Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc,v 1.60 2008/10/17 14:46:16 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-02 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: by V.Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 42 // 30-09-08 optimise integral option (V.Ivanchenko) >> 43 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 44 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 45 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 47 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 48 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 49 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 12-09-06 add SetModel() (mma) >> 52 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) >> 53 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 38 // 54 // 39 // Class Description: based class for discrete << 55 // Class Description: 40 // 56 // 41 57 42 // ------------------------------------------- 58 // ------------------------------------------------------------------- 43 // 59 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 62 47 #include "G4VEmProcess.hh" 63 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProcessManager.hh" << 51 #include "G4LossTableManager.hh" 64 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" << 53 #include "G4Step.hh" 65 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 66 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 67 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 68 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 69 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 70 #include "G4PhysicsVector.hh" 59 #include "G4PhysicsLogVector.hh" 71 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 72 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 73 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 74 #include "G4Region.hh" >> 75 #include "G4RegionStore.hh" 63 #include "G4Gamma.hh" 76 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 77 #include "G4Electron.hh" 65 #include "G4Positron.hh" 78 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 79 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" << 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" << 74 #include "G4Log.hh" << 75 #include <iostream> << 76 80 77 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 82 79 G4VEmProcess::G4VEmProcess(const G4String& nam 83 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 84 G4VDiscreteProcess(name, type), >> 85 secondaryParticle(0), >> 86 buildLambdaTable(true), >> 87 theLambdaTable(0), >> 88 theEnergyOfCrossSectionMax(0), >> 89 theCrossSectionMax(0), >> 90 integral(false), >> 91 applyCuts(false), >> 92 startFromNull(true), >> 93 nRegions(0), >> 94 selectedModel(0), >> 95 particle(0), >> 96 currentCouple(0) 81 { 97 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); 98 SetVerboseLevel(1); 84 99 85 // Size of tables << 100 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 101 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 102 maxKinEnergy = 100.0*TeV; >> 103 nLambdaBins = 84; 88 104 89 // default lambda factor 105 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 106 lambdaFactor = 0.8; >> 107 >> 108 // default limit on polar angle >> 109 polarAngleLimit = 0.0; 91 110 92 // particle types 111 // particle types 93 theGamma = G4Gamma::Gamma(); << 112 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 113 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 114 thePositron = G4Positron::Positron(); 96 115 97 pParticleChange = &fParticleChange; 116 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); 117 secParticles.reserve(5); 100 118 101 modelManager = new G4EmModelManager(); 119 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 120 (G4LossTableManager::Instance())->Register(this); 103 lManager->Register(this); << 104 isTheMaster = lManager->IsMaster(); << 105 G4LossTableBuilder* bld = lManager->GetTable << 106 theDensityFactor = bld->GetDensityFactors(); << 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 121 } 109 122 110 //....oooOO0OOooo........oooOO0OOooo........oo 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 124 112 G4VEmProcess::~G4VEmProcess() 125 G4VEmProcess::~G4VEmProcess() 113 { 126 { 114 if(isTheMaster) { << 127 if(1 < verboseLevel) 115 delete theData; << 128 G4cout << "G4VEmProcess destruct " << GetProcessName() 116 delete theEnergyOfCrossSectionMax; << 129 << G4endl; >> 130 Clear(); >> 131 if(theLambdaTable) { >> 132 theLambdaTable->clearAndDestroy(); >> 133 delete theLambdaTable; 117 } 134 } 118 delete modelManager; 135 delete modelManager; 119 delete biasManager; << 136 (G4LossTableManager::Instance())->DeRegister(this); 120 lManager->DeRegister(this); << 121 } 137 } 122 138 123 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 140 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 141 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 126 const G4Region* << 127 { 142 { 128 if(nullptr == ptr) { return; } << 143 if(!particle) particle = ∂ 129 G4VEmFluctuationModel* fm = nullptr; << 144 if(1 < verboseLevel) { 130 modelManager->AddEmModel(order, ptr, fm, reg << 145 G4cout << "G4VEmProcess::PreparePhysicsTable() for " 131 ptr->SetParticleChange(pParticleChange); << 146 << GetProcessName() 132 } << 147 << " and particle " << part.GetParticleName() 133 << 148 << " local particle " << particle->GetParticleName() 134 //....oooOO0OOooo........oooOO0OOooo........oo << 149 << G4endl; >> 150 } 135 151 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 152 if(particle == &part) { 137 { << 153 Clear(); 138 if(nullptr == ptr) { return; } << 154 InitialiseProcess(particle); 139 if(!emModels.empty()) { << 155 theCuts = modelManager->Initialise(particle,secondaryParticle,2.,verboseLevel); 140 for(auto & em : emModels) { if(em == ptr) << 156 const G4ProductionCutsTable* theCoupleTable= >> 157 G4ProductionCutsTable::GetProductionCutsTable(); >> 158 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 159 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 160 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 161 if(buildLambdaTable) >> 162 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); 141 } 163 } 142 emModels.push_back(ptr); << 143 } 164 } 144 165 145 //....oooOO0OOooo........oooOO0OOooo........oo 166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 167 147 void G4VEmProcess::PreparePhysicsTable(const G << 168 void G4VEmProcess::Clear() 148 { 169 { 149 if(nullptr == particle) { SetParticle(&part) << 170 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; 150 << 171 if(theCrossSectionMax) delete [] theCrossSectionMax; 151 if(part.GetParticleType() == "nucleus" && << 172 theEnergyOfCrossSectionMax = 0; 152 part.GetParticleSubType() == "generic") { << 173 theCrossSectionMax = 0; 153 << 174 currentCouple = 0; 154 G4String pname = part.GetParticleName(); << 155 if(pname != "deuteron" && pname != "triton << 156 pname != "He3" && pname != "alpha" && p << 157 pname != "helium" && pname != "hydrogen << 158 << 159 particle = G4GenericIon::GenericIon(); << 160 isIon = true; << 161 } << 162 } << 163 if(particle != &part) { return; } << 164 << 165 lManager->PreparePhysicsTable(&part, this); << 166 << 167 // for new run << 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; 175 preStepLambda = 0.0; 170 fLambdaEnergy = 0.0; << 176 mfpKinEnergy = DBL_MAX; 171 << 172 InitialiseProcess(particle); << 173 << 174 G4LossTableBuilder* bld = lManager->GetTable << 175 const G4ProductionCutsTable* theCoupleTable= << 176 G4ProductionCutsTable::GetProductionCutsTa << 177 theCutsGamma = theCoupleTable->GetEnergyC << 178 theCutsElectron = theCoupleTable->GetEnergyC << 179 theCutsPositron = theCoupleTable->GetEnergyC << 180 << 181 // initialisation of the process << 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 184 << 185 applyCuts = theParameters->ApplyCuts() << 186 lambdaFactor = theParameters->LambdaFacto << 187 invLambdaFactor = 1.0/lambdaFactor; << 188 theParameters->DefineRegParamForEM(this); << 189 << 190 // integral option may be disabled << 191 if(!theParameters->Integral()) { fXSType = f << 192 << 193 // prepare tables << 194 if(isTheMaster) { << 195 if(nullptr == theData) { theData = new G4E << 196 << 197 if(buildLambdaTable) { << 198 theLambdaTable = theData->MakeTable(0); << 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } << 201 // high energy table << 202 if(minKinEnergyPrim < maxKinEnergy) { << 203 theLambdaTablePrim = theData->MakeTable( << 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } << 206 } << 207 // models << 208 baseMat = bld->GetBaseMaterialFlag(); << 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 177 } 226 178 227 //....oooOO0OOooo........oooOO0OOooo........oo 179 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 180 229 void G4VEmProcess::BuildPhysicsTable(const G4P 181 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 182 { 231 if(nullptr == masterProc) { << 183 if(1 < verboseLevel) { 232 if(isTheMaster) { masterProc = this; } << 184 G4cout << "G4VEmProcess::BuildPhysicsTable() for " 233 else { masterProc = static_cast<const G4VE << 185 << GetProcessName() 234 } << 186 << " and particle " << part.GetParticleName() 235 G4int nModels = modelManager->NumberOfModels << 187 << " buildLambdaTable= " << buildLambdaTable 236 G4bool isLocked = theParameters->IsPrintLock << 188 << G4endl; 237 G4bool toBuild = (buildLambdaTable || minKin << 238 << 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 240 nModels, verbo << 241 isLocked, toBu << 242 } << 243 << 244 //....oooOO0OOooo........oooOO0OOooo........oo << 245 << 246 void G4VEmProcess::BuildLambdaTable() << 247 { << 248 G4double scale = theParameters->MaxKinEnergy << 249 G4int nbin = << 250 theParameters->NumberOfBinsPerDecade()*G4l << 251 if(actBinning) { nbin = std::max(nbin, nLamb << 252 scale = nbin/G4Log(scale); << 253 << 254 G4LossTableBuilder* bld = lManager->GetTable << 255 G4EmTableUtil::BuildLambdaTable(this, partic << 256 bld, theLamb << 257 minKinEnergy << 258 maxKinEnergy << 259 startFromNul << 260 } << 261 << 262 //....oooOO0OOooo........oooOO0OOooo........oo << 263 << 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 265 const G4ParticleDefinition& << 266 { << 267 G4String indent = (rst ? " " : ""); << 268 out << std::setprecision(6); << 269 out << G4endl << indent << GetProcessName() << 270 if (!rst) { << 271 out << " for " << part.GetParticleName(); << 272 } << 273 if(fXSType != fEmNoIntegral) { out << " XSt << 274 if(applyCuts) { out << " applyCuts:1 "; } << 275 G4int subtype = GetProcessSubType(); << 276 out << " SubType=" << subtype; << 277 if (subtype == fAnnihilation) { << 278 G4int mod = theParameters->PositronAtRestM << 279 const G4String namp[2] = {"Simple", "Allis << 280 out << " AtRestModel:" << namp[mod]; << 281 } 189 } 282 if(biasFactor != 1.0) { out << " BiasingFac << 190 283 out << " BuildTable=" << buildLambdaTable << << 284 if(buildLambdaTable) { 191 if(buildLambdaTable) { 285 if(particle == &part) { << 192 BuildLambdaTable(); 286 for(auto & v : *theLambdaTable) { << 193 FindLambdaMax(); 287 if(nullptr != v) { << 288 out << " Lambda table from "; << 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } << 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } << 306 } 194 } 307 if(minKinEnergyPrim < maxKinEnergy) { << 195 if(0 < verboseLevel) PrintInfoDefinition(); 308 if(particle == &part) { << 309 for(auto & v : *theLambdaTablePrim) { << 310 if(nullptr != v) { << 311 out << " LambdaPrime table from << 312 << G4BestUnit(v->Energy(0),"Ener << 313 << " to " << 314 << G4BestUnit(v->GetMaxEnergy(), << 315 << " in " << v->GetVectorLength( << 316 << " bins " << G4endl; << 317 break; << 318 } << 319 } << 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } << 324 } << 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 196 328 if(verboseLevel > 2 && buildLambdaTable) { << 197 if(1 < verboseLevel) { 329 out << " LambdaTable address= " << th << 198 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " 330 if(theLambdaTable && particle == &part) { << 199 << GetProcessName() 331 out << (*theLambdaTable) << G4endl; << 200 << " and particle " << part.GetParticleName() 332 } << 201 << G4endl; 333 } 202 } 334 } 203 } 335 204 336 //....oooOO0OOooo........oooOO0OOooo........oo 205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 206 338 void G4VEmProcess::StartTracking(G4Track* trac << 207 void G4VEmProcess::BuildLambdaTable() 339 { 208 { 340 // reset parameters for the new track << 209 if(1 < verboseLevel) { 341 currentParticle = track->GetParticleDefiniti << 210 G4cout << "G4EmProcess::BuildLambdaTable() for process " 342 theNumberOfInteractionLengthLeft = -1.0; << 211 << GetProcessName() << " and particle " 343 mfpKinEnergy = DBL_MAX; << 212 << particle->GetParticleName() 344 preStepLambda = 0.0; << 213 << G4endl; >> 214 } 345 215 346 if(isIon) { massRatio = proton_mass_c2/curre << 216 // Access to materials >> 217 const G4ProductionCutsTable* theCoupleTable= >> 218 G4ProductionCutsTable::GetProductionCutsTable(); >> 219 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 220 for(size_t i=0; i<numOfCouples; i++) { >> 221 >> 222 if (theLambdaTable->GetFlag(i)) { >> 223 >> 224 // create physics vector and fill it >> 225 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); >> 226 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); >> 227 modelManager->FillLambdaVector(aVector, couple, startFromNull); >> 228 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 229 } >> 230 } 347 231 348 // forced biasing only for primary particles << 232 if(1 < verboseLevel) { 349 if(biasManager) { << 233 G4cout << "Lambda table is built for " 350 if(0 == track->GetParentID()) { << 234 << particle->GetParticleName() 351 // primary particle << 235 << G4endl; 352 biasFlag = true; << 236 if(2 < verboseLevel) { 353 biasManager->ResetForcedInteraction(); << 237 G4cout << *theLambdaTable << G4endl; 354 } 238 } 355 } 239 } 356 } 240 } 357 241 358 //....oooOO0OOooo........oooOO0OOooo........oo 242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 243 360 G4double G4VEmProcess::PostStepGetPhysicalInte 244 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 245 const G4Track& track, 362 G4double previo 246 G4double previousStepSize, 363 G4ForceCondition* 247 G4ForceCondition* condition) 364 { 248 { >> 249 // condition is set to "Not Forced" 365 *condition = NotForced; 250 *condition = NotForced; 366 G4double x = DBL_MAX; 251 G4double x = DBL_MAX; >> 252 if(previousStepSize <= DBL_MIN) theNumberOfInteractionLengthLeft = -1.0; >> 253 InitialiseStep(track); 367 254 368 DefineMaterial(track.GetMaterialCutsCouple() << 255 if(preStepKinEnergy < mfpKinEnergy) { 369 preStepKinEnergy = track.GetKineticEnergy(); << 256 if (integral) ComputeIntegralLambda(preStepKinEnergy); 370 const G4double scaledEnergy = preStepKinEner << 257 else preStepLambda = GetCurrentLambda(preStepKinEnergy); 371 SelectModel(scaledEnergy, currentCoupleIndex << 258 if(preStepLambda <= DBL_MIN) mfpKinEnergy = 0.0; 372 /* << 373 G4cout << "PostStepGetPhysicalInteractionLen << 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 << 384 // forced biasing only for primary particles << 385 if(biasManager) { << 386 if(0 == track.GetParentID()) { << 387 if(biasFlag && << 388 biasManager->ForcedInteractionRegion( << 389 return biasManager->GetStepLimit((G4in << 390 } << 391 } << 392 } 259 } 393 260 394 // compute mean free path << 261 // non-zero cross section 395 << 262 if(preStepLambda > DBL_MIN) { 396 ComputeIntegralLambda(preStepKinEnergy, trac << 397 << 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 263 if (theNumberOfInteractionLengthLeft < 0.0) { 407 << 408 // beggining of tracking (or just after 264 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 265 ResetNumberOfInteractionLengthLeft(); 410 theInitialNumberOfInteractionLength = th << 266 } else if(currentInteractionLength < DBL_MAX) { 411 << 267 // subtract NumberOfInteractionLengthLeft 412 } else { << 268 SubtractNumberOfInteractionLengthLeft(previousStepSize); 413 << 269 if(theNumberOfInteractionLengthLeft < 0.) 414 theNumberOfInteractionLengthLeft -= << 270 theNumberOfInteractionLengthLeft = perMillion; 415 previousStepSize/currentInteractionLen << 416 theNumberOfInteractionLengthLeft = << 417 std::max(theNumberOfInteractionLengthL << 418 } 271 } 419 272 420 // new mean free path and step limit for t << 273 // get mean free path and step limit 421 currentInteractionLength = 1.0/preStepLamb 274 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 275 x = theNumberOfInteractionLengthLeft * currentInteractionLength; >> 276 #ifdef G4VERBOSE >> 277 if (verboseLevel>2){ >> 278 G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength "; >> 279 G4cout << "[ " << GetProcessName() << "]" << G4endl; >> 280 G4cout << " for " << particle->GetParticleName() >> 281 << " in Material " << currentMaterial->GetName() >> 282 << " Ekin(MeV)= " << preStepKinEnergy/MeV >> 283 <<G4endl; >> 284 G4cout << "MeanFreePath = " << currentInteractionLength/cm << "[cm]" >> 285 << "InteractionLength= " << x/cm <<"[cm] " <<G4endl; >> 286 } >> 287 #endif >> 288 >> 289 // zero cross section case >> 290 } else { >> 291 if(theNumberOfInteractionLengthLeft > DBL_MIN && >> 292 currentInteractionLength < DBL_MAX) { >> 293 >> 294 // subtract NumberOfInteractionLengthLeft >> 295 SubtractNumberOfInteractionLengthLeft(previousStepSize); >> 296 if(theNumberOfInteractionLengthLeft < 0.) >> 297 theNumberOfInteractionLengthLeft = perMillion; >> 298 } >> 299 currentInteractionLength = DBL_MAX; 423 } 300 } 424 return x; 301 return x; 425 } 302 } 426 303 427 //....oooOO0OOooo........oooOO0OOooo........oo 304 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 428 305 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 306 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, >> 307 G4double, >> 308 G4ForceCondition* condition) 430 { 309 { 431 if (fXSType == fEmNoIntegral) { << 310 *condition = NotForced; 432 preStepLambda = GetCurrentLambda(e, LogEki << 311 return G4VEmProcess::MeanFreePath(track); 433 << 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } << 459 } else { << 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } << 462 } 312 } 463 313 464 //....oooOO0OOooo........oooOO0OOooo........oo 314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 315 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 316 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 << 317 const G4Step&) 468 { 318 { 469 // clear number of interaction lengths in an << 470 theNumberOfInteractionLengthLeft = -1.0; << 471 mfpKinEnergy = DBL_MAX; << 472 << 473 fParticleChange.InitializeForPostStep(track) 319 fParticleChange.InitializeForPostStep(track); 474 320 475 // Do not make anything if particle is stopp 321 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 322 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) << 323 if (track.GetTrackStatus() == fStopButAlive) return &fParticleChange; 478 << 479 const G4double finalT = track.GetKineticEner << 480 << 481 // forced process - should happen only once << 482 if(biasFlag) { << 483 if(biasManager->ForcedInteractionRegion((G << 484 biasFlag = false; << 485 } << 486 } << 487 324 488 // check active and select model << 325 G4double finalT = track.GetKineticEnergy(); 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 326 493 // Integral approach 327 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 328 if (integral) { 495 const G4double logFinalT = << 329 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 330 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 331 G4cout << "WARING: for " << particle->GetParticleName() 498 #ifdef G4VERBOSE << 332 << " and " << GetProcessName() 499 if(preStepLambda < lx && 1 < verboseLevel) << 333 << " E(MeV)= " << finalT/MeV 500 G4cout << "WARNING: for " << currentPart << 334 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " 501 << " and " << GetProcessName() << << 335 << G4endl; 502 << " preLambda= " << preStepLambd << 503 << " < " << lx << " (postLambda) << 504 } 336 } 505 #endif << 337 506 // if false interaction then use new cross << 338 if(preStepLambda*G4UniformRand() > lx) { 507 // if both values are zero - no interactio << 339 ClearNumberOfInteractionLengthLeft(); 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 340 return &fParticleChange; 510 } 341 } 511 } 342 } 512 343 513 // define new weight for primary and seconda << 344 G4VEmModel* currentModel = SelectModel(finalT); 514 G4double weight = fParticleChange.GetParentW << 345 515 if(weightFlag) { << 346 /* 516 weight /= biasFactor; << 347 if(0 < verboseLevel) { 517 fParticleChange.ProposeWeight(weight); << 518 } << 519 << 520 #ifdef G4VERBOSE << 521 if(1 < verboseLevel) { << 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 348 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 349 << finalT/MeV 524 << " MeV; model= (" << currentModel 350 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 351 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 352 << G4endl; 527 } 353 } 528 #endif << 354 */ 529 355 >> 356 530 // sample secondaries 357 // sample secondaries 531 secParticles.clear(); 358 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 359 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl << 360 currentCouple, 534 track.GetDyn << 361 track.GetDynamicParticle(), 535 (*theCuts)[c << 362 (*theCuts)[currentMaterialIndex]); 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 << 539 // splitting or Russian roulette << 540 if(biasManager) { << 541 if(biasManager->SecondaryBiasingRegion((G4 << 542 G4double eloss = 0.0; << 543 weight *= biasManager->ApplySecondaryBia << 544 secParticles, track, currentModel, &fP << 545 (G4int)currentCoupleIndex, (*theCuts)[ << 546 step.GetPostStepPoint()->GetSafety()); << 547 if(eloss > 0.0) { << 548 eloss += fParticleChange.GetLocalEnerg << 549 fParticleChange.ProposeLocalEnergyDepo << 550 } << 551 } << 552 } << 553 363 554 // save secondaries 364 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 365 G4int num = secParticles.size(); 556 if(num > 0) { 366 if(num > 0) { 557 367 558 fParticleChange.SetNumberOfSecondaries(num 368 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 369 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 370 567 for (G4int i=0; i<num; ++i) { << 371 for (G4int i=0; i<num; i++) { 568 G4DynamicParticle* dp = secParticles[i]; 372 G4DynamicParticle* dp = secParticles[i]; 569 if (nullptr != dp) { << 373 const G4ParticleDefinition* p = dp->GetDefinition(); 570 const G4ParticleDefinition* p = dp->Ge << 374 G4double e = dp->GetKineticEnergy(); 571 G4double e = dp->GetKineticEnergy(); << 375 G4bool good = true; 572 G4bool good = true; << 376 if(applyCuts) { 573 if(applyCuts) { << 377 if (p == theGamma) { 574 if (p == theGamma) { << 378 if (e < (*theCutsGamma)[currentMaterialIndex]) good = false; 575 if (e < (*theCutsGamma)[currentCou << 379 576 << 380 } else if (p == theElectron) { 577 } else if (p == theElectron) { << 381 if (e < (*theCutsElectron)[currentMaterialIndex]) good = false; 578 if (e < (*theCutsElectron)[current << 382 579 << 383 } else if (p == thePositron) { 580 } else if (p == thePositron) { << 384 if (electron_mass_c2 < (*theCutsGamma)[currentMaterialIndex] && 581 if (electron_mass_c2 < (*theCutsGa << 385 e < (*theCutsPositron)[currentMaterialIndex]) { 582 e < (*theCutsPositron)[current << 386 good = false; 583 good = false; << 387 e += 2.0*electron_mass_c2; 584 e += 2.0*electron_mass_c2; << 388 } 585 } << 389 } 586 } << 390 if(!good) { 587 // added secondary if it is good << 391 delete dp; 588 } << 392 edep += e; 589 if (good) { << 393 } 590 G4Track* t = new G4Track(dp, time, t << 394 } 591 t->SetTouchableHandle(track.GetTouch << 395 if (good) fParticleChange.AddSecondary(dp); 592 if (biasManager) { << 396 } 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { << 627 delete dp; << 628 edep += e; << 629 } << 630 } << 631 } << 632 fParticleChange.ProposeLocalEnergyDeposit( 397 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 398 } 634 399 635 if(0.0 == fParticleChange.GetProposedKinetic << 400 ClearNumberOfInteractionLengthLeft(); 636 fAlive == fParticleChange.GetTrackStatus( << 637 if(particle->GetProcessManager()->GetAtRes << 638 { fParticleChange.ProposeTrackStatus( << 639 else { fParticleChange.ProposeTrackStatus( << 640 } << 641 << 642 return &fParticleChange; 401 return &fParticleChange; 643 } 402 } 644 403 645 //....oooOO0OOooo........oooOO0OOooo........oo 404 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 405 647 G4bool G4VEmProcess::StorePhysicsTable(const G << 406 void G4VEmProcess::PrintInfoDefinition() 648 const G << 649 G4bool << 650 { 407 { 651 if(!isTheMaster || part != particle) { retur << 408 if(verboseLevel > 0) { 652 if(G4EmTableUtil::StoreTable(this, part, the << 409 G4cout << G4endl << GetProcessName() << ": for " 653 directory, "Lambda", << 410 << particle->GetParticleName(); 654 verboseLevel, a << 411 if(integral) G4cout << ", integral: 1 "; 655 G4EmTableUtil::StoreTable(this, part, the << 412 if(applyCuts) G4cout << ", applyCuts: 1 "; 656 directory, "LambdaPrim", << 413 G4cout << " SubType= " << GetProcessSubType() << G4endl; 657 verboseLevel, a << 414 if(buildLambdaTable) { 658 return true; << 415 G4cout << " Lambda tables from " >> 416 << G4BestUnit(minKinEnergy,"Energy") >> 417 << " to " >> 418 << G4BestUnit(maxKinEnergy,"Energy") >> 419 << " in " << nLambdaBins << " bins, spline: " >> 420 << (G4LossTableManager::Instance())->SplineFlag() >> 421 << G4endl; >> 422 } >> 423 PrintInfo(); >> 424 modelManager->DumpModelList(verboseLevel); 659 } 425 } 660 return false; << 661 } << 662 426 663 //....oooOO0OOooo........oooOO0OOooo........oo << 427 if(verboseLevel > 2 && buildLambdaTable) { 664 << 428 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons << 429 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 666 cons << 667 G4bo << 668 { << 669 if(!isTheMaster || part != particle) { retur << 670 G4bool yes = true; << 671 if(buildLambdaTable) { << 672 yes = G4EmTableUtil::RetrieveTable(this, p << 673 "Lambda << 674 ascii, << 675 } << 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 677 yes = G4EmTableUtil::RetrieveTable(this, p << 678 "Lambda << 679 ascii, << 680 } 430 } 681 return yes; << 682 } << 683 << 684 //....oooOO0OOooo........oooOO0OOooo........oo << 685 << 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 687 const G << 688 { << 689 CurrentSetup(couple, kinEnergy); << 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 691 } 431 } 692 432 693 //....oooOO0OOooo........oooOO0OOooo........oo 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 434 695 G4double G4VEmProcess::GetMeanFreePath(const G << 435 G4double G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, 696 G4doubl << 436 const G4MaterialCutsCouple* couple) 697 G4Force << 698 { << 699 *condition = NotForced; << 700 return G4VEmProcess::MeanFreePath(track); << 701 } << 702 << 703 //....oooOO0OOooo........oooOO0OOooo........oo << 704 << 705 G4double << 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { << 709 SelectModel(kinEnergy, currentCoupleIndex); << 710 return (currentModel) ? << 711 currentModel->ComputeCrossSectionPerAtom(c << 712 Z << 713 } << 714 << 715 //....oooOO0OOooo........oooOO0OOooo........oo << 716 << 717 G4PhysicsVector* << 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 719 { 437 { >> 438 // Cross section per atom is calculated 720 DefineMaterial(couple); 439 DefineMaterial(couple); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 440 G4double cross = 0.0; 722 << 441 G4bool b; 723 return newv; << 442 if(theLambdaTable) { 724 } << 443 cross = (((*theLambdaTable)[currentMaterialIndex])-> 725 << 444 GetValue(kineticEnergy, b)); 726 //....oooOO0OOooo........oooOO0OOooo........oo << 445 } else { 727 << 446 G4VEmModel* model = SelectModel(kineticEnergy); 728 const G4Element* G4VEmProcess::GetCurrentEleme << 447 cross = 729 { << 448 model->CrossSectionPerVolume(currentMaterial,particle,kineticEnergy); 730 return (nullptr != currentModel) ? << 449 } 731 currentModel->GetCurrentElement(currentMat << 732 } << 733 << 734 //....oooOO0OOooo........oooOO0OOooo........oo << 735 450 736 const G4Element* G4VEmProcess::GetTargetElemen << 451 return cross; 737 { << 738 return (nullptr != currentModel) ? << 739 currentModel->GetCurrentElement(currentMat << 740 } 452 } 741 453 742 //....oooOO0OOooo........oooOO0OOooo........oo 454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 455 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 456 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, >> 457 const G4String& directory, >> 458 G4bool ascii) 745 { 459 { 746 return (nullptr != currentModel) ? << 460 G4bool yes = true; 747 currentModel->GetCurrentIsotope(GetCurrent << 748 } << 749 461 750 //....oooOO0OOooo........oooOO0OOooo........oo << 462 if ( theLambdaTable && part == particle) { >> 463 const G4String name = >> 464 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 465 yes = theLambdaTable->StorePhysicsTable(name,ascii); 751 466 752 void G4VEmProcess::SetCrossSectionBiasingFacto << 467 if ( yes ) { 753 { << 468 G4cout << "Physics tables are stored for " << particle->GetParticleName() 754 if(f > 0.0) { << 755 biasFactor = f; << 756 weightFlag = flag; << 757 if(1 < verboseLevel) { << 758 G4cout << "### SetCrossSectionBiasingFac << 759 << particle->GetParticleName() << 760 << " and process " << GetProcessN 469 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig << 470 << " in the directory <" << directory 762 << G4endl; << 471 << "> " << G4endl; >> 472 } else { >> 473 G4cout << "Fail to store Physics Tables for " >> 474 << particle->GetParticleName() >> 475 << " and process " << GetProcessName() >> 476 << " in the directory <" << directory >> 477 << "> " << G4endl; 763 } 478 } 764 } 479 } >> 480 return yes; 765 } 481 } 766 482 767 //....oooOO0OOooo........oooOO0OOooo........oo << 483 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 768 484 769 void << 485 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 770 G4VEmProcess::ActivateForcedInteraction(G4doub << 486 const G4String& directory, 771 G4bool << 487 G4bool ascii) 772 { 488 { 773 if(nullptr == biasManager) { biasManager = n << 774 if(1 < verboseLevel) { 489 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: << 490 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " 776 << particle->GetParticleName() << 491 << part->GetParticleName() << " and process " 777 << " and process " << GetProcessNam << 492 << GetProcessName() << G4endl; 778 << " length(mm)= " << length/mm << 779 << " in G4Region <" << r << 780 << "> weightFlag= " << flag << 781 << G4endl; << 782 } 493 } 783 weightFlag = flag; << 494 G4bool yes = true; 784 biasManager->ActivateForcedInteraction(lengt << 785 } << 786 << 787 //....oooOO0OOooo........oooOO0OOooo........oo << 788 495 789 void << 496 if(!buildLambdaTable || particle != part) return yes; 790 G4VEmProcess::ActivateSecondaryBiasing(const G << 791 G4double factor, << 792 G4double energyLimit) << 793 { << 794 if (0.0 <= factor) { << 795 497 796 // Range cut can be applied only for e- << 498 const G4String particleName = part->GetParticleName(); 797 if(0.0 == factor && secondaryParticle != G << 499 G4String filename; 798 { return; } << 799 500 800 if(!biasManager) { biasManager = new G4EmB << 501 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 801 biasManager->ActivateSecondaryBiasing(regi << 502 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 802 if(1 < verboseLevel) { << 503 filename,ascii); 803 G4cout << "### ActivateSecondaryBiasing: << 504 if ( yes ) { 804 << " process " << GetProcessName() << 505 if (0 < verboseLevel) { 805 << " factor= " << factor << 506 G4cout << "Lambda table for " << particleName << " is Retrieved from <" 806 << " in G4Region <" << region << 507 << filename << ">" 807 << "> energyLimit(MeV)= " << energyLimi << 508 << G4endl; 808 << G4endl; << 509 } >> 510 if((G4LossTableManager::Instance())->SplineFlag()) { >> 511 size_t n = theLambdaTable->length(); >> 512 for(size_t i=0; i<n; i++) {(* theLambdaTable)[i]->SetSpline(true);} >> 513 } >> 514 } else { >> 515 if (1 < verboseLevel) { >> 516 G4cout << "Lambda table for " << particleName << " in file <" >> 517 << filename << "> is not exist" >> 518 << G4endl; 809 } 519 } 810 } 520 } 811 } << 812 << 813 //....oooOO0OOooo........oooOO0OOooo........oo << 814 << 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 816 { << 817 if(5 < n && n < 10000000) { << 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } << 825 << 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 << 828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 829 { << 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 832 /G4Log(maxKinEnergy/ << 833 minKinEnergy = e; << 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } << 837 << 838 //....oooOO0OOooo........oooOO0OOooo........oo << 839 << 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 841 { << 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 844 /G4Log(maxKinEnergy/ << 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } << 849 << 850 //....oooOO0OOooo........oooOO0OOooo........oo << 851 << 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 853 { << 854 if(theParameters->MinKinEnergy() <= e && << 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } << 858 << 859 //....oooOO0OOooo........oooOO0OOooo........oo << 860 521 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 522 return yes; 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } 523 } 872 524 873 //....oooOO0OOooo........oooOO0OOooo........oo 525 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 874 526 875 void G4VEmProcess::PrintWarning(G4String tit, << 527 void G4VEmProcess::FindLambdaMax() 876 { 528 { 877 G4String ss = "G4VEmProcess::" + tit; << 529 if(1 < verboseLevel) { 878 G4ExceptionDescription ed; << 530 G4cout << "### G4VEmProcess::FindLambdaMax: " 879 ed << "Parameter is out of range: " << val << 531 << particle->GetParticleName() 880 << " it will have no effect!\n" << " Pro << 532 << " and process " << GetProcessName() << G4endl; 881 << GetProcessName() << " nbins= " << the << 533 } 882 << " Emin(keV)= " << theParameters->MinKi << 534 size_t n = theLambdaTable->length(); 883 << " Emax(GeV)= " << theParameters->MaxKi << 535 G4PhysicsVector* pv = (*theLambdaTable)[0]; 884 G4Exception(ss, "em0044", JustWarning, ed); << 536 G4double e, s, emax, smax; >> 537 theEnergyOfCrossSectionMax = new G4double [n]; >> 538 theCrossSectionMax = new G4double [n]; >> 539 G4bool b; >> 540 >> 541 for (size_t i=0; i<n; i++) { >> 542 pv = (*theLambdaTable)[i]; >> 543 emax = DBL_MAX; >> 544 smax = 0.0; >> 545 if(pv) { >> 546 size_t nb = pv->GetVectorLength(); >> 547 emax = pv->GetLowEdgeEnergy(nb); >> 548 smax = 0.0; >> 549 for (size_t j=0; j<nb; j++) { >> 550 e = pv->GetLowEdgeEnergy(j); >> 551 s = pv->GetValue(e,b); >> 552 if(s > smax) { >> 553 smax = s; >> 554 emax = e; >> 555 } >> 556 } >> 557 } >> 558 theEnergyOfCrossSectionMax[i] = emax; >> 559 theCrossSectionMax[i] = smax; >> 560 if(2 < verboseLevel) { >> 561 G4cout << "For " << particle->GetParticleName() >> 562 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 563 << " lambda= " << smax << G4endl; >> 564 } >> 565 } 885 } 566 } 886 567 887 //....oooOO0OOooo........oooOO0OOooo........oo 568 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 569 889 void G4VEmProcess::ProcessDescription(std::ost << 570 G4PhysicsVector* G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 890 { 571 { 891 if(nullptr != particle) { << 572 G4PhysicsVector* v = 892 StreamInfo(out, *particle, true); << 573 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); 893 } << 574 v->SetSpline((G4LossTableManager::Instance())->SplineFlag()); >> 575 return v; 894 } 576 } 895 577 896 //....oooOO0OOooo........oooOO0OOooo........oo 578 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 579