Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc,v 1.36 2006/09/13 10:34:32 maire Exp $ >> 27 // GEANT4 tag $Name: geant4-08-02-patch-01-ref $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class file 31 // GEANT4 Class file 29 // 32 // 30 // 33 // 31 // File name: G4VEmProcess 34 // File name: G4VEmProcess 32 // 35 // 33 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 37 // 35 // Creation date: 01.10.2003 38 // Creation date: 01.10.2003 36 // 39 // 37 // Modifications: by V.Ivanchenko << 40 // Modifications: >> 41 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 42 // 30-09-08 optimise integral option (V.Ivanchenko) >> 43 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 44 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 45 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 46 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 47 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 48 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 49 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 50 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 51 // 12-09-06 add SetModel() (mma) 38 // 52 // 39 // Class Description: based class for discrete << 53 // Class Description: 40 // 54 // 41 55 42 // ------------------------------------------- 56 // ------------------------------------------------------------------- 43 // 57 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 60 47 #include "G4VEmProcess.hh" 61 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProcessManager.hh" << 51 #include "G4LossTableManager.hh" 62 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" << 53 #include "G4Step.hh" 63 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 64 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 65 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 66 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 67 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 68 #include "G4PhysicsVector.hh" 59 #include "G4PhysicsLogVector.hh" 69 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 70 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 71 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 72 #include "G4Region.hh" >> 73 #include "G4RegionStore.hh" 63 #include "G4Gamma.hh" 74 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 75 #include "G4Electron.hh" 65 #include "G4Positron.hh" 76 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 77 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" << 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" << 74 #include "G4Log.hh" << 75 #include <iostream> << 76 78 77 //....oooOO0OOooo........oooOO0OOooo........oo 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 80 79 G4VEmProcess::G4VEmProcess(const G4String& nam 81 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 82 G4VDiscreteProcess(name, type), >> 83 selectedModel(0), >> 84 theLambdaTable(0), >> 85 theEnergyOfCrossSectionMax(0), >> 86 theCrossSectionMax(0), >> 87 particle(0), >> 88 secondaryParticle(0), >> 89 nLambdaBins(90), >> 90 lambdaFactor(0.8), >> 91 currentCouple(0), >> 92 integral(false), >> 93 meanFreePath(true), >> 94 aboveCSmax(true), >> 95 buildLambdaTable(true), >> 96 applyCuts(false), >> 97 startFromNull(true), >> 98 nRegions(0) 81 { 99 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); 100 SetVerboseLevel(1); 84 << 101 minKinEnergy = 0.1*keV; 85 // Size of tables << 102 maxKinEnergy = 100.0*GeV; 86 minKinEnergy = 0.1*CLHEP::keV; << 103 theGamma = G4Gamma::Gamma(); 87 maxKinEnergy = 100.0*CLHEP::TeV; << 104 theElectron = G4Electron::Electron(); 88 << 105 thePositron = G4Positron::Positron(); 89 // default lambda factor << 90 invLambdaFactor = 1.0/lambdaFactor; << 91 << 92 // particle types << 93 theGamma = G4Gamma::Gamma(); << 94 theElectron = G4Electron::Electron(); << 95 thePositron = G4Positron::Positron(); << 96 106 97 pParticleChange = &fParticleChange; 107 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); << 100 108 101 modelManager = new G4EmModelManager(); 109 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 110 (G4LossTableManager::Instance())->Register(this); 103 lManager->Register(this); << 104 isTheMaster = lManager->IsMaster(); << 105 G4LossTableBuilder* bld = lManager->GetTable << 106 theDensityFactor = bld->GetDensityFactors(); << 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 111 } 109 112 110 //....oooOO0OOooo........oooOO0OOooo........oo 113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 114 112 G4VEmProcess::~G4VEmProcess() 115 G4VEmProcess::~G4VEmProcess() 113 { 116 { 114 if(isTheMaster) { << 117 Clear(); 115 delete theData; << 118 if(theLambdaTable) theLambdaTable->clearAndDestroy(); 116 delete theEnergyOfCrossSectionMax; << 117 } << 118 delete modelManager; 119 delete modelManager; 119 delete biasManager; << 120 (G4LossTableManager::Instance())->DeRegister(this); 120 lManager->DeRegister(this); << 121 } 121 } 122 122 123 //....oooOO0OOooo........oooOO0OOooo........oo 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 124 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 125 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 126 const G4Region* << 127 { 126 { 128 if(nullptr == ptr) { return; } << 127 if(!particle) particle = ∂ 129 G4VEmFluctuationModel* fm = nullptr; << 128 if(1 < verboseLevel) { 130 modelManager->AddEmModel(order, ptr, fm, reg << 129 G4cout << "G4VEmProcess::PreparePhysicsTable() for " 131 ptr->SetParticleChange(pParticleChange); << 130 << GetProcessName() >> 131 << " and particle " << part.GetParticleName() >> 132 << " local particle " << particle->GetParticleName() >> 133 << G4endl; >> 134 } >> 135 >> 136 if(particle == &part) { >> 137 Clear(); >> 138 InitialiseProcess(particle); >> 139 theCutsGamma = >> 140 modelManager->Initialise(particle,secondaryParticle,2.,verboseLevel); >> 141 const G4ProductionCutsTable* theCoupleTable= >> 142 G4ProductionCutsTable::GetProductionCutsTable(); >> 143 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 144 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 145 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 146 if(buildLambdaTable) >> 147 theLambdaTable = G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 148 } 132 } 149 } 133 150 134 //....oooOO0OOooo........oooOO0OOooo........oo 151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 152 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 153 void G4VEmProcess::Clear() 137 { << 154 { 138 if(nullptr == ptr) { return; } << 155 if(theEnergyOfCrossSectionMax) delete [] theEnergyOfCrossSectionMax; 139 if(!emModels.empty()) { << 156 if(theCrossSectionMax) delete [] theCrossSectionMax; 140 for(auto & em : emModels) { if(em == ptr) << 157 theEnergyOfCrossSectionMax = 0; 141 } << 158 theCrossSectionMax = 0; 142 emModels.push_back(ptr); << 159 modelManager->Clear(); >> 160 currentCouple = 0; >> 161 preStepLambda = 0.0; >> 162 mfpKinEnergy = DBL_MAX; >> 163 preStepMFP = DBL_MAX; 143 } 164 } 144 165 145 //....oooOO0OOooo........oooOO0OOooo........oo 166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 167 147 void G4VEmProcess::PreparePhysicsTable(const G << 168 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 148 { 169 { 149 if(nullptr == particle) { SetParticle(&part) << 170 if(1 < verboseLevel) { 150 << 171 G4cout << "G4VEmProcess::BuildPhysicsTable() for " 151 if(part.GetParticleType() == "nucleus" && << 172 << GetProcessName() 152 part.GetParticleSubType() == "generic") { << 173 << " and particle " << part.GetParticleName() 153 << 174 << " buildLambdaTable= " << buildLambdaTable 154 G4String pname = part.GetParticleName(); << 175 << G4endl; 155 if(pname != "deuteron" && pname != "triton << 176 } 156 pname != "He3" && pname != "alpha" && p << 157 pname != "helium" && pname != "hydrogen << 158 177 159 particle = G4GenericIon::GenericIon(); << 178 if(buildLambdaTable) { 160 isIon = true; << 179 BuildLambdaTable(); 161 } << 180 FindLambdaMax(); 162 } 181 } 163 if(particle != &part) { return; } << 182 if(0 < verboseLevel) PrintInfoDefinition(); 164 183 165 lManager->PreparePhysicsTable(&part, this); << 184 if(1 < verboseLevel) { >> 185 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " >> 186 << GetProcessName() >> 187 << " and particle " << part.GetParticleName() >> 188 << G4endl; >> 189 } >> 190 } 166 191 167 // for new run << 192 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; << 170 fLambdaEnergy = 0.0; << 171 193 172 InitialiseProcess(particle); << 194 void G4VEmProcess::BuildLambdaTable() >> 195 { >> 196 if(1 < verboseLevel) { >> 197 G4cout << "G4EmProcess::BuildLambdaTable() for process " >> 198 << GetProcessName() << " and particle " >> 199 << particle->GetParticleName() >> 200 << G4endl; >> 201 } 173 202 174 G4LossTableBuilder* bld = lManager->GetTable << 203 // Access to materials 175 const G4ProductionCutsTable* theCoupleTable= 204 const G4ProductionCutsTable* theCoupleTable= 176 G4ProductionCutsTable::GetProductionCutsTa << 205 G4ProductionCutsTable::GetProductionCutsTable(); 177 theCutsGamma = theCoupleTable->GetEnergyC << 206 size_t numOfCouples = theCoupleTable->GetTableSize(); 178 theCutsElectron = theCoupleTable->GetEnergyC << 207 for(size_t i=0; i<numOfCouples; i++) { 179 theCutsPositron = theCoupleTable->GetEnergyC << 208 180 << 209 if (theLambdaTable->GetFlag(i)) { 181 // initialisation of the process << 210 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 211 // create physics vector and fill it 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 212 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 184 << 213 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); 185 applyCuts = theParameters->ApplyCuts() << 214 modelManager->FillLambdaVector(aVector, couple, startFromNull); 186 lambdaFactor = theParameters->LambdaFacto << 215 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); 187 invLambdaFactor = 1.0/lambdaFactor; << 188 theParameters->DefineRegParamForEM(this); << 189 << 190 // integral option may be disabled << 191 if(!theParameters->Integral()) { fXSType = f << 192 << 193 // prepare tables << 194 if(isTheMaster) { << 195 if(nullptr == theData) { theData = new G4E << 196 << 197 if(buildLambdaTable) { << 198 theLambdaTable = theData->MakeTable(0); << 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } 216 } 201 // high energy table << 217 } 202 if(minKinEnergyPrim < maxKinEnergy) { << 218 203 theLambdaTablePrim = theData->MakeTable( << 219 if(1 < verboseLevel) { 204 bld->InitialiseBaseMaterials(theLambdaTa << 220 G4cout << "Lambda table is built for " >> 221 << particle->GetParticleName() >> 222 << G4endl; >> 223 if(2 < verboseLevel) { >> 224 G4cout << *theLambdaTable << G4endl; 205 } 225 } 206 } 226 } 207 // models << 208 baseMat = bld->GetBaseMaterialFlag(); << 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 227 } 226 228 227 //....oooOO0OOooo........oooOO0OOooo........oo 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 230 229 void G4VEmProcess::BuildPhysicsTable(const G4P << 231 void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 230 { 232 { 231 if(nullptr == masterProc) { << 233 particle = p; 232 if(isTheMaster) { masterProc = this; } << 233 else { masterProc = static_cast<const G4VE << 234 } << 235 G4int nModels = modelManager->NumberOfModels << 236 G4bool isLocked = theParameters->IsPrintLock << 237 G4bool toBuild = (buildLambdaTable || minKin << 238 << 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 240 nModels, verbo << 241 isLocked, toBu << 242 } 234 } 243 235 244 //....oooOO0OOooo........oooOO0OOooo........oo 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 237 246 void G4VEmProcess::BuildLambdaTable() << 238 void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 247 { 239 { 248 G4double scale = theParameters->MaxKinEnergy << 240 secondaryParticle = p; 249 G4int nbin = << 250 theParameters->NumberOfBinsPerDecade()*G4l << 251 if(actBinning) { nbin = std::max(nbin, nLamb << 252 scale = nbin/G4Log(scale); << 253 << 254 G4LossTableBuilder* bld = lManager->GetTable << 255 G4EmTableUtil::BuildLambdaTable(this, partic << 256 bld, theLamb << 257 minKinEnergy << 258 maxKinEnergy << 259 startFromNul << 260 } 241 } 261 242 262 //....oooOO0OOooo........oooOO0OOooo........oo 243 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 244 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 245 void G4VEmProcess::SetModel(G4VEmModel* model) 265 const G4ParticleDefinition& << 246 { 266 { << 247 selectedModel = model; 267 G4String indent = (rst ? " " : ""); << 268 out << std::setprecision(6); << 269 out << G4endl << indent << GetProcessName() << 270 if (!rst) { << 271 out << " for " << part.GetParticleName(); << 272 } << 273 if(fXSType != fEmNoIntegral) { out << " XSt << 274 if(applyCuts) { out << " applyCuts:1 "; } << 275 G4int subtype = GetProcessSubType(); << 276 out << " SubType=" << subtype; << 277 if (subtype == fAnnihilation) { << 278 G4int mod = theParameters->PositronAtRestM << 279 const G4String namp[2] = {"Simple", "Allis << 280 out << " AtRestModel:" << namp[mod]; << 281 } << 282 if(biasFactor != 1.0) { out << " BiasingFac << 283 out << " BuildTable=" << buildLambdaTable << << 284 if(buildLambdaTable) { << 285 if(particle == &part) { << 286 for(auto & v : *theLambdaTable) { << 287 if(nullptr != v) { << 288 out << " Lambda table from "; << 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } << 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } << 306 } << 307 if(minKinEnergyPrim < maxKinEnergy) { << 308 if(particle == &part) { << 309 for(auto & v : *theLambdaTablePrim) { << 310 if(nullptr != v) { << 311 out << " LambdaPrime table from << 312 << G4BestUnit(v->Energy(0),"Ener << 313 << " to " << 314 << G4BestUnit(v->GetMaxEnergy(), << 315 << " in " << v->GetVectorLength( << 316 << " bins " << G4endl; << 317 break; << 318 } << 319 } << 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } << 324 } << 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 << 328 if(verboseLevel > 2 && buildLambdaTable) { << 329 out << " LambdaTable address= " << th << 330 if(theLambdaTable && particle == &part) { << 331 out << (*theLambdaTable) << G4endl; << 332 } << 333 } << 334 } 248 } 335 249 336 //....oooOO0OOooo........oooOO0OOooo........oo 250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 251 338 void G4VEmProcess::StartTracking(G4Track* trac << 252 G4VEmModel* G4VEmProcess::Model() 339 { 253 { 340 // reset parameters for the new track << 254 return selectedModel; 341 currentParticle = track->GetParticleDefiniti << 342 theNumberOfInteractionLengthLeft = -1.0; << 343 mfpKinEnergy = DBL_MAX; << 344 preStepLambda = 0.0; << 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 << 348 // forced biasing only for primary particles << 349 if(biasManager) { << 350 if(0 == track->GetParentID()) { << 351 // primary particle << 352 biasFlag = true; << 353 biasManager->ResetForcedInteraction(); << 354 } << 355 } << 356 } 255 } 357 256 358 //....oooOO0OOooo........oooOO0OOooo........oo 257 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 258 360 G4double G4VEmProcess::PostStepGetPhysicalInte << 259 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 361 const G4Track& tr << 260 const G4Region* region) 362 G4double previo << 261 { 363 G4ForceCondition* << 262 modelManager->AddEmModel(order, p, 0, region); 364 { << 263 if(p) p->SetParticleChange(pParticleChange); 365 *condition = NotForced; << 366 G4double x = DBL_MAX; << 367 << 368 DefineMaterial(track.GetMaterialCutsCouple() << 369 preStepKinEnergy = track.GetKineticEnergy(); << 370 const G4double scaledEnergy = preStepKinEner << 371 SelectModel(scaledEnergy, currentCoupleIndex << 372 /* << 373 G4cout << "PostStepGetPhysicalInteractionLen << 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 << 384 // forced biasing only for primary particles << 385 if(biasManager) { << 386 if(0 == track.GetParentID()) { << 387 if(biasFlag && << 388 biasManager->ForcedInteractionRegion( << 389 return biasManager->GetStepLimit((G4in << 390 } << 391 } << 392 } << 393 << 394 // compute mean free path << 395 << 396 ComputeIntegralLambda(preStepKinEnergy, trac << 397 << 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 << 407 << 408 // beggining of tracking (or just after << 409 theNumberOfInteractionLengthLeft = -G4Lo << 410 theInitialNumberOfInteractionLength = th << 411 << 412 } else { << 413 << 414 theNumberOfInteractionLengthLeft -= << 415 previousStepSize/currentInteractionLen << 416 theNumberOfInteractionLengthLeft = << 417 std::max(theNumberOfInteractionLengthL << 418 } << 419 << 420 // new mean free path and step limit for t << 421 currentInteractionLength = 1.0/preStepLamb << 422 x = theNumberOfInteractionLengthLeft * cur << 423 } << 424 return x; << 425 } 264 } 426 265 427 //....oooOO0OOooo........oooOO0OOooo........oo 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 428 267 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 268 void G4VEmProcess::UpdateEmModel(const G4String& nam, >> 269 G4double emin, G4double emax) 430 { 270 { 431 if (fXSType == fEmNoIntegral) { << 271 modelManager->UpdateEmModel(nam, emin, emax); 432 preStepLambda = GetCurrentLambda(e, LogEki << 433 << 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } << 459 } else { << 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } << 462 } 272 } 463 273 464 //....oooOO0OOooo........oooOO0OOooo........oo 274 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 275 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 276 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 277 const G4Step& step) 468 { 278 { 469 // clear number of interaction lengths in an << 470 theNumberOfInteractionLengthLeft = -1.0; << 471 mfpKinEnergy = DBL_MAX; << 472 << 473 fParticleChange.InitializeForPostStep(track) 279 fParticleChange.InitializeForPostStep(track); 474 280 475 // Do not make anything if particle is stopp 281 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 282 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) << 283 if (track.GetTrackStatus() == fStopButAlive) return &fParticleChange; 478 << 479 const G4double finalT = track.GetKineticEner << 480 284 481 // forced process - should happen only once << 285 G4double finalT = track.GetKineticEnergy(); 482 if(biasFlag) { << 483 if(biasManager->ForcedInteractionRegion((G << 484 biasFlag = false; << 485 } << 486 } << 487 << 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 286 493 // Integral approach 287 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 288 if (integral) { 495 const G4double logFinalT = << 289 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 290 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 291 G4cout << "WARING: for " << particle->GetParticleName() 498 #ifdef G4VERBOSE << 292 << " and " << GetProcessName() 499 if(preStepLambda < lx && 1 < verboseLevel) << 293 << " E(MeV)= " << finalT/MeV 500 G4cout << "WARNING: for " << currentPart << 294 << " preLambda= " << preStepLambda << " < " << lx << " (postLambda) " 501 << " and " << GetProcessName() << << 295 << G4endl; 502 << " preLambda= " << preStepLambd << 503 << " < " << lx << " (postLambda) << 504 } << 505 #endif << 506 // if false interaction then use new cross << 507 // if both values are zero - no interactio << 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; << 510 } 296 } 511 } << 512 297 513 // define new weight for primary and seconda << 298 if(preStepLambda*G4UniformRand() > lx) 514 G4double weight = fParticleChange.GetParentW << 299 return G4VDiscreteProcess::PostStepDoIt(track,step); 515 if(weightFlag) { << 516 weight /= biasFactor; << 517 fParticleChange.ProposeWeight(weight); << 518 } 300 } 519 << 301 520 #ifdef G4VERBOSE << 302 G4VEmModel* currentModel = SelectModel(finalT); 521 if(1 < verboseLevel) { << 303 >> 304 /* >> 305 if(0 < verboseLevel) { 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 306 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 307 << finalT/MeV 524 << " MeV; model= (" << currentModel 308 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 309 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 310 << G4endl; 527 } 311 } 528 #endif << 312 */ 529 << 530 // sample secondaries << 531 secParticles.clear(); << 532 currentModel->SampleSecondaries(&secParticle << 533 currentCoupl << 534 track.GetDyn << 535 (*theCuts)[c << 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 << 539 // splitting or Russian roulette << 540 if(biasManager) { << 541 if(biasManager->SecondaryBiasingRegion((G4 << 542 G4double eloss = 0.0; << 543 weight *= biasManager->ApplySecondaryBia << 544 secParticles, track, currentModel, &fP << 545 (G4int)currentCoupleIndex, (*theCuts)[ << 546 step.GetPostStepPoint()->GetSafety()); << 547 if(eloss > 0.0) { << 548 eloss += fParticleChange.GetLocalEnerg << 549 fParticleChange.ProposeLocalEnergyDepo << 550 } << 551 } << 552 } << 553 313 554 // save secondaries << 314 555 G4int num = (G4int)secParticles.size(); << 315 std::vector<G4DynamicParticle*>* newp = 556 if(num > 0) { << 316 SecondariesPostStep(currentModel,currentCouple,track.GetDynamicParticle()); 557 317 >> 318 if (newp) { >> 319 G4int num = newp->size(); 558 fParticleChange.SetNumberOfSecondaries(num 320 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 321 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 322 567 for (G4int i=0; i<num; ++i) { << 323 for (G4int i=0; i<num; i++) { 568 G4DynamicParticle* dp = secParticles[i]; << 324 G4DynamicParticle* dp = (*newp)[i]; 569 if (nullptr != dp) { << 325 const G4ParticleDefinition* p = dp->GetDefinition(); 570 const G4ParticleDefinition* p = dp->Ge << 326 G4double e = dp->GetKineticEnergy(); 571 G4double e = dp->GetKineticEnergy(); << 327 G4bool good = true; 572 G4bool good = true; << 328 if (p == theGamma) { 573 if(applyCuts) { << 329 if (e < (*theCutsGamma)[currentMaterialIndex]) good = false; 574 if (p == theGamma) { << 330 575 if (e < (*theCutsGamma)[currentCou << 331 } else if (p == theElectron) { 576 << 332 if (e < (*theCutsElectron)[currentMaterialIndex]) good = false; 577 } else if (p == theElectron) { << 333 578 if (e < (*theCutsElectron)[current << 334 } else if (p == thePositron) { 579 << 335 if (e < (*theCutsPositron)[currentMaterialIndex]) { 580 } else if (p == thePositron) { << 336 good = false; 581 if (electron_mass_c2 < (*theCutsGa << 337 e += 2.0*electron_mass_c2; 582 e < (*theCutsPositron)[current << 338 } 583 good = false; << 339 } 584 e += 2.0*electron_mass_c2; << 585 } << 586 } << 587 // added secondary if it is good << 588 } << 589 if (good) { << 590 G4Track* t = new G4Track(dp, time, t << 591 t->SetTouchableHandle(track.GetTouch << 592 if (biasManager) { << 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { << 627 delete dp; << 628 edep += e; << 629 } << 630 } << 631 } << 632 fParticleChange.ProposeLocalEnergyDeposit( << 633 } << 634 340 635 if(0.0 == fParticleChange.GetProposedKinetic << 341 if (good || !applyCuts) { 636 fAlive == fParticleChange.GetTrackStatus( << 342 fParticleChange.AddSecondary(dp); 637 if(particle->GetProcessManager()->GetAtRes << 343 638 { fParticleChange.ProposeTrackStatus( << 344 } else { 639 else { fParticleChange.ProposeTrackStatus( << 345 delete dp; >> 346 edep += e; >> 347 } >> 348 } >> 349 fParticleChange.ProposeLocalEnergyDeposit(edep); >> 350 delete newp; 640 } 351 } 641 352 642 return &fParticleChange; << 353 return G4VDiscreteProcess::PostStepDoIt(track,step); 643 } 354 } 644 355 645 //....oooOO0OOooo........oooOO0OOooo........oo 356 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 357 647 G4bool G4VEmProcess::StorePhysicsTable(const G << 358 void G4VEmProcess::PrintInfoDefinition() 648 const G << 649 G4bool << 650 { 359 { 651 if(!isTheMaster || part != particle) { retur << 360 if(verboseLevel > 0) { 652 if(G4EmTableUtil::StoreTable(this, part, the << 361 G4cout << G4endl << GetProcessName() << ": " ; 653 directory, "Lambda", << 362 PrintInfo(); 654 verboseLevel, a << 363 if(integral) { 655 G4EmTableUtil::StoreTable(this, part, the << 364 G4cout << " Integral mode is used "<< G4endl; 656 directory, "LambdaPrim", << 365 } 657 verboseLevel, a << 366 } 658 return true; << 367 >> 368 if (!buildLambdaTable) return; >> 369 >> 370 if(verboseLevel > 0) { >> 371 G4cout << " tables are built for " >> 372 << particle->GetParticleName() >> 373 << G4endl >> 374 << " Lambda tables from " >> 375 << G4BestUnit(minKinEnergy,"Energy") >> 376 << " to " >> 377 << G4BestUnit(maxKinEnergy,"Energy") >> 378 << " in " << nLambdaBins << " bins." >> 379 << G4endl; >> 380 } >> 381 >> 382 if(verboseLevel > 1) { >> 383 G4cout << "Tables are built for " << particle->GetParticleName() >> 384 << G4endl; >> 385 >> 386 if(verboseLevel > 2) { >> 387 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; >> 388 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; >> 389 } 659 } 390 } 660 return false; << 661 } 391 } 662 392 663 //....oooOO0OOooo........oooOO0OOooo........oo << 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 664 394 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons << 395 G4double G4VEmProcess::MicroscopicCrossSection(G4double kineticEnergy, 666 cons << 396 const G4MaterialCutsCouple* couple) 667 G4bo << 668 { 397 { 669 if(!isTheMaster || part != particle) { retur << 398 // Cross section per atom is calculated 670 G4bool yes = true; << 399 DefineMaterial(couple); 671 if(buildLambdaTable) { << 400 G4double cross = 0.0; 672 yes = G4EmTableUtil::RetrieveTable(this, p << 401 G4bool b; 673 "Lambda << 402 if(theLambdaTable) { 674 ascii, << 403 cross = (((*theLambdaTable)[currentMaterialIndex])-> 675 } << 404 GetValue(kineticEnergy, b)); 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 405 677 yes = G4EmTableUtil::RetrieveTable(this, p << 406 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); 678 "Lambda << 407 } else { 679 ascii, << 408 G4VEmModel* model = SelectModel(kineticEnergy); >> 409 cross = >> 410 model->CrossSectionPerVolume(currentMaterial,particle,kineticEnergy); 680 } 411 } 681 return yes; << 412 >> 413 return cross; 682 } 414 } 683 415 684 //....oooOO0OOooo........oooOO0OOooo........oo 416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 685 417 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 418 G4double G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, 687 const G << 419 G4double Z, G4double A) 688 { 420 { 689 CurrentSetup(couple, kinEnergy); << 421 G4VEmModel* model = SelectModel(kineticEnergy); 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 422 return model->ComputeCrossSectionPerAtom(particle,kineticEnergy,Z,A); 691 } 423 } 692 424 693 //....oooOO0OOooo........oooOO0OOooo........oo 425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 426 695 G4double G4VEmProcess::GetMeanFreePath(const G << 427 G4double G4VEmProcess::MeanFreePath(const G4Track& track, 696 G4doubl << 428 G4double s, 697 G4Force << 429 G4ForceCondition* cond) 698 { 430 { 699 *condition = NotForced; << 431 return GetMeanFreePath(track, s, cond); 700 return G4VEmProcess::MeanFreePath(track); << 701 } 432 } 702 433 703 //....oooOO0OOooo........oooOO0OOooo........oo 434 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 435 705 G4double << 436 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 437 const G4String& directory, 707 G4dou << 438 G4bool ascii) 708 { 439 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 440 G4bool yes = true; 710 return (currentModel) ? << 441 711 currentModel->ComputeCrossSectionPerAtom(c << 442 if ( theLambdaTable && part == particle) { 712 Z << 443 const G4String name = >> 444 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 445 yes = theLambdaTable->StorePhysicsTable(name,ascii); >> 446 >> 447 if ( yes ) { >> 448 G4cout << "Physics tables are stored for " << particle->GetParticleName() >> 449 << " and process " << GetProcessName() >> 450 << " in the directory <" << directory >> 451 << "> " << G4endl; >> 452 } else { >> 453 G4cout << "Fail to store Physics Tables for " >> 454 << particle->GetParticleName() >> 455 << " and process " << GetProcessName() >> 456 << " in the directory <" << directory >> 457 << "> " << G4endl; >> 458 } >> 459 } >> 460 return yes; 713 } 461 } 714 462 715 //....oooOO0OOooo........oooOO0OOooo........oo << 463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 716 464 717 G4PhysicsVector* << 465 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 466 const G4String& directory, >> 467 G4bool ascii) 719 { 468 { 720 DefineMaterial(couple); << 469 if(1 < verboseLevel) { 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 470 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " 722 << 471 << part->GetParticleName() << " and process " 723 return newv; << 472 << GetProcessName() << G4endl; >> 473 } >> 474 G4bool yes = true; >> 475 >> 476 if(!buildLambdaTable || particle != part) return yes; >> 477 >> 478 const G4String particleName = part->GetParticleName(); >> 479 G4String filename; >> 480 >> 481 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 482 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, >> 483 filename,ascii); >> 484 if ( yes ) { >> 485 if (0 < verboseLevel) { >> 486 G4cout << "Lambda table for " << particleName << " is Retrieved from <" >> 487 << filename << ">" >> 488 << G4endl; >> 489 } >> 490 } else { >> 491 if (1 < verboseLevel) { >> 492 G4cout << "Lambda table for " << particleName << " in file <" >> 493 << filename << "> is not exist" >> 494 << G4endl; >> 495 } >> 496 } >> 497 >> 498 return yes; 724 } 499 } 725 500 726 //....oooOO0OOooo........oooOO0OOooo........oo 501 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 727 502 728 const G4Element* G4VEmProcess::GetCurrentEleme << 503 void G4VEmProcess::FindLambdaMax() 729 { 504 { 730 return (nullptr != currentModel) ? << 505 if(1 < verboseLevel) { 731 currentModel->GetCurrentElement(currentMat << 506 G4cout << "### G4VEmProcess::FindLambdaMax: " >> 507 << particle->GetParticleName() >> 508 << " and process " << GetProcessName() << G4endl; >> 509 } >> 510 size_t n = theLambdaTable->length(); >> 511 G4PhysicsVector* pv = (*theLambdaTable)[0]; >> 512 G4double e, s, emax, smax; >> 513 theEnergyOfCrossSectionMax = new G4double [n]; >> 514 theCrossSectionMax = new G4double [n]; >> 515 G4bool b; >> 516 >> 517 for (size_t i=0; i<n; i++) { >> 518 pv = (*theLambdaTable)[i]; >> 519 emax = DBL_MAX; >> 520 smax = 0.0; >> 521 if(pv) { >> 522 size_t nb = pv->GetVectorLength(); >> 523 emax = pv->GetLowEdgeEnergy(nb); >> 524 smax = 0.0; >> 525 for (size_t j=0; j<nb; j++) { >> 526 e = pv->GetLowEdgeEnergy(j); >> 527 s = pv->GetValue(e,b); >> 528 if(s > smax) { >> 529 smax = s; >> 530 emax = e; >> 531 } >> 532 } >> 533 } >> 534 theEnergyOfCrossSectionMax[i] = emax; >> 535 theCrossSectionMax[i] = smax; >> 536 if(2 < verboseLevel) { >> 537 G4cout << "For " << particle->GetParticleName() >> 538 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 539 << " lambda= " << smax << G4endl; >> 540 } >> 541 } 732 } 542 } 733 543 734 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 545 736 const G4Element* G4VEmProcess::GetTargetElemen << 546 void G4VEmProcess::SetLambdaBinning(G4int nbins) 737 { 547 { 738 return (nullptr != currentModel) ? << 548 nLambdaBins = nbins; 739 currentModel->GetCurrentElement(currentMat << 740 } 549 } 741 550 742 //....oooOO0OOooo........oooOO0OOooo........oo 551 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 552 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 553 G4int G4VEmProcess::LambdaBinning() const 745 { 554 { 746 return (nullptr != currentModel) ? << 555 return nLambdaBins; 747 currentModel->GetCurrentIsotope(GetCurrent << 748 } 556 } 749 557 750 //....oooOO0OOooo........oooOO0OOooo........oo 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 559 752 void G4VEmProcess::SetCrossSectionBiasingFacto << 560 void G4VEmProcess::SetMinKinEnergy(G4double e) 753 { 561 { 754 if(f > 0.0) { << 562 minKinEnergy = e; 755 biasFactor = f; << 756 weightFlag = flag; << 757 if(1 < verboseLevel) { << 758 G4cout << "### SetCrossSectionBiasingFac << 759 << particle->GetParticleName() << 760 << " and process " << GetProcessN << 761 << " biasFactor= " << f << " weig << 762 << G4endl; << 763 } << 764 } << 765 } 563 } 766 564 767 //....oooOO0OOooo........oooOO0OOooo........oo 565 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 566 769 void << 567 G4double G4VEmProcess::MinKinEnergy() const 770 G4VEmProcess::ActivateForcedInteraction(G4doub << 771 G4bool << 772 { 568 { 773 if(nullptr == biasManager) { biasManager = n << 569 return minKinEnergy; 774 if(1 < verboseLevel) { << 775 G4cout << "### ActivateForcedInteraction: << 776 << particle->GetParticleName() << 777 << " and process " << GetProcessNam << 778 << " length(mm)= " << length/mm << 779 << " in G4Region <" << r << 780 << "> weightFlag= " << flag << 781 << G4endl; << 782 } << 783 weightFlag = flag; << 784 biasManager->ActivateForcedInteraction(lengt << 785 } 570 } 786 571 787 //....oooOO0OOooo........oooOO0OOooo........oo 572 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 788 573 789 void << 574 void G4VEmProcess::SetMaxKinEnergy(G4double e) 790 G4VEmProcess::ActivateSecondaryBiasing(const G << 575 { 791 G4double factor, << 576 maxKinEnergy = e; 792 G4double energyLimit) << 793 { << 794 if (0.0 <= factor) { << 795 << 796 // Range cut can be applied only for e- << 797 if(0.0 == factor && secondaryParticle != G << 798 { return; } << 799 << 800 if(!biasManager) { biasManager = new G4EmB << 801 biasManager->ActivateSecondaryBiasing(regi << 802 if(1 < verboseLevel) { << 803 G4cout << "### ActivateSecondaryBiasing: << 804 << " process " << GetProcessName() << 805 << " factor= " << factor << 806 << " in G4Region <" << region << 807 << "> energyLimit(MeV)= " << energyLimi << 808 << G4endl; << 809 } << 810 } << 811 } 577 } 812 578 813 //....oooOO0OOooo........oooOO0OOooo........oo 579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 580 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 581 G4double G4VEmProcess::MaxKinEnergy() const 816 { 582 { 817 if(5 < n && n < 10000000) { << 583 return maxKinEnergy; 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } 584 } 825 585 826 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 827 587 828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 588 void G4VEmProcess::ActivateDeexcitation(G4bool, const G4Region*) >> 589 {} >> 590 >> 591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 592 >> 593 const G4PhysicsTable* G4VEmProcess::LambdaTable() const 829 { 594 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 595 return theLambdaTable; 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 832 /G4Log(maxKinEnergy/ << 833 minKinEnergy = e; << 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } 596 } 837 597 838 //....oooOO0OOooo........oooOO0OOooo........oo 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 599 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 600 void G4VEmProcess::SetIntegral(G4bool val) 841 { 601 { 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 602 if(particle && particle != theGamma) integral = val; 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 603 if(integral) buildLambdaTable = true; 844 /G4Log(maxKinEnergy/ << 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } 604 } 849 605 850 //....oooOO0OOooo........oooOO0OOooo........oo 606 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 851 607 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 608 G4bool G4VEmProcess::IsIntegral() const 853 { 609 { 854 if(theParameters->MinKinEnergy() <= e && << 610 return integral; 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } 611 } 858 612 859 //....oooOO0OOooo........oooOO0OOooo........oo 613 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 860 614 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 615 G4PhysicsVector* G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 862 { 616 { 863 return (nam == GetProcessName()) ? this : nu << 617 G4PhysicsVector* v = >> 618 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 619 return v; 864 } 620 } 865 621 866 //....oooOO0OOooo........oooOO0OOooo........oo 622 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 867 623 868 G4double G4VEmProcess::PolarAngleLimit() const << 624 void G4VEmProcess::SetBuildTableFlag(G4bool val) 869 { 625 { 870 return theParameters->MscThetaLimit(); << 626 buildLambdaTable = val; 871 } 627 } 872 628 873 //....oooOO0OOooo........oooOO0OOooo........oo 629 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 874 630 875 void G4VEmProcess::PrintWarning(G4String tit, << 631 void G4VEmProcess::SetStartFromNullFlag(G4bool val) 876 { 632 { 877 G4String ss = "G4VEmProcess::" + tit; << 633 startFromNull = val; 878 G4ExceptionDescription ed; << 879 ed << "Parameter is out of range: " << val << 880 << " it will have no effect!\n" << " Pro << 881 << GetProcessName() << " nbins= " << the << 882 << " Emin(keV)= " << theParameters->MinKi << 883 << " Emax(GeV)= " << theParameters->MaxKi << 884 G4Exception(ss, "em0044", JustWarning, ed); << 885 } 634 } 886 635 887 //....oooOO0OOooo........oooOO0OOooo........oo 636 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 637 889 void G4VEmProcess::ProcessDescription(std::ost << 638 void G4VEmProcess::SetApplyCuts(G4bool val) 890 { 639 { 891 if(nullptr != particle) { << 640 applyCuts = val; 892 StreamInfo(out, *particle, true); << 893 } << 894 } 641 } 895 642 896 //....oooOO0OOooo........oooOO0OOooo........oo 643 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 644