Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEmProcess.cc,v 1.3 2003/10/14 07:50:34 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-00 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class file 28 // GEANT4 Class file 29 // 29 // 30 // 30 // 31 // File name: G4VEmProcess 31 // File name: G4VEmProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 34 // 35 // Creation date: 01.10.2003 35 // Creation date: 01.10.2003 36 // 36 // 37 // Modifications: by V.Ivanchenko << 37 // Modifications: >> 38 // 38 // 39 // 39 // Class Description: based class for discrete << 40 // Class Description: 40 // 41 // >> 42 // It is the unified process for e+ annililation at rest and in fly. 41 43 42 // ------------------------------------------- 44 // ------------------------------------------------------------------- 43 // 45 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 48 47 #include "G4VEmProcess.hh" 49 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" << 49 #include "G4SystemOfUnits.hh" << 50 #include "G4ProcessManager.hh" << 51 #include "G4LossTableManager.hh" 50 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" << 53 #include "G4Step.hh" 51 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 52 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 53 #include "G4VEmModel.hh" >> 54 #include "G4VEmFluctuationModel.hh" 56 #include "G4DataVector.hh" 55 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 56 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 57 #include "G4PhysicsVector.hh" 59 #include "G4PhysicsLogVector.hh" 58 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 59 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" << 62 #include "G4Region.hh" << 63 #include "G4Gamma.hh" 60 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 61 #include "G4Electron.hh" 65 #include "G4Positron.hh" 62 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" << 63 #include "G4ProcessManager.hh" 67 #include "G4EmBiasingManager.hh" << 64 #include "G4UnitsTable.hh" 68 #include "G4EmParameters.hh" << 65 #include "G4ProductionCutsTable.hh" 69 #include "G4EmProcessSubType.hh" << 66 #include "G4Region.hh" 70 #include "G4EmTableUtil.hh" << 67 #include "G4RegionStore.hh" 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" << 74 #include "G4Log.hh" << 75 #include <iostream> << 76 68 77 //....oooOO0OOooo........oooOO0OOooo........oo 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 70 79 G4VEmProcess::G4VEmProcess(const G4String& nam 71 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 72 G4VDiscreteProcess(name, type), >> 73 theLambdaTable(0), >> 74 particle(0), >> 75 secondaryParticle(0), >> 76 currentCouple(0), >> 77 nLambdaBins(90), >> 78 integral(true), >> 79 meanFreePath(true) 81 { 80 { 82 theParameters = G4EmParameters::Instance(); << 83 SetVerboseLevel(1); << 84 81 85 // Size of tables << 82 minKinEnergy = 0.1*keV; 86 minKinEnergy = 0.1*CLHEP::keV; << 83 maxKinEnergy = 100.0*GeV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 88 << 89 // default lambda factor << 90 invLambdaFactor = 1.0/lambdaFactor; << 91 << 92 // particle types << 93 theGamma = G4Gamma::Gamma(); << 94 theElectron = G4Electron::Electron(); << 95 thePositron = G4Positron::Positron(); << 96 << 97 pParticleChange = &fParticleChange; << 98 fParticleChange.SetSecondaryWeightByProcess( << 99 secParticles.reserve(5); << 100 84 101 modelManager = new G4EmModelManager(); 85 modelManager = new G4EmModelManager(); 102 lManager = G4LossTableManager::Instance(); << 86 (G4LossTableManager::Instance())->Register(this); 103 lManager->Register(this); << 104 isTheMaster = lManager->IsMaster(); << 105 G4LossTableBuilder* bld = lManager->GetTable << 106 theDensityFactor = bld->GetDensityFactors(); << 107 theDensityIdx = bld->GetCoupleIndexes(); << 108 } 87 } 109 88 110 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 90 112 G4VEmProcess::~G4VEmProcess() 91 G4VEmProcess::~G4VEmProcess() 113 { 92 { 114 if(isTheMaster) { << 93 if(theLambdaTable) theLambdaTable->clearAndDestroy(); 115 delete theData; << 94 theLambdaTable = 0; 116 delete theEnergyOfCrossSectionMax; << 95 modelManager->Clear(); 117 } << 118 delete modelManager; 96 delete modelManager; 119 delete biasManager; << 97 (G4LossTableManager::Instance())->DeRegister(this); 120 lManager->DeRegister(this); << 121 } 98 } 122 99 123 //....oooOO0OOooo........oooOO0OOooo........oo 100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 101 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 102 void G4VEmProcess::Initialise() 126 const G4Region* << 127 { 103 { 128 if(nullptr == ptr) { return; } << 104 if(theLambdaTable) theLambdaTable->clearAndDestroy(); 129 G4VEmFluctuationModel* fm = nullptr; << 105 theLambdaTable = 0; 130 modelManager->AddEmModel(order, ptr, fm, reg << 106 modelManager->Clear(); 131 ptr->SetParticleChange(pParticleChange); << 107 theCuts = modelManager->Initialise(particle,secondaryParticle,2.,verboseLevel); 132 } 108 } 133 109 134 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 111 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 112 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 137 { 113 { 138 if(nullptr == ptr) { return; } << 114 if( !particle ) particle = ∂ 139 if(!emModels.empty()) { << 115 currentCouple = 0; 140 for(auto & em : emModels) { if(em == ptr) << 116 preStepLambda = 0.0; >> 117 if(0 < verboseLevel) { >> 118 G4cout << "G4VEmProcess::BuildPhysicsTable() for " >> 119 << GetProcessName() >> 120 << " and particle " << part.GetParticleName() >> 121 << G4endl; >> 122 } >> 123 >> 124 G4bool cutsWasModified = false; >> 125 const G4ProductionCutsTable* theCoupleTable= >> 126 G4ProductionCutsTable::GetProductionCutsTable(); >> 127 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 128 for (size_t j=0; j<numOfCouples; j++){ >> 129 if (theCoupleTable->GetMaterialCutsCouple(j)->IsRecalcNeeded()) { >> 130 cutsWasModified = true; >> 131 break; >> 132 } >> 133 } >> 134 if( !cutsWasModified ) return; >> 135 >> 136 Initialise(); >> 137 theLambdaTable = BuildLambdaTable(); >> 138 PrintInfoDefinition(); >> 139 >> 140 if(0 < verboseLevel && theCuts) { >> 141 G4cout << "G4VEmProcess::BuildPhysicsTable() done for " >> 142 << GetProcessName() >> 143 << " and particle " << part.GetParticleName() >> 144 << G4endl; 141 } 145 } 142 emModels.push_back(ptr); << 143 } 146 } 144 147 145 //....oooOO0OOooo........oooOO0OOooo........oo 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 149 147 void G4VEmProcess::PreparePhysicsTable(const G << 150 G4PhysicsTable* G4VEmProcess::BuildLambdaTable() 148 { 151 { 149 if(nullptr == particle) { SetParticle(&part) << 150 152 151 if(part.GetParticleType() == "nucleus" && << 153 if(0 < verboseLevel) { 152 part.GetParticleSubType() == "generic") { << 154 G4cout << "G4VEnergyLossSTD::BuildLambdaTable() for process " >> 155 << GetProcessName() << " and particle " >> 156 << particle->GetParticleName() >> 157 << G4endl; >> 158 } 153 159 154 G4String pname = part.GetParticleName(); << 160 // Access to materials 155 if(pname != "deuteron" && pname != "triton << 161 const G4ProductionCutsTable* theCoupleTable= 156 pname != "He3" && pname != "alpha" && p << 162 G4ProductionCutsTable::GetProductionCutsTable(); 157 pname != "helium" && pname != "hydrogen << 163 size_t numOfCouples = theCoupleTable->GetTableSize(); 158 164 159 particle = G4GenericIon::GenericIon(); << 165 G4PhysicsTable* theTable = new G4PhysicsTable(numOfCouples); 160 isIon = true; << 161 } << 162 } << 163 if(particle != &part) { return; } << 164 166 165 lManager->PreparePhysicsTable(&part, this); << 167 for(size_t i=0; i<numOfCouples; i++) { 166 168 167 // for new run << 169 // create physics vector and fill it 168 currentCouple = nullptr; << 170 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i); 169 preStepLambda = 0.0; << 171 G4PhysicsVector* aVector = LambdaPhysicsVector(couple); 170 fLambdaEnergy = 0.0; << 172 modelManager->FillLambdaVector(aVector, couple); 171 173 172 InitialiseProcess(particle); << 174 // Insert vector for this material into the table >> 175 theTable->insert(aVector) ; >> 176 } 173 177 174 G4LossTableBuilder* bld = lManager->GetTable << 178 if(0 < verboseLevel) { 175 const G4ProductionCutsTable* theCoupleTable= << 179 G4cout << "Lambda table is built for " 176 G4ProductionCutsTable::GetProductionCutsTa << 180 << particle->GetParticleName() 177 theCutsGamma = theCoupleTable->GetEnergyC << 181 << G4endl; 178 theCutsElectron = theCoupleTable->GetEnergyC << 182 if(2 < verboseLevel) { 179 theCutsPositron = theCoupleTable->GetEnergyC << 183 G4cout << *theTable << G4endl; 180 << 181 // initialisation of the process << 182 if(!actMinKinEnergy) { minKinEnergy = thePar << 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar << 184 << 185 applyCuts = theParameters->ApplyCuts() << 186 lambdaFactor = theParameters->LambdaFacto << 187 invLambdaFactor = 1.0/lambdaFactor; << 188 theParameters->DefineRegParamForEM(this); << 189 << 190 // integral option may be disabled << 191 if(!theParameters->Integral()) { fXSType = f << 192 << 193 // prepare tables << 194 if(isTheMaster) { << 195 if(nullptr == theData) { theData = new G4E << 196 << 197 if(buildLambdaTable) { << 198 theLambdaTable = theData->MakeTable(0); << 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } << 201 // high energy table << 202 if(minKinEnergyPrim < maxKinEnergy) { << 203 theLambdaTablePrim = theData->MakeTable( << 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } 184 } 206 } 185 } 207 // models << 186 208 baseMat = bld->GetBaseMaterialFlag(); << 187 return theTable; 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } << 214 // forced biasing << 215 if(nullptr != biasManager) { << 216 biasManager->Initialise(part, GetProcessNa << 217 biasFlag = false; << 218 } << 219 << 220 theCuts = << 221 G4EmTableUtil::PrepareEmProcess(this, part << 222 modelManag << 223 secID, tri << 224 verboseLev << 225 } 188 } 226 189 227 //....oooOO0OOooo........oooOO0OOooo........oo 190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 191 229 void G4VEmProcess::BuildPhysicsTable(const G4P << 192 void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 230 { 193 { 231 if(nullptr == masterProc) { << 194 particle = p; 232 if(isTheMaster) { masterProc = this; } << 233 else { masterProc = static_cast<const G4VE << 234 } << 235 G4int nModels = modelManager->NumberOfModels << 236 G4bool isLocked = theParameters->IsPrintLock << 237 G4bool toBuild = (buildLambdaTable || minKin << 238 << 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 240 nModels, verbo << 241 isLocked, toBu << 242 } << 243 << 244 //....oooOO0OOooo........oooOO0OOooo........oo << 245 << 246 void G4VEmProcess::BuildLambdaTable() << 247 { << 248 G4double scale = theParameters->MaxKinEnergy << 249 G4int nbin = << 250 theParameters->NumberOfBinsPerDecade()*G4l << 251 if(actBinning) { nbin = std::max(nbin, nLamb << 252 scale = nbin/G4Log(scale); << 253 << 254 G4LossTableBuilder* bld = lManager->GetTable << 255 G4EmTableUtil::BuildLambdaTable(this, partic << 256 bld, theLamb << 257 minKinEnergy << 258 maxKinEnergy << 259 startFromNul << 260 } << 261 << 262 //....oooOO0OOooo........oooOO0OOooo........oo << 263 << 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 265 const G4ParticleDefinition& << 266 { << 267 G4String indent = (rst ? " " : ""); << 268 out << std::setprecision(6); << 269 out << G4endl << indent << GetProcessName() << 270 if (!rst) { << 271 out << " for " << part.GetParticleName(); << 272 } << 273 if(fXSType != fEmNoIntegral) { out << " XSt << 274 if(applyCuts) { out << " applyCuts:1 "; } << 275 G4int subtype = GetProcessSubType(); << 276 out << " SubType=" << subtype; << 277 if (subtype == fAnnihilation) { << 278 G4int mod = theParameters->PositronAtRestM << 279 const G4String namp[2] = {"Simple", "Allis << 280 out << " AtRestModel:" << namp[mod]; << 281 } << 282 if(biasFactor != 1.0) { out << " BiasingFac << 283 out << " BuildTable=" << buildLambdaTable << << 284 if(buildLambdaTable) { << 285 if(particle == &part) { << 286 for(auto & v : *theLambdaTable) { << 287 if(nullptr != v) { << 288 out << " Lambda table from "; << 289 G4double emin = v->Energy(0); << 290 G4double emax = v->GetMaxEnergy(); << 291 G4int nbin = G4int(v->GetVectorLengt << 292 if(emin > minKinEnergy) { out << "th << 293 else { out << G4BestUnit(emin,"Energ << 294 out << " to " << 295 << G4BestUnit(emax,"Energy") << 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } << 301 } << 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } << 306 } << 307 if(minKinEnergyPrim < maxKinEnergy) { << 308 if(particle == &part) { << 309 for(auto & v : *theLambdaTablePrim) { << 310 if(nullptr != v) { << 311 out << " LambdaPrime table from << 312 << G4BestUnit(v->Energy(0),"Ener << 313 << " to " << 314 << G4BestUnit(v->GetMaxEnergy(), << 315 << " in " << v->GetVectorLength( << 316 << " bins " << G4endl; << 317 break; << 318 } << 319 } << 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } << 324 } << 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 << 328 if(verboseLevel > 2 && buildLambdaTable) { << 329 out << " LambdaTable address= " << th << 330 if(theLambdaTable && particle == &part) { << 331 out << (*theLambdaTable) << G4endl; << 332 } << 333 } << 334 } 195 } 335 196 336 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 198 338 void G4VEmProcess::StartTracking(G4Track* trac << 199 void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 339 { 200 { 340 // reset parameters for the new track << 201 secondaryParticle = p; 341 currentParticle = track->GetParticleDefiniti << 342 theNumberOfInteractionLengthLeft = -1.0; << 343 mfpKinEnergy = DBL_MAX; << 344 preStepLambda = 0.0; << 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 << 348 // forced biasing only for primary particles << 349 if(biasManager) { << 350 if(0 == track->GetParentID()) { << 351 // primary particle << 352 biasFlag = true; << 353 biasManager->ResetForcedInteraction(); << 354 } << 355 } << 356 } 202 } 357 203 358 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 205 360 G4double G4VEmProcess::PostStepGetPhysicalInte << 206 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 361 const G4Track& tr << 207 G4VEmFluctuationModel*, 362 G4double previo << 208 const G4Region* region) 363 G4ForceCondition* << 209 { 364 { << 210 modelManager->AddEmModel(order, p, 0, region); 365 *condition = NotForced; << 366 G4double x = DBL_MAX; << 367 << 368 DefineMaterial(track.GetMaterialCutsCouple() << 369 preStepKinEnergy = track.GetKineticEnergy(); << 370 const G4double scaledEnergy = preStepKinEner << 371 SelectModel(scaledEnergy, currentCoupleIndex << 372 /* << 373 G4cout << "PostStepGetPhysicalInteractionLen << 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; << 378 currentInteractionLength = DBL_MAX; << 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; << 382 } << 383 << 384 // forced biasing only for primary particles << 385 if(biasManager) { << 386 if(0 == track.GetParentID()) { << 387 if(biasFlag && << 388 biasManager->ForcedInteractionRegion( << 389 return biasManager->GetStepLimit((G4in << 390 } << 391 } << 392 } << 393 << 394 // compute mean free path << 395 << 396 ComputeIntegralLambda(preStepKinEnergy, trac << 397 << 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 << 407 << 408 // beggining of tracking (or just after << 409 theNumberOfInteractionLengthLeft = -G4Lo << 410 theInitialNumberOfInteractionLength = th << 411 << 412 } else { << 413 << 414 theNumberOfInteractionLengthLeft -= << 415 previousStepSize/currentInteractionLen << 416 theNumberOfInteractionLengthLeft = << 417 std::max(theNumberOfInteractionLengthL << 418 } << 419 << 420 // new mean free path and step limit for t << 421 currentInteractionLength = 1.0/preStepLamb << 422 x = theNumberOfInteractionLengthLeft * cur << 423 } << 424 return x; << 425 } 211 } 426 212 427 //....oooOO0OOooo........oooOO0OOooo........oo 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 428 214 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 215 void G4VEmProcess::UpdateEmModel(const G4String& nam, G4double emin, >> 216 G4double emax) 430 { 217 { 431 if (fXSType == fEmNoIntegral) { << 218 modelManager->UpdateEmModel(nam, emin, emax); 432 preStepLambda = GetCurrentLambda(e, LogEki << 433 << 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } << 459 } else { << 460 preStepLambda = GetCurrentLambda(e, LogEki << 461 } << 462 } 219 } 463 220 464 //....oooOO0OOooo........oooOO0OOooo........oo 221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 222 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 223 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 << 224 const G4Step& step) 468 { 225 { 469 // clear number of interaction lengths in an << 226 aParticleChange.Initialize(track); 470 theNumberOfInteractionLengthLeft = -1.0; << 227 G4double finalT = track.GetKineticEnergy(); 471 mfpKinEnergy = DBL_MAX; << 472 << 473 fParticleChange.InitializeForPostStep(track) << 474 << 475 // Do not make anything if particle is stopp << 476 // should be performed by the AtRestDoIt! << 477 if (track.GetTrackStatus() == fStopButAlive) << 478 << 479 const G4double finalT = track.GetKineticEner << 480 << 481 // forced process - should happen only once << 482 if(biasFlag) { << 483 if(biasManager->ForcedInteractionRegion((G << 484 biasFlag = false; << 485 } << 486 } << 487 << 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 228 493 // Integral approach 229 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 230 if (integral) { 495 const G4double logFinalT = << 231 G4bool b; 496 track.GetDynamicParticle()->GetLogKineti << 232 G4double postStepLambda = 497 const G4double lx = std::max(GetCurrentLam << 233 (((*theLambdaTable)[currentMaterialIndex])->GetValue(finalT,b)); 498 #ifdef G4VERBOSE << 234 499 if(preStepLambda < lx && 1 < verboseLevel) << 235 if(preStepLambda*G4UniformRand() > postStepLambda) 500 G4cout << "WARNING: for " << currentPart << 236 return G4VDiscreteProcess::PostStepDoIt(track,step); 501 << " and " << GetProcessName() << << 502 << " preLambda= " << preStepLambd << 503 << " < " << lx << " (postLambda) << 504 } << 505 #endif << 506 // if false interaction then use new cross << 507 // if both values are zero - no interactio << 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; << 510 } << 511 } 237 } 512 238 513 // define new weight for primary and seconda << 239 G4VEmModel* currentModel = SelectModel(finalT); 514 G4double weight = fParticleChange.GetParentW << 240 G4double tcut = (*theCuts)[currentMaterialIndex]; 515 if(weightFlag) { << 241 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 516 weight /= biasFactor; << 242 517 fParticleChange.ProposeWeight(weight); << 243 /* 518 } << 244 if(0 < verboseLevel) { 519 << 245 const G4ParticleDefinition* pd = dynParticle->GetDefinition(); 520 #ifdef G4VERBOSE << 521 if(1 < verboseLevel) { << 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 246 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 247 << finalT/MeV 524 << " MeV; model= (" << currentModel << 248 << " MeV; model= (" << currentModel->LowEnergyLimit(pd) 525 << ", " << currentModel->HighEnerg << 249 << ", " << currentModel->HighEnergyLimit(pd) << ")" 526 << G4endl; 250 << G4endl; 527 } 251 } 528 #endif << 252 */ 529 << 530 // sample secondaries << 531 secParticles.clear(); << 532 currentModel->SampleSecondaries(&secParticle << 533 currentCoupl << 534 track.GetDyn << 535 (*theCuts)[c << 536 << 537 G4int num0 = (G4int)secParticles.size(); << 538 << 539 // splitting or Russian roulette << 540 if(biasManager) { << 541 if(biasManager->SecondaryBiasingRegion((G4 << 542 G4double eloss = 0.0; << 543 weight *= biasManager->ApplySecondaryBia << 544 secParticles, track, currentModel, &fP << 545 (G4int)currentCoupleIndex, (*theCuts)[ << 546 step.GetPostStepPoint()->GetSafety()); << 547 if(eloss > 0.0) { << 548 eloss += fParticleChange.GetLocalEnerg << 549 fParticleChange.ProposeLocalEnergyDepo << 550 } << 551 } << 552 } << 553 << 554 // save secondaries << 555 G4int num = (G4int)secParticles.size(); << 556 if(num > 0) { << 557 << 558 fParticleChange.SetNumberOfSecondaries(num << 559 G4double edep = fParticleChange.GetLocalEn << 560 G4double time = track.GetGlobalTime(); << 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 << 567 for (G4int i=0; i<num; ++i) { << 568 G4DynamicParticle* dp = secParticles[i]; << 569 if (nullptr != dp) { << 570 const G4ParticleDefinition* p = dp->Ge << 571 G4double e = dp->GetKineticEnergy(); << 572 G4bool good = true; << 573 if(applyCuts) { << 574 if (p == theGamma) { << 575 if (e < (*theCutsGamma)[currentCou << 576 << 577 } else if (p == theElectron) { << 578 if (e < (*theCutsElectron)[current << 579 << 580 } else if (p == thePositron) { << 581 if (electron_mass_c2 < (*theCutsGa << 582 e < (*theCutsPositron)[current << 583 good = false; << 584 e += 2.0*electron_mass_c2; << 585 } << 586 } << 587 // added secondary if it is good << 588 } << 589 if (good) { << 590 G4Track* t = new G4Track(dp, time, t << 591 t->SetTouchableHandle(track.GetTouch << 592 if (biasManager) { << 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); << 598 << 599 // define type of secondary << 600 if(i < mainSecondaries) { << 601 t->SetCreatorModelID(secID); << 602 if(GetProcessSubType() == fCompton << 603 t->SetCreatorModelID(_ComptonGam << 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { << 617 t->SetCreatorModelID(biasID); << 618 } << 619 } << 620 /* << 621 G4cout << "Secondary(post step) has << 622 << ", Ekin= " << t->GetKineti << 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { << 627 delete dp; << 628 edep += e; << 629 } << 630 } << 631 } << 632 fParticleChange.ProposeLocalEnergyDeposit( << 633 } << 634 << 635 if(0.0 == fParticleChange.GetProposedKinetic << 636 fAlive == fParticleChange.GetTrackStatus( << 637 if(particle->GetProcessManager()->GetAtRes << 638 { fParticleChange.ProposeTrackStatus( << 639 else { fParticleChange.ProposeTrackStatus( << 640 } << 641 253 642 return &fParticleChange; << 254 SecondariesPostStep(currentModel,currentCouple,dynParticle,tcut,finalT); >> 255 return &aParticleChange; 643 } 256 } 644 257 645 //....oooOO0OOooo........oooOO0OOooo........oo 258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 259 647 G4bool G4VEmProcess::StorePhysicsTable(const G << 260 void G4VEmProcess::PrintInfoDefinition() 648 const G << 649 G4bool << 650 { 261 { 651 if(!isTheMaster || part != particle) { retur << 262 G4cout << G4endl << GetProcessName() << ": " << G4endl 652 if(G4EmTableUtil::StoreTable(this, part, the << 263 << " Lambda tables from threshold to " 653 directory, "Lambda", << 264 << G4BestUnit(maxKinEnergy,"Energy") 654 verboseLevel, a << 265 << " in " << nLambdaBins << " bins." 655 G4EmTableUtil::StoreTable(this, part, the << 266 << G4endl; 656 directory, "LambdaPrim", << 267 /* 657 verboseLevel, a << 268 G4cout << "DEDXTable address= " << theDEDXTable << G4endl; 658 return true; << 269 if(theDEDXTable) G4cout << (*theDEDXTable) << G4endl; 659 } << 270 G4cout << "RangeTable address= " << theRangeTable << G4endl; 660 return false; << 271 if(theRangeTable) G4cout << (*theRangeTable) << G4endl; 661 } << 272 G4cout << "InverseRangeTable address= " << theInverseRangeTable << G4endl; 662 << 273 if(theInverseRangeTable) G4cout << (*theInverseRangeTable) << G4endl; 663 //....oooOO0OOooo........oooOO0OOooo........oo << 274 */ >> 275 if(0 < verboseLevel) { >> 276 G4cout << "Tables are built for " << particle->GetParticleName() >> 277 << " IntegralFlag= " << integral >> 278 << G4endl; 664 279 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons << 280 if(2 < verboseLevel) { 666 cons << 281 G4cout << "LambdaTable address= " << theLambdaTable << G4endl; 667 G4bo << 282 if(theLambdaTable) G4cout << (*theLambdaTable) << G4endl; 668 { << 283 } 669 if(!isTheMaster || part != particle) { retur << 670 G4bool yes = true; << 671 if(buildLambdaTable) { << 672 yes = G4EmTableUtil::RetrieveTable(this, p << 673 "Lambda << 674 ascii, << 675 } << 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 677 yes = G4EmTableUtil::RetrieveTable(this, p << 678 "Lambda << 679 ascii, << 680 } 284 } 681 return yes; << 682 } << 683 << 684 //....oooOO0OOooo........oooOO0OOooo........oo << 685 << 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 687 const G << 688 { << 689 CurrentSetup(couple, kinEnergy); << 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 691 } << 692 << 693 //....oooOO0OOooo........oooOO0OOooo........oo << 694 << 695 G4double G4VEmProcess::GetMeanFreePath(const G << 696 G4doubl << 697 G4Force << 698 { << 699 *condition = NotForced; << 700 return G4VEmProcess::MeanFreePath(track); << 701 } 285 } 702 286 703 //....oooOO0OOooo........oooOO0OOooo........oo 287 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 288 705 G4double << 289 G4PhysicsVector* G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple* couple) 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { 290 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 291 G4double cut = (*theCuts)[couple->GetIndex()]; 710 return (currentModel) ? << 292 G4int nbins = 3; 711 currentModel->ComputeCrossSectionPerAtom(c << 293 if( couple->IsUsed() ) nbins = nLambdaBins; 712 Z << 294 G4double tmin = std::max(MinPrimaryEnergy(particle, couple->GetMaterial(), cut), >> 295 minKinEnergy); >> 296 if(tmin >= maxKinEnergy) tmin = 0.5*maxKinEnergy; >> 297 // G4double xmax = maxKinEnergy*exp(log(maxKinEnergy/tmin)/((G4double)(nbins-1)) ); >> 298 G4PhysicsVector* v = new G4PhysicsLogVector(tmin, maxKinEnergy, nbins); >> 299 return v; 713 } 300 } 714 301 715 //....oooOO0OOooo........oooOO0OOooo........oo 302 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 303 717 G4PhysicsVector* << 304 G4double G4VEmProcess::MicroscopicCrossSection(G4double kineticEnergy, 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 305 const G4MaterialCutsCouple* couple) 719 { 306 { >> 307 // Cross section per atom is calculated 720 DefineMaterial(couple); 308 DefineMaterial(couple); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 309 G4double cross = 0.0; 722 << 310 G4bool b; 723 return newv; << 311 if(theLambdaTable) { 724 } << 312 cross = (((*theLambdaTable)[currentMaterialIndex])-> >> 313 GetValue(kineticEnergy, b)); 725 314 726 //....oooOO0OOooo........oooOO0OOooo........oo << 315 cross /= currentMaterial->GetTotNbOfAtomsPerVolume(); >> 316 } 727 317 728 const G4Element* G4VEmProcess::GetCurrentEleme << 318 return cross; 729 { << 730 return (nullptr != currentModel) ? << 731 currentModel->GetCurrentElement(currentMat << 732 } 319 } 733 320 734 //....oooOO0OOooo........oooOO0OOooo........oo 321 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 322 736 const G4Element* G4VEmProcess::GetTargetElemen << 323 G4double G4VEmProcess::MeanFreePath(const G4Track& track, >> 324 G4double s, >> 325 G4ForceCondition* cond) 737 { 326 { 738 return (nullptr != currentModel) ? << 327 return GetMeanFreePath(track, s, cond); 739 currentModel->GetCurrentElement(currentMat << 740 } 328 } 741 329 742 //....oooOO0OOooo........oooOO0OOooo........oo 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 331 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 332 G4bool G4VEmProcess::StorePhysicsTable(G4ParticleDefinition* part, >> 333 const G4String& directory, >> 334 G4bool ascii) 745 { 335 { 746 return (nullptr != currentModel) ? << 336 G4bool yes = true; 747 currentModel->GetCurrentIsotope(GetCurrent << 748 } << 749 << 750 //....oooOO0OOooo........oooOO0OOooo........oo << 751 337 752 void G4VEmProcess::SetCrossSectionBiasingFacto << 338 if ( theLambdaTable ) { 753 { << 339 const G4String name = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 754 if(f > 0.0) { << 340 yes = theLambdaTable->StorePhysicsTable(name,ascii); 755 biasFactor = f; << 756 weightFlag = flag; << 757 if(1 < verboseLevel) { << 758 G4cout << "### SetCrossSectionBiasingFac << 759 << particle->GetParticleName() << 760 << " and process " << GetProcessN << 761 << " biasFactor= " << f << " weig << 762 << G4endl; << 763 } << 764 } 341 } 765 } << 766 342 767 //....oooOO0OOooo........oooOO0OOooo........oo << 343 if ( yes ) { 768 << 344 G4cout << "Physics tables are stored for " << particle->GetParticleName() 769 void << 770 G4VEmProcess::ActivateForcedInteraction(G4doub << 771 G4bool << 772 { << 773 if(nullptr == biasManager) { biasManager = n << 774 if(1 < verboseLevel) { << 775 G4cout << "### ActivateForcedInteraction: << 776 << particle->GetParticleName() << 777 << " and process " << GetProcessNam 345 << " and process " << GetProcessName() 778 << " length(mm)= " << length/mm << 346 << " in the directory <" << directory 779 << " in G4Region <" << r << 347 << "> " << G4endl; 780 << "> weightFlag= " << flag << 348 } else { 781 << G4endl; << 349 G4cout << "Fail to store Physics Tables for " << particle->GetParticleName() >> 350 << " and process " << GetProcessName() >> 351 << " in the directory <" << directory >> 352 << "> " << G4endl; 782 } 353 } 783 weightFlag = flag; << 354 return yes; 784 biasManager->ActivateForcedInteraction(lengt << 785 } 355 } 786 356 787 //....oooOO0OOooo........oooOO0OOooo........oo << 357 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 788 358 789 void << 359 G4bool G4VEmProcess::RetrievePhysicsTable(G4ParticleDefinition* part, 790 G4VEmProcess::ActivateSecondaryBiasing(const G << 360 const G4String& directory, 791 G4double factor, << 361 G4bool ascii) 792 G4double energyLimit) << 793 { 362 { 794 if (0.0 <= factor) { << 363 currentCouple = 0; 795 << 364 preStepLambda = 0.0; 796 // Range cut can be applied only for e- << 365 if(0 < verboseLevel) { 797 if(0.0 == factor && secondaryParticle != G << 366 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " 798 { return; } << 367 << part->GetParticleName() << " and process " 799 << 368 << GetProcessName() << G4endl; 800 if(!biasManager) { biasManager = new G4EmB << 801 biasManager->ActivateSecondaryBiasing(regi << 802 if(1 < verboseLevel) { << 803 G4cout << "### ActivateSecondaryBiasing: << 804 << " process " << GetProcessName() << 805 << " factor= " << factor << 806 << " in G4Region <" << region << 807 << "> energyLimit(MeV)= " << energyLimi << 808 << G4endl; << 809 } << 810 } 369 } 811 } << 370 G4bool yes = true; 812 << 813 //....oooOO0OOooo........oooOO0OOooo........oo << 814 << 815 void G4VEmProcess::SetLambdaBinning(G4int n) << 816 { << 817 if(5 < n && n < 10000000) { << 818 nLambdaBins = n; << 819 actBinning = true; << 820 } else { << 821 G4double e = (G4double)n; << 822 PrintWarning("SetLambdaBinning", e); << 823 } << 824 } << 825 << 826 //....oooOO0OOooo........oooOO0OOooo........oo << 827 << 828 void G4VEmProcess::SetMinKinEnergy(G4double e) << 829 { << 830 if(1.e-3*eV < e && e < maxKinEnergy) { << 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma << 832 /G4Log(maxKinEnergy/ << 833 minKinEnergy = e; << 834 actMinKinEnergy = true; << 835 } else { PrintWarning("SetMinKinEnergy", e); << 836 } << 837 << 838 //....oooOO0OOooo........oooOO0OOooo........oo << 839 << 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) << 841 { << 842 if(minKinEnergy < e && e < 1.e+6*TeV) { << 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ << 844 /G4Log(maxKinEnergy/ << 845 maxKinEnergy = e; << 846 actMaxKinEnergy = true; << 847 } else { PrintWarning("SetMaxKinEnergy", e); << 848 } << 849 << 850 //....oooOO0OOooo........oooOO0OOooo........oo << 851 << 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl << 853 { << 854 if(theParameters->MinKinEnergy() <= e && << 855 e <= theParameters->MaxKinEnergy()) { min << 856 else { PrintWarning("SetMinKinEnergyPrim", e << 857 } << 858 << 859 //....oooOO0OOooo........oooOO0OOooo........oo << 860 << 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 371 868 G4double G4VEmProcess::PolarAngleLimit() const << 372 const G4String particleName = part->GetParticleName(); 869 { << 373 if( !particle ) particle = part; 870 return theParameters->MscThetaLimit(); << 871 } << 872 374 873 //....oooOO0OOooo........oooOO0OOooo........oo << 375 Initialise(); 874 376 875 void G4VEmProcess::PrintWarning(G4String tit, << 377 G4String filename; 876 { << 378 const G4ProductionCutsTable* theCoupleTable= 877 G4String ss = "G4VEmProcess::" + tit; << 379 G4ProductionCutsTable::GetProductionCutsTable(); 878 G4ExceptionDescription ed; << 380 size_t numOfCouples = theCoupleTable->GetTableSize(); 879 ed << "Parameter is out of range: " << val << 880 << " it will have no effect!\n" << " Pro << 881 << GetProcessName() << " nbins= " << the << 882 << " Emin(keV)= " << theParameters->MinKi << 883 << " Emax(GeV)= " << theParameters->MaxKi << 884 G4Exception(ss, "em0044", JustWarning, ed); << 885 } << 886 << 887 //....oooOO0OOooo........oooOO0OOooo........oo << 888 381 889 void G4VEmProcess::ProcessDescription(std::ost << 382 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 890 { << 383 theLambdaTable = new G4PhysicsTable(numOfCouples); 891 if(nullptr != particle) { << 384 yes = theLambdaTable->RetrievePhysicsTable(filename,ascii); 892 StreamInfo(out, *particle, true); << 385 if ( yes ) { >> 386 if (-1 < verboseLevel) { >> 387 G4cout << "Lambda table for " << particleName << " is retrieved from <" >> 388 << filename << ">" >> 389 << G4endl; >> 390 } >> 391 PrintInfoDefinition(); >> 392 } else { >> 393 theLambdaTable->clearAndDestroy(); >> 394 theLambdaTable = 0; >> 395 if (-1 < verboseLevel) { >> 396 G4cout << "Lambda table for " << particleName << " in file <" >> 397 << filename << "> is not exist" >> 398 << G4endl; >> 399 } 893 } 400 } >> 401 >> 402 return yes; 894 } 403 } 895 404 896 //....oooOO0OOooo........oooOO0OOooo........oo 405 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 406