Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc,v 1.88 2010-08-17 17:36:59 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-04-patch-01 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: by V.Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 42 // 30-09-08 optimise integral option (V.Ivanchenko) >> 43 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 44 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 45 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 47 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 48 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 49 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 12-09-06 add SetModel() (mma) >> 52 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) >> 53 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 54 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) >> 55 // 17-02-10 Added pointer currentParticle (VI) 38 // 56 // 39 // Class Description: based class for discrete << 57 // Class Description: 40 // 58 // 41 59 42 // ------------------------------------------- 60 // ------------------------------------------------------------------- 43 // 61 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 64 47 #include "G4VEmProcess.hh" 65 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProcessManager.hh" << 51 #include "G4LossTableManager.hh" 66 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" << 53 #include "G4Step.hh" 67 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 68 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 69 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 70 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 71 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 72 #include "G4PhysicsVector.hh" 59 #include "G4PhysicsLogVector.hh" 73 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 74 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 75 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 76 #include "G4Region.hh" >> 77 #include "G4RegionStore.hh" 63 #include "G4Gamma.hh" 78 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 79 #include "G4Electron.hh" 65 #include "G4Positron.hh" 80 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 81 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" << 82 #include "G4EmConfigurator.hh" 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" << 74 #include "G4Log.hh" << 75 #include <iostream> << 76 83 77 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 85 79 G4VEmProcess::G4VEmProcess(const G4String& nam 86 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 87 G4VDiscreteProcess(name, type), >> 88 secondaryParticle(0), >> 89 buildLambdaTable(true), >> 90 theLambdaTable(0), >> 91 theEnergyOfCrossSectionMax(0), >> 92 theCrossSectionMax(0), >> 93 integral(false), >> 94 applyCuts(false), >> 95 startFromNull(true), >> 96 useDeexcitation(false), >> 97 nDERegions(0), >> 98 idxDERegions(0), >> 99 currentModel(0), >> 100 particle(0), >> 101 currentParticle(0), >> 102 currentCouple(0) 81 { 103 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); 104 SetVerboseLevel(1); 84 105 85 // Size of tables << 106 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 107 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 108 maxKinEnergy = 10.0*TeV; >> 109 nLambdaBins = 77; 88 110 89 // default lambda factor 111 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 112 lambdaFactor = 0.8; >> 113 >> 114 // default limit on polar angle >> 115 polarAngleLimit = 0.0; 91 116 92 // particle types 117 // particle types 93 theGamma = G4Gamma::Gamma(); << 118 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 119 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 120 thePositron = G4Positron::Positron(); 96 121 97 pParticleChange = &fParticleChange; 122 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); 123 secParticles.reserve(5); 100 124 101 modelManager = new G4EmModelManager(); 125 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 126 (G4LossTableManager::Instance())->Register(this); 103 lManager->Register(this); << 104 isTheMaster = lManager->IsMaster(); << 105 G4LossTableBuilder* bld = lManager->GetTable << 106 theDensityFactor = bld->GetDensityFactors(); << 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 127 } 109 128 110 //....oooOO0OOooo........oooOO0OOooo........oo 129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 130 112 G4VEmProcess::~G4VEmProcess() 131 G4VEmProcess::~G4VEmProcess() 113 { 132 { 114 if(isTheMaster) { << 133 if(1 < verboseLevel) 115 delete theData; << 134 G4cout << "G4VEmProcess destruct " << GetProcessName() 116 delete theEnergyOfCrossSectionMax; << 135 << G4endl; >> 136 Clear(); >> 137 if(theLambdaTable) { >> 138 theLambdaTable->clearAndDestroy(); >> 139 delete theLambdaTable; 117 } 140 } 118 delete modelManager; 141 delete modelManager; 119 delete biasManager; << 142 (G4LossTableManager::Instance())->DeRegister(this); 120 lManager->DeRegister(this); << 121 } 143 } 122 144 123 //....oooOO0OOooo........oooOO0OOooo........oo 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 146 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 147 void G4VEmProcess::Clear() 126 const G4Region* << 127 { 148 { 128 if(nullptr == ptr) { return; } << 149 delete [] theEnergyOfCrossSectionMax; 129 G4VEmFluctuationModel* fm = nullptr; << 150 delete [] theCrossSectionMax; 130 modelManager->AddEmModel(order, ptr, fm, reg << 151 delete [] idxDERegions; 131 ptr->SetParticleChange(pParticleChange); << 152 theEnergyOfCrossSectionMax = 0; >> 153 theCrossSectionMax = 0; >> 154 idxDERegions = 0; >> 155 currentCouple = 0; >> 156 preStepLambda = 0.0; >> 157 mfpKinEnergy = DBL_MAX; >> 158 deRegions.clear(); >> 159 nDERegions = 0; 132 } 160 } 133 161 134 //....oooOO0OOooo........oooOO0OOooo........oo 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 163 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 164 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, >> 165 const G4Region* region) 137 { 166 { 138 if(nullptr == ptr) { return; } << 167 G4VEmFluctuationModel* fm = 0; 139 if(!emModels.empty()) { << 168 modelManager->AddEmModel(order, p, fm, region); 140 for(auto & em : emModels) { if(em == ptr) << 169 if(p) { p->SetParticleChange(pParticleChange); } 141 } << 142 emModels.push_back(ptr); << 143 } 170 } 144 171 145 //....oooOO0OOooo........oooOO0OOooo........oo 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 173 147 void G4VEmProcess::PreparePhysicsTable(const G << 174 void G4VEmProcess::SetModel(G4VEmModel* p, G4int index) 148 { 175 { 149 if(nullptr == particle) { SetParticle(&part) << 176 G4int n = emModels.size(); >> 177 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } >> 178 emModels[index] = p; >> 179 } >> 180 >> 181 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 150 182 151 if(part.GetParticleType() == "nucleus" && << 183 G4VEmModel* G4VEmProcess::Model(G4int index) 152 part.GetParticleSubType() == "generic") { << 184 { >> 185 G4VEmModel* p = 0; >> 186 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 187 return p; >> 188 } 153 189 154 G4String pname = part.GetParticleName(); << 190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 155 if(pname != "deuteron" && pname != "triton << 156 pname != "He3" && pname != "alpha" && p << 157 pname != "helium" && pname != "hydrogen << 158 191 159 particle = G4GenericIon::GenericIon(); << 192 void G4VEmProcess::UpdateEmModel(const G4String& nam, 160 isIon = true; << 193 G4double emin, G4double emax) 161 } << 194 { 162 } << 195 modelManager->UpdateEmModel(nam, emin, emax); 163 if(particle != &part) { return; } << 196 } 164 197 165 lManager->PreparePhysicsTable(&part, this); << 198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 166 199 167 // for new run << 200 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver) 168 currentCouple = nullptr; << 201 { 169 preStepLambda = 0.0; << 202 return modelManager->GetModel(idx, ver); 170 fLambdaEnergy = 0.0; << 203 } 171 204 172 InitialiseProcess(particle); << 205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 173 206 174 G4LossTableBuilder* bld = lManager->GetTable << 207 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 175 const G4ProductionCutsTable* theCoupleTable= << 208 { 176 G4ProductionCutsTable::GetProductionCutsTa << 209 if(!particle) { SetParticle(&part); } 177 theCutsGamma = theCoupleTable->GetEnergyC << 210 if(1 < verboseLevel) { 178 theCutsElectron = theCoupleTable->GetEnergyC << 211 G4cout << "G4VEmProcess::PreparePhysicsTable() for " 179 theCutsPositron = theCoupleTable->GetEnergyC << 212 << GetProcessName() 180 << 213 << " and particle " << part.GetParticleName() 181 // initialisation of the process << 214 << " local particle " << particle->GetParticleName() 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 215 << G4endl; 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 216 } 184 << 185 applyCuts = theParameters->ApplyCuts() << 186 lambdaFactor = theParameters->LambdaFacto << 187 invLambdaFactor = 1.0/lambdaFactor; << 188 theParameters->DefineRegParamForEM(this); << 189 << 190 // integral option may be disabled << 191 if(!theParameters->Integral()) { fXSType = f << 192 << 193 // prepare tables << 194 if(isTheMaster) { << 195 if(nullptr == theData) { theData = new G4E << 196 217 197 if(buildLambdaTable) { << 218 (G4LossTableManager::Instance())->PreparePhysicsTable(&part, this); 198 theLambdaTable = theData->MakeTable(0); << 219 199 bld->InitialiseBaseMaterials(theLambdaTa << 220 if(particle == &part) { >> 221 Clear(); >> 222 InitialiseProcess(particle); >> 223 >> 224 // initialisation of models >> 225 G4int nmod = modelManager->NumberOfModels(); >> 226 for(G4int i=0; i<nmod; ++i) { >> 227 G4VEmModel* mod = modelManager->GetModel(i); >> 228 mod->SetPolarAngleLimit(polarAngleLimit); >> 229 if(mod->HighEnergyLimit() > maxKinEnergy) { >> 230 mod->SetHighEnergyLimit(maxKinEnergy); >> 231 } >> 232 } >> 233 >> 234 theCuts = modelManager->Initialise(particle,secondaryParticle, >> 235 2.,verboseLevel); >> 236 const G4ProductionCutsTable* theCoupleTable= >> 237 G4ProductionCutsTable::GetProductionCutsTable(); >> 238 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 239 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 240 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 241 >> 242 // prepare tables >> 243 if(buildLambdaTable){ >> 244 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 245 } >> 246 } >> 247 // Deexcitation >> 248 if (nDERegions>0) { >> 249 >> 250 const G4ProductionCutsTable* theCoupleTable= >> 251 G4ProductionCutsTable::GetProductionCutsTable(); >> 252 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 253 >> 254 idxDERegions = new G4bool[numOfCouples]; >> 255 >> 256 for (size_t j=0; j<numOfCouples; ++j) { >> 257 >> 258 const G4MaterialCutsCouple* couple = >> 259 theCoupleTable->GetMaterialCutsCouple(j); >> 260 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); >> 261 G4bool reg = false; >> 262 for(G4int i=0; i<nDERegions; ++i) { >> 263 if(deRegions[i]) { >> 264 if(pcuts == deRegions[i]->GetProductionCuts()) reg = true; >> 265 } >> 266 } >> 267 idxDERegions[j] = reg; 200 } 268 } 201 // high energy table << 269 } 202 if(minKinEnergyPrim < maxKinEnergy) { << 270 if (1 < verboseLevel && nDERegions>0) { 203 theLambdaTablePrim = theData->MakeTable( << 271 G4cout << " Deexcitation is activated for regions: " << G4endl; 204 bld->InitialiseBaseMaterials(theLambdaTa << 272 for (G4int i=0; i<nDERegions; ++i) { 205 } << 273 const G4Region* r = deRegions[i]; 206 } << 274 G4cout << " " << r->GetName() << G4endl; 207 // models << 275 } 208 baseMat = bld->GetBaseMaterialFlag(); << 276 } 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 277 } 226 278 227 //....oooOO0OOooo........oooOO0OOooo........oo 279 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 280 229 void G4VEmProcess::BuildPhysicsTable(const G4P 281 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 282 { 231 if(nullptr == masterProc) { << 283 G4String partname = part.GetParticleName(); 232 if(isTheMaster) { masterProc = this; } << 284 if(1 < verboseLevel) { 233 else { masterProc = static_cast<const G4VE << 285 G4cout << "G4VEmProcess::BuildPhysicsTable() for " 234 } << 286 << GetProcessName() 235 G4int nModels = modelManager->NumberOfModels << 287 << " and particle " << partname 236 G4bool isLocked = theParameters->IsPrintLock << 288 << " buildLambdaTable= " << buildLambdaTable 237 G4bool toBuild = (buildLambdaTable || minKin << 289 << G4endl; 238 << 290 } 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 291 240 nModels, verbo << 292 (G4LossTableManager::Instance())->BuildPhysicsTable(particle); 241 isLocked, toBu << 293 if(buildLambdaTable) { >> 294 BuildLambdaTable(); >> 295 FindLambdaMax(); >> 296 } >> 297 >> 298 // reduce printout for nuclear stopping >> 299 G4bool gproc = true; >> 300 G4int st = GetProcessSubType(); >> 301 if(st == fCoulombScattering && part.GetParticleType() == "nucleus" && >> 302 partname != "GenericIon" && partname != "alpha") { gproc = false; } >> 303 >> 304 if(gproc && 0 < verboseLevel) { PrintInfoDefinition(); } >> 305 >> 306 if(1 < verboseLevel) { >> 307 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " >> 308 << GetProcessName() >> 309 << " and particle " << partname >> 310 << G4endl; >> 311 } 242 } 312 } 243 313 244 //....oooOO0OOooo........oooOO0OOooo........oo 314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 315 246 void G4VEmProcess::BuildLambdaTable() 316 void G4VEmProcess::BuildLambdaTable() 247 { 317 { 248 G4double scale = theParameters->MaxKinEnergy << 318 if(1 < verboseLevel) { 249 G4int nbin = << 319 G4cout << "G4EmProcess::BuildLambdaTable() for process " 250 theParameters->NumberOfBinsPerDecade()*G4l << 320 << GetProcessName() << " and particle " 251 if(actBinning) { nbin = std::max(nbin, nLamb << 321 << particle->GetParticleName() 252 scale = nbin/G4Log(scale); << 322 << G4endl; 253 << 323 } 254 G4LossTableBuilder* bld = lManager->GetTable << 255 G4EmTableUtil::BuildLambdaTable(this, partic << 256 bld, theLamb << 257 minKinEnergy << 258 maxKinEnergy << 259 startFromNul << 260 } << 261 324 262 //....oooOO0OOooo........oooOO0OOooo........oo << 325 // Access to materials >> 326 const G4ProductionCutsTable* theCoupleTable= >> 327 G4ProductionCutsTable::GetProductionCutsTable(); >> 328 size_t numOfCouples = theCoupleTable->GetTableSize(); 263 329 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 330 G4bool splineFlag = (G4LossTableManager::Instance())->SplineFlag(); 265 const G4ParticleDefinition& << 331 266 { << 332 G4PhysicsLogVector* aVector = 0; 267 G4String indent = (rst ? " " : ""); << 333 G4PhysicsLogVector* bVector = 0; 268 out << std::setprecision(6); << 334 269 out << G4endl << indent << GetProcessName() << 335 for(size_t i=0; i<numOfCouples; ++i) { 270 if (!rst) { << 336 271 out << " for " << part.GetParticleName(); << 337 if (theLambdaTable->GetFlag(i)) { 272 } << 338 273 if(fXSType != fEmNoIntegral) { out << " XSt << 339 // create physics vector and fill it 274 if(applyCuts) { out << " applyCuts:1 "; } << 340 const G4MaterialCutsCouple* couple = 275 G4int subtype = GetProcessSubType(); << 341 theCoupleTable->GetMaterialCutsCouple(i); 276 out << " SubType=" << subtype; << 342 if(!bVector) { 277 if (subtype == fAnnihilation) { << 343 aVector = 278 G4int mod = theParameters->PositronAtRestM << 344 static_cast<G4PhysicsLogVector*>(LambdaPhysicsVector(couple)); 279 const G4String namp[2] = {"Simple", "Allis << 345 bVector = aVector; 280 out << " AtRestModel:" << namp[mod]; << 346 } else { 281 } << 347 aVector = new G4PhysicsLogVector(*bVector); 282 if(biasFactor != 1.0) { out << " BiasingFac << 283 out << " BuildTable=" << buildLambdaTable << << 284 if(buildLambdaTable) { << 285 if(particle == &part) { << 286 for(auto & v : *theLambdaTable) { << 287 if(nullptr != v) { << 288 out << " Lambda table from "; << 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } << 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } << 306 } << 307 if(minKinEnergyPrim < maxKinEnergy) { << 308 if(particle == &part) { << 309 for(auto & v : *theLambdaTablePrim) { << 310 if(nullptr != v) { << 311 out << " LambdaPrime table from << 312 << G4BestUnit(v->Energy(0),"Ener << 313 << " to " << 314 << G4BestUnit(v->GetMaxEnergy(), << 315 << " in " << v->GetVectorLength( << 316 << " bins " << G4endl; << 317 break; << 318 } << 319 } 348 } 320 } else { << 349 // G4PhysicsVector* aVector = LambdaPhysicsVector(couple); 321 out << " Used LambdaPrime table of << 350 aVector->SetSpline(splineFlag); 322 << particle->GetParticleName() << 351 modelManager->FillLambdaVector(aVector, couple, startFromNull); >> 352 if(splineFlag) aVector->FillSecondDerivatives(); >> 353 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); 323 } 354 } 324 } 355 } 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 356 328 if(verboseLevel > 2 && buildLambdaTable) { << 357 if(1 < verboseLevel) { 329 out << " LambdaTable address= " << th << 358 G4cout << "Lambda table is built for " 330 if(theLambdaTable && particle == &part) { << 359 << particle->GetParticleName() 331 out << (*theLambdaTable) << G4endl; << 360 << G4endl; 332 } << 333 } 361 } 334 } 362 } 335 363 336 //....oooOO0OOooo........oooOO0OOooo........oo 364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 365 338 void G4VEmProcess::StartTracking(G4Track* trac << 366 void G4VEmProcess::PrintInfoDefinition() 339 { 367 { 340 // reset parameters for the new track << 368 if(verboseLevel > 0) { 341 currentParticle = track->GetParticleDefiniti << 369 G4cout << G4endl << GetProcessName() << ": for " 342 theNumberOfInteractionLengthLeft = -1.0; << 370 << particle->GetParticleName(); 343 mfpKinEnergy = DBL_MAX; << 371 if(integral) G4cout << ", integral: 1 "; 344 preStepLambda = 0.0; << 372 if(applyCuts) G4cout << ", applyCuts: 1 "; 345 << 373 G4cout << " SubType= " << GetProcessSubType() << G4endl; 346 if(isIon) { massRatio = proton_mass_c2/curre << 374 if(buildLambdaTable) { 347 << 375 G4cout << " Lambda tables from " 348 // forced biasing only for primary particles << 376 << G4BestUnit(minKinEnergy,"Energy") 349 if(biasManager) { << 377 << " to " 350 if(0 == track->GetParentID()) { << 378 << G4BestUnit(maxKinEnergy,"Energy") 351 // primary particle << 379 << " in " << nLambdaBins << " bins, spline: " 352 biasFlag = true; << 380 << (G4LossTableManager::Instance())->SplineFlag() 353 biasManager->ResetForcedInteraction(); << 381 << G4endl; 354 } 382 } >> 383 PrintInfo(); >> 384 modelManager->DumpModelList(verboseLevel); >> 385 } >> 386 >> 387 if(verboseLevel > 2 && buildLambdaTable) { >> 388 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; >> 389 if(theLambdaTable) { G4cout << (*theLambdaTable) << G4endl; } 355 } 390 } 356 } 391 } 357 392 358 //....oooOO0OOooo........oooOO0OOooo........oo 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 394 360 G4double G4VEmProcess::PostStepGetPhysicalInte 395 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 396 const G4Track& track, 362 G4double previo 397 G4double previousStepSize, 363 G4ForceCondition* 398 G4ForceCondition* condition) 364 { 399 { >> 400 // condition is set to "Not Forced" 365 *condition = NotForced; 401 *condition = NotForced; 366 G4double x = DBL_MAX; 402 G4double x = DBL_MAX; 367 << 403 if(previousStepSize <= DBL_MIN) { theNumberOfInteractionLengthLeft = -1.0; } 368 DefineMaterial(track.GetMaterialCutsCouple() << 404 InitialiseStep(track); 369 preStepKinEnergy = track.GetKineticEnergy(); << 405 if(!currentModel->IsActive(preStepKinEnergy)) { return x; } 370 const G4double scaledEnergy = preStepKinEner << 406 371 SelectModel(scaledEnergy, currentCoupleIndex << 407 if(preStepKinEnergy < mfpKinEnergy) { 372 /* << 408 if (integral) ComputeIntegralLambda(preStepKinEnergy); 373 G4cout << "PostStepGetPhysicalInteractionLen << 409 else preStepLambda = GetCurrentLambda(preStepKinEnergy); 374 << " couple: " << currentCouple << G << 410 if(preStepLambda <= DBL_MIN) mfpKinEnergy = 0.0; 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 << 384 // forced biasing only for primary particles << 385 if(biasManager) { << 386 if(0 == track.GetParentID()) { << 387 if(biasFlag && << 388 biasManager->ForcedInteractionRegion( << 389 return biasManager->GetStepLimit((G4in << 390 } << 391 } << 392 } 411 } 393 412 394 // compute mean free path << 413 // non-zero cross section 395 << 414 if(preStepLambda > DBL_MIN) { 396 ComputeIntegralLambda(preStepKinEnergy, trac << 397 << 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 415 if (theNumberOfInteractionLengthLeft < 0.0) { 407 << 408 // beggining of tracking (or just after 416 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 417 ResetNumberOfInteractionLengthLeft(); 410 theInitialNumberOfInteractionLength = th << 418 } else if(currentInteractionLength < DBL_MAX) { 411 << 419 // subtract NumberOfInteractionLengthLeft 412 } else { << 420 SubtractNumberOfInteractionLengthLeft(previousStepSize); 413 << 421 if(theNumberOfInteractionLengthLeft < 0.) 414 theNumberOfInteractionLengthLeft -= << 422 theNumberOfInteractionLengthLeft = perMillion; 415 previousStepSize/currentInteractionLen << 416 theNumberOfInteractionLengthLeft = << 417 std::max(theNumberOfInteractionLengthL << 418 } 423 } 419 424 420 // new mean free path and step limit for t << 425 // get mean free path and step limit 421 currentInteractionLength = 1.0/preStepLamb 426 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 427 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 423 } << 428 #ifdef G4VERBOSE 424 return x; << 429 if (verboseLevel>2){ 425 } << 430 G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength "; 426 << 431 G4cout << "[ " << GetProcessName() << "]" << G4endl; 427 //....oooOO0OOooo........oooOO0OOooo........oo << 432 G4cout << " for " << currentParticle->GetParticleName() >> 433 << " in Material " << currentMaterial->GetName() >> 434 << " Ekin(MeV)= " << preStepKinEnergy/MeV >> 435 <<G4endl; >> 436 G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" >> 437 << "InteractionLength= " << x/cm <<"[cm] " <<G4endl; >> 438 } >> 439 #endif 428 440 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 441 // zero cross section case 430 { << 442 } else { 431 if (fXSType == fEmNoIntegral) { << 443 if(theNumberOfInteractionLengthLeft > DBL_MIN && 432 preStepLambda = GetCurrentLambda(e, LogEki << 444 currentInteractionLength < DBL_MAX) { 433 445 434 } else if (fXSType == fEmIncreasing) { << 446 // subtract NumberOfInteractionLengthLeft 435 if(e*invLambdaFactor < mfpKinEnergy) { << 447 SubtractNumberOfInteractionLengthLeft(previousStepSize); 436 preStepLambda = GetCurrentLambda(e, LogE << 448 if(theNumberOfInteractionLengthLeft < 0.) 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 449 theNumberOfInteractionLengthLeft = perMillion; 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } 450 } 459 } else { << 451 currentInteractionLength = DBL_MAX; 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } 452 } >> 453 return x; 462 } 454 } 463 455 464 //....oooOO0OOooo........oooOO0OOooo........oo 456 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 457 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 458 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 << 459 const G4Step&) 468 { 460 { 469 // clear number of interaction lengths in an << 470 theNumberOfInteractionLengthLeft = -1.0; << 471 mfpKinEnergy = DBL_MAX; << 472 << 473 fParticleChange.InitializeForPostStep(track) 461 fParticleChange.InitializeForPostStep(track); 474 462 475 // Do not make anything if particle is stopp 463 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 464 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) 465 if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; } 478 466 479 const G4double finalT = track.GetKineticEner << 467 G4double finalT = track.GetKineticEnergy(); 480 << 481 // forced process - should happen only once << 482 if(biasFlag) { << 483 if(biasManager->ForcedInteractionRegion((G << 484 biasFlag = false; << 485 } << 486 } << 487 << 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 468 493 // Integral approach 469 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 470 if (integral) { 495 const G4double logFinalT = << 471 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 472 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 473 G4cout << "WARING: for " << currentParticle->GetParticleName() 498 #ifdef G4VERBOSE << 474 << " and " << GetProcessName() 499 if(preStepLambda < lx && 1 < verboseLevel) << 475 << " E(MeV)= " << finalT/MeV 500 G4cout << "WARNING: for " << currentPart << 476 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " 501 << " and " << GetProcessName() << << 477 << G4endl; 502 << " preLambda= " << preStepLambd << 503 << " < " << lx << " (postLambda) << 504 } 478 } 505 #endif << 479 506 // if false interaction then use new cross << 480 if(preStepLambda*G4UniformRand() > lx) { 507 // if both values are zero - no interactio << 481 ClearNumberOfInteractionLengthLeft(); 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 482 return &fParticleChange; 510 } 483 } 511 } 484 } 512 485 513 // define new weight for primary and seconda << 486 SelectModel(finalT, currentCoupleIndex); 514 G4double weight = fParticleChange.GetParentW << 487 if(!currentModel->IsActive(finalT)) { return &fParticleChange; } 515 if(weightFlag) { << 488 if(useDeexcitation) { 516 weight /= biasFactor; << 489 currentModel->SetDeexcitationFlag(idxDERegions[currentCoupleIndex]); 517 fParticleChange.ProposeWeight(weight); << 518 } 490 } 519 << 491 /* 520 #ifdef G4VERBOSE << 492 if(0 < verboseLevel) { 521 if(1 < verboseLevel) { << 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 493 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 494 << finalT/MeV 524 << " MeV; model= (" << currentModel 495 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 496 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 497 << G4endl; 527 } 498 } 528 #endif << 499 */ 529 500 >> 501 530 // sample secondaries 502 // sample secondaries 531 secParticles.clear(); 503 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 504 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl << 505 currentCouple, 534 track.GetDyn << 506 track.GetDynamicParticle(), 535 (*theCuts)[c << 507 (*theCuts)[currentCoupleIndex]); 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 << 539 // splitting or Russian roulette << 540 if(biasManager) { << 541 if(biasManager->SecondaryBiasingRegion((G4 << 542 G4double eloss = 0.0; << 543 weight *= biasManager->ApplySecondaryBia << 544 secParticles, track, currentModel, &fP << 545 (G4int)currentCoupleIndex, (*theCuts)[ << 546 step.GetPostStepPoint()->GetSafety()); << 547 if(eloss > 0.0) { << 548 eloss += fParticleChange.GetLocalEnerg << 549 fParticleChange.ProposeLocalEnergyDepo << 550 } << 551 } << 552 } << 553 508 554 // save secondaries 509 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 510 G4int num = secParticles.size(); 556 if(num > 0) { 511 if(num > 0) { 557 512 558 fParticleChange.SetNumberOfSecondaries(num 513 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 514 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 515 567 for (G4int i=0; i<num; ++i) { 516 for (G4int i=0; i<num; ++i) { 568 G4DynamicParticle* dp = secParticles[i]; 517 G4DynamicParticle* dp = secParticles[i]; 569 if (nullptr != dp) { << 518 const G4ParticleDefinition* p = dp->GetParticleDefinition(); 570 const G4ParticleDefinition* p = dp->Ge << 519 G4double e = dp->GetKineticEnergy(); 571 G4double e = dp->GetKineticEnergy(); << 520 G4bool good = true; 572 G4bool good = true; << 521 if(applyCuts) { 573 if(applyCuts) { << 522 if (p == theGamma) { 574 if (p == theGamma) { << 523 if (e < (*theCutsGamma)[currentCoupleIndex]) good = false; 575 if (e < (*theCutsGamma)[currentCou << 524 576 << 525 } else if (p == theElectron) { 577 } else if (p == theElectron) { << 526 if (e < (*theCutsElectron)[currentCoupleIndex]) good = false; 578 if (e < (*theCutsElectron)[current << 527 579 << 528 } else if (p == thePositron) { 580 } else if (p == thePositron) { << 529 if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] && 581 if (electron_mass_c2 < (*theCutsGa << 530 e < (*theCutsPositron)[currentCoupleIndex]) { 582 e < (*theCutsPositron)[current << 531 good = false; 583 good = false; << 532 e += 2.0*electron_mass_c2; 584 e += 2.0*electron_mass_c2; << 533 } 585 } << 534 } 586 } << 535 if(!good) { 587 // added secondary if it is good << 536 delete dp; 588 } << 537 edep += e; 589 if (good) { << 538 } 590 G4Track* t = new G4Track(dp, time, t << 539 } 591 t->SetTouchableHandle(track.GetTouch << 540 if (good) fParticleChange.AddSecondary(dp); 592 if (biasManager) { << 541 } 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { << 627 delete dp; << 628 edep += e; << 629 } << 630 } << 631 } << 632 fParticleChange.ProposeLocalEnergyDeposit( 542 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 543 } 634 544 635 if(0.0 == fParticleChange.GetProposedKinetic << 545 ClearNumberOfInteractionLengthLeft(); 636 fAlive == fParticleChange.GetTrackStatus( << 637 if(particle->GetProcessManager()->GetAtRes << 638 { fParticleChange.ProposeTrackStatus( << 639 else { fParticleChange.ProposeTrackStatus( << 640 } << 641 << 642 return &fParticleChange; 546 return &fParticleChange; 643 } 547 } 644 548 645 //....oooOO0OOooo........oooOO0OOooo........oo 549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 550 647 G4bool G4VEmProcess::StorePhysicsTable(const G 551 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 648 const G << 552 const G4String& directory, 649 G4bool << 553 G4bool ascii) 650 { 554 { 651 if(!isTheMaster || part != particle) { retur << 555 G4bool yes = true; 652 if(G4EmTableUtil::StoreTable(this, part, the << 556 653 directory, "Lambda", << 557 if ( theLambdaTable && part == particle) { 654 verboseLevel, a << 558 const G4String name = 655 G4EmTableUtil::StoreTable(this, part, the << 559 GetPhysicsTableFileName(part,directory,"Lambda",ascii); 656 directory, "LambdaPrim", << 560 yes = theLambdaTable->StorePhysicsTable(name,ascii); 657 verboseLevel, a << 561 658 return true; << 562 if ( yes ) { >> 563 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 564 << " and process " << GetProcessName() >> 565 << " in the directory <" << directory >> 566 << "> " << G4endl; >> 567 } else { >> 568 G4cout << "Fail to store Physics Tables for " >> 569 << particle->GetParticleName() >> 570 << " and process " << GetProcessName() >> 571 << " in the directory <" << directory >> 572 << "> " << G4endl; >> 573 } 659 } 574 } 660 return false; << 575 return yes; 661 } 576 } 662 577 663 //....oooOO0OOooo........oooOO0OOooo........oo 578 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 664 579 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons 580 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 666 cons << 581 const G4String& directory, 667 G4bo << 582 G4bool ascii) 668 { 583 { 669 if(!isTheMaster || part != particle) { retur << 584 if(1 < verboseLevel) { 670 G4bool yes = true; << 585 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " 671 if(buildLambdaTable) { << 586 << part->GetParticleName() << " and process " 672 yes = G4EmTableUtil::RetrieveTable(this, p << 587 << GetProcessName() << G4endl; 673 "Lambda << 674 ascii, << 675 } << 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 677 yes = G4EmTableUtil::RetrieveTable(this, p << 678 "Lambda << 679 ascii, << 680 } 588 } 681 return yes; << 589 G4bool yes = true; 682 } << 683 590 684 //....oooOO0OOooo........oooOO0OOooo........oo << 591 if(!buildLambdaTable || particle != part) return yes; 685 592 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 593 const G4String particleName = part->GetParticleName(); 687 const G << 594 G4String filename; 688 { << 689 CurrentSetup(couple, kinEnergy); << 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 691 } << 692 595 693 //....oooOO0OOooo........oooOO0OOooo........oo << 596 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 597 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, >> 598 filename,ascii); >> 599 if ( yes ) { >> 600 if (0 < verboseLevel) { >> 601 G4cout << "Lambda table for " << particleName >> 602 << " is Retrieved from <" >> 603 << filename << ">" >> 604 << G4endl; >> 605 } >> 606 if((G4LossTableManager::Instance())->SplineFlag()) { >> 607 size_t n = theLambdaTable->length(); >> 608 for(size_t i=0; i<n; ++i) { >> 609 if((* theLambdaTable)[i]) { >> 610 (* theLambdaTable)[i]->SetSpline(true); >> 611 } >> 612 } >> 613 } >> 614 } else { >> 615 if (1 < verboseLevel) { >> 616 G4cout << "Lambda table for " << particleName << " in file <" >> 617 << filename << "> is not exist" >> 618 << G4endl; >> 619 } >> 620 } 694 621 695 G4double G4VEmProcess::GetMeanFreePath(const G << 622 return yes; 696 G4doubl << 697 G4Force << 698 { << 699 *condition = NotForced; << 700 return G4VEmProcess::MeanFreePath(track); << 701 } 623 } 702 624 703 //....oooOO0OOooo........oooOO0OOooo........oo 625 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 626 705 G4double << 627 void G4VEmProcess::ActivateDeexcitation(G4bool val, const G4Region* r) 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { 628 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 629 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 710 return (currentModel) ? << 630 const G4Region* reg = r; 711 currentModel->ComputeCrossSectionPerAtom(c << 631 if (!reg) {reg = regionStore->GetRegion("DefaultRegionForTheWorld", false);} 712 Z << 632 >> 633 // the region is in the list >> 634 if (nDERegions) { >> 635 for (G4int i=0; i<nDERegions; ++i) { >> 636 if (reg == deRegions[i]) { >> 637 if(!val) deRegions[i] = 0; >> 638 return; >> 639 } >> 640 } >> 641 } >> 642 >> 643 // new region >> 644 if(val) { >> 645 useDeexcitation = true; >> 646 deRegions.push_back(reg); >> 647 nDERegions++; >> 648 } else { >> 649 useDeexcitation = false; >> 650 } 713 } 651 } 714 652 715 //....oooOO0OOooo........oooOO0OOooo........oo 653 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 654 717 G4PhysicsVector* << 655 G4double G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 656 const G4MaterialCutsCouple* couple) 719 { 657 { >> 658 // Cross section per atom is calculated 720 DefineMaterial(couple); 659 DefineMaterial(couple); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 660 G4double cross = 0.0; 722 << 661 if(theLambdaTable) { 723 return newv; << 662 cross = (((*theLambdaTable)[currentCoupleIndex])->Value(kineticEnergy)); 724 } << 663 } else { 725 << 664 SelectModel(kineticEnergy, currentCoupleIndex); 726 //....oooOO0OOooo........oooOO0OOooo........oo << 665 cross = currentModel->CrossSectionPerVolume(currentMaterial, >> 666 currentParticle,kineticEnergy); >> 667 } 727 668 728 const G4Element* G4VEmProcess::GetCurrentEleme << 669 if(cross < 0.0) { cross = 0.0; } 729 { << 670 return cross; 730 return (nullptr != currentModel) ? << 731 currentModel->GetCurrentElement(currentMat << 732 } 671 } 733 672 734 //....oooOO0OOooo........oooOO0OOooo........oo 673 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 674 736 const G4Element* G4VEmProcess::GetTargetElemen << 675 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, >> 676 G4double, >> 677 G4ForceCondition* condition) 737 { 678 { 738 return (nullptr != currentModel) ? << 679 *condition = NotForced; 739 currentModel->GetCurrentElement(currentMat << 680 return G4VEmProcess::MeanFreePath(track); 740 } 681 } 741 682 742 //....oooOO0OOooo........oooOO0OOooo........oo 683 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 684 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 685 G4double G4VEmProcess::MeanFreePath(const G4Track& track) 745 { 686 { 746 return (nullptr != currentModel) ? << 687 DefineMaterial(track.GetMaterialCutsCouple()); 747 currentModel->GetCurrentIsotope(GetCurrent << 688 preStepLambda = GetCurrentLambda(track.GetKineticEnergy()); >> 689 G4double x = DBL_MAX; >> 690 if(DBL_MIN < preStepLambda) x = 1.0/preStepLambda; >> 691 return x; 748 } 692 } 749 693 750 //....oooOO0OOooo........oooOO0OOooo........oo 694 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 695 752 void G4VEmProcess::SetCrossSectionBiasingFacto << 696 G4double >> 697 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, >> 698 G4double Z, G4double A, G4double cut) 753 { 699 { 754 if(f > 0.0) { << 700 SelectModel(kineticEnergy, currentCoupleIndex); 755 biasFactor = f; << 701 G4double x = 0.0; 756 weightFlag = flag; << 702 if(currentModel) { 757 if(1 < verboseLevel) { << 703 x = currentModel->ComputeCrossSectionPerAtom(currentParticle,kineticEnergy, 758 G4cout << "### SetCrossSectionBiasingFac << 704 Z,A,cut); 759 << particle->GetParticleName() << 760 << " and process " << GetProcessN << 761 << " biasFactor= " << f << " weig << 762 << G4endl; << 763 } << 764 } 705 } >> 706 return x; 765 } 707 } 766 708 767 //....oooOO0OOooo........oooOO0OOooo........oo 709 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 710 769 void << 711 void G4VEmProcess::FindLambdaMax() 770 G4VEmProcess::ActivateForcedInteraction(G4doub << 771 G4bool << 772 { 712 { 773 if(nullptr == biasManager) { biasManager = n << 774 if(1 < verboseLevel) { 713 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: << 714 G4cout << "### G4VEmProcess::FindLambdaMax: " 776 << particle->GetParticleName() << 715 << particle->GetParticleName() 777 << " and process " << GetProcessNam << 716 << " and process " << GetProcessName() << G4endl; 778 << " length(mm)= " << length/mm << 717 } 779 << " in G4Region <" << r << 718 size_t n = theLambdaTable->length(); 780 << "> weightFlag= " << flag << 719 G4PhysicsVector* pv = (*theLambdaTable)[0]; 781 << G4endl; << 720 G4double e, s, emax, smax; 782 } << 721 theEnergyOfCrossSectionMax = new G4double [n]; 783 weightFlag = flag; << 722 theCrossSectionMax = new G4double [n]; 784 biasManager->ActivateForcedInteraction(lengt << 723 785 } << 724 for (size_t i=0; i<n; ++i) { 786 << 725 pv = (*theLambdaTable)[i]; 787 //....oooOO0OOooo........oooOO0OOooo........oo << 726 emax = DBL_MAX; 788 << 727 smax = 0.0; 789 void << 728 if(pv) { 790 G4VEmProcess::ActivateSecondaryBiasing(const G << 729 size_t nb = pv->GetVectorLength(); 791 G4double factor, << 730 emax = DBL_MAX; 792 G4double energyLimit) << 731 smax = 0.0; 793 { << 732 if(nb > 0) { 794 if (0.0 <= factor) { << 733 for (size_t j=0; j<nb; ++j) { 795 << 734 e = pv->Energy(j); 796 // Range cut can be applied only for e- << 735 s = (*pv)(j); 797 if(0.0 == factor && secondaryParticle != G << 736 if(s > smax) { 798 { return; } << 737 smax = s; 799 << 738 emax = e; 800 if(!biasManager) { biasManager = new G4EmB << 739 } 801 biasManager->ActivateSecondaryBiasing(regi << 740 } >> 741 } >> 742 } >> 743 theEnergyOfCrossSectionMax[i] = emax; >> 744 theCrossSectionMax[i] = smax; 802 if(1 < verboseLevel) { 745 if(1 < verboseLevel) { 803 G4cout << "### ActivateSecondaryBiasing: << 746 G4cout << "For " << particle->GetParticleName() 804 << " process " << GetProcessName() << 747 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV 805 << " factor= " << factor << 748 << " lambda= " << smax << G4endl; 806 << " in G4Region <" << region << 807 << "> energyLimit(MeV)= " << energyLimi << 808 << G4endl; << 809 } 749 } 810 } 750 } 811 } 751 } 812 752 813 //....oooOO0OOooo........oooOO0OOooo........oo 753 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 754 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 755 G4PhysicsVector* G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 816 { << 817 if(5 < n && n < 10000000) { << 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } << 825 << 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 << 828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 829 { 756 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 757 G4PhysicsVector* v = 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 758 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); 832 /G4Log(maxKinEnergy/ << 759 v->SetSpline((G4LossTableManager::Instance())->SplineFlag()); 833 minKinEnergy = e; << 760 return v; 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } 761 } 837 762 838 //....oooOO0OOooo........oooOO0OOooo........oo 763 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 764 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 765 const G4Element* G4VEmProcess::GetCurrentElement() const 841 { << 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 844 /G4Log(maxKinEnergy/ << 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } << 849 << 850 //....oooOO0OOooo........oooOO0OOooo........oo << 851 << 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 853 { << 854 if(theParameters->MinKinEnergy() <= e && << 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } << 858 << 859 //....oooOO0OOooo........oooOO0OOooo........oo << 860 << 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } << 872 << 873 //....oooOO0OOooo........oooOO0OOooo........oo << 874 << 875 void G4VEmProcess::PrintWarning(G4String tit, << 876 { << 877 G4String ss = "G4VEmProcess::" + tit; << 878 G4ExceptionDescription ed; << 879 ed << "Parameter is out of range: " << val << 880 << " it will have no effect!\n" << " Pro << 881 << GetProcessName() << " nbins= " << the << 882 << " Emin(keV)= " << theParameters->MinKi << 883 << " Emax(GeV)= " << theParameters->MaxKi << 884 G4Exception(ss, "em0044", JustWarning, ed); << 885 } << 886 << 887 //....oooOO0OOooo........oooOO0OOooo........oo << 888 << 889 void G4VEmProcess::ProcessDescription(std::ost << 890 { 766 { 891 if(nullptr != particle) { << 767 const G4Element* elm = 0; 892 StreamInfo(out, *particle, true); << 768 if(currentModel) {elm = currentModel->GetCurrentElement(); } 893 } << 769 return elm; 894 } 770 } 895 771 896 //....oooOO0OOooo........oooOO0OOooo........oo 772 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 773