : emModels) { if(em == ptr) << 179 141 } << 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 142 emModels.push_back(ptr); << 181 >> 182 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, >> 183 const G4Region* region) >> 184 { >> 185 G4VEmFluctuationModel* fm = 0; >> 186 modelManager->AddEmModel(order, p, fm, region); >> 187 if(p) { p->SetParticleChange(pParticleChange); } >> 188 } >> 189 >> 190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 191 >> 192 void G4VEmProcess::SetModel(G4VEmModel* p, G4int index) >> 193 { >> 194 ++warn; >> 195 if(warn < 10) { >> 196 G4cout << "### G4VEmProcess::SetModel is obsolete method and will be " >> 197 << "removed for the next release." << G4endl; >> 198 G4cout << " Please, use SetEmModel" << G4endl; >> 199 } >> 200 G4int n = emModels.size(); >> 201 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } >> 202 emModels[index] = p; >> 203 } >> 204 >> 205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 206 >> 207 G4VEmModel* G4VEmProcess::Model(G4int index) >> 208 { >> 209 if(warn < 10) { >> 210 G4cout << "### G4VEmProcess::Model is obsolete method and will be " >> 211 << "removed for the next release." << G4endl; >> 212 G4cout << " Please, use EmModel" << G4endl; >> 213 } >> 214 G4VEmModel* p = 0; >> 215 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 216 return p; >> 217 } >> 218 >> 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 220 >> 221 void G4VEmProcess::SetEmModel(G4VEmModel* p, G4int index) >> 222 { >> 223 G4int n = emModels.size(); >> 224 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } >> 225 emModels[index] = p; >> 226 } >> 227 >> 228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 229 >> 230 G4VEmModel* G4VEmProcess::EmModel(G4int index) >> 231 { >> 232 G4VEmModel* p = 0; >> 233 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 234 return p; >> 235 } >> 236 >> 237 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 238 >> 239 void G4VEmProcess::UpdateEmModel(const G4String& nam, >> 240 G4double emin, G4double emax) >> 241 { >> 242 modelManager->UpdateEmModel(nam, emin, emax); >> 243 } >> 244 >> 245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 246 >> 247 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver) >> 248 { >> 249 return modelManager->GetModel(idx, ver); 143 } 250 } 144 251 145 //....oooOO0OOooo........oooOO0OOooo........oo 252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 253 147 void G4VEmProcess::PreparePhysicsTable(const G 254 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 148 { 255 { 149 if(nullptr == particle) { SetParticle(&part) << 256 if(!particle) { SetParticle(&part); } 150 257 151 if(part.GetParticleType() == "nucleus" && 258 if(part.GetParticleType() == "nucleus" && 152 part.GetParticleSubType() == "generic") { 259 part.GetParticleSubType() == "generic") { 153 260 154 G4String pname = part.GetParticleName(); 261 G4String pname = part.GetParticleName(); 155 if(pname != "deuteron" && pname != "triton 262 if(pname != "deuteron" && pname != "triton" && 156 pname != "He3" && pname != "alpha" && p << 263 pname != "alpha" && pname != "He3" && 157 pname != "helium" && pname != "hydrogen << 264 pname != "alpha+" && pname != "helium" && >> 265 pname != "hydrogen") { 158 266 159 particle = G4GenericIon::GenericIon(); 267 particle = G4GenericIon::GenericIon(); 160 isIon = true; << 161 } 268 } 162 } 269 } 163 if(particle != &part) { return; } << 164 270 165 lManager->PreparePhysicsTable(&part, this); << 271 if(1 < verboseLevel) { >> 272 G4cout << "G4VEmProcess::PreparePhysicsTable() for " >> 273 << GetProcessName() >> 274 << " and particle " << part.GetParticleName() >> 275 << " local particle " << particle->GetParticleName() >> 276 << G4endl; >> 277 } 166 278 167 // for new run << 279 G4LossTableManager* man = G4LossTableManager::Instance(); 168 currentCouple = nullptr; << 280 G4LossTableBuilder* bld = man->GetTableBuilder(); 169 preStepLambda = 0.0; << 170 fLambdaEnergy = 0.0; << 171 281 172 InitialiseProcess(particle); << 282 man->PreparePhysicsTable(&part, this); 173 283 174 G4LossTableBuilder* bld = lManager->GetTable << 284 if(particle == &part) { 175 const G4ProductionCutsTable* theCoupleTable= << 285 Clear(); 176 G4ProductionCutsTable::GetProductionCutsTa << 286 InitialiseProcess(particle); 177 theCutsGamma = theCoupleTable->GetEnergyC << 287 178 theCutsElectron = theCoupleTable->GetEnergyC << 288 const G4ProductionCutsTable* theCoupleTable= 179 theCutsPositron = theCoupleTable->GetEnergyC << 289 G4ProductionCutsTable::GetProductionCutsTable(); 180 << 290 size_t n = theCoupleTable->GetTableSize(); 181 // initialisation of the process << 291 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 292 theEnergyOfCrossSectionMax.resize(n, 0.0); 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 293 theCrossSectionMax.resize(n, DBL_MAX); 184 << 294 185 applyCuts = theParameters->ApplyCuts() << 295 // initialisation of models 186 lambdaFactor = theParameters->LambdaFacto << 296 numberOfModels = modelManager->NumberOfModels(); 187 invLambdaFactor = 1.0/lambdaFactor; << 297 for(G4int i=0; i<numberOfModels; ++i) { 188 theParameters->DefineRegParamForEM(this); << 298 G4VEmModel* mod = modelManager->GetModel(i); 189 << 299 if(0 == i) { currentModel = mod; } 190 // integral option may be disabled << 300 mod->SetPolarAngleLimit(polarAngleLimit); 191 if(!theParameters->Integral()) { fXSType = f << 301 if(mod->HighEnergyLimit() > maxKinEnergy) { 192 << 302 mod->SetHighEnergyLimit(maxKinEnergy); 193 // prepare tables << 303 } 194 if(isTheMaster) { << 304 } 195 if(nullptr == theData) { theData = new G4E << 196 305 197 if(buildLambdaTable) { << 306 if(man->AtomDeexcitation()) { modelManager->SetFluoFlag(true); } 198 theLambdaTable = theData->MakeTable(0); << 307 theCuts = modelManager->Initialise(particle,secondaryParticle, >> 308 2.,verboseLevel); >> 309 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 310 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 311 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 312 >> 313 // prepare tables >> 314 if(buildLambdaTable){ >> 315 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); 199 bld->InitialiseBaseMaterials(theLambdaTa 316 bld->InitialiseBaseMaterials(theLambdaTable); 200 } 317 } 201 // high energy table 318 // high energy table 202 if(minKinEnergyPrim < maxKinEnergy) { << 319 if(minKinEnergyPrim < maxKinEnergy){ 203 theLambdaTablePrim = theData->MakeTable( << 320 theLambdaTablePrim = >> 321 G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTablePrim); 204 bld->InitialiseBaseMaterials(theLambdaTa 322 bld->InitialiseBaseMaterials(theLambdaTablePrim); 205 } 323 } >> 324 // forced biasing >> 325 if(biasManager) { >> 326 biasManager->Initialise(part,GetProcessName(),verboseLevel); >> 327 biasFlag = false; >> 328 } 206 } 329 } 207 // models << 330 theDensityFactor = bld->GetDensityFactors(); 208 baseMat = bld->GetBaseMaterialFlag(); << 331 theDensityIdx = bld->GetCoupleIndexes(); 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 332 } 226 333 227 //....oooOO0OOooo........oooOO0OOooo........oo 334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 335 229 void G4VEmProcess::BuildPhysicsTable(const G4P 336 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 337 { 231 if(nullptr == masterProc) { << 338 G4String num = part.GetParticleName(); 232 if(isTheMaster) { masterProc = this; } << 339 if(1 < verboseLevel) { 233 else { masterProc = static_cast<const G4VE << 340 G4cout << "G4VEmProcess::BuildPhysicsTable() for " 234 } << 341 << GetProcessName() 235 G4int nModels = modelManager->NumberOfModels << 342 << " and particle " << num 236 G4bool isLocked = theParameters->IsPrintLock << 343 << " buildLambdaTable= " << buildLambdaTable 237 G4bool toBuild = (buildLambdaTable || minKin << 344 << G4endl; 238 << 345 } 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 346 240 nModels, verbo << 347 (G4LossTableManager::Instance())->BuildPhysicsTable(particle); 241 isLocked, toBu << 348 >> 349 if(buildLambdaTable || minKinEnergyPrim < maxKinEnergy) { >> 350 BuildLambdaTable(); >> 351 } >> 352 >> 353 // explicitly defined printout by particle name >> 354 if(1 < verboseLevel || >> 355 (0 < verboseLevel && (num == "gamma" || num == "e-" || >> 356 num == "e+" || num == "mu+" || >> 357 num == "mu-" || num == "proton"|| >> 358 num == "pi+" || num == "pi-" || >> 359 num == "kaon+" || num == "kaon-" || >> 360 num == "alpha" || num == "anti_proton" || >> 361 num == "GenericIon"))) >> 362 { >> 363 particle = ∂ >> 364 PrintInfoDefinition(); >> 365 } >> 366 >> 367 if(1 < verboseLevel) { >> 368 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " >> 369 << GetProcessName() >> 370 << " and particle " << num >> 371 << G4endl; >> 372 } 242 } 373 } 243 374 244 //....oooOO0OOooo........oooOO0OOooo........oo 375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 376 246 void G4VEmProcess::BuildLambdaTable() 377 void G4VEmProcess::BuildLambdaTable() 247 { 378 { 248 G4double scale = theParameters->MaxKinEnergy << 379 if(1 < verboseLevel) { 249 G4int nbin = << 380 G4cout << "G4EmProcess::BuildLambdaTable() for process " 250 theParameters->NumberOfBinsPerDecade()*G4l << 381 << GetProcessName() << " and particle " 251 if(actBinning) { nbin = std::max(nbin, nLamb << 382 << particle->GetParticleName() << " " << this 252 scale = nbin/G4Log(scale); << 383 << G4endl; 253 << 384 } 254 G4LossTableBuilder* bld = lManager->GetTable << 385 255 G4EmTableUtil::BuildLambdaTable(this, partic << 386 // Access to materials 256 bld, theLamb << 387 const G4ProductionCutsTable* theCoupleTable= 257 minKinEnergy << 388 G4ProductionCutsTable::GetProductionCutsTable(); 258 maxKinEnergy << 389 size_t numOfCouples = theCoupleTable->GetTableSize(); 259 startFromNul << 390 >> 391 G4LossTableBuilder* bld = (G4LossTableManager::Instance())->GetTableBuilder(); >> 392 >> 393 G4PhysicsLogVector* aVector = 0; >> 394 G4PhysicsLogVector* bVector = 0; >> 395 G4PhysicsLogVector* aVectorPrim = 0; >> 396 G4PhysicsLogVector* bVectorPrim = 0; >> 397 >> 398 G4double scale = 1.0; >> 399 G4double emax1 = maxKinEnergy; >> 400 if(startFromNull || minKinEnergyPrim < maxKinEnergy ) { >> 401 scale = std::log(maxKinEnergy/minKinEnergy); >> 402 if(minKinEnergyPrim < maxKinEnergy) { emax1 = minKinEnergyPrim; } >> 403 } >> 404 >> 405 for(size_t i=0; i<numOfCouples; ++i) { >> 406 >> 407 if (bld->GetFlag(i)) { >> 408 >> 409 // create physics vector and fill it >> 410 const G4MaterialCutsCouple* couple = >> 411 theCoupleTable->GetMaterialCutsCouple(i); >> 412 >> 413 // build main table >> 414 if(buildLambdaTable) { >> 415 delete (*theLambdaTable)[i]; >> 416 >> 417 G4bool startNull = startFromNull; >> 418 // if start from zero then change the scale >> 419 if(startFromNull || minKinEnergyPrim < maxKinEnergy) { >> 420 G4double emin = MinPrimaryEnergy(particle,couple->GetMaterial()); >> 421 if(emin < minKinEnergy) { >> 422 emin = minKinEnergy; >> 423 startNull = false; >> 424 } >> 425 G4double emax = emax1; >> 426 if(emax <= emin) { emax = 2*emin; } >> 427 G4int bin = >> 428 G4lrint(nLambdaBins*std::log(emax/emin)/scale); >> 429 if(bin < 3) { bin = 3; } >> 430 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 431 >> 432 // start not from zero >> 433 } else if(!bVector) { >> 434 aVector = >> 435 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 436 bVector = aVector; >> 437 } else { >> 438 aVector = new G4PhysicsLogVector(*bVector); >> 439 } >> 440 aVector->SetSpline(splineFlag); >> 441 modelManager->FillLambdaVector(aVector, couple, startNull); >> 442 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 443 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 444 } >> 445 // build high energy table >> 446 if(minKinEnergyPrim < maxKinEnergy) { >> 447 delete (*theLambdaTablePrim)[i]; >> 448 >> 449 // start not from zero >> 450 if(!bVectorPrim) { >> 451 G4int bin = >> 452 G4lrint(nLambdaBins*std::log(maxKinEnergy/minKinEnergyPrim)/scale); >> 453 if(bin < 3) { bin = 3; } >> 454 aVectorPrim = >> 455 new G4PhysicsLogVector(minKinEnergyPrim, maxKinEnergy, bin); >> 456 bVectorPrim = aVectorPrim; >> 457 } else { >> 458 aVectorPrim = new G4PhysicsLogVector(*bVectorPrim); >> 459 } >> 460 // always use spline >> 461 aVectorPrim->SetSpline(true); >> 462 modelManager->FillLambdaVector(aVectorPrim, couple, false, >> 463 fIsCrossSectionPrim); >> 464 aVectorPrim->FillSecondDerivatives(); >> 465 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTablePrim, i, aVectorPrim); >> 466 } >> 467 } >> 468 } >> 469 >> 470 if(buildLambdaTable) { FindLambdaMax(); } >> 471 >> 472 if(1 < verboseLevel) { >> 473 G4cout << "Lambda table is built for " >> 474 << particle->GetParticleName() >> 475 << G4endl; >> 476 } 260 } 477 } 261 478 262 //....oooOO0OOooo........oooOO0OOooo........oo 479 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 480 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 481 void G4VEmProcess::PrintInfoDefinition() 265 const G4ParticleDefinition& << 482 { 266 { << 483 if(verboseLevel > 0) { 267 G4String indent = (rst ? " " : ""); << 484 G4cout << G4endl << GetProcessName() << ": for " 268 out << std::setprecision(6); << 485 << particle->GetParticleName(); 269 out << G4endl << indent << GetProcessName() << 486 if(integral) { G4cout << ", integral: 1 "; } 270 if (!rst) { << 487 if(applyCuts) { G4cout << ", applyCuts: 1 "; } 271 out << " for " << part.GetParticleName(); << 488 G4cout << " SubType= " << GetProcessSubType();; 272 } << 489 if(biasFactor != 1.0) { G4cout << " BiasingFactor= " << biasFactor; } 273 if(fXSType != fEmNoIntegral) { out << " XSt << 490 G4cout << G4endl; 274 if(applyCuts) { out << " applyCuts:1 "; } << 491 if(buildLambdaTable) { 275 G4int subtype = GetProcessSubType(); << 492 size_t length = theLambdaTable->length(); 276 out << " SubType=" << subtype; << 493 for(size_t i=0; i<length; ++i) { 277 if (subtype == fAnnihilation) { << 494 G4PhysicsVector* v = (*theLambdaTable)[i]; 278 G4int mod = theParameters->PositronAtRestM << 495 if(v) { 279 const G4String namp[2] = {"Simple", "Allis << 496 G4cout << " Lambda table from " 280 out << " AtRestModel:" << namp[mod]; << 497 << G4BestUnit(minKinEnergy,"Energy") 281 } << 498 << " to " 282 if(biasFactor != 1.0) { out << " BiasingFac << 499 << G4BestUnit(v->GetMaxEnergy(),"Energy") 283 out << " BuildTable=" << buildLambdaTable << << 500 << " in " << v->GetVectorLength()-1 284 if(buildLambdaTable) { << 501 << " bins, spline: " 285 if(particle == &part) { << 502 << splineFlag 286 for(auto & v : *theLambdaTable) { << 503 << G4endl; 287 if(nullptr != v) { << 504 break; 288 out << " Lambda table from "; << 505 } 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } 506 } 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } 507 } 306 } << 508 if(minKinEnergyPrim < maxKinEnergy) { 307 if(minKinEnergyPrim < maxKinEnergy) { << 509 size_t length = theLambdaTablePrim->length(); 308 if(particle == &part) { << 510 for(size_t i=0; i<length; ++i) { 309 for(auto & v : *theLambdaTablePrim) { << 511 G4PhysicsVector* v = (*theLambdaTablePrim)[i]; 310 if(nullptr != v) { << 512 if(v) { 311 out << " LambdaPrime table from << 513 G4cout << " LambdaPrime table from " 312 << G4BestUnit(v->Energy(0),"Ener << 514 << G4BestUnit(minKinEnergyPrim,"Energy") 313 << " to " << 515 << " to " 314 << G4BestUnit(v->GetMaxEnergy(), << 516 << G4BestUnit(maxKinEnergy,"Energy") 315 << " in " << v->GetVectorLength( << 517 << " in " << v->GetVectorLength()-1 316 << " bins " << G4endl; << 518 << " bins " 317 break; << 519 << G4endl; 318 } << 520 break; >> 521 } 319 } 522 } 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } 523 } >> 524 PrintInfo(); >> 525 modelManager->DumpModelList(verboseLevel); 324 } 526 } 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 527 328 if(verboseLevel > 2 && buildLambdaTable) { 528 if(verboseLevel > 2 && buildLambdaTable) { 329 out << " LambdaTable address= " << th << 529 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; 330 if(theLambdaTable && particle == &part) { << 530 if(theLambdaTable) { G4cout << (*theLambdaTable) << G4endl; } 331 out << (*theLambdaTable) << G4endl; << 332 } << 333 } 531 } 334 } 532 } 335 533 336 //....oooOO0OOooo........oooOO0OOooo........oo 534 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 535 338 void G4VEmProcess::StartTracking(G4Track* trac 536 void G4VEmProcess::StartTracking(G4Track* track) 339 { 537 { 340 // reset parameters for the new track 538 // reset parameters for the new track 341 currentParticle = track->GetParticleDefiniti 539 currentParticle = track->GetParticleDefinition(); 342 theNumberOfInteractionLengthLeft = -1.0; 540 theNumberOfInteractionLengthLeft = -1.0; 343 mfpKinEnergy = DBL_MAX; << 541 //currentInteractionLength = -1.0; 344 preStepLambda = 0.0; << 542 // theInitialNumberOfInteractionLength=-1.0; 345 << 543 mfpKinEnergy = DBL_MAX; 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 544 348 // forced biasing only for primary particles 545 // forced biasing only for primary particles 349 if(biasManager) { 546 if(biasManager) { 350 if(0 == track->GetParentID()) { 547 if(0 == track->GetParentID()) { 351 // primary particle 548 // primary particle 352 biasFlag = true; 549 biasFlag = true; 353 biasManager->ResetForcedInteraction(); 550 biasManager->ResetForcedInteraction(); 354 } 551 } 355 } 552 } 356 } 553 } 357 554 358 //....oooOO0OOooo........oooOO0OOooo........oo 555 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 556 360 G4double G4VEmProcess::PostStepGetPhysicalInte 557 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 558 const G4Track& track, 362 G4double previo 559 G4double previousStepSize, 363 G4ForceCondition* 560 G4ForceCondition* condition) 364 { 561 { 365 *condition = NotForced; 562 *condition = NotForced; 366 G4double x = DBL_MAX; 563 G4double x = DBL_MAX; 367 564 368 DefineMaterial(track.GetMaterialCutsCouple() << 369 preStepKinEnergy = track.GetKineticEnergy(); 565 preStepKinEnergy = track.GetKineticEnergy(); 370 const G4double scaledEnergy = preStepKinEner << 566 DefineMaterial(track.GetMaterialCutsCouple()); 371 SelectModel(scaledEnergy, currentCoupleIndex << 567 SelectModel(preStepKinEnergy, currentCoupleIndex); 372 /* << 568 373 G4cout << "PostStepGetPhysicalInteractionLen << 569 if(!currentModel->IsActive(preStepKinEnergy)) { return x; } 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 570 384 // forced biasing only for primary particles 571 // forced biasing only for primary particles 385 if(biasManager) { 572 if(biasManager) { 386 if(0 == track.GetParentID()) { 573 if(0 == track.GetParentID()) { 387 if(biasFlag && << 574 if(biasFlag && biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 388 biasManager->ForcedInteractionRegion( << 575 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); 389 return biasManager->GetStepLimit((G4in << 390 } 576 } 391 } 577 } 392 } 578 } 393 579 394 // compute mean free path 580 // compute mean free path >> 581 if(preStepKinEnergy < mfpKinEnergy) { >> 582 if (integral) { ComputeIntegralLambda(preStepKinEnergy); } >> 583 else { preStepLambda = GetCurrentLambda(preStepKinEnergy); } >> 584 >> 585 // zero cross section >> 586 if(preStepLambda <= 0.0) { >> 587 theNumberOfInteractionLengthLeft = -1.0; >> 588 currentInteractionLength = DBL_MAX; >> 589 } >> 590 } 395 591 396 ComputeIntegralLambda(preStepKinEnergy, trac << 592 // non-zero cross section 397 << 593 if(preStepLambda > 0.0) { 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 594 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 595 if (theNumberOfInteractionLengthLeft < 0.0) { 407 596 408 // beggining of tracking (or just after 597 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 598 ResetNumberOfInteractionLengthLeft(); 410 theInitialNumberOfInteractionLength = th << 411 599 412 } else { << 600 } else if(currentInteractionLength < DBL_MAX) { 413 601 414 theNumberOfInteractionLengthLeft -= << 602 // subtract NumberOfInteractionLengthLeft using previous step 415 previousStepSize/currentInteractionLen << 603 theNumberOfInteractionLengthLeft -= previousStepSize/currentInteractionLength; 416 theNumberOfInteractionLengthLeft = << 604 //SubtractNumberOfInteractionLengthLeft(previousStepSize); 417 std::max(theNumberOfInteractionLengthL << 605 if(theNumberOfInteractionLengthLeft < 0.) { >> 606 theNumberOfInteractionLengthLeft = 0.0; >> 607 //theNumberOfInteractionLengthLeft = perMillion; >> 608 } 418 } 609 } 419 610 420 // new mean free path and step limit for t 611 // new mean free path and step limit for the next step 421 currentInteractionLength = 1.0/preStepLamb 612 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 613 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 423 } << 614 #ifdef G4VERBOSE 424 return x; << 615 if (verboseLevel>2){ 425 } << 616 G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength "; 426 << 617 G4cout << "[ " << GetProcessName() << "]" << G4endl; 427 //....oooOO0OOooo........oooOO0OOooo........oo << 618 G4cout << " for " << currentParticle->GetParticleName() 428 << 619 << " in Material " << currentMaterial->GetName() 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 620 << " Ekin(MeV)= " << preStepKinEnergy/MeV 430 { << 621 <<G4endl; 431 if (fXSType == fEmNoIntegral) { << 622 G4cout << " MeanFreePath = " << currentInteractionLength/cm << "[cm]" 432 preStepLambda = GetCurrentLambda(e, LogEki << 623 << " InteractionLength= " << x/cm <<"[cm] " <<G4endl; 433 << 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } 624 } 459 } else { << 625 #endif 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } 626 } >> 627 return x; 462 } 628 } 463 629 464 //....oooOO0OOooo........oooOO0OOooo........oo 630 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 631 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 632 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 633 const G4Step& step) 468 { 634 { 469 // clear number of interaction lengths in an << 635 // In all cases clear number of interaction lengths 470 theNumberOfInteractionLengthLeft = -1.0; 636 theNumberOfInteractionLengthLeft = -1.0; 471 mfpKinEnergy = DBL_MAX; << 637 mfpKinEnergy = DBL_MAX; 472 638 473 fParticleChange.InitializeForPostStep(track) 639 fParticleChange.InitializeForPostStep(track); 474 640 475 // Do not make anything if particle is stopp 641 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 642 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) 643 if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; } 478 644 479 const G4double finalT = track.GetKineticEner << 645 G4double finalT = track.GetKineticEnergy(); 480 646 481 // forced process - should happen only once 647 // forced process - should happen only once per track 482 if(biasFlag) { 648 if(biasFlag) { 483 if(biasManager->ForcedInteractionRegion((G << 649 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 484 biasFlag = false; 650 biasFlag = false; 485 } 651 } 486 } 652 } 487 653 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 << 493 // Integral approach 654 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 655 if (integral) { 495 const G4double logFinalT = << 656 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 657 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 498 #ifdef G4VERBOSE << 499 if(preStepLambda < lx && 1 < verboseLevel) << 500 G4cout << "WARNING: for " << currentPart 658 G4cout << "WARNING: for " << currentParticle->GetParticleName() 501 << " and " << GetProcessName() << << 659 << " and " << GetProcessName() 502 << " preLambda= " << preStepLambd << 660 << " E(MeV)= " << finalT/MeV 503 << " < " << lx << " (postLambda) << 661 << " preLambda= " << preStepLambda << " < " >> 662 << lx << " (postLambda) " >> 663 << G4endl; 504 } 664 } 505 #endif << 665 506 // if false interaction then use new cross << 666 if(preStepLambda*G4UniformRand() > lx) { 507 // if both values are zero - no interactio << 667 ClearNumberOfInteractionLengthLeft(); 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 668 return &fParticleChange; 510 } 669 } 511 } 670 } 512 671 >> 672 SelectModel(finalT, currentCoupleIndex); >> 673 if(!currentModel->IsActive(finalT)) { return &fParticleChange; } >> 674 513 // define new weight for primary and seconda 675 // define new weight for primary and secondaries 514 G4double weight = fParticleChange.GetParentW 676 G4double weight = fParticleChange.GetParentWeight(); 515 if(weightFlag) { 677 if(weightFlag) { 516 weight /= biasFactor; 678 weight /= biasFactor; 517 fParticleChange.ProposeWeight(weight); 679 fParticleChange.ProposeWeight(weight); 518 } 680 } 519 681 520 #ifdef G4VERBOSE << 682 /* 521 if(1 < verboseLevel) { << 683 if(0 < verboseLevel) { 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 684 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 685 << finalT/MeV 524 << " MeV; model= (" << currentModel 686 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 687 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 688 << G4endl; 527 } 689 } 528 #endif << 690 */ 529 691 530 // sample secondaries 692 // sample secondaries 531 secParticles.clear(); 693 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 694 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl << 695 currentCouple, 534 track.GetDyn << 696 track.GetDynamicParticle(), 535 (*theCuts)[c << 697 (*theCuts)[currentCoupleIndex]); 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 698 539 // splitting or Russian roulette << 699 // bremsstrahlung splitting or Russian roulette 540 if(biasManager) { 700 if(biasManager) { 541 if(biasManager->SecondaryBiasingRegion((G4 << 701 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 542 G4double eloss = 0.0; 702 G4double eloss = 0.0; 543 weight *= biasManager->ApplySecondaryBia << 703 weight *= biasManager->ApplySecondaryBiasing(secParticles, 544 secParticles, track, currentModel, &fP << 704 track, currentModel, 545 (G4int)currentCoupleIndex, (*theCuts)[ << 705 &fParticleChange, 546 step.GetPostStepPoint()->GetSafety()); << 706 eloss, currentCoupleIndex, >> 707 (*theCuts)[currentCoupleIndex], >> 708 step.GetPostStepPoint()->GetSafety()); 547 if(eloss > 0.0) { 709 if(eloss > 0.0) { 548 eloss += fParticleChange.GetLocalEnerg << 710 eloss += fParticleChange.GetLocalEnergyDeposit(); 549 fParticleChange.ProposeLocalEnergyDepo 711 fParticleChange.ProposeLocalEnergyDeposit(eloss); 550 } 712 } 551 } 713 } 552 } 714 } 553 715 554 // save secondaries 716 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 717 G4int num = secParticles.size(); 556 if(num > 0) { 718 if(num > 0) { 557 719 558 fParticleChange.SetNumberOfSecondaries(num 720 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 721 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 722 567 for (G4int i=0; i<num; ++i) { 723 for (G4int i=0; i<num; ++i) { 568 G4DynamicParticle* dp = secParticles[i]; << 724 if (secParticles[i]) { 569 if (nullptr != dp) { << 725 G4DynamicParticle* dp = secParticles[i]; 570 const G4ParticleDefinition* p = dp->Ge 726 const G4ParticleDefinition* p = dp->GetParticleDefinition(); 571 G4double e = dp->GetKineticEnergy(); 727 G4double e = dp->GetKineticEnergy(); 572 G4bool good = true; 728 G4bool good = true; 573 if(applyCuts) { 729 if(applyCuts) { 574 if (p == theGamma) { << 730 if (p == theGamma) { 575 if (e < (*theCutsGamma)[currentCou << 731 if (e < (*theCutsGamma)[currentCoupleIndex]) { good = false; } 576 732 577 } else if (p == theElectron) { << 733 } else if (p == theElectron) { 578 if (e < (*theCutsElectron)[current << 734 if (e < (*theCutsElectron)[currentCoupleIndex]) { good = false; } 579 735 580 } else if (p == thePositron) { << 736 } else if (p == thePositron) { 581 if (electron_mass_c2 < (*theCutsGa << 737 if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] && 582 e < (*theCutsPositron)[current << 738 e < (*theCutsPositron)[currentCoupleIndex]) { 583 good = false; << 739 good = false; 584 e += 2.0*electron_mass_c2; << 740 e += 2.0*electron_mass_c2; 585 } << 741 } 586 } << 742 } 587 // added secondary if it is good << 743 // added secondary if it is good 588 } 744 } 589 if (good) { 745 if (good) { 590 G4Track* t = new G4Track(dp, time, t << 746 G4Track* t = new G4Track(dp, track.GetGlobalTime(), track.GetPosition()); 591 t->SetTouchableHandle(track.GetTouch 747 t->SetTouchableHandle(track.GetTouchableHandle()); 592 if (biasManager) { << 748 t->SetWeight(weight); 593 t->SetWeight(weight * biasManager- << 749 pParticleChange->AddSecondary(t); 594 } else { << 750 //G4cout << "Secondary(post step) has weight " << t->GetWeight() 595 t->SetWeight(weight); << 751 // << ", Ekin= " << t->GetKineticEnergy()/MeV << " MeV" <<G4endl; 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { 752 } else { 627 delete dp; << 753 delete dp; 628 edep += e; << 754 edep += e; 629 } << 755 } 630 } 756 } 631 } 757 } 632 fParticleChange.ProposeLocalEnergyDeposit( 758 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 759 } 634 760 635 if(0.0 == fParticleChange.GetProposedKinetic 761 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 636 fAlive == fParticleChange.GetTrackStatus( 762 fAlive == fParticleChange.GetTrackStatus()) { 637 if(particle->GetProcessManager()->GetAtRes 763 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 638 { fParticleChange.ProposeTrackStatus( 764 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 639 else { fParticleChange.ProposeTrackStatus( 765 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 640 } 766 } 641 767 >> 768 // ClearNumberOfInteractionLengthLeft(); 642 return &fParticleChange; 769 return &fParticleChange; 643 } 770 } 644 771 645 //....oooOO0OOooo........oooOO0OOooo........oo 772 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 773 647 G4bool G4VEmProcess::StorePhysicsTable(const G 774 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 648 const G << 775 const G4String& directory, 649 G4bool << 776 G4bool ascii) 650 { 777 { 651 if(!isTheMaster || part != particle) { retur << 778 G4bool yes = true; 652 if(G4EmTableUtil::StoreTable(this, part, the << 779 653 directory, "Lambda", << 780 if ( theLambdaTable && part == particle) { 654 verboseLevel, a << 781 const G4String name = 655 G4EmTableUtil::StoreTable(this, part, the << 782 GetPhysicsTableFileName(part,directory,"Lambda",ascii); 656 directory, "LambdaPrim", << 783 yes = theLambdaTable->StorePhysicsTable(name,ascii); 657 verboseLevel, a << 784 658 return true; << 785 if ( yes ) { >> 786 G4cout << "Physics table is stored for " << particle->GetParticleName() >> 787 << " and process " << GetProcessName() >> 788 << " in the directory <" << directory >> 789 << "> " << G4endl; >> 790 } else { >> 791 G4cout << "Fail to store Physics Table for " >> 792 << particle->GetParticleName() >> 793 << " and process " << GetProcessName() >> 794 << " in the directory <" << directory >> 795 << "> " << G4endl; >> 796 } >> 797 } >> 798 if ( theLambdaTablePrim && part == particle) { >> 799 const G4String name = >> 800 GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 801 yes = theLambdaTablePrim->StorePhysicsTable(name,ascii); >> 802 >> 803 if ( yes ) { >> 804 G4cout << "Physics table prim is stored for " << particle->GetParticleName() >> 805 << " and process " << GetProcessName() >> 806 << " in the directory <" << directory >> 807 << "> " << G4endl; >> 808 } else { >> 809 G4cout << "Fail to store Physics Table Prim for " >> 810 << particle->GetParticleName() >> 811 << " and process " << GetProcessName() >> 812 << " in the directory <" << directory >> 813 << "> " << G4endl; >> 814 } 659 } 815 } 660 return false; << 816 return yes; 661 } 817 } 662 818 663 //....oooOO0OOooo........oooOO0OOooo........oo 819 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 664 820 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons 821 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 666 cons << 822 const G4String& directory, 667 G4bo << 823 G4bool ascii) 668 { 824 { 669 if(!isTheMaster || part != particle) { retur << 825 if(1 < verboseLevel) { >> 826 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " >> 827 << part->GetParticleName() << " and process " >> 828 << GetProcessName() << G4endl; >> 829 } 670 G4bool yes = true; 830 G4bool yes = true; >> 831 >> 832 if((!buildLambdaTable && minKinEnergyPrim > maxKinEnergy) >> 833 || particle != part) { return yes; } >> 834 >> 835 const G4String particleName = part->GetParticleName(); >> 836 G4String filename; >> 837 671 if(buildLambdaTable) { 838 if(buildLambdaTable) { 672 yes = G4EmTableUtil::RetrieveTable(this, p << 839 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 673 "Lambda << 840 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 674 ascii, << 841 filename,ascii); 675 } << 842 if ( yes ) { 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 843 if (0 < verboseLevel) { 677 yes = G4EmTableUtil::RetrieveTable(this, p << 844 G4cout << "Lambda table for " << particleName 678 "Lambda << 845 << " is Retrieved from <" 679 ascii, << 846 << filename << ">" >> 847 << G4endl; >> 848 } >> 849 if((G4LossTableManager::Instance())->SplineFlag()) { >> 850 size_t n = theLambdaTable->length(); >> 851 for(size_t i=0; i<n; ++i) { >> 852 if((* theLambdaTable)[i]) { >> 853 (* theLambdaTable)[i]->SetSpline(true); >> 854 } >> 855 } >> 856 } >> 857 } else { >> 858 if (1 < verboseLevel) { >> 859 G4cout << "Lambda table for " << particleName << " in file <" >> 860 << filename << "> is not exist" >> 861 << G4endl; >> 862 } >> 863 } >> 864 } >> 865 if(minKinEnergyPrim < maxKinEnergy) { >> 866 filename = GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 867 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTablePrim, >> 868 filename,ascii); >> 869 if ( yes ) { >> 870 if (0 < verboseLevel) { >> 871 G4cout << "Lambda table prim for " << particleName >> 872 << " is Retrieved from <" >> 873 << filename << ">" >> 874 << G4endl; >> 875 } >> 876 if((G4LossTableManager::Instance())->SplineFlag()) { >> 877 size_t n = theLambdaTablePrim->length(); >> 878 for(size_t i=0; i<n; ++i) { >> 879 if((* theLambdaTablePrim)[i]) { >> 880 (* theLambdaTablePrim)[i]->SetSpline(true); >> 881 } >> 882 } >> 883 } >> 884 } else { >> 885 if (1 < verboseLevel) { >> 886 G4cout << "Lambda table prim for " << particleName << " in file <" >> 887 << filename << "> is not exist" >> 888 << G4endl; >> 889 } >> 890 } 680 } 891 } >> 892 681 return yes; 893 return yes; 682 } 894 } 683 895 684 //....oooOO0OOooo........oooOO0OOooo........oo 896 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 685 897 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 898 G4double 687 const G << 899 G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, >> 900 const G4MaterialCutsCouple* couple) 688 { 901 { 689 CurrentSetup(couple, kinEnergy); << 902 // Cross section per atom is calculated 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 903 DefineMaterial(couple); >> 904 G4double cross = 0.0; >> 905 if(theLambdaTable) { >> 906 cross = (*theDensityFactor)[currentCoupleIndex]* >> 907 (((*theLambdaTable)[basedCoupleIndex])->Value(kineticEnergy)); >> 908 } else { >> 909 SelectModel(kineticEnergy, currentCoupleIndex); >> 910 cross = currentModel->CrossSectionPerVolume(currentMaterial, >> 911 currentParticle,kineticEnergy); >> 912 } >> 913 >> 914 if(cross < 0.0) { cross = 0.0; } >> 915 return cross; 691 } 916 } 692 917 693 //....oooOO0OOooo........oooOO0OOooo........oo 918 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 919 695 G4double G4VEmProcess::GetMeanFreePath(const G 920 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 696 G4doubl << 921 G4double, 697 G4Force << 922 G4ForceCondition* condition) 698 { 923 { 699 *condition = NotForced; 924 *condition = NotForced; 700 return G4VEmProcess::MeanFreePath(track); 925 return G4VEmProcess::MeanFreePath(track); 701 } 926 } 702 927 703 //....oooOO0OOooo........oooOO0OOooo........oo 928 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 929 705 G4double << 930 G4double G4VEmProcess::MeanFreePath(const G4Track& track) 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { 931 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 932 DefineMaterial(track.GetMaterialCutsCouple()); 710 return (currentModel) ? << 933 preStepLambda = GetCurrentLambda(track.GetKineticEnergy()); 711 currentModel->ComputeCrossSectionPerAtom(c << 934 G4double x = DBL_MAX; 712 Z << 935 if(0.0 < preStepLambda) { x = 1.0/preStepLambda; } >> 936 return x; 713 } 937 } 714 938 715 //....oooOO0OOooo........oooOO0OOooo........oo 939 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 940 717 G4PhysicsVector* << 941 G4double 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 942 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, >> 943 G4double Z, G4double A, G4double cut) 719 { 944 { 720 DefineMaterial(couple); << 945 SelectModel(kineticEnergy, currentCoupleIndex); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 946 G4double x = 0.0; 722 << 947 if(currentModel) { 723 return newv; << 948 x = currentModel->ComputeCrossSectionPerAtom(currentParticle,kineticEnergy, >> 949 Z,A,cut); >> 950 } >> 951 return x; 724 } 952 } 725 953 726 //....oooOO0OOooo........oooOO0OOooo........oo 954 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 727 955 728 const G4Element* G4VEmProcess::GetCurrentEleme << 956 void G4VEmProcess::FindLambdaMax() 729 { 957 { 730 return (nullptr != currentModel) ? << 958 if(1 < verboseLevel) { 731 currentModel->GetCurrentElement(currentMat << 959 G4cout << "### G4VEmProcess::FindLambdaMax: " >> 960 << particle->GetParticleName() >> 961 << " and process " << GetProcessName() << G4endl; >> 962 } >> 963 size_t n = theLambdaTable->length(); >> 964 G4PhysicsVector* pv; >> 965 G4double e, ss, emax, smax; >> 966 >> 967 size_t i; >> 968 >> 969 // first loop on existing vectors >> 970 for (i=0; i<n; ++i) { >> 971 pv = (*theLambdaTable)[i]; >> 972 if(pv) { >> 973 size_t nb = pv->GetVectorLength(); >> 974 emax = DBL_MAX; >> 975 smax = 0.0; >> 976 if(nb > 0) { >> 977 for (size_t j=0; j<nb; ++j) { >> 978 e = pv->Energy(j); >> 979 ss = (*pv)(j); >> 980 if(ss > smax) { >> 981 smax = ss; >> 982 emax = e; >> 983 } >> 984 } >> 985 } >> 986 theEnergyOfCrossSectionMax[i] = emax; >> 987 theCrossSectionMax[i] = smax; >> 988 if(1 < verboseLevel) { >> 989 G4cout << "For " << particle->GetParticleName() >> 990 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 991 << " lambda= " << smax << G4endl; >> 992 } >> 993 } >> 994 } >> 995 // second loop using base materials >> 996 for (i=0; i<n; ++i) { >> 997 pv = (*theLambdaTable)[i]; >> 998 if(!pv){ >> 999 G4int j = (*theDensityIdx)[i]; >> 1000 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 1001 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 1002 } >> 1003 } 732 } 1004 } 733 1005 734 //....oooOO0OOooo........oooOO0OOooo........oo 1006 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 1007 736 const G4Element* G4VEmProcess::GetTargetElemen << 1008 G4PhysicsVector* >> 1009 G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 737 { 1010 { 738 return (nullptr != currentModel) ? << 1011 G4PhysicsVector* v = 739 currentModel->GetCurrentElement(currentMat << 1012 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 1013 v->SetSpline((G4LossTableManager::Instance())->SplineFlag()); >> 1014 return v; 740 } 1015 } 741 1016 742 //....oooOO0OOooo........oooOO0OOooo........oo 1017 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 1018 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 1019 const G4Element* G4VEmProcess::GetCurrentElement() const 745 { 1020 { 746 return (nullptr != currentModel) ? << 1021 const G4Element* elm = 0; 747 currentModel->GetCurrentIsotope(GetCurrent << 1022 if(currentModel) {elm = currentModel->GetCurrentElement(); } >> 1023 return elm; 748 } 1024 } 749 1025 750 //....oooOO0OOooo........oooOO0OOooo........oo 1026 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 1027 752 void G4VEmProcess::SetCrossSectionBiasingFacto 1028 void G4VEmProcess::SetCrossSectionBiasingFactor(G4double f, G4bool flag) 753 { 1029 { 754 if(f > 0.0) { 1030 if(f > 0.0) { 755 biasFactor = f; 1031 biasFactor = f; 756 weightFlag = flag; 1032 weightFlag = flag; 757 if(1 < verboseLevel) { 1033 if(1 < verboseLevel) { 758 G4cout << "### SetCrossSectionBiasingFac 1034 G4cout << "### SetCrossSectionBiasingFactor: for " 759 << particle->GetParticleName() << 1035 << particle->GetParticleName() 760 << " and process " << GetProcessN << 1036 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig << 1037 << " biasFactor= " << f << " weightFlag= " << flag 762 << G4endl; << 1038 << G4endl; 763 } 1039 } 764 } 1040 } 765 } 1041 } 766 1042 767 //....oooOO0OOooo........oooOO0OOooo........oo 1043 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 1044 769 void 1045 void 770 G4VEmProcess::ActivateForcedInteraction(G4doub 1046 G4VEmProcess::ActivateForcedInteraction(G4double length, const G4String& r, 771 G4bool << 1047 G4bool flag) 772 { 1048 { 773 if(nullptr == biasManager) { biasManager = n << 1049 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 774 if(1 < verboseLevel) { 1050 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: 1051 G4cout << "### ActivateForcedInteraction: for " 776 << particle->GetParticleName() << 1052 << particle->GetParticleName() 777 << " and process " << GetProcessNam << 1053 << " and process " << GetProcessName() 778 << " length(mm)= " << length/mm << 1054 << " length(mm)= " << length/mm 779 << " in G4Region <" << r << 1055 << " in G4Region <" << r 780 << "> weightFlag= " << flag << 1056 << "> weightFlag= " << flag 781 << G4endl; << 1057 << G4endl; 782 } 1058 } 783 weightFlag = flag; 1059 weightFlag = flag; 784 biasManager->ActivateForcedInteraction(lengt 1060 biasManager->ActivateForcedInteraction(length, r); 785 } 1061 } 786 1062 787 //....oooOO0OOooo........oooOO0OOooo........oo 1063 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 788 1064 789 void 1065 void 790 G4VEmProcess::ActivateSecondaryBiasing(const G 1066 G4VEmProcess::ActivateSecondaryBiasing(const G4String& region, 791 G4double factor, 1067 G4double factor, 792 G4double energyLimit) 1068 G4double energyLimit) 793 { 1069 { 794 if (0.0 <= factor) { 1070 if (0.0 <= factor) { 795 1071 796 // Range cut can be applied only for e- 1072 // Range cut can be applied only for e- 797 if(0.0 == factor && secondaryParticle != G 1073 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 798 { return; } 1074 { return; } 799 1075 800 if(!biasManager) { biasManager = new G4EmB 1076 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 801 biasManager->ActivateSecondaryBiasing(regi 1077 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 802 if(1 < verboseLevel) { 1078 if(1 < verboseLevel) { 803 G4cout << "### ActivateSecondaryBiasing: 1079 G4cout << "### ActivateSecondaryBiasing: for " 804 << " process " << GetProcessName() 1080 << " process " << GetProcessName() 805 << " factor= " << factor 1081 << " factor= " << factor 806 << " in G4Region <" << region 1082 << " in G4Region <" << region 807 << "> energyLimit(MeV)= " << energyLimi 1083 << "> energyLimit(MeV)= " << energyLimit/MeV 808 << G4endl; 1084 << G4endl; 809 } 1085 } 810 } 1086 } 811 } 1087 } 812 1088 813 //....oooOO0OOooo........oooOO0OOooo........oo 1089 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 1090 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 816 { << 817 if(5 < n && n < 10000000) { << 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } << 825 << 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 << 828 void G4VEmProcess::SetMinKinEnergy(G4double e) 1091 void G4VEmProcess::SetMinKinEnergy(G4double e) 829 { 1092 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 1093 nLambdaBins = G4lrint(nLambdaBins*std::log(maxKinEnergy/e) 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 1094 /std::log(maxKinEnergy/minKinEnergy)); 832 /G4Log(maxKinEnergy/ << 1095 minKinEnergy = e; 833 minKinEnergy = e; << 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } 1096 } 837 1097 838 //....oooOO0OOooo........oooOO0OOooo........oo 1098 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 1099 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) 1100 void G4VEmProcess::SetMaxKinEnergy(G4double e) 841 { 1101 { 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 1102 nLambdaBins = G4lrint(nLambdaBins*std::log(e/minKinEnergy) 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 1103 /std::log(maxKinEnergy/minKinEnergy)); 844 /G4Log(maxKinEnergy/ << 1104 maxKinEnergy = e; 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } << 849 << 850 //....oooOO0OOooo........oooOO0OOooo........oo << 851 << 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 853 { << 854 if(theParameters->MinKinEnergy() <= e && << 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } << 858 << 859 //....oooOO0OOooo........oooOO0OOooo........oo << 860 << 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } << 872 << 873 //....oooOO0OOooo........oooOO0OOooo........oo << 874 << 875 void G4VEmProcess::PrintWarning(G4String tit, << 876 { << 877 G4String ss = "G4VEmProcess::" + tit; << 878 G4ExceptionDescription ed; << 879 ed << "Parameter is out of range: " << val << 880 << " it will have no effect!\n" << " Pro << 881 << GetProcessName() << " nbins= " << the << 882 << " Emin(keV)= " << theParameters->MinKi << 883 << " Emax(GeV)= " << theParameters->MaxKi << 884 G4Exception(ss, "em0044", JustWarning, ed); << 885 } << 886 << 887 //....oooOO0OOooo........oooOO0OOooo........oo << 888 << 889 void G4VEmProcess::ProcessDescription(std::ost << 890 { << 891 if(nullptr != particle) { << 892 StreamInfo(out, *particle, true); << 893 } << 894 } 1105 } 895 1106 896 //....oooOO0OOooo........oooOO0OOooo........oo 1107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 1108