Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/utils/src/G4VEmProcess.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/utils/src/G4VEmProcess.cc (Version 11.3.0) and /processes/electromagnetic/utils/src/G4VEmProcess.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4VEmProcess.cc,v 1.88 2010-08-17 17:36:59 vnivanch Exp $
                                                   >>  27 // GEANT4 tag $Name: not supported by cvs2svn $
                                                   >>  28 //
 26 // -------------------------------------------     29 // -------------------------------------------------------------------
 27 //                                                 30 //
 28 // GEANT4 Class file                               31 // GEANT4 Class file
 29 //                                                 32 //
 30 //                                                 33 //
 31 // File name:     G4VEmProcess                     34 // File name:     G4VEmProcess
 32 //                                                 35 //
 33 // Author:        Vladimir Ivanchenko on base      36 // Author:        Vladimir Ivanchenko on base of Laszlo Urban code
 34 //                                                 37 //
 35 // Creation date: 01.10.2003                       38 // Creation date: 01.10.2003
 36 //                                                 39 //
 37 // Modifications: by V.Ivanchenko              <<  40 // Modifications:
                                                   >>  41 // 30-06-04 make it to be pure discrete process (V.Ivanchenko)
                                                   >>  42 // 30-09-08 optimise integral option (V.Ivanchenko)
                                                   >>  43 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko)
                                                   >>  44 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI)
                                                   >>  45 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko)
                                                   >>  46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
                                                   >>  47 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko)
                                                   >>  48 // 25-07-05 Add protection: integral mode only for charged particles (VI)
                                                   >>  49 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko)
                                                   >>  50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI)
                                                   >>  51 // 12-09-06 add SetModel() (mma)
                                                   >>  52 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko)
                                                   >>  53 // 27-10-07 Virtual functions moved to source (V.Ivanchenko)
                                                   >>  54 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko)
                                                   >>  55 // 17-02-10 Added pointer currentParticle (VI)
 38 //                                                 56 //
 39 // Class Description: based class for discrete <<  57 // Class Description:
 40 //                                                 58 //
 41                                                    59 
 42 // -------------------------------------------     60 // -------------------------------------------------------------------
 43 //                                                 61 //
 44 //....oooOO0OOooo........oooOO0OOooo........oo     62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 45 //....oooOO0OOooo........oooOO0OOooo........oo     63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46                                                    64 
 47 #include "G4VEmProcess.hh"                         65 #include "G4VEmProcess.hh"
 48 #include "G4PhysicalConstants.hh"              << 
 49 #include "G4SystemOfUnits.hh"                  << 
 50 #include "G4ProcessManager.hh"                     66 #include "G4ProcessManager.hh"
 51 #include "G4LossTableManager.hh"                   67 #include "G4LossTableManager.hh"
 52 #include "G4LossTableBuilder.hh"                   68 #include "G4LossTableBuilder.hh"
 53 #include "G4Step.hh"                               69 #include "G4Step.hh"
 54 #include "G4ParticleDefinition.hh"                 70 #include "G4ParticleDefinition.hh"
 55 #include "G4VEmModel.hh"                           71 #include "G4VEmModel.hh"
 56 #include "G4DataVector.hh"                         72 #include "G4DataVector.hh"
 57 #include "G4PhysicsTable.hh"                       73 #include "G4PhysicsTable.hh"
 58 #include "G4EmDataHandler.hh"                  << 
 59 #include "G4PhysicsLogVector.hh"                   74 #include "G4PhysicsLogVector.hh"
 60 #include "G4VParticleChange.hh"                    75 #include "G4VParticleChange.hh"
 61 #include "G4ProductionCutsTable.hh"                76 #include "G4ProductionCutsTable.hh"
 62 #include "G4Region.hh"                             77 #include "G4Region.hh"
 63 #include "G4Gamma.hh"                              78 #include "G4Gamma.hh"
 64 #include "G4Electron.hh"                           79 #include "G4Electron.hh"
 65 #include "G4Positron.hh"                           80 #include "G4Positron.hh"
 66 #include "G4PhysicsTableHelper.hh"                 81 #include "G4PhysicsTableHelper.hh"
 67 #include "G4EmBiasingManager.hh"                   82 #include "G4EmBiasingManager.hh"
 68 #include "G4EmParameters.hh"                   << 
 69 #include "G4EmProcessSubType.hh"               << 
 70 #include "G4EmTableUtil.hh"                    << 
 71 #include "G4EmUtility.hh"                      << 
 72 #include "G4DNAModelSubType.hh"                << 
 73 #include "G4GenericIon.hh"                     << 
 74 #include "G4Log.hh"                            << 
 75 #include <iostream>                            << 
 76                                                    83 
 77 //....oooOO0OOooo........oooOO0OOooo........oo     84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 78                                                    85 
 79 G4VEmProcess::G4VEmProcess(const G4String& nam     86 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type):
 80   G4VDiscreteProcess(name, type)               <<  87   G4VDiscreteProcess(name, type),
                                                   >>  88   secondaryParticle(0),
                                                   >>  89   buildLambdaTable(true),
                                                   >>  90   theLambdaTable(0),
                                                   >>  91   theDensityFactor(0),
                                                   >>  92   theDensityIdx(0),
                                                   >>  93   integral(false),
                                                   >>  94   applyCuts(false),
                                                   >>  95   startFromNull(false),
                                                   >>  96   currentModel(0),
                                                   >>  97   particle(0),
                                                   >>  98   currentParticle(0),
                                                   >>  99   currentCouple(0)
 81 {                                                 100 {
 82   theParameters = G4EmParameters::Instance();  << 
 83   SetVerboseLevel(1);                             101   SetVerboseLevel(1);
 84                                                   102 
 85   // Size of tables                            << 103   // Size of tables assuming spline
 86   minKinEnergy = 0.1*CLHEP::keV;               << 104   minKinEnergy = 0.1*keV;
 87   maxKinEnergy = 100.0*CLHEP::TeV;             << 105   maxKinEnergy = 10.0*TeV;
                                                   >> 106   nLambdaBins  = 77;
 88                                                   107 
 89   // default lambda factor                        108   // default lambda factor
 90   invLambdaFactor = 1.0/lambdaFactor;          << 109   lambdaFactor  = 0.8;
                                                   >> 110 
                                                   >> 111   // default limit on polar angle
                                                   >> 112   polarAngleLimit = 0.0;
                                                   >> 113   biasFactor = 1.0;
 91                                                   114 
 92   // particle types                               115   // particle types
 93   theGamma = G4Gamma::Gamma();                 << 116   theGamma     = G4Gamma::Gamma();
 94   theElectron = G4Electron::Electron();        << 117   theElectron  = G4Electron::Electron();
 95   thePositron = G4Positron::Positron();        << 118   thePositron  = G4Positron::Positron();
 96                                                   119 
 97   pParticleChange = &fParticleChange;             120   pParticleChange = &fParticleChange;
 98   fParticleChange.SetSecondaryWeightByProcess( << 
 99   secParticles.reserve(5);                        121   secParticles.reserve(5);
100                                                   122 
                                                   >> 123   preStepLambda = 0.0;
                                                   >> 124   mfpKinEnergy  = DBL_MAX;
                                                   >> 125 
101   modelManager = new G4EmModelManager();          126   modelManager = new G4EmModelManager();
102   lManager = G4LossTableManager::Instance();   << 127   biasManager  = 0;
103   lManager->Register(this);                    << 128   biasFlag     = false; 
104   isTheMaster = lManager->IsMaster();          << 129   weightFlag   = false;
105   G4LossTableBuilder* bld = lManager->GetTable << 130   (G4LossTableManager::Instance())->Register(this);
106   theDensityFactor = bld->GetDensityFactors(); << 
107   theDensityIdx = bld->GetCoupleIndexes();     << 
108 }                                                 131 }
109                                                   132 
110 //....oooOO0OOooo........oooOO0OOooo........oo    133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
111                                                   134 
112 G4VEmProcess::~G4VEmProcess()                     135 G4VEmProcess::~G4VEmProcess()
113 {                                                 136 {
114   if(isTheMaster) {                            << 137   if(1 < verboseLevel) {
115     delete theData;                            << 138     G4cout << "G4VEmProcess destruct " << GetProcessName() 
116     delete theEnergyOfCrossSectionMax;         << 139      << "  " << this << "  " <<  theLambdaTable <<G4endl;
                                                   >> 140   }
                                                   >> 141   Clear();
                                                   >> 142   if(theLambdaTable) {
                                                   >> 143     theLambdaTable->clearAndDestroy();
                                                   >> 144     delete theLambdaTable;
117   }                                               145   }
118   delete modelManager;                            146   delete modelManager;
119   delete biasManager;                             147   delete biasManager;
120   lManager->DeRegister(this);                  << 148   (G4LossTableManager::Instance())->DeRegister(this);
121 }                                                 149 }
122                                                   150 
123 //....oooOO0OOooo........oooOO0OOooo........oo    151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124                                                   152 
125 void G4VEmProcess::AddEmModel(G4int order, G4V << 153 void G4VEmProcess::Clear()
126                               const G4Region*  << 
127 {                                                 154 {
128   if(nullptr == ptr) { return; }               << 155   currentCouple = 0;
129   G4VEmFluctuationModel* fm = nullptr;         << 156   preStepLambda = 0.0;
130   modelManager->AddEmModel(order, ptr, fm, reg << 157   mfpKinEnergy  = DBL_MAX;
131   ptr->SetParticleChange(pParticleChange);     << 
132 }                                                 158 }
133                                                   159 
134 //....oooOO0OOooo........oooOO0OOooo........oo    160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
135                                                   161 
136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 162 G4double G4VEmProcess::MinPrimaryEnergy(const G4ParticleDefinition*,
                                                   >> 163           const G4Material*)
137 {                                                 164 {
138   if(nullptr == ptr) { return; }               << 165   return 0.0;
139   if(!emModels.empty()) {                      << 
140     for(auto & em : emModels) { if(em == ptr)  << 
141   }                                            << 
142   emModels.push_back(ptr);                     << 
143 }                                                 166 }
144                                                   167 
145 //....oooOO0OOooo........oooOO0OOooo........oo    168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
146                                                   169 
147 void G4VEmProcess::PreparePhysicsTable(const G << 170 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 
                                                   >> 171             const G4Region* region)
148 {                                                 172 {
149   if(nullptr == particle) { SetParticle(&part) << 173   G4VEmFluctuationModel* fm = 0;
                                                   >> 174   modelManager->AddEmModel(order, p, fm, region);
                                                   >> 175   if(p) { p->SetParticleChange(pParticleChange); }
                                                   >> 176 }
150                                                   177 
151   if(part.GetParticleType() == "nucleus" &&    << 178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
152      part.GetParticleSubType() == "generic") { << 
153                                                   179 
154     G4String pname = part.GetParticleName();   << 180 void G4VEmProcess::SetModel(G4VEmModel* p, G4int index)
155     if(pname != "deuteron" && pname != "triton << 181 {
156        pname != "He3" && pname != "alpha" && p << 182   G4int n = emModels.size();
157        pname != "helium" && pname != "hydrogen << 183   if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} }
                                                   >> 184   emModels[index] = p;
                                                   >> 185 }
158                                                   186 
159       particle = G4GenericIon::GenericIon();   << 187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
160       isIon = true;                            << 
161     }                                          << 
162   }                                            << 
163   if(particle != &part) { return; }            << 
164                                                   188 
165   lManager->PreparePhysicsTable(&part, this);  << 189 G4VEmModel* G4VEmProcess::Model(G4int index)
                                                   >> 190 {
                                                   >> 191   G4VEmModel* p = 0;
                                                   >> 192   if(index >= 0 && index <  G4int(emModels.size())) { p = emModels[index]; }
                                                   >> 193   return p;
                                                   >> 194 }
166                                                   195 
167   // for new run                               << 196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
168   currentCouple = nullptr;                     << 
169   preStepLambda = 0.0;                         << 
170   fLambdaEnergy = 0.0;                         << 
171                                                   197 
172   InitialiseProcess(particle);                 << 198 void G4VEmProcess::UpdateEmModel(const G4String& nam, 
                                                   >> 199          G4double emin, G4double emax)
                                                   >> 200 {
                                                   >> 201   modelManager->UpdateEmModel(nam, emin, emax);
                                                   >> 202 }
173                                                   203 
174   G4LossTableBuilder* bld = lManager->GetTable << 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
175   const G4ProductionCutsTable* theCoupleTable= << 
176     G4ProductionCutsTable::GetProductionCutsTa << 
177   theCutsGamma    = theCoupleTable->GetEnergyC << 
178   theCutsElectron = theCoupleTable->GetEnergyC << 
179   theCutsPositron = theCoupleTable->GetEnergyC << 
180                                                << 
181   // initialisation of the process             << 
182   if(!actMinKinEnergy) { minKinEnergy = thePar << 
183   if(!actMaxKinEnergy) { maxKinEnergy = thePar << 
184                                                << 
185   applyCuts       = theParameters->ApplyCuts() << 
186   lambdaFactor    = theParameters->LambdaFacto << 
187   invLambdaFactor = 1.0/lambdaFactor;          << 
188   theParameters->DefineRegParamForEM(this);    << 
189                                                << 
190   // integral option may be disabled           << 
191   if(!theParameters->Integral()) { fXSType = f << 
192                                                << 
193   // prepare tables                            << 
194   if(isTheMaster) {                            << 
195     if(nullptr == theData) { theData = new G4E << 
196                                                   205 
197     if(buildLambdaTable) {                     << 206 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver)
198       theLambdaTable = theData->MakeTable(0);  << 207 {
                                                   >> 208   return modelManager->GetModel(idx, ver);
                                                   >> 209 }
                                                   >> 210 
                                                   >> 211 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >> 212 
                                                   >> 213 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part)
                                                   >> 214 {
                                                   >> 215   if(!particle) { SetParticle(&part); }
                                                   >> 216   if(1 < verboseLevel) {
                                                   >> 217     G4cout << "G4VEmProcess::PreparePhysicsTable() for "
                                                   >> 218            << GetProcessName()
                                                   >> 219            << " and particle " << part.GetParticleName()
                                                   >> 220      << " local particle " << particle->GetParticleName() 
                                                   >> 221            << G4endl;
                                                   >> 222   }
                                                   >> 223 
                                                   >> 224   G4LossTableManager* man = G4LossTableManager::Instance();
                                                   >> 225   G4LossTableBuilder* bld = man->GetTableBuilder();
                                                   >> 226 
                                                   >> 227   man->PreparePhysicsTable(&part, this);
                                                   >> 228 
                                                   >> 229   if(particle == &part) {
                                                   >> 230     Clear();
                                                   >> 231     InitialiseProcess(particle);
                                                   >> 232 
                                                   >> 233     const G4ProductionCutsTable* theCoupleTable=
                                                   >> 234       G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 235     size_t n = theCoupleTable->GetTableSize();
                                                   >> 236 
                                                   >> 237     theEnergyOfCrossSectionMax.resize(n, 0.0);
                                                   >> 238     theCrossSectionMax.resize(n, DBL_MAX);
                                                   >> 239 
                                                   >> 240     // initialisation of models
                                                   >> 241     G4int nmod = modelManager->NumberOfModels();
                                                   >> 242     for(G4int i=0; i<nmod; ++i) {
                                                   >> 243       G4VEmModel* mod = modelManager->GetModel(i);
                                                   >> 244       mod->SetPolarAngleLimit(polarAngleLimit);
                                                   >> 245       if(mod->HighEnergyLimit() > maxKinEnergy) {
                                                   >> 246   mod->SetHighEnergyLimit(maxKinEnergy);
                                                   >> 247       }
                                                   >> 248     }
                                                   >> 249 
                                                   >> 250     if(man->AtomDeexcitation()) { modelManager->SetFluoFlag(true); }
                                                   >> 251     theCuts = modelManager->Initialise(particle,secondaryParticle,
                                                   >> 252                2.,verboseLevel);
                                                   >> 253     theCutsGamma    = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut);
                                                   >> 254     theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut);
                                                   >> 255     theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut);
                                                   >> 256 
                                                   >> 257     // prepare tables
                                                   >> 258     if(buildLambdaTable){
                                                   >> 259       theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable);
199       bld->InitialiseBaseMaterials(theLambdaTa    260       bld->InitialiseBaseMaterials(theLambdaTable);
200     }                                             261     }
201     // high energy table                       << 262     // forced biasing
202     if(minKinEnergyPrim < maxKinEnergy) {      << 263     if(biasManager) { 
203       theLambdaTablePrim = theData->MakeTable( << 264       biasManager->Initialise(part,GetProcessName(),verboseLevel); 
204       bld->InitialiseBaseMaterials(theLambdaTa << 265       biasFlag = false; 
205     }                                          << 266     }
206   }                                            << 267   }
207   // models                                    << 268   theDensityFactor = bld->GetDensityFactors();
208   baseMat = bld->GetBaseMaterialFlag();        << 269   theDensityIdx = bld->GetCoupleIndexes();
209   numberOfModels = modelManager->NumberOfModel << 
210   currentModel = modelManager->GetModel(0);    << 
211   if(nullptr != lManager->AtomDeexcitation())  << 
212     modelManager->SetFluoFlag(true);           << 
213   }                                            << 
214   // forced biasing                            << 
215   if(nullptr != biasManager) {                 << 
216     biasManager->Initialise(part, GetProcessNa << 
217     biasFlag = false;                          << 
218   }                                            << 
219                                                << 
220   theCuts =                                    << 
221     G4EmTableUtil::PrepareEmProcess(this, part << 
222                                     modelManag << 
223                                     secID, tri << 
224                                     verboseLev << 
225 }                                                 270 }
226                                                   271 
227 //....oooOO0OOooo........oooOO0OOooo........oo    272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
228                                                   273 
229 void G4VEmProcess::BuildPhysicsTable(const G4P    274 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part)
230 {                                                 275 {
231   if(nullptr == masterProc) {                  << 276   G4String partname = part.GetParticleName();
232     if(isTheMaster) { masterProc = this; }     << 277   if(1 < verboseLevel) {
233     else { masterProc = static_cast<const G4VE << 278     G4cout << "G4VEmProcess::BuildPhysicsTable() for "
234   }                                            << 279            << GetProcessName()
235   G4int nModels = modelManager->NumberOfModels << 280            << " and particle " << partname
236   G4bool isLocked = theParameters->IsPrintLock << 281      << " buildLambdaTable= " << buildLambdaTable
237   G4bool toBuild = (buildLambdaTable || minKin << 282            << G4endl;
238                                                << 283   }
239   G4EmTableUtil::BuildEmProcess(this, masterPr << 284 
240                                 nModels, verbo << 285   (G4LossTableManager::Instance())->BuildPhysicsTable(particle);
241                                 isLocked, toBu << 286 
                                                   >> 287   if(buildLambdaTable) {
                                                   >> 288     BuildLambdaTable();
                                                   >> 289     FindLambdaMax();
                                                   >> 290   }
                                                   >> 291 
                                                   >> 292   // reduce printout for nuclear stopping
                                                   >> 293   G4bool gproc = true;
                                                   >> 294   G4int st = GetProcessSubType();
                                                   >> 295   if((st == fCoulombScattering || st == fNuclearStopping) && 
                                                   >> 296      part.GetParticleType() == "nucleus" && 
                                                   >> 297      partname != "GenericIon" && partname != "alpha") { gproc = false; } 
                                                   >> 298 
                                                   >> 299   if(gproc && 0 < verboseLevel) { PrintInfoDefinition(); }
                                                   >> 300 
                                                   >> 301   if(1 < verboseLevel) {
                                                   >> 302     G4cout << "G4VEmProcess::BuildPhysicsTable() done for "
                                                   >> 303            << GetProcessName()
                                                   >> 304            << " and particle " << partname
                                                   >> 305            << G4endl;
                                                   >> 306   }
242 }                                                 307 }
243                                                   308 
244 //....oooOO0OOooo........oooOO0OOooo........oo    309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
245                                                   310 
246 void G4VEmProcess::BuildLambdaTable()             311 void G4VEmProcess::BuildLambdaTable()
247 {                                                 312 {
248   G4double scale = theParameters->MaxKinEnergy << 313   if(1 < verboseLevel) {
249   G4int nbin =                                 << 314     G4cout << "G4EmProcess::BuildLambdaTable() for process "
250     theParameters->NumberOfBinsPerDecade()*G4l << 315            << GetProcessName() << " and particle "
251   if(actBinning) { nbin = std::max(nbin, nLamb << 316            << particle->GetParticleName() << "  " << this
252   scale = nbin/G4Log(scale);                   << 317            << G4endl;
253                                                << 318   }
254   G4LossTableBuilder* bld = lManager->GetTable << 
255   G4EmTableUtil::BuildLambdaTable(this, partic << 
256                                   bld, theLamb << 
257                                   minKinEnergy << 
258                                   maxKinEnergy << 
259                                   startFromNul << 
260 }                                              << 
261                                                   319 
262 //....oooOO0OOooo........oooOO0OOooo........oo << 320   // Access to materials
                                                   >> 321   const G4ProductionCutsTable* theCoupleTable=
                                                   >> 322         G4ProductionCutsTable::GetProductionCutsTable();
                                                   >> 323   size_t numOfCouples = theCoupleTable->GetTableSize();
263                                                   324 
264 void G4VEmProcess::StreamInfo(std::ostream& ou << 325   G4LossTableBuilder* bld = (G4LossTableManager::Instance())->GetTableBuilder();
265                   const G4ParticleDefinition&  << 326   G4bool splineFlag = (G4LossTableManager::Instance())->SplineFlag();
266 {                                              << 327 
267   G4String indent = (rst ? "  " : "");         << 328   G4PhysicsLogVector* aVector = 0;
268   out << std::setprecision(6);                 << 329   G4PhysicsLogVector* bVector = 0;
269   out << G4endl << indent << GetProcessName()  << 330 
270   if (!rst) {                                  << 331   G4double scale = 0.0;
271     out << " for " << part.GetParticleName();  << 332   if(startFromNull) { scale = std::log(maxKinEnergy/minKinEnergy); }
272   }                                            << 333     
273   if(fXSType != fEmNoIntegral)  { out << " XSt << 334   for(size_t i=0; i<numOfCouples; ++i) {
274   if(applyCuts) { out << " applyCuts:1 "; }    << 335 
275   G4int subtype = GetProcessSubType();         << 336     if (bld->GetFlag(i)) {
276   out << " SubType=" << subtype;               << 337 
277   if (subtype == fAnnihilation) {              << 338       // create physics vector and fill it
278     G4int mod = theParameters->PositronAtRestM << 339       const G4MaterialCutsCouple* couple = 
279     const G4String namp[2] = {"Simple", "Allis << 340   theCoupleTable->GetMaterialCutsCouple(i);
280     out << " AtRestModel:" << namp[mod];       << 341       delete (*theLambdaTable)[i];
281   }                                            << 342 
282   if(biasFactor != 1.0) { out << "  BiasingFac << 343       // if start from zero then change the scale
283   out << " BuildTable=" << buildLambdaTable << << 344       if(startFromNull) {
284   if(buildLambdaTable) {                       << 345   G4double emin = MinPrimaryEnergy(particle,couple->GetMaterial());
285     if(particle == &part) {                    << 346   if(0.0 >= emin) { emin = eV; }
286       for(auto & v : *theLambdaTable) {        << 347   else if(maxKinEnergy <= emin) { emin = 0.5*maxKinEnergy; }
287         if(nullptr != v) {                     << 348   G4int bin = 
288           out << "      Lambda table from ";   << 349     G4int(nLambdaBins*std::log(maxKinEnergy/emin)/scale + 0.5);
289           G4double emin = v->Energy(0);        << 350   if(bin < 3) { bin = 3; }
290           G4double emax = v->GetMaxEnergy();   << 351   aVector = new G4PhysicsLogVector(emin, maxKinEnergy, bin);
291           G4int nbin = G4int(v->GetVectorLengt << 352 
292           if(emin > minKinEnergy) { out << "th << 353   // start not from zero
293           else { out << G4BestUnit(emin,"Energ << 354       } else if(!bVector) {
294           out << " to "                        << 355   aVector = 
295               << G4BestUnit(emax,"Energy")     << 356     new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins);
296               << ", " << G4lrint(nbin/std::log << 357         bVector = aVector;
297               << " bins/decade, spline: "      << 358       } else {
298               << splineFlag << G4endl;         << 359         aVector = new G4PhysicsLogVector(*bVector);
299           break;                               << 
300         }                                      << 
301       }                                        << 
302     } else {                                   << 
303       out << "      Used Lambda table of "     << 
304       << particle->GetParticleName() << G4endl << 
305     }                                          << 
306   }                                            << 
307   if(minKinEnergyPrim < maxKinEnergy) {        << 
308     if(particle == &part) {                    << 
309       for(auto & v : *theLambdaTablePrim) {    << 
310         if(nullptr != v) {                     << 
311           out << "      LambdaPrime table from << 
312               << G4BestUnit(v->Energy(0),"Ener << 
313               << " to "                        << 
314               << G4BestUnit(v->GetMaxEnergy(), << 
315               << " in " << v->GetVectorLength( << 
316               << " bins " << G4endl;           << 
317           break;                               << 
318         }                                      << 
319       }                                           360       }
320     } else {                                   << 361       aVector->SetSpline(splineFlag);
321       out << "      Used LambdaPrime table of  << 362       modelManager->FillLambdaVector(aVector, couple, startFromNull);
322                << particle->GetParticleName()  << 363       if(splineFlag) { aVector->FillSecondDerivatives(); }
                                                   >> 364       G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector);
323     }                                             365     }
324   }                                               366   }
325   StreamProcessInfo(out);                      << 
326   modelManager->DumpModelList(out, verboseLeve << 
327                                                   367 
328   if(verboseLevel > 2 && buildLambdaTable) {   << 368   if(1 < verboseLevel) {
329     out << "      LambdaTable address= " << th << 369     G4cout << "Lambda table is built for "
330     if(theLambdaTable && particle == &part) {  << 370            << particle->GetParticleName()
331       out << (*theLambdaTable) << G4endl;      << 371            << G4endl;
332     }                                          << 
333   }                                               372   }
334 }                                                 373 }
335                                                   374 
336 //....oooOO0OOooo........oooOO0OOooo........oo    375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
337                                                   376 
338 void G4VEmProcess::StartTracking(G4Track* trac << 377 void G4VEmProcess::PrintInfoDefinition()
339 {                                                 378 {
340   // reset parameters for the new track        << 379   if(verboseLevel > 0) {
341   currentParticle = track->GetParticleDefiniti << 380     G4cout << G4endl << GetProcessName() << ":   for  "
342   theNumberOfInteractionLengthLeft = -1.0;     << 381            << particle->GetParticleName();
343   mfpKinEnergy = DBL_MAX;                      << 382     if(integral)  { G4cout << ", integral: 1 "; }
344   preStepLambda = 0.0;                         << 383     if(applyCuts) { G4cout << ", applyCuts: 1 "; }
345                                                << 384     G4cout << "    SubType= " << GetProcessSubType();;
346   if(isIon) { massRatio = proton_mass_c2/curre << 385     if(biasFactor != 1.0) { G4cout << "   BiasingFactor= " << biasFactor; }
347                                                << 386     G4cout << G4endl;
348   // forced biasing only for primary particles << 387     if(buildLambdaTable) {
349   if(biasManager) {                            << 388       G4cout << "      Lambda tables from "
350     if(0 == track->GetParentID()) {            << 389        << G4BestUnit(minKinEnergy,"Energy") 
351       // primary particle                      << 390        << " to "
352       biasFlag = true;                         << 391        << G4BestUnit(maxKinEnergy,"Energy")
353       biasManager->ResetForcedInteraction();   << 392        << " in " << nLambdaBins << " bins, spline: " 
                                                   >> 393        << (G4LossTableManager::Instance())->SplineFlag()
                                                   >> 394        << G4endl;
354     }                                             395     }
                                                   >> 396     PrintInfo();
                                                   >> 397     modelManager->DumpModelList(verboseLevel);
                                                   >> 398   }
                                                   >> 399 
                                                   >> 400   if(verboseLevel > 2 && buildLambdaTable) {
                                                   >> 401     G4cout << "      LambdaTable address= " << theLambdaTable << G4endl;
                                                   >> 402     if(theLambdaTable) { G4cout << (*theLambdaTable) << G4endl; }
355   }                                               403   }
356 }                                                 404 }
357                                                   405 
358 //....oooOO0OOooo........oooOO0OOooo........oo    406 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
359                                                   407 
360 G4double G4VEmProcess::PostStepGetPhysicalInte    408 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength(
361                              const G4Track& tr    409                              const G4Track& track,
362                              G4double   previo    410                              G4double   previousStepSize,
363                              G4ForceCondition*    411                              G4ForceCondition* condition)
364 {                                                 412 {
                                                   >> 413   // condition is set to "Not Forced"
365   *condition = NotForced;                         414   *condition = NotForced;
366   G4double x = DBL_MAX;                           415   G4double x = DBL_MAX;
367                                                << 416   if(previousStepSize <= 0.0) { theNumberOfInteractionLengthLeft = -1.0; }
368   DefineMaterial(track.GetMaterialCutsCouple() << 417   InitialiseStep(track);
369   preStepKinEnergy = track.GetKineticEnergy(); << 418   if(!currentModel->IsActive(preStepKinEnergy)) { return x; }
370   const G4double scaledEnergy = preStepKinEner << 
371   SelectModel(scaledEnergy, currentCoupleIndex << 
372   /*                                           << 
373   G4cout << "PostStepGetPhysicalInteractionLen << 
374          << "  couple: " << currentCouple << G << 
375   */                                           << 
376   if(!currentModel->IsActive(scaledEnergy)) {  << 
377     theNumberOfInteractionLengthLeft = -1.0;   << 
378     currentInteractionLength = DBL_MAX;        << 
379     mfpKinEnergy = DBL_MAX;                    << 
380     preStepLambda = 0.0;                       << 
381     return x;                                  << 
382   }                                            << 
383                                                   419  
384   // forced biasing only for primary particles    420   // forced biasing only for primary particles
385   if(biasManager) {                               421   if(biasManager) {
386     if(0 == track.GetParentID()) {                422     if(0 == track.GetParentID()) {
387       if(biasFlag &&                           << 423       if(0 == track.GetCurrentStepNumber()) {
388          biasManager->ForcedInteractionRegion( << 424         biasFlag = true; 
389         return biasManager->GetStepLimit((G4in << 425   biasManager->ResetForcedInteraction(); 
                                                   >> 426       }
                                                   >> 427       if(biasFlag && biasManager->ForcedInteractionRegion(currentCoupleIndex)) {
                                                   >> 428         return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize);
390       }                                           429       }
391     }                                             430     }
392   }                                               431   }
393                                                   432 
394   // compute mean free path                       433   // compute mean free path
                                                   >> 434   if(preStepKinEnergy < mfpKinEnergy) {
                                                   >> 435     if (integral) { ComputeIntegralLambda(preStepKinEnergy); }
                                                   >> 436     else { preStepLambda = GetCurrentLambda(preStepKinEnergy); }
                                                   >> 437     if(preStepLambda <= 0.0) { mfpKinEnergy = 0.0; }
                                                   >> 438   }
395                                                   439 
396   ComputeIntegralLambda(preStepKinEnergy, trac << 440   // non-zero cross sect}ion
397                                                << 441   if(preStepLambda > 0.0) { 
398   // zero cross section                        << 
399   if(preStepLambda <= 0.0) {                   << 
400     theNumberOfInteractionLengthLeft = -1.0;   << 
401     currentInteractionLength = DBL_MAX;        << 
402                                                << 
403   } else {                                     << 
404                                                << 
405     // non-zero cross section                  << 
406     if (theNumberOfInteractionLengthLeft < 0.0    442     if (theNumberOfInteractionLengthLeft < 0.0) {
407                                                << 
408       // beggining of tracking (or just after     443       // beggining of tracking (or just after DoIt of this process)
409       theNumberOfInteractionLengthLeft = -G4Lo << 444       ResetNumberOfInteractionLengthLeft();
410       theInitialNumberOfInteractionLength = th << 445     } else if(currentInteractionLength < DBL_MAX) {
411                                                << 446       // subtract NumberOfInteractionLengthLeft
412     } else {                                   << 447       SubtractNumberOfInteractionLengthLeft(previousStepSize);
413                                                << 448       if(theNumberOfInteractionLengthLeft < 0.)
414       theNumberOfInteractionLengthLeft -=      << 449   theNumberOfInteractionLengthLeft = perMillion;
415         previousStepSize/currentInteractionLen << 
416       theNumberOfInteractionLengthLeft =       << 
417         std::max(theNumberOfInteractionLengthL << 
418     }                                             450     }
419                                                   451 
420     // new mean free path and step limit for t << 452     // get mean free path and step limit
421     currentInteractionLength = 1.0/preStepLamb    453     currentInteractionLength = 1.0/preStepLambda;
422     x = theNumberOfInteractionLengthLeft * cur    454     x = theNumberOfInteractionLengthLeft * currentInteractionLength;
423   }                                            << 455 #ifdef G4VERBOSE
424   return x;                                    << 456     if (verboseLevel>2){
425 }                                              << 457       G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength ";
426                                                << 458       G4cout << "[ " << GetProcessName() << "]" << G4endl; 
427 //....oooOO0OOooo........oooOO0OOooo........oo << 459       G4cout << " for " << currentParticle->GetParticleName() 
                                                   >> 460        << " in Material  " <<  currentMaterial->GetName()
                                                   >> 461        << " Ekin(MeV)= " << preStepKinEnergy/MeV 
                                                   >> 462        <<G4endl;
                                                   >> 463       G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" 
                                                   >> 464        << "InteractionLength= " << x/cm <<"[cm] " <<G4endl;
                                                   >> 465     }
                                                   >> 466 #endif
428                                                   467 
429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 468     // zero cross section case
430 {                                              << 469   } else {
431   if (fXSType == fEmNoIntegral) {              << 470     if(theNumberOfInteractionLengthLeft > DBL_MIN && 
432     preStepLambda = GetCurrentLambda(e, LogEki << 471        currentInteractionLength < DBL_MAX) {
433                                                   472 
434   } else if (fXSType == fEmIncreasing) {       << 473       // subtract NumberOfInteractionLengthLeft
435     if(e*invLambdaFactor < mfpKinEnergy) {     << 474       SubtractNumberOfInteractionLengthLeft(previousStepSize);
436       preStepLambda = GetCurrentLambda(e, LogE << 475       if(theNumberOfInteractionLengthLeft < 0.)
437       mfpKinEnergy = (preStepLambda > 0.0) ? e << 476   theNumberOfInteractionLengthLeft = perMillion;
438     }                                          << 
439                                                << 
440   } else if(fXSType == fEmDecreasing) {        << 
441     if(e < mfpKinEnergy) {                     << 
442       const G4double e1 = e*lambdaFactor;      << 
443       preStepLambda = GetCurrentLambda(e1);    << 
444       mfpKinEnergy = e1;                       << 
445     }                                          << 
446                                                << 
447   } else if(fXSType == fEmOnePeak) {           << 
448     const G4double epeak = (*theEnergyOfCrossS << 
449     if(e <= epeak) {                           << 
450       if(e*invLambdaFactor < mfpKinEnergy) {   << 
451         preStepLambda = GetCurrentLambda(e, Lo << 
452         mfpKinEnergy = (preStepLambda > 0.0) ? << 
453       }                                        << 
454     } else if(e < mfpKinEnergy) {              << 
455       const G4double e1 = std::max(epeak, e*la << 
456       preStepLambda = GetCurrentLambda(e1);    << 
457       mfpKinEnergy = e1;                       << 
458     }                                             477     }
459   } else {                                     << 478     currentInteractionLength = DBL_MAX;
460     preStepLambda = GetCurrentLambda(e, LogEki << 
461   }                                               479   }
                                                   >> 480   return x;
462 }                                                 481 }
463                                                   482 
464 //....oooOO0OOooo........oooOO0OOooo........oo    483 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
465                                                   484 
466 G4VParticleChange* G4VEmProcess::PostStepDoIt(    485 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track,
467                                                << 486                                               const G4Step&)
468 {                                                 487 {
469   // clear number of interaction lengths in an << 
470   theNumberOfInteractionLengthLeft = -1.0;     << 
471   mfpKinEnergy = DBL_MAX;                      << 
472                                                << 
473   fParticleChange.InitializeForPostStep(track)    488   fParticleChange.InitializeForPostStep(track);
474                                                   489 
475   // Do not make anything if particle is stopp    490   // Do not make anything if particle is stopped, the annihilation then
476   // should be performed by the AtRestDoIt!       491   // should be performed by the AtRestDoIt!
477   if (track.GetTrackStatus() == fStopButAlive)    492   if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; }
478                                                   493 
479   const G4double finalT = track.GetKineticEner << 494   G4double finalT = track.GetKineticEnergy();
480                                                   495 
481   // forced process - should happen only once     496   // forced process - should happen only once per track
482   if(biasFlag) {                                  497   if(biasFlag) {
483     if(biasManager->ForcedInteractionRegion((G << 498     if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) {
484       biasFlag = false;                           499       biasFlag = false;
485     }                                             500     }
486   }                                               501   }
487                                                   502 
488   // check active and select model             << 
489   const G4double scaledEnergy = finalT*massRat << 
490   SelectModel(scaledEnergy, currentCoupleIndex << 
491   if(!currentModel->IsActive(scaledEnergy)) {  << 
492                                                << 
493   // Integral approach                            503   // Integral approach
494   if (fXSType != fEmNoIntegral) {              << 504   if (integral) {
495     const G4double logFinalT =                 << 505     G4double lx = GetLambda(finalT, currentCouple);
496       track.GetDynamicParticle()->GetLogKineti << 506     if(preStepLambda<lx && 1 < verboseLevel) {
497     const G4double lx = std::max(GetCurrentLam << 507       G4cout << "WARING: for " << currentParticle->GetParticleName() 
498 #ifdef G4VERBOSE                               << 508              << " and " << GetProcessName()
499     if(preStepLambda < lx && 1 < verboseLevel) << 509              << " E(MeV)= " << finalT/MeV
500       G4cout << "WARNING: for " << currentPart << 510              << " preLambda= " << preStepLambda << " < " 
501              << " and " << GetProcessName() << << 511        << lx << " (postLambda) "
502              << " preLambda= " << preStepLambd << 512        << G4endl;  
503              << " < " << lx << " (postLambda)  << 
504     }                                             513     }
505 #endif                                         << 514 
506     // if false interaction then use new cross << 515     if(preStepLambda*G4UniformRand() > lx) {
507     // if both values are zero - no interactio << 516       ClearNumberOfInteractionLengthLeft();
508     if(preStepLambda*G4UniformRand() >= lx) {  << 
509       return &fParticleChange;                    517       return &fParticleChange;
510     }                                             518     }
511   }                                               519   }
512                                                   520 
                                                   >> 521   SelectModel(finalT, currentCoupleIndex);
                                                   >> 522   if(!currentModel->IsActive(finalT)) { return &fParticleChange; }
                                                   >> 523 
513   // define new weight for primary and seconda    524   // define new weight for primary and secondaries
514   G4double weight = fParticleChange.GetParentW << 525   if(weightFlag) {
515   if(weightFlag) {                             << 526     G4double weight = fParticleChange.GetParentWeight()/biasFactor;
516     weight /= biasFactor;                      << 527     fParticleChange.ProposeParentWeight(weight);
517     fParticleChange.ProposeWeight(weight);     << 
518   }                                               528   }
519                                                << 529   /*  
520 #ifdef G4VERBOSE                               << 530   if(0 < verboseLevel) {
521   if(1 < verboseLevel) {                       << 
522     G4cout << "G4VEmProcess::PostStepDoIt: Sam    531     G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= "
523            << finalT/MeV                          532            << finalT/MeV
524            << " MeV; model= (" << currentModel    533            << " MeV; model= (" << currentModel->LowEnergyLimit()
525            << ", " <<  currentModel->HighEnerg    534            << ", " <<  currentModel->HighEnergyLimit() << ")"
526            << G4endl;                             535            << G4endl;
527   }                                               536   }
528 #endif                                         << 537   */
529                                                   538 
530   // sample secondaries                           539   // sample secondaries
531   secParticles.clear();                           540   secParticles.clear();
532   currentModel->SampleSecondaries(&secParticle    541   currentModel->SampleSecondaries(&secParticles, 
533                                   currentCoupl << 542           currentCouple, 
534                                   track.GetDyn << 543           track.GetDynamicParticle(),
535                                   (*theCuts)[c << 544           (*theCuts)[currentCoupleIndex]);
536                                                << 
537   G4int num0 = (G4int)secParticles.size();     << 
538                                                << 
539   // splitting or Russian roulette             << 
540   if(biasManager) {                            << 
541     if(biasManager->SecondaryBiasingRegion((G4 << 
542       G4double eloss = 0.0;                    << 
543       weight *= biasManager->ApplySecondaryBia << 
544         secParticles, track, currentModel, &fP << 
545         (G4int)currentCoupleIndex, (*theCuts)[ << 
546         step.GetPostStepPoint()->GetSafety()); << 
547       if(eloss > 0.0) {                        << 
548         eloss += fParticleChange.GetLocalEnerg << 
549         fParticleChange.ProposeLocalEnergyDepo << 
550       }                                        << 
551     }                                          << 
552   }                                            << 
553                                                   545 
554   // save secondaries                             546   // save secondaries
555   G4int num = (G4int)secParticles.size();      << 547   G4int num = secParticles.size();
556   if(num > 0) {                                   548   if(num > 0) {
557                                                   549 
558     fParticleChange.SetNumberOfSecondaries(num    550     fParticleChange.SetNumberOfSecondaries(num);
559     G4double edep = fParticleChange.GetLocalEn    551     G4double edep = fParticleChange.GetLocalEnergyDeposit();
560     G4double time = track.GetGlobalTime();     << 
561                                                << 
562     G4int n1(0), n2(0);                        << 
563     if(num0 > mainSecondaries) {               << 
564       currentModel->FillNumberOfSecondaries(n1 << 
565     }                                          << 
566                                                   552      
567     for (G4int i=0; i<num; ++i) {                 553     for (G4int i=0; i<num; ++i) {
568       G4DynamicParticle* dp = secParticles[i];    554       G4DynamicParticle* dp = secParticles[i];
569       if (nullptr != dp) {                     << 555       const G4ParticleDefinition* p = dp->GetParticleDefinition();
570         const G4ParticleDefinition* p = dp->Ge << 556       G4double e = dp->GetKineticEnergy();
571         G4double e = dp->GetKineticEnergy();   << 557       G4bool good = true;
572         G4bool good = true;                    << 558       if(applyCuts) {
573         if(applyCuts) {                        << 559   if (p == theGamma) {
574           if (p == theGamma) {                 << 560     if (e < (*theCutsGamma)[currentCoupleIndex]) good = false;
575             if (e < (*theCutsGamma)[currentCou << 561 
576                                                << 562   } else if (p == theElectron) {
577           } else if (p == theElectron) {       << 563     if (e < (*theCutsElectron)[currentCoupleIndex]) good = false;
578             if (e < (*theCutsElectron)[current << 564 
579                                                << 565   } else if (p == thePositron) {
580           } else if (p == thePositron) {       << 566     if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] &&
581             if (electron_mass_c2 < (*theCutsGa << 567         e < (*theCutsPositron)[currentCoupleIndex]) {
582                 e < (*theCutsPositron)[current << 568       good = false;
583               good = false;                    << 569       e += 2.0*electron_mass_c2;
584               e += 2.0*electron_mass_c2;       << 570     }
585             }                                  << 571   }
586           }                                    << 572         if(!good) {
587           // added secondary if it is good     << 573     delete dp;
588         }                                      << 574     edep += e;
589         if (good) {                            << 575   }
590           G4Track* t = new G4Track(dp, time, t << 576       }
591           t->SetTouchableHandle(track.GetTouch << 577       if (good) { fParticleChange.AddSecondary(dp); }
592           if (biasManager) {                   << 578     } 
593             t->SetWeight(weight * biasManager- << 
594           } else {                             << 
595             t->SetWeight(weight);              << 
596           }                                    << 
597           pParticleChange->AddSecondary(t);    << 
598                                                << 
599           // define type of secondary          << 
600           if(i < mainSecondaries) {            << 
601             t->SetCreatorModelID(secID);       << 
602             if(GetProcessSubType() == fCompton << 
603               t->SetCreatorModelID(_ComptonGam << 
604             }                                  << 
605           } else if(i < mainSecondaries + n1)  << 
606             t->SetCreatorModelID(tripletID);   << 
607           } else if(i < mainSecondaries + n1 + << 
608             t->SetCreatorModelID(_IonRecoil);  << 
609           } else {                             << 
610             if(i < num0) {                     << 
611               if(p == theGamma) {              << 
612                 t->SetCreatorModelID(fluoID);  << 
613               } else {                         << 
614                 t->SetCreatorModelID(augerID); << 
615               }                                << 
616             } else {                           << 
617               t->SetCreatorModelID(biasID);    << 
618             }                                  << 
619           }                                    << 
620           /*                                   << 
621           G4cout << "Secondary(post step) has  << 
622                  << ", Ekin= " << t->GetKineti << 
623                  << GetProcessName() << " fluo << 
624                  << " augerID= " << augerID << << 
625           */                                   << 
626         } else {                               << 
627           delete dp;                           << 
628           edep += e;                           << 
629         }                                      << 
630       }                                        << 
631     }                                          << 
632     fParticleChange.ProposeLocalEnergyDeposit(    579     fParticleChange.ProposeLocalEnergyDeposit(edep);
633   }                                               580   }
634                                                   581 
635   if(0.0 == fParticleChange.GetProposedKinetic    582   if(0.0 == fParticleChange.GetProposedKineticEnergy() &&
636      fAlive == fParticleChange.GetTrackStatus(    583      fAlive == fParticleChange.GetTrackStatus()) {
637     if(particle->GetProcessManager()->GetAtRes    584     if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
638          { fParticleChange.ProposeTrackStatus(    585          { fParticleChange.ProposeTrackStatus(fStopButAlive); }
639     else { fParticleChange.ProposeTrackStatus(    586     else { fParticleChange.ProposeTrackStatus(fStopAndKill); }
640   }                                               587   }
641                                                   588 
                                                   >> 589   ClearNumberOfInteractionLengthLeft();
642   return &fParticleChange;                        590   return &fParticleChange;
643 }                                                 591 }
644                                                   592 
645 //....oooOO0OOooo........oooOO0OOooo........oo    593 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
646                                                   594 
647 G4bool G4VEmProcess::StorePhysicsTable(const G    595 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part,
648                                        const G << 596                const G4String& directory,
649                                        G4bool  << 597                      G4bool ascii)
650 {                                                 598 {
651   if(!isTheMaster || part != particle) { retur << 599   G4bool yes = true;
652   if(G4EmTableUtil::StoreTable(this, part, the << 600 
653              directory, "Lambda",              << 601   if ( theLambdaTable && part == particle) {
654                                verboseLevel, a << 602     const G4String name = 
655      G4EmTableUtil::StoreTable(this, part, the << 603       GetPhysicsTableFileName(part,directory,"Lambda",ascii);
656              directory, "LambdaPrim",          << 604     yes = theLambdaTable->StorePhysicsTable(name,ascii);
657                                verboseLevel, a << 605 
658      return true;                              << 606     if ( yes ) {
                                                   >> 607       G4cout << "Physics tables are stored for " << particle->GetParticleName()
                                                   >> 608              << " and process " << GetProcessName()
                                                   >> 609        << " in the directory <" << directory
                                                   >> 610        << "> " << G4endl;
                                                   >> 611     } else {
                                                   >> 612       G4cout << "Fail to store Physics Tables for " 
                                                   >> 613        << particle->GetParticleName()
                                                   >> 614              << " and process " << GetProcessName()
                                                   >> 615        << " in the directory <" << directory
                                                   >> 616        << "> " << G4endl;
                                                   >> 617     }
659   }                                               618   }
660   return false;                                << 619   return yes;
661 }                                                 620 }
662                                                   621 
663 //....oooOO0OOooo........oooOO0OOooo........oo    622 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
664                                                   623 
665 G4bool G4VEmProcess::RetrievePhysicsTable(cons    624 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part,
666                                           cons << 625                     const G4String& directory,
667                                           G4bo << 626             G4bool ascii)
668 {                                                 627 {
669   if(!isTheMaster || part != particle) { retur << 628   if(1 < verboseLevel) {
                                                   >> 629     G4cout << "G4VEmProcess::RetrievePhysicsTable() for "
                                                   >> 630            << part->GetParticleName() << " and process "
                                                   >> 631      << GetProcessName() << G4endl;
                                                   >> 632   }
670   G4bool yes = true;                              633   G4bool yes = true;
671   if(buildLambdaTable) {                       << 634 
672     yes = G4EmTableUtil::RetrieveTable(this, p << 635   if(!buildLambdaTable || particle != part) return yes;
673                                        "Lambda << 636 
674                                        ascii,  << 637   const G4String particleName = part->GetParticleName();
675   }                                            << 638   G4String filename;
676   if(yes && minKinEnergyPrim < maxKinEnergy) { << 639 
677     yes = G4EmTableUtil::RetrieveTable(this, p << 640   filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii);
678                                        "Lambda << 641   yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable,
679                                        ascii,  << 642                filename,ascii);
                                                   >> 643   if ( yes ) {
                                                   >> 644     if (0 < verboseLevel) {
                                                   >> 645       G4cout << "Lambda table for " << particleName 
                                                   >> 646        << " is Retrieved from <"
                                                   >> 647              << filename << ">"
                                                   >> 648              << G4endl;
                                                   >> 649     }
                                                   >> 650     if((G4LossTableManager::Instance())->SplineFlag()) {
                                                   >> 651       size_t n = theLambdaTable->length();
                                                   >> 652       for(size_t i=0; i<n; ++i) {
                                                   >> 653         if((* theLambdaTable)[i]) {
                                                   >> 654     (* theLambdaTable)[i]->SetSpline(true);
                                                   >> 655   }
                                                   >> 656       }
                                                   >> 657     }
                                                   >> 658   } else {
                                                   >> 659     if (1 < verboseLevel) {
                                                   >> 660       G4cout << "Lambda table for " << particleName << " in file <"
                                                   >> 661              << filename << "> is not exist"
                                                   >> 662              << G4endl;
                                                   >> 663     }
680   }                                               664   }
                                                   >> 665 
681   return yes;                                     666   return yes;
682 }                                                 667 }
683                                                   668 
684 //....oooOO0OOooo........oooOO0OOooo........oo    669 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
685                                                   670 
686 G4double G4VEmProcess::GetCrossSection(G4doubl << 671 G4double 
687                                        const G << 672 G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy,
                                                   >> 673             const G4MaterialCutsCouple* couple)
688 {                                                 674 {
689   CurrentSetup(couple, kinEnergy);             << 675   // Cross section per atom is calculated
690   return GetCurrentLambda(kinEnergy, G4Log(kin << 676   DefineMaterial(couple);
                                                   >> 677   G4double cross = 0.0;
                                                   >> 678   if(theLambdaTable) {
                                                   >> 679     cross = (*theDensityFactor)[currentCoupleIndex]*
                                                   >> 680       (((*theLambdaTable)[basedCoupleIndex])->Value(kineticEnergy));
                                                   >> 681   } else {
                                                   >> 682     SelectModel(kineticEnergy, currentCoupleIndex);
                                                   >> 683     cross = currentModel->CrossSectionPerVolume(currentMaterial,
                                                   >> 684             currentParticle,kineticEnergy);
                                                   >> 685   }
                                                   >> 686 
                                                   >> 687   if(cross < 0.0) { cross = 0.0; }
                                                   >> 688   return cross;
691 }                                                 689 }
692                                                   690 
693 //....oooOO0OOooo........oooOO0OOooo........oo    691 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
694                                                   692 
695 G4double G4VEmProcess::GetMeanFreePath(const G    693 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track,
696                                        G4doubl << 694                G4double,
697                                        G4Force << 695                G4ForceCondition* condition)
698 {                                                 696 {
699   *condition = NotForced;                         697   *condition = NotForced;
700   return G4VEmProcess::MeanFreePath(track);       698   return G4VEmProcess::MeanFreePath(track);
701 }                                                 699 }
702                                                   700 
703 //....oooOO0OOooo........oooOO0OOooo........oo    701 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
704                                                   702 
705 G4double                                       << 703 G4double G4VEmProcess::MeanFreePath(const G4Track& track)
706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 
707                                          G4dou << 
708 {                                                 704 {
709   SelectModel(kinEnergy, currentCoupleIndex);  << 705   DefineMaterial(track.GetMaterialCutsCouple());
710   return (currentModel) ?                      << 706   preStepLambda = GetCurrentLambda(track.GetKineticEnergy());
711     currentModel->ComputeCrossSectionPerAtom(c << 707   G4double x = DBL_MAX;
712                                              Z << 708   if(0.0 < preStepLambda) { x = 1.0/preStepLambda; }
                                                   >> 709   return x;
713 }                                                 710 }
714                                                   711 
715 //....oooOO0OOooo........oooOO0OOooo........oo    712 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
716                                                   713 
717 G4PhysicsVector*                               << 714 G4double 
718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 715 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, 
                                                   >> 716            G4double Z, G4double A, G4double cut)
719 {                                                 717 {
720   DefineMaterial(couple);                      << 718   SelectModel(kineticEnergy, currentCoupleIndex);
721   G4PhysicsVector* newv = new G4PhysicsLogVect << 719   G4double x = 0.0;
722                                                << 720   if(currentModel) {
723   return newv;                                 << 721     x = currentModel->ComputeCrossSectionPerAtom(currentParticle,kineticEnergy,
                                                   >> 722              Z,A,cut);
                                                   >> 723   }
                                                   >> 724   return x;
724 }                                                 725 }
725                                                   726 
726 //....oooOO0OOooo........oooOO0OOooo........oo    727 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
727                                                   728 
728 const G4Element* G4VEmProcess::GetCurrentEleme << 729 void G4VEmProcess::FindLambdaMax()
729 {                                                 730 {
730   return (nullptr != currentModel) ?           << 731   if(1 < verboseLevel) {
731     currentModel->GetCurrentElement(currentMat << 732     G4cout << "### G4VEmProcess::FindLambdaMax: " 
                                                   >> 733      << particle->GetParticleName() 
                                                   >> 734            << " and process " << GetProcessName() << G4endl; 
                                                   >> 735   }
                                                   >> 736   size_t n = theLambdaTable->length();
                                                   >> 737   G4PhysicsVector* pv;
                                                   >> 738   G4double e, s, emax, smax;
                                                   >> 739 
                                                   >> 740   size_t i;
                                                   >> 741 
                                                   >> 742   // first loop on existing vectors
                                                   >> 743   for (i=0; i<n; ++i) {
                                                   >> 744     pv = (*theLambdaTable)[i];
                                                   >> 745     if(pv) {
                                                   >> 746       size_t nb = pv->GetVectorLength();
                                                   >> 747       emax = DBL_MAX;
                                                   >> 748       smax = 0.0;
                                                   >> 749       if(nb > 0) {
                                                   >> 750   for (size_t j=0; j<nb; ++j) {
                                                   >> 751     e = pv->Energy(j);
                                                   >> 752     s = (*pv)(j);
                                                   >> 753     if(s > smax) {
                                                   >> 754       smax = s;
                                                   >> 755       emax = e;
                                                   >> 756     }
                                                   >> 757   }
                                                   >> 758       }
                                                   >> 759       theEnergyOfCrossSectionMax[i] = emax;
                                                   >> 760       theCrossSectionMax[i] = smax;
                                                   >> 761       if(1 < verboseLevel) {
                                                   >> 762   G4cout << "For " << particle->GetParticleName() 
                                                   >> 763          << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV
                                                   >> 764          << " lambda= " << smax << G4endl;
                                                   >> 765       }
                                                   >> 766     }
                                                   >> 767   }
                                                   >> 768   // second loop using base materials
                                                   >> 769   for (size_t i=0; i<n; ++i) {
                                                   >> 770     pv = (*theLambdaTable)[i];
                                                   >> 771     if(!pv){
                                                   >> 772       G4int j = (*theDensityIdx)[i];
                                                   >> 773       theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j];
                                                   >> 774       theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j];
                                                   >> 775     }
                                                   >> 776   }
732 }                                                 777 }
733                                                   778 
734 //....oooOO0OOooo........oooOO0OOooo........oo    779 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
735                                                   780 
736 const G4Element* G4VEmProcess::GetTargetElemen << 781 G4PhysicsVector* 
                                                   >> 782 G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*)
737 {                                                 783 {
738   return (nullptr != currentModel) ?           << 784   G4PhysicsVector* v = 
739     currentModel->GetCurrentElement(currentMat << 785     new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins);
                                                   >> 786   v->SetSpline((G4LossTableManager::Instance())->SplineFlag());
                                                   >> 787   return v;
740 }                                                 788 }
741                                                   789 
742 //....oooOO0OOooo........oooOO0OOooo........oo    790 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
743                                                   791 
744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 792 const G4Element* G4VEmProcess::GetCurrentElement() const
745 {                                                 793 {
746   return (nullptr != currentModel) ?           << 794   const G4Element* elm = 0;
747     currentModel->GetCurrentIsotope(GetCurrent << 795   if(currentModel) {elm = currentModel->GetCurrentElement(); }
                                                   >> 796   return elm;
748 }                                                 797 }
749                                                   798 
750 //....oooOO0OOooo........oooOO0OOooo........oo    799 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
751                                                   800 
752 void G4VEmProcess::SetCrossSectionBiasingFacto    801 void G4VEmProcess::SetCrossSectionBiasingFactor(G4double f, G4bool flag)
753 {                                                 802 {
754   if(f > 0.0) {                                   803   if(f > 0.0) { 
755     biasFactor = f;                               804     biasFactor = f; 
756     weightFlag = flag;                            805     weightFlag = flag;
757     if(1 < verboseLevel) {                        806     if(1 < verboseLevel) {
758       G4cout << "### SetCrossSectionBiasingFac    807       G4cout << "### SetCrossSectionBiasingFactor: for " 
759              << particle->GetParticleName()    << 808        << particle->GetParticleName() 
760              << " and process " << GetProcessN << 809        << " and process " << GetProcessName()
761              << " biasFactor= " << f << " weig << 810        << " biasFactor= " << f << " weightFlag= " << flag 
762              << G4endl;                        << 811        << G4endl; 
763     }                                             812     }
764   }                                               813   }
765 }                                                 814 }
766                                                   815 
767 //....oooOO0OOooo........oooOO0OOooo........oo    816 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
768                                                   817 
769 void                                              818 void 
770 G4VEmProcess::ActivateForcedInteraction(G4doub    819 G4VEmProcess::ActivateForcedInteraction(G4double length, const G4String& r,
771                                         G4bool << 820           G4bool flag)
772 {                                                 821 {
773   if(nullptr == biasManager) { biasManager = n << 822   if(!biasManager) { biasManager = new G4EmBiasingManager(); }
774   if(1 < verboseLevel) {                          823   if(1 < verboseLevel) {
775     G4cout << "### ActivateForcedInteraction:     824     G4cout << "### ActivateForcedInteraction: for " 
776            << particle->GetParticleName()      << 825      << particle->GetParticleName() 
777            << " and process " << GetProcessNam << 826      << " and process " << GetProcessName()
778            << " length(mm)= " << length/mm     << 827      << " length(mm)= " << length/mm
779            << " in G4Region <" << r            << 828      << " in G4Region <" << r 
780            << "> weightFlag= " << flag         << 829      << "> weightFlag= " << flag 
781            << G4endl;                          << 830      << G4endl; 
782   }                                               831   }
783   weightFlag = flag;                              832   weightFlag = flag;
784   biasManager->ActivateForcedInteraction(lengt    833   biasManager->ActivateForcedInteraction(length, r);
785 }                                              << 
786                                                << 
787 //....oooOO0OOooo........oooOO0OOooo........oo << 
788                                                << 
789 void                                           << 
790 G4VEmProcess::ActivateSecondaryBiasing(const G << 
791                  G4double factor,              << 
792                  G4double energyLimit)         << 
793 {                                              << 
794   if (0.0 <= factor) {                         << 
795                                                << 
796     // Range cut can be applied only for e-    << 
797     if(0.0 == factor && secondaryParticle != G << 
798       { return; }                              << 
799                                                << 
800     if(!biasManager) { biasManager = new G4EmB << 
801     biasManager->ActivateSecondaryBiasing(regi << 
802     if(1 < verboseLevel) {                     << 
803       G4cout << "### ActivateSecondaryBiasing: << 
804        << " process " << GetProcessName()      << 
805        << " factor= " << factor                << 
806        << " in G4Region <" << region           << 
807        << "> energyLimit(MeV)= " << energyLimi << 
808        << G4endl;                              << 
809     }                                          << 
810   }                                            << 
811 }                                              << 
812                                                << 
813 //....oooOO0OOooo........oooOO0OOooo........oo << 
814                                                << 
815 void G4VEmProcess::SetLambdaBinning(G4int n)   << 
816 {                                              << 
817   if(5 < n && n < 10000000) {                  << 
818     nLambdaBins = n;                           << 
819     actBinning = true;                         << 
820   } else {                                     << 
821     G4double e = (G4double)n;                  << 
822     PrintWarning("SetLambdaBinning", e);       << 
823   }                                            << 
824 }                                              << 
825                                                << 
826 //....oooOO0OOooo........oooOO0OOooo........oo << 
827                                                << 
828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 
829 {                                              << 
830   if(1.e-3*eV < e && e < maxKinEnergy) {       << 
831     nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 
832                           /G4Log(maxKinEnergy/ << 
833     minKinEnergy = e;                          << 
834     actMinKinEnergy = true;                    << 
835   } else { PrintWarning("SetMinKinEnergy", e); << 
836 }                                              << 
837                                                << 
838 //....oooOO0OOooo........oooOO0OOooo........oo << 
839                                                << 
840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 
841 {                                              << 
842   if(minKinEnergy < e && e < 1.e+6*TeV) {      << 
843     nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 
844                           /G4Log(maxKinEnergy/ << 
845     maxKinEnergy = e;                          << 
846     actMaxKinEnergy = true;                    << 
847   } else { PrintWarning("SetMaxKinEnergy", e); << 
848 }                                              << 
849                                                << 
850 //....oooOO0OOooo........oooOO0OOooo........oo << 
851                                                << 
852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 
853 {                                              << 
854   if(theParameters->MinKinEnergy() <= e &&     << 
855      e <= theParameters->MaxKinEnergy()) { min << 
856   else { PrintWarning("SetMinKinEnergyPrim", e << 
857 }                                              << 
858                                                << 
859 //....oooOO0OOooo........oooOO0OOooo........oo << 
860                                                << 
861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 
862 {                                              << 
863   return (nam == GetProcessName()) ? this : nu << 
864 }                                              << 
865                                                << 
866 //....oooOO0OOooo........oooOO0OOooo........oo << 
867                                                << 
868 G4double G4VEmProcess::PolarAngleLimit() const << 
869 {                                              << 
870   return theParameters->MscThetaLimit();       << 
871 }                                              << 
872                                                << 
873 //....oooOO0OOooo........oooOO0OOooo........oo << 
874                                                << 
875 void G4VEmProcess::PrintWarning(G4String tit,  << 
876 {                                              << 
877   G4String ss = "G4VEmProcess::" + tit;        << 
878   G4ExceptionDescription ed;                   << 
879   ed << "Parameter is out of range: " << val   << 
880      << " it will have no effect!\n" << "  Pro << 
881      << GetProcessName() << "  nbins= " << the << 
882      << " Emin(keV)= " << theParameters->MinKi << 
883      << " Emax(GeV)= " << theParameters->MaxKi << 
884   G4Exception(ss, "em0044", JustWarning, ed);  << 
885 }                                              << 
886                                                << 
887 //....oooOO0OOooo........oooOO0OOooo........oo << 
888                                                << 
889 void G4VEmProcess::ProcessDescription(std::ost << 
890 {                                              << 
891   if(nullptr != particle) {                    << 
892     StreamInfo(out, *particle, true);          << 
893   }                                            << 
894 }                                                 834 }
895                                                   835 
896 //....oooOO0OOooo........oooOO0OOooo........oo    836 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
897                                                   837