Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc,v 1.40 2007/05/23 08:43:46 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-00-patch-01 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: by V.Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 42 // 30-09-08 optimise integral option (V.Ivanchenko) >> 43 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 44 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 45 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 47 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 48 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 49 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 12-09-06 add SetModel() (mma) >> 52 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) 38 // 53 // 39 // Class Description: based class for discrete << 54 // Class Description: 40 // 55 // 41 56 42 // ------------------------------------------- 57 // ------------------------------------------------------------------- 43 // 58 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 61 47 #include "G4VEmProcess.hh" 62 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProcessManager.hh" << 51 #include "G4LossTableManager.hh" 63 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" << 53 #include "G4Step.hh" 64 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 65 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 66 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 67 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 68 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 69 #include "G4PhysicsVector.hh" 59 #include "G4PhysicsLogVector.hh" 70 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 71 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 72 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 73 #include "G4Region.hh" >> 74 #include "G4RegionStore.hh" 63 #include "G4Gamma.hh" 75 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 76 #include "G4Electron.hh" 65 #include "G4Positron.hh" 77 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 78 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" << 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" << 74 #include "G4Log.hh" << 75 #include <iostream> << 76 79 77 //....oooOO0OOooo........oooOO0OOooo........oo 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 81 79 G4VEmProcess::G4VEmProcess(const G4String& nam 82 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 83 G4VDiscreteProcess(name, type), >> 84 selectedModel(0), >> 85 theLambdaTable(0), >> 86 theEnergyOfCrossSectionMax(0), >> 87 theCrossSectionMax(0), >> 88 particle(0), >> 89 secondaryParticle(0), >> 90 nLambdaBins(90), >> 91 lambdaFactor(0.8), >> 92 currentCouple(0), >> 93 integral(false), >> 94 buildLambdaTable(true), >> 95 applyCuts(false), >> 96 startFromNull(true), >> 97 nRegions(0) 81 { 98 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); 99 SetVerboseLevel(1); 84 << 100 minKinEnergy = 0.1*keV; 85 // Size of tables << 101 maxKinEnergy = 100.0*GeV; 86 minKinEnergy = 0.1*CLHEP::keV; << 102 theGamma = G4Gamma::Gamma(); 87 maxKinEnergy = 100.0*CLHEP::TeV; << 103 theElectron = G4Electron::Electron(); 88 << 104 thePositron = G4Positron::Positron(); 89 // default lambda factor << 90 invLambdaFactor = 1.0/lambdaFactor; << 91 << 92 // particle types << 93 theGamma = G4Gamma::Gamma(); << 94 theElectron = G4Electron::Electron(); << 95 thePositron = G4Positron::Positron(); << 96 105 97 pParticleChange = &fParticleChange; 106 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); 107 secParticles.reserve(5); 100 108 101 modelManager = new G4EmModelManager(); 109 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 110 (G4LossTableManager::Instance())->Register(this); 103 lManager->Register(this); << 104 isTheMaster = lManager->IsMaster(); << 105 G4LossTableBuilder* bld = lManager->GetTable << 106 theDensityFactor = bld->GetDensityFactors(); << 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 111 } 109 112 110 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 114 112 G4VEmProcess::~G4VEmProcess() 115 G4VEmProcess::~G4VEmProcess() 113 { 116 { 114 if(isTheMaster) { << 117 if(1 < verboseLevel) 115 delete theData; << 118 G4cout << "G4VEmProcess destruct " << GetProcessName() 116 delete theEnergyOfCrossSectionMax; << 119 << G4endl; 117 } << 120 Clear(); >> 121 if(theLambdaTable) theLambdaTable->clearAndDestroy(); 118 delete modelManager; 122 delete modelManager; 119 delete biasManager; << 123 (G4LossTableManager::Instance())->DeRegister(this); 120 lManager->DeRegister(this); << 121 } 124 } 122 125 123 //....oooOO0OOooo........oooOO0OOooo........oo 126 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 127 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 128 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 126 const G4Region* << 127 { 129 { 128 if(nullptr == ptr) { return; } << 130 if(!particle) particle = ∂ 129 G4VEmFluctuationModel* fm = nullptr; << 131 if(1 < verboseLevel) { 130 modelManager->AddEmModel(order, ptr, fm, reg << 132 G4cout << "G4VEmProcess::PreparePhysicsTable() for " 131 ptr->SetParticleChange(pParticleChange); << 133 << GetProcessName() 132 } << 134 << " and particle " << part.GetParticleName() 133 << 135 << " local particle " << particle->GetParticleName() 134 //....oooOO0OOooo........oooOO0OOooo........oo << 136 << G4endl; >> 137 } 135 138 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 139 if(particle == &part) { 137 { << 140 Clear(); 138 if(nullptr == ptr) { return; } << 141 InitialiseProcess(particle); 139 if(!emModels.empty()) { << 142 theCutsGamma = 140 for(auto & em : emModels) { if(em == ptr) << 143 modelManager->Initialise(particle,secondaryParticle,2.,verboseLevel); >> 144 const G4ProductionCutsTable* theCoupleTable= >> 145 G4ProductionCutsTable::GetProductionCutsTable(); >> 146 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 147 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 148 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 149 if(buildLambdaTable) >> 150 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); 141 } 151 } 142 emModels.push_back(ptr); << 143 } 152 } 144 153 145 //....oooOO0OOooo........oooOO0OOooo........oo 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 155 147 void G4VEmProcess::PreparePhysicsTable(const G << 156 void G4VEmProcess::Clear() 148 { << 157 { 149 if(nullptr == particle) { SetParticle(&part) << 158 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; 150 << 159 if(theCrossSectionMax) delete [] theCrossSectionMax; 151 if(part.GetParticleType() == "nucleus" && << 160 theEnergyOfCrossSectionMax = 0; 152 part.GetParticleSubType() == "generic") { << 161 theCrossSectionMax = 0; 153 << 162 currentCouple = 0; 154 G4String pname = part.GetParticleName(); << 155 if(pname != "deuteron" && pname != "triton << 156 pname != "He3" && pname != "alpha" && p << 157 pname != "helium" && pname != "hydrogen << 158 << 159 particle = G4GenericIon::GenericIon(); << 160 isIon = true; << 161 } << 162 } << 163 if(particle != &part) { return; } << 164 << 165 lManager->PreparePhysicsTable(&part, this); << 166 << 167 // for new run << 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; 163 preStepLambda = 0.0; 170 fLambdaEnergy = 0.0; << 164 mfpKinEnergy = DBL_MAX; 171 << 172 InitialiseProcess(particle); << 173 << 174 G4LossTableBuilder* bld = lManager->GetTable << 175 const G4ProductionCutsTable* theCoupleTable= << 176 G4ProductionCutsTable::GetProductionCutsTa << 177 theCutsGamma = theCoupleTable->GetEnergyC << 178 theCutsElectron = theCoupleTable->GetEnergyC << 179 theCutsPositron = theCoupleTable->GetEnergyC << 180 << 181 // initialisation of the process << 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 184 << 185 applyCuts = theParameters->ApplyCuts() << 186 lambdaFactor = theParameters->LambdaFacto << 187 invLambdaFactor = 1.0/lambdaFactor; << 188 theParameters->DefineRegParamForEM(this); << 189 << 190 // integral option may be disabled << 191 if(!theParameters->Integral()) { fXSType = f << 192 << 193 // prepare tables << 194 if(isTheMaster) { << 195 if(nullptr == theData) { theData = new G4E << 196 << 197 if(buildLambdaTable) { << 198 theLambdaTable = theData->MakeTable(0); << 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } << 201 // high energy table << 202 if(minKinEnergyPrim < maxKinEnergy) { << 203 theLambdaTablePrim = theData->MakeTable( << 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } << 206 } << 207 // models << 208 baseMat = bld->GetBaseMaterialFlag(); << 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 165 } 226 166 227 //....oooOO0OOooo........oooOO0OOooo........oo 167 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 168 229 void G4VEmProcess::BuildPhysicsTable(const G4P 169 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 170 { 231 if(nullptr == masterProc) { << 171 if(1 < verboseLevel) { 232 if(isTheMaster) { masterProc = this; } << 172 G4cout << "G4VEmProcess::BuildPhysicsTable() for " 233 else { masterProc = static_cast<const G4VE << 173 << GetProcessName() 234 } << 174 << " and particle " << part.GetParticleName() 235 G4int nModels = modelManager->NumberOfModels << 175 << " buildLambdaTable= " << buildLambdaTable 236 G4bool isLocked = theParameters->IsPrintLock << 176 << G4endl; 237 G4bool toBuild = (buildLambdaTable || minKin << 238 << 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 240 nModels, verbo << 241 isLocked, toBu << 242 } << 243 << 244 //....oooOO0OOooo........oooOO0OOooo........oo << 245 << 246 void G4VEmProcess::BuildLambdaTable() << 247 { << 248 G4double scale = theParameters->MaxKinEnergy << 249 G4int nbin = << 250 theParameters->NumberOfBinsPerDecade()*G4l << 251 if(actBinning) { nbin = std::max(nbin, nLamb << 252 scale = nbin/G4Log(scale); << 253 << 254 G4LossTableBuilder* bld = lManager->GetTable << 255 G4EmTableUtil::BuildLambdaTable(this, partic << 256 bld, theLamb << 257 minKinEnergy << 258 maxKinEnergy << 259 startFromNul << 260 } << 261 << 262 //....oooOO0OOooo........oooOO0OOooo........oo << 263 << 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 265 const G4ParticleDefinition& << 266 { << 267 G4String indent = (rst ? " " : ""); << 268 out << std::setprecision(6); << 269 out << G4endl << indent << GetProcessName() << 270 if (!rst) { << 271 out << " for " << part.GetParticleName(); << 272 } << 273 if(fXSType != fEmNoIntegral) { out << " XSt << 274 if(applyCuts) { out << " applyCuts:1 "; } << 275 G4int subtype = GetProcessSubType(); << 276 out << " SubType=" << subtype; << 277 if (subtype == fAnnihilation) { << 278 G4int mod = theParameters->PositronAtRestM << 279 const G4String namp[2] = {"Simple", "Allis << 280 out << " AtRestModel:" << namp[mod]; << 281 } 177 } 282 if(biasFactor != 1.0) { out << " BiasingFac << 178 283 out << " BuildTable=" << buildLambdaTable << << 284 if(buildLambdaTable) { 179 if(buildLambdaTable) { 285 if(particle == &part) { << 180 BuildLambdaTable(); 286 for(auto & v : *theLambdaTable) { << 181 FindLambdaMax(); 287 if(nullptr != v) { << 288 out << " Lambda table from "; << 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } << 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } << 306 } << 307 if(minKinEnergyPrim < maxKinEnergy) { << 308 if(particle == &part) { << 309 for(auto & v : *theLambdaTablePrim) { << 310 if(nullptr != v) { << 311 out << " LambdaPrime table from << 312 << G4BestUnit(v->Energy(0),"Ener << 313 << " to " << 314 << G4BestUnit(v->GetMaxEnergy(), << 315 << " in " << v->GetVectorLength( << 316 << " bins " << G4endl; << 317 break; << 318 } << 319 } << 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } << 324 } 182 } 325 StreamProcessInfo(out); << 183 if(0 < verboseLevel) PrintInfoDefinition(); 326 modelManager->DumpModelList(out, verboseLeve << 327 184 328 if(verboseLevel > 2 && buildLambdaTable) { << 185 if(1 < verboseLevel) { 329 out << " LambdaTable address= " << th << 186 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " 330 if(theLambdaTable && particle == &part) { << 187 << GetProcessName() 331 out << (*theLambdaTable) << G4endl; << 188 << " and particle " << part.GetParticleName() 332 } << 189 << G4endl; 333 } 190 } 334 } 191 } 335 192 336 //....oooOO0OOooo........oooOO0OOooo........oo 193 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 194 338 void G4VEmProcess::StartTracking(G4Track* trac << 195 void G4VEmProcess::BuildLambdaTable() 339 { 196 { 340 // reset parameters for the new track << 197 if(1 < verboseLevel) { 341 currentParticle = track->GetParticleDefiniti << 198 G4cout << "G4EmProcess::BuildLambdaTable() for process " 342 theNumberOfInteractionLengthLeft = -1.0; << 199 << GetProcessName() << " and particle " 343 mfpKinEnergy = DBL_MAX; << 200 << particle->GetParticleName() 344 preStepLambda = 0.0; << 201 << G4endl; 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 << 348 // forced biasing only for primary particles << 349 if(biasManager) { << 350 if(0 == track->GetParentID()) { << 351 // primary particle << 352 biasFlag = true; << 353 biasManager->ResetForcedInteraction(); << 354 } << 355 } 202 } 356 } << 357 203 358 //....oooOO0OOooo........oooOO0OOooo........oo << 204 // Access to materials 359 << 205 const G4ProductionCutsTable* theCoupleTable= 360 G4double G4VEmProcess::PostStepGetPhysicalInte << 206 G4ProductionCutsTable::GetProductionCutsTable(); 361 const G4Track& tr << 207 size_t numOfCouples = theCoupleTable->GetTableSize(); 362 G4double previo << 208 for(size_t i=0; i<numOfCouples; i++) { 363 G4ForceCondition* << 209 364 { << 210 if (theLambdaTable->GetFlag(i)) { 365 *condition = NotForced; << 211 366 G4double x = DBL_MAX; << 212 // create physics vector and fill it 367 << 213 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 368 DefineMaterial(track.GetMaterialCutsCouple() << 214 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); 369 preStepKinEnergy = track.GetKineticEnergy(); << 215 modelManager->FillLambdaVector(aVector, couple, startFromNull); 370 const G4double scaledEnergy = preStepKinEner << 216 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); 371 SelectModel(scaledEnergy, currentCoupleIndex << 372 /* << 373 G4cout << "PostStepGetPhysicalInteractionLen << 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 << 384 // forced biasing only for primary particles << 385 if(biasManager) { << 386 if(0 == track.GetParentID()) { << 387 if(biasFlag && << 388 biasManager->ForcedInteractionRegion( << 389 return biasManager->GetStepLimit((G4in << 390 } << 391 } 217 } 392 } 218 } 393 219 394 // compute mean free path << 220 if(1 < verboseLevel) { 395 << 221 G4cout << "Lambda table is built for " 396 ComputeIntegralLambda(preStepKinEnergy, trac << 222 << particle->GetParticleName() 397 << 223 << G4endl; 398 // zero cross section << 224 if(2 < verboseLevel) { 399 if(preStepLambda <= 0.0) { << 225 G4cout << *theLambdaTable << G4endl; 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 << 407 << 408 // beggining of tracking (or just after << 409 theNumberOfInteractionLengthLeft = -G4Lo << 410 theInitialNumberOfInteractionLength = th << 411 << 412 } else { << 413 << 414 theNumberOfInteractionLengthLeft -= << 415 previousStepSize/currentInteractionLen << 416 theNumberOfInteractionLengthLeft = << 417 std::max(theNumberOfInteractionLengthL << 418 } 226 } 419 << 420 // new mean free path and step limit for t << 421 currentInteractionLength = 1.0/preStepLamb << 422 x = theNumberOfInteractionLengthLeft * cur << 423 } 227 } 424 return x; << 425 } 228 } 426 229 427 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 428 231 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 232 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, >> 233 const G4Region* region) 430 { 234 { 431 if (fXSType == fEmNoIntegral) { << 235 modelManager->AddEmModel(order, p, 0, region); 432 preStepLambda = GetCurrentLambda(e, LogEki << 236 if(p) p->SetParticleChange(pParticleChange); 433 << 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } << 459 } else { << 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } << 462 } 237 } 463 238 464 //....oooOO0OOooo........oooOO0OOooo........oo 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 240 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 241 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 << 242 const G4Step&) 468 { 243 { 469 // clear number of interaction lengths in an << 470 theNumberOfInteractionLengthLeft = -1.0; << 471 mfpKinEnergy = DBL_MAX; << 472 << 473 fParticleChange.InitializeForPostStep(track) 244 fParticleChange.InitializeForPostStep(track); 474 245 475 // Do not make anything if particle is stopp 246 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 247 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) << 248 if (track.GetTrackStatus() == fStopButAlive) return &fParticleChange; 478 249 479 const G4double finalT = track.GetKineticEner << 250 G4double finalT = track.GetKineticEnergy(); 480 251 481 // forced process - should happen only once << 252 // Integral approach 482 if(biasFlag) { << 253 if (integral) { 483 if(biasManager->ForcedInteractionRegion((G << 254 G4double lx = GetLambda(finalT, currentCouple); 484 biasFlag = false; << 255 if(preStepLambda<lx && 1 < verboseLevel) { >> 256 G4cout << "WARING: for " << particle->GetParticleName() >> 257 << " and " << GetProcessName() >> 258 << " E(MeV)= " << finalT/MeV >> 259 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " >> 260 << G4endl; 485 } 261 } 486 } << 487 262 488 // check active and select model << 263 if(preStepLambda*G4UniformRand() > lx) { 489 const G4double scaledEnergy = finalT*massRat << 264 ClearNumberOfInteractionLengthLeft(); 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 << 493 // Integral approach << 494 if (fXSType != fEmNoIntegral) { << 495 const G4double logFinalT = << 496 track.GetDynamicParticle()->GetLogKineti << 497 const G4double lx = std::max(GetCurrentLam << 498 #ifdef G4VERBOSE << 499 if(preStepLambda < lx && 1 < verboseLevel) << 500 G4cout << "WARNING: for " << currentPart << 501 << " and " << GetProcessName() << << 502 << " preLambda= " << preStepLambd << 503 << " < " << lx << " (postLambda) << 504 } << 505 #endif << 506 // if false interaction then use new cross << 507 // if both values are zero - no interactio << 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 265 return &fParticleChange; 510 } 266 } 511 } 267 } 512 268 513 // define new weight for primary and seconda << 269 G4VEmModel* currentModel = SelectModel(finalT); 514 G4double weight = fParticleChange.GetParentW << 270 515 if(weightFlag) { << 271 /* 516 weight /= biasFactor; << 272 if(0 < verboseLevel) { 517 fParticleChange.ProposeWeight(weight); << 518 } << 519 << 520 #ifdef G4VERBOSE << 521 if(1 < verboseLevel) { << 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 273 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 274 << finalT/MeV 524 << " MeV; model= (" << currentModel 275 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 276 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 277 << G4endl; 527 } 278 } 528 #endif << 279 */ 529 280 >> 281 530 // sample secondaries 282 // sample secondaries 531 secParticles.clear(); 283 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 284 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl << 285 currentCouple, 534 track.GetDyn << 286 track.GetDynamicParticle()); 535 (*theCuts)[c << 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 << 539 // splitting or Russian roulette << 540 if(biasManager) { << 541 if(biasManager->SecondaryBiasingRegion((G4 << 542 G4double eloss = 0.0; << 543 weight *= biasManager->ApplySecondaryBia << 544 secParticles, track, currentModel, &fP << 545 (G4int)currentCoupleIndex, (*theCuts)[ << 546 step.GetPostStepPoint()->GetSafety()); << 547 if(eloss > 0.0) { << 548 eloss += fParticleChange.GetLocalEnerg << 549 fParticleChange.ProposeLocalEnergyDepo << 550 } << 551 } << 552 } << 553 287 554 // save secondaries 288 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 289 G4int num = secParticles.size(); 556 if(num > 0) { 290 if(num > 0) { 557 291 558 fParticleChange.SetNumberOfSecondaries(num 292 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 293 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 294 567 for (G4int i=0; i<num; ++i) { << 295 for (G4int i=0; i<num; i++) { 568 G4DynamicParticle* dp = secParticles[i]; 296 G4DynamicParticle* dp = secParticles[i]; 569 if (nullptr != dp) { << 297 const G4ParticleDefinition* p = dp->GetDefinition(); 570 const G4ParticleDefinition* p = dp->Ge << 298 G4double e = dp->GetKineticEnergy(); 571 G4double e = dp->GetKineticEnergy(); << 299 G4bool good = true; 572 G4bool good = true; << 300 if(applyCuts) { 573 if(applyCuts) { << 301 if (p == theGamma) { 574 if (p == theGamma) { << 302 if (e < (*theCutsGamma)[currentMaterialIndex]) good = false; 575 if (e < (*theCutsGamma)[currentCou << 303 576 << 304 } else if (p == theElectron) { 577 } else if (p == theElectron) { << 305 if (e < (*theCutsElectron)[currentMaterialIndex]) good = false; 578 if (e < (*theCutsElectron)[current << 306 579 << 307 } else if (p == thePositron) { 580 } else if (p == thePositron) { << 308 if (e < (*theCutsPositron)[currentMaterialIndex]) { 581 if (electron_mass_c2 < (*theCutsGa << 309 good = false; 582 e < (*theCutsPositron)[current << 310 e += 2.0*electron_mass_c2; 583 good = false; << 311 } 584 e += 2.0*electron_mass_c2; << 312 } 585 } << 313 if(!good) { 586 } << 314 delete dp; 587 // added secondary if it is good << 315 edep += e; 588 } << 316 } 589 if (good) { << 317 } 590 G4Track* t = new G4Track(dp, time, t << 318 if (good) fParticleChange.AddSecondary(dp); 591 t->SetTouchableHandle(track.GetTouch << 319 } 592 if (biasManager) { << 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { << 627 delete dp; << 628 edep += e; << 629 } << 630 } << 631 } << 632 fParticleChange.ProposeLocalEnergyDeposit( 320 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 321 } 634 322 635 if(0.0 == fParticleChange.GetProposedKinetic << 323 ClearNumberOfInteractionLengthLeft(); 636 fAlive == fParticleChange.GetTrackStatus( << 637 if(particle->GetProcessManager()->GetAtRes << 638 { fParticleChange.ProposeTrackStatus( << 639 else { fParticleChange.ProposeTrackStatus( << 640 } << 641 << 642 return &fParticleChange; 324 return &fParticleChange; 643 } 325 } 644 326 645 //....oooOO0OOooo........oooOO0OOooo........oo 327 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 328 647 G4bool G4VEmProcess::StorePhysicsTable(const G << 329 void G4VEmProcess::PrintInfoDefinition() 648 const G << 649 G4bool << 650 { 330 { 651 if(!isTheMaster || part != particle) { retur << 331 if(verboseLevel > 0) { 652 if(G4EmTableUtil::StoreTable(this, part, the << 332 G4cout << G4endl << GetProcessName() << ": " ; 653 directory, "Lambda", << 333 PrintInfo(); 654 verboseLevel, a << 334 if(integral) { 655 G4EmTableUtil::StoreTable(this, part, the << 335 G4cout << " Integral mode is used "<< G4endl; 656 directory, "LambdaPrim", << 336 } 657 verboseLevel, a << 658 return true; << 659 } 337 } 660 return false; << 661 } << 662 << 663 //....oooOO0OOooo........oooOO0OOooo........oo << 664 338 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons << 339 if (!buildLambdaTable) return; 666 cons << 340 667 G4bo << 341 if(verboseLevel > 0) { 668 { << 342 G4cout << " tables are built for " 669 if(!isTheMaster || part != particle) { retur << 343 << particle->GetParticleName() 670 G4bool yes = true; << 344 << G4endl 671 if(buildLambdaTable) { << 345 << " Lambda tables from " 672 yes = G4EmTableUtil::RetrieveTable(this, p << 346 << G4BestUnit(minKinEnergy,"Energy") 673 "Lambda << 347 << " to " 674 ascii, << 348 << G4BestUnit(maxKinEnergy,"Energy") 675 } << 349 << " in " << nLambdaBins << " bins." 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 350 << G4endl; 677 yes = G4EmTableUtil::RetrieveTable(this, p << 678 "Lambda << 679 ascii, << 680 } 351 } 681 return yes; << 682 } << 683 << 684 //....oooOO0OOooo........oooOO0OOooo........oo << 685 << 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 687 const G << 688 { << 689 CurrentSetup(couple, kinEnergy); << 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 691 } << 692 << 693 //....oooOO0OOooo........oooOO0OOooo........oo << 694 352 695 G4double G4VEmProcess::GetMeanFreePath(const G << 353 if(verboseLevel > 1) { 696 G4doubl << 354 G4cout << "Tables are built for " << particle->GetParticleName() 697 G4Force << 355 << G4endl; 698 { << 699 *condition = NotForced; << 700 return G4VEmProcess::MeanFreePath(track); << 701 } << 702 << 703 //....oooOO0OOooo........oooOO0OOooo........oo << 704 356 705 G4double << 357 if(verboseLevel > 2) { 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 358 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; 707 G4dou << 359 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 708 { << 360 } 709 SelectModel(kinEnergy, currentCoupleIndex); << 361 } 710 return (currentModel) ? << 711 currentModel->ComputeCrossSectionPerAtom(c << 712 Z << 713 } 362 } 714 363 715 //....oooOO0OOooo........oooOO0OOooo........oo 364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 365 717 G4PhysicsVector* << 366 G4double G4VEmProcess::MicroscopicCrossSection(G4double kineticEnergy, 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 367 const G4MaterialCutsCouple* couple) 719 { 368 { >> 369 // Cross section per atom is calculated 720 DefineMaterial(couple); 370 DefineMaterial(couple); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 371 G4double cross = 0.0; 722 << 372 G4bool b; 723 return newv; << 373 if(theLambdaTable) { 724 } << 374 cross = (((*theLambdaTable)[currentMaterialIndex])-> 725 << 375 GetValue(kineticEnergy, b)); 726 //....oooOO0OOooo........oooOO0OOooo........oo << 727 << 728 const G4Element* G4VEmProcess::GetCurrentEleme << 729 { << 730 return (nullptr != currentModel) ? << 731 currentModel->GetCurrentElement(currentMat << 732 } << 733 376 734 //....oooOO0OOooo........oooOO0OOooo........oo << 377 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); >> 378 } else { >> 379 G4VEmModel* model = SelectModel(kineticEnergy); >> 380 cross = >> 381 model->CrossSectionPerVolume(currentMaterial,particle,kineticEnergy); >> 382 } 735 383 736 const G4Element* G4VEmProcess::GetTargetElemen << 384 return cross; 737 { << 738 return (nullptr != currentModel) ? << 739 currentModel->GetCurrentElement(currentMat << 740 } 385 } 741 386 742 //....oooOO0OOooo........oooOO0OOooo........oo 387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 388 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 389 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, >> 390 const G4String& directory, >> 391 G4bool ascii) 745 { 392 { 746 return (nullptr != currentModel) ? << 393 G4bool yes = true; 747 currentModel->GetCurrentIsotope(GetCurrent << 748 } << 749 394 750 //....oooOO0OOooo........oooOO0OOooo........oo << 395 if ( theLambdaTable && part == particle) { >> 396 const G4String name = >> 397 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 398 yes = theLambdaTable->StorePhysicsTable(name,ascii); 751 399 752 void G4VEmProcess::SetCrossSectionBiasingFacto << 400 if ( yes ) { 753 { << 401 G4cout << "Physics tables are stored for " << particle->GetParticleName() 754 if(f > 0.0) { << 755 biasFactor = f; << 756 weightFlag = flag; << 757 if(1 < verboseLevel) { << 758 G4cout << "### SetCrossSectionBiasingFac << 759 << particle->GetParticleName() << 760 << " and process " << GetProcessN 402 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig << 403 << " in the directory <" << directory 762 << G4endl; << 404 << "> " << G4endl; >> 405 } else { >> 406 G4cout << "Fail to store Physics Tables for " >> 407 << particle->GetParticleName() >> 408 << " and process " << GetProcessName() >> 409 << " in the directory <" << directory >> 410 << "> " << G4endl; 763 } 411 } 764 } 412 } >> 413 return yes; 765 } 414 } 766 415 767 //....oooOO0OOooo........oooOO0OOooo........oo << 416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 768 417 769 void << 418 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 770 G4VEmProcess::ActivateForcedInteraction(G4doub << 419 const G4String& directory, 771 G4bool << 420 G4bool ascii) 772 { 421 { 773 if(nullptr == biasManager) { biasManager = n << 774 if(1 < verboseLevel) { 422 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: << 423 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " 776 << particle->GetParticleName() << 424 << part->GetParticleName() << " and process " 777 << " and process " << GetProcessNam << 425 << GetProcessName() << G4endl; 778 << " length(mm)= " << length/mm << 779 << " in G4Region <" << r << 780 << "> weightFlag= " << flag << 781 << G4endl; << 782 } 426 } 783 weightFlag = flag; << 427 G4bool yes = true; 784 biasManager->ActivateForcedInteraction(lengt << 785 } << 786 << 787 //....oooOO0OOooo........oooOO0OOooo........oo << 788 428 789 void << 429 if(!buildLambdaTable || particle != part) return yes; 790 G4VEmProcess::ActivateSecondaryBiasing(const G << 791 G4double factor, << 792 G4double energyLimit) << 793 { << 794 if (0.0 <= factor) { << 795 430 796 // Range cut can be applied only for e- << 431 const G4String particleName = part->GetParticleName(); 797 if(0.0 == factor && secondaryParticle != G << 432 G4String filename; 798 { return; } << 799 433 800 if(!biasManager) { biasManager = new G4EmB << 434 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 801 biasManager->ActivateSecondaryBiasing(regi << 435 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 802 if(1 < verboseLevel) { << 436 filename,ascii); 803 G4cout << "### ActivateSecondaryBiasing: << 437 if ( yes ) { 804 << " process " << GetProcessName() << 438 if (0 < verboseLevel) { 805 << " factor= " << factor << 439 G4cout << "Lambda table for " << particleName << " is Retrieved from <" 806 << " in G4Region <" << region << 440 << filename << ">" 807 << "> energyLimit(MeV)= " << energyLimi << 441 << G4endl; 808 << G4endl; << 442 } >> 443 } else { >> 444 if (1 < verboseLevel) { >> 445 G4cout << "Lambda table for " << particleName << " in file <" >> 446 << filename << "> is not exist" >> 447 << G4endl; 809 } 448 } 810 } 449 } 811 } << 812 << 813 //....oooOO0OOooo........oooOO0OOooo........oo << 814 << 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 816 { << 817 if(5 < n && n < 10000000) { << 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } << 825 << 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 << 828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 829 { << 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 832 /G4Log(maxKinEnergy/ << 833 minKinEnergy = e; << 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } << 837 << 838 //....oooOO0OOooo........oooOO0OOooo........oo << 839 << 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 841 { << 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 844 /G4Log(maxKinEnergy/ << 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } << 849 << 850 //....oooOO0OOooo........oooOO0OOooo........oo << 851 << 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 853 { << 854 if(theParameters->MinKinEnergy() <= e && << 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } << 858 << 859 //....oooOO0OOooo........oooOO0OOooo........oo << 860 << 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 450 868 G4double G4VEmProcess::PolarAngleLimit() const << 451 return yes; 869 { << 870 return theParameters->MscThetaLimit(); << 871 } 452 } 872 453 873 //....oooOO0OOooo........oooOO0OOooo........oo 454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 874 455 875 void G4VEmProcess::PrintWarning(G4String tit, << 456 void G4VEmProcess::FindLambdaMax() 876 { 457 { 877 G4String ss = "G4VEmProcess::" + tit; << 458 if(1 < verboseLevel) { 878 G4ExceptionDescription ed; << 459 G4cout << "### G4VEmProcess::FindLambdaMax: " 879 ed << "Parameter is out of range: " << val << 460 << particle->GetParticleName() 880 << " it will have no effect!\n" << " Pro << 461 << " and process " << GetProcessName() << G4endl; 881 << GetProcessName() << " nbins= " << the << 462 } 882 << " Emin(keV)= " << theParameters->MinKi << 463 size_t n = theLambdaTable->length(); 883 << " Emax(GeV)= " << theParameters->MaxKi << 464 G4PhysicsVector* pv = (*theLambdaTable)[0]; 884 G4Exception(ss, "em0044", JustWarning, ed); << 465 G4double e, s, emax, smax; >> 466 theEnergyOfCrossSectionMax = new G4double [n]; >> 467 theCrossSectionMax = new G4double [n]; >> 468 G4bool b; >> 469 >> 470 for (size_t i=0; i<n; i++) { >> 471 pv = (*theLambdaTable)[i]; >> 472 emax = DBL_MAX; >> 473 smax = 0.0; >> 474 if(pv) { >> 475 size_t nb = pv->GetVectorLength(); >> 476 emax = pv->GetLowEdgeEnergy(nb); >> 477 smax = 0.0; >> 478 for (size_t j=0; j<nb; j++) { >> 479 e = pv->GetLowEdgeEnergy(j); >> 480 s = pv->GetValue(e,b); >> 481 if(s > smax) { >> 482 smax = s; >> 483 emax = e; >> 484 } >> 485 } >> 486 } >> 487 theEnergyOfCrossSectionMax[i] = emax; >> 488 theCrossSectionMax[i] = smax; >> 489 if(2 < verboseLevel) { >> 490 G4cout << "For " << particle->GetParticleName() >> 491 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 492 << " lambda= " << smax << G4endl; >> 493 } >> 494 } 885 } 495 } 886 496 887 //....oooOO0OOooo........oooOO0OOooo........oo 497 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 498 889 void G4VEmProcess::ProcessDescription(std::ost << 499 G4PhysicsVector* G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 890 { 500 { 891 if(nullptr != particle) { << 501 G4PhysicsVector* v = 892 StreamInfo(out, *particle, true); << 502 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); 893 } << 503 return v; 894 } 504 } 895 505 896 //....oooOO0OOooo........oooOO0OOooo........oo 506 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 507