Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // ------------------------------------------- 27 // ------------------------------------------------------------------- 27 // 28 // 28 // GEANT4 Class file 29 // GEANT4 Class file 29 // 30 // 30 // 31 // 31 // File name: G4VEmProcess 32 // File name: G4VEmProcess 32 // 33 // 33 // Author: Vladimir Ivanchenko on base 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 35 // 35 // Creation date: 01.10.2003 36 // Creation date: 01.10.2003 36 // 37 // 37 // Modifications: by V.Ivanchenko 38 // Modifications: by V.Ivanchenko 38 // 39 // 39 // Class Description: based class for discrete 40 // Class Description: based class for discrete and rest/discrete EM processes 40 // 41 // 41 42 42 // ------------------------------------------- 43 // ------------------------------------------------------------------- 43 // 44 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 47 47 #include "G4VEmProcess.hh" 48 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 49 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" 50 #include "G4ProcessManager.hh" 51 #include "G4ProcessManager.hh" 51 #include "G4LossTableManager.hh" 52 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" 53 #include "G4LossTableBuilder.hh" 53 #include "G4Step.hh" 54 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 55 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 56 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 57 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 58 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" 59 #include "G4EmDataHandler.hh" 59 #include "G4PhysicsLogVector.hh" 60 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 61 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 62 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 63 #include "G4Region.hh" 63 #include "G4Gamma.hh" 64 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 65 #include "G4Electron.hh" 65 #include "G4Positron.hh" 66 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 67 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" 68 #include "G4EmBiasingManager.hh" 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" 69 #include "G4GenericIon.hh" 74 #include "G4Log.hh" 70 #include "G4Log.hh" 75 #include <iostream> 71 #include <iostream> 76 72 77 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 74 79 G4VEmProcess::G4VEmProcess(const G4String& nam 75 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 76 G4VDiscreteProcess(name, type), >> 77 secondaryParticle(nullptr), >> 78 buildLambdaTable(true), >> 79 numberOfModels(0), >> 80 theLambdaTable(nullptr), >> 81 theLambdaTablePrim(nullptr), >> 82 theDensityFactor(nullptr), >> 83 theDensityIdx(nullptr), >> 84 integral(false), >> 85 applyCuts(false), >> 86 startFromNull(false), >> 87 splineFlag(true), >> 88 isIon(false), >> 89 currentCouple(nullptr), >> 90 isTheMaster(true), >> 91 masterProc(nullptr), >> 92 theData(nullptr), >> 93 currentModel(nullptr), >> 94 particle(nullptr), >> 95 currentParticle(nullptr) 81 { 96 { 82 theParameters = G4EmParameters::Instance(); 97 theParameters = G4EmParameters::Instance(); 83 SetVerboseLevel(1); 98 SetVerboseLevel(1); 84 99 85 // Size of tables << 100 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 101 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 102 maxKinEnergy = 100.0*TeV; >> 103 nLambdaBins = 84; >> 104 minKinEnergyPrim = DBL_MAX; >> 105 actBinning = actSpline = actMinKinEnergy = actMaxKinEnergy = false; 88 106 89 // default lambda factor 107 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 108 lambdaFactor = 0.8; >> 109 >> 110 // default limit on polar angle >> 111 biasFactor = fFactor = 1.0; 91 112 92 // particle types 113 // particle types 93 theGamma = G4Gamma::Gamma(); << 114 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 115 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 116 thePositron = G4Positron::Positron(); >> 117 >> 118 theCuts = theCutsGamma = theCutsElectron = theCutsPositron = nullptr; 96 119 97 pParticleChange = &fParticleChange; 120 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( 121 fParticleChange.SetSecondaryWeightByProcess(true); 99 secParticles.reserve(5); 122 secParticles.reserve(5); 100 123 >> 124 baseMaterial = currentMaterial = nullptr; >> 125 >> 126 preStepLambda = preStepKinEnergy = 0.0; >> 127 mfpKinEnergy = DBL_MAX; >> 128 massRatio = 1.0; >> 129 >> 130 idxLambda = idxLambdaPrim = currentCoupleIndex >> 131 = basedCoupleIndex = 0; >> 132 101 modelManager = new G4EmModelManager(); 133 modelManager = new G4EmModelManager(); >> 134 biasManager = nullptr; >> 135 biasFlag = false; >> 136 weightFlag = false; 102 lManager = G4LossTableManager::Instance(); 137 lManager = G4LossTableManager::Instance(); 103 lManager->Register(this); 138 lManager->Register(this); 104 isTheMaster = lManager->IsMaster(); << 139 secID = fluoID = augerID = biasID = -1; 105 G4LossTableBuilder* bld = lManager->GetTable << 140 mainSecondaries = 100; 106 theDensityFactor = bld->GetDensityFactors(); << 141 if("phot" == GetProcessName() || "compt" == GetProcessName() 107 theDensityIdx = bld->GetCoupleIndexes(); << 142 || "e-_G4DNAIonisation" == GetProcessName() >> 143 || "hydrogen_G4DNAIonisation" == GetProcessName() >> 144 || "helium_G4DNAIonisation" == GetProcessName() >> 145 || "alpha_G4DNAIonisation" == GetProcessName() >> 146 || "alpha+_G4DNAIonisation" == GetProcessName() >> 147 || "proton_G4DNAIonisation" == GetProcessName() >> 148 || "GenericIon_G4DNAIonisation" == GetProcessName() ) >> 149 { >> 150 mainSecondaries = 1; >> 151 } 108 } 152 } 109 153 110 //....oooOO0OOooo........oooOO0OOooo........oo 154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 155 112 G4VEmProcess::~G4VEmProcess() 156 G4VEmProcess::~G4VEmProcess() 113 { 157 { >> 158 /* >> 159 if(1 < verboseLevel) { >> 160 G4cout << "G4VEmProcess destruct " << GetProcessName() >> 161 << " " << this << " " << theLambdaTable <<G4endl; >> 162 } >> 163 */ 114 if(isTheMaster) { 164 if(isTheMaster) { 115 delete theData; 165 delete theData; 116 delete theEnergyOfCrossSectionMax; << 166 theData = nullptr; 117 } 167 } 118 delete modelManager; 168 delete modelManager; 119 delete biasManager; 169 delete biasManager; 120 lManager->DeRegister(this); 170 lManager->DeRegister(this); >> 171 //std::cout << "G4VEmProcess removed " << GetProcessName() << G4endl; 121 } 172 } 122 173 123 //....oooOO0OOooo........oooOO0OOooo........oo 174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 175 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 176 void G4VEmProcess::Clear() >> 177 { >> 178 currentCouple = nullptr; >> 179 preStepLambda = 0.0; >> 180 idxLambda = idxLambdaPrim = 0; >> 181 } >> 182 >> 183 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 184 >> 185 G4double G4VEmProcess::MinPrimaryEnergy(const G4ParticleDefinition*, >> 186 const G4Material*) >> 187 { >> 188 return 0.0; >> 189 } >> 190 >> 191 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 192 >> 193 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 126 const G4Region* 194 const G4Region* region) 127 { 195 { 128 if(nullptr == ptr) { return; } << 129 G4VEmFluctuationModel* fm = nullptr; 196 G4VEmFluctuationModel* fm = nullptr; 130 modelManager->AddEmModel(order, ptr, fm, reg << 197 modelManager->AddEmModel(order, p, fm, region); 131 ptr->SetParticleChange(pParticleChange); << 198 if(p) { p->SetParticleChange(pParticleChange); } 132 } 199 } 133 200 134 //....oooOO0OOooo........oooOO0OOooo........oo 201 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 202 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, 203 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, G4int) 137 { 204 { 138 if(nullptr == ptr) { return; } << 205 for(auto & em : emModels) { if(em == ptr) { return; } } 139 if(!emModels.empty()) { << 206 emModels.push_back(ptr); 140 for(auto & em : emModels) { if(em == ptr) << 207 } 141 } << 208 142 emModels.push_back(ptr); << 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 210 >> 211 G4VEmModel* G4VEmProcess::EmModel(size_t index) const >> 212 { >> 213 return (index < emModels.size()) ? emModels[index] : nullptr; >> 214 } >> 215 >> 216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 217 >> 218 void G4VEmProcess::UpdateEmModel(const G4String& nam, >> 219 G4double emin, G4double emax) >> 220 { >> 221 modelManager->UpdateEmModel(nam, emin, emax); >> 222 } >> 223 >> 224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 225 >> 226 G4int G4VEmProcess::GetNumberOfModels() const >> 227 { >> 228 return modelManager->NumberOfModels(); >> 229 } >> 230 >> 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 232 >> 233 G4int G4VEmProcess::GetNumberOfRegionModels(size_t couple_index) const >> 234 { >> 235 return modelManager->NumberOfRegionModels(couple_index); >> 236 } >> 237 >> 238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 239 >> 240 G4VEmModel* G4VEmProcess::GetRegionModel(G4int idx, size_t couple_index) const >> 241 { >> 242 return modelManager->GetRegionModel(idx, couple_index); >> 243 } >> 244 >> 245 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 246 >> 247 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver) const >> 248 { >> 249 return modelManager->GetModel(idx, ver); 143 } 250 } 144 251 145 //....oooOO0OOooo........oooOO0OOooo........oo 252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 253 147 void G4VEmProcess::PreparePhysicsTable(const G 254 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 148 { 255 { 149 if(nullptr == particle) { SetParticle(&part) << 256 isTheMaster = lManager->IsMaster(); >> 257 >> 258 if(!particle) { SetParticle(&part); } 150 259 151 if(part.GetParticleType() == "nucleus" && 260 if(part.GetParticleType() == "nucleus" && 152 part.GetParticleSubType() == "generic") { 261 part.GetParticleSubType() == "generic") { 153 262 154 G4String pname = part.GetParticleName(); 263 G4String pname = part.GetParticleName(); 155 if(pname != "deuteron" && pname != "triton 264 if(pname != "deuteron" && pname != "triton" && 156 pname != "He3" && pname != "alpha" && p << 265 pname != "alpha" && pname != "He3" && 157 pname != "helium" && pname != "hydrogen << 266 pname != "alpha+" && pname != "helium" && >> 267 pname != "hydrogen") { 158 268 159 particle = G4GenericIon::GenericIon(); 269 particle = G4GenericIon::GenericIon(); 160 isIon = true; 270 isIon = true; 161 } 271 } 162 } 272 } >> 273 >> 274 if(1 < verboseLevel) { >> 275 G4cout << "G4VEmProcess::PreparePhysicsTable() for " >> 276 << GetProcessName() >> 277 << " and particle " << part.GetParticleName() >> 278 << " local particle " << particle->GetParticleName() >> 279 << G4endl; >> 280 } >> 281 163 if(particle != &part) { return; } 282 if(particle != &part) { return; } 164 283 165 lManager->PreparePhysicsTable(&part, this); << 284 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 166 285 167 // for new run << 286 lManager->PreparePhysicsTable(&part, this, isTheMaster); 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; << 170 fLambdaEnergy = 0.0; << 171 287 >> 288 Clear(); 172 InitialiseProcess(particle); 289 InitialiseProcess(particle); 173 290 174 G4LossTableBuilder* bld = lManager->GetTable << 175 const G4ProductionCutsTable* theCoupleTable= 291 const G4ProductionCutsTable* theCoupleTable= 176 G4ProductionCutsTable::GetProductionCutsTa 292 G4ProductionCutsTable::GetProductionCutsTable(); 177 theCutsGamma = theCoupleTable->GetEnergyC << 293 size_t n = theCoupleTable->GetTableSize(); 178 theCutsElectron = theCoupleTable->GetEnergyC << 294 179 theCutsPositron = theCoupleTable->GetEnergyC << 295 theEnergyOfCrossSectionMax.resize(n, 0.0); >> 296 theCrossSectionMax.resize(n, DBL_MAX); 180 297 181 // initialisation of the process 298 // initialisation of the process 182 if(!actMinKinEnergy) { minKinEnergy = thePar 299 if(!actMinKinEnergy) { minKinEnergy = theParameters->MinKinEnergy(); } 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar 300 if(!actMaxKinEnergy) { maxKinEnergy = theParameters->MaxKinEnergy(); } >> 301 if(!actSpline) { splineFlag = theParameters->Spline(); } 184 302 185 applyCuts = theParameters->ApplyCuts() << 303 if(isTheMaster) { 186 lambdaFactor = theParameters->LambdaFacto << 304 SetVerboseLevel(theParameters->Verbose()); 187 invLambdaFactor = 1.0/lambdaFactor; << 305 if(!theData) { theData = new G4EmDataHandler(2); } >> 306 } else { >> 307 SetVerboseLevel(theParameters->WorkerVerbose()); >> 308 } >> 309 applyCuts = theParameters->ApplyCuts(); >> 310 lambdaFactor = theParameters->LambdaFactor(); 188 theParameters->DefineRegParamForEM(this); 311 theParameters->DefineRegParamForEM(this); 189 312 190 // integral option may be disabled << 313 // initialisation of models 191 if(!theParameters->Integral()) { fXSType = f << 314 numberOfModels = modelManager->NumberOfModels(); 192 << 315 for(G4int i=0; i<numberOfModels; ++i) { 193 // prepare tables << 316 G4VEmModel* mod = modelManager->GetModel(i); 194 if(isTheMaster) { << 317 if(0 == i) { currentModel = mod; } 195 if(nullptr == theData) { theData = new G4E << 318 mod->SetPolarAngleLimit(theParameters->MscThetaLimit()); 196 << 319 mod->SetMasterThread(isTheMaster); 197 if(buildLambdaTable) { << 320 if(mod->HighEnergyLimit() > maxKinEnergy) { 198 theLambdaTable = theData->MakeTable(0); << 321 mod->SetHighEnergyLimit(maxKinEnergy); 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } << 201 // high energy table << 202 if(minKinEnergyPrim < maxKinEnergy) { << 203 theLambdaTablePrim = theData->MakeTable( << 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } 322 } 206 } 323 } 207 // models << 324 208 baseMat = bld->GetBaseMaterialFlag(); << 325 if(lManager->AtomDeexcitation()) { modelManager->SetFluoFlag(true); } 209 numberOfModels = modelManager->NumberOfModel << 326 theCuts = modelManager->Initialise(particle,secondaryParticle, 210 currentModel = modelManager->GetModel(0); << 327 2.,verboseLevel); 211 if(nullptr != lManager->AtomDeexcitation()) << 328 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); 212 modelManager->SetFluoFlag(true); << 329 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 330 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 331 >> 332 // prepare tables >> 333 if(buildLambdaTable && isTheMaster){ >> 334 theLambdaTable = theData->MakeTable(0); >> 335 bld->InitialiseBaseMaterials(theLambdaTable); >> 336 } >> 337 // high energy table >> 338 if(isTheMaster && minKinEnergyPrim < maxKinEnergy){ >> 339 theLambdaTablePrim = theData->MakeTable(1); >> 340 bld->InitialiseBaseMaterials(theLambdaTablePrim); 213 } 341 } 214 // forced biasing 342 // forced biasing 215 if(nullptr != biasManager) { << 343 if(biasManager) { 216 biasManager->Initialise(part, GetProcessNa << 344 biasManager->Initialise(part,GetProcessName(),verboseLevel); 217 biasFlag = false; << 345 biasFlag = false; 218 } << 346 } 219 << 347 // defined ID of secondary particles 220 theCuts = << 348 G4String nam1 = GetProcessName(); 221 G4EmTableUtil::PrepareEmProcess(this, part << 349 secID = G4PhysicsModelCatalog::Register(nam1); 222 modelManag << 350 if(100 > mainSecondaries) { 223 secID, tri << 351 G4String nam2 = nam1 + "_fluo" ; 224 verboseLev << 352 G4String nam3 = nam1 + "_auger"; >> 353 G4String nam4 = nam1 + "_split"; >> 354 fluoID = G4PhysicsModelCatalog::Register(nam2); >> 355 augerID = G4PhysicsModelCatalog::Register(nam3); >> 356 biasID = G4PhysicsModelCatalog::Register(nam4); >> 357 } 225 } 358 } 226 359 227 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 361 229 void G4VEmProcess::BuildPhysicsTable(const G4P 362 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 363 { 231 if(nullptr == masterProc) { << 364 if(!masterProc) { 232 if(isTheMaster) { masterProc = this; } 365 if(isTheMaster) { masterProc = this; } 233 else { masterProc = static_cast<const G4VE 366 else { masterProc = static_cast<const G4VEmProcess*>(GetMasterProcess());} 234 } 367 } 235 G4int nModels = modelManager->NumberOfModels << 368 236 G4bool isLocked = theParameters->IsPrintLock << 369 G4String num = part.GetParticleName(); 237 G4bool toBuild = (buildLambdaTable || minKin << 370 if(1 < verboseLevel) { 238 << 371 G4cout << "### G4VEmProcess::BuildPhysicsTable() for " 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 372 << GetProcessName() 240 nModels, verbo << 373 << " and particle " << num 241 isLocked, toBu << 374 << " buildLambdaTable= " << buildLambdaTable >> 375 << " isTheMaster= " << isTheMaster >> 376 << " " << masterProc >> 377 << G4endl; >> 378 } >> 379 >> 380 if(particle == &part) { >> 381 >> 382 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 383 >> 384 // worker initialisation >> 385 if(!isTheMaster) { >> 386 theLambdaTable = masterProc->LambdaTable(); >> 387 theLambdaTablePrim = masterProc->LambdaTablePrim(); >> 388 >> 389 if(theLambdaTable) { >> 390 bld->InitialiseBaseMaterials(theLambdaTable); >> 391 } else if(theLambdaTablePrim) { >> 392 bld->InitialiseBaseMaterials(theLambdaTablePrim); >> 393 } >> 394 theDensityFactor = bld->GetDensityFactors(); >> 395 theDensityIdx = bld->GetCoupleIndexes(); >> 396 if(theLambdaTable) { FindLambdaMax(); } >> 397 >> 398 // local initialisation of models >> 399 G4bool printing = true; >> 400 numberOfModels = modelManager->NumberOfModels(); >> 401 for(G4int i=0; i<numberOfModels; ++i) { >> 402 G4VEmModel* mod = GetModelByIndex(i, printing); >> 403 G4VEmModel* mod0= masterProc->GetModelByIndex(i, printing); >> 404 //G4cout << i << ". " << mod << " " << mod0 << " " >> 405 // << particle->GetParticleName() << G4endl; >> 406 mod->InitialiseLocal(particle, mod0); >> 407 } >> 408 // master thread >> 409 } else { >> 410 theDensityFactor = bld->GetDensityFactors(); >> 411 theDensityIdx = bld->GetCoupleIndexes(); >> 412 if(buildLambdaTable || minKinEnergyPrim < maxKinEnergy) { >> 413 BuildLambdaTable(); >> 414 } >> 415 } >> 416 } >> 417 >> 418 // explicitly defined printout by particle name >> 419 if(1 < verboseLevel || >> 420 (0 < verboseLevel && (num == "gamma" || num == "e-" || >> 421 num == "e+" || num == "mu+" || >> 422 num == "mu-" || num == "proton"|| >> 423 num == "pi+" || num == "pi-" || >> 424 num == "kaon+" || num == "kaon-" || >> 425 num == "alpha" || num == "anti_proton" || >> 426 num == "GenericIon"|| num == "alpha++" || >> 427 num == "alpha+" || num == "helium" || >> 428 num == "hydrogen"))) >> 429 { >> 430 StreamInfo(G4cout, part); >> 431 } >> 432 >> 433 if(1 < verboseLevel) { >> 434 G4cout << "### G4VEmProcess::BuildPhysicsTable() done for " >> 435 << GetProcessName() >> 436 << " and particle " << num >> 437 << G4endl; >> 438 } 242 } 439 } 243 440 244 //....oooOO0OOooo........oooOO0OOooo........oo 441 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 442 246 void G4VEmProcess::BuildLambdaTable() 443 void G4VEmProcess::BuildLambdaTable() 247 { 444 { >> 445 if(1 < verboseLevel) { >> 446 G4cout << "G4EmProcess::BuildLambdaTable() for process " >> 447 << GetProcessName() << " and particle " >> 448 << particle->GetParticleName() << " " << this >> 449 << G4endl; >> 450 } >> 451 >> 452 // Access to materials >> 453 const G4ProductionCutsTable* theCoupleTable= >> 454 G4ProductionCutsTable::GetProductionCutsTable(); >> 455 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 456 >> 457 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 458 >> 459 G4PhysicsLogVector* aVector = nullptr; >> 460 G4PhysicsLogVector* aVectorPrim = nullptr; >> 461 G4PhysicsLogVector* bVectorPrim = nullptr; >> 462 248 G4double scale = theParameters->MaxKinEnergy 463 G4double scale = theParameters->MaxKinEnergy()/theParameters->MinKinEnergy(); 249 G4int nbin = 464 G4int nbin = 250 theParameters->NumberOfBinsPerDecade()*G4l 465 theParameters->NumberOfBinsPerDecade()*G4lrint(std::log10(scale)); >> 466 scale = G4Log(scale); 251 if(actBinning) { nbin = std::max(nbin, nLamb 467 if(actBinning) { nbin = std::max(nbin, nLambdaBins); } 252 scale = nbin/G4Log(scale); << 468 G4double emax1 = std::min(maxKinEnergy, minKinEnergyPrim); 253 << 469 254 G4LossTableBuilder* bld = lManager->GetTable << 470 for(size_t i=0; i<numOfCouples; ++i) { 255 G4EmTableUtil::BuildLambdaTable(this, partic << 471 256 bld, theLamb << 472 if (bld->GetFlag(i)) { 257 minKinEnergy << 473 258 maxKinEnergy << 474 // create physics vector and fill it 259 startFromNul << 475 const G4MaterialCutsCouple* couple = >> 476 theCoupleTable->GetMaterialCutsCouple(i); >> 477 >> 478 // build main table >> 479 if(buildLambdaTable) { >> 480 delete (*theLambdaTable)[i]; >> 481 >> 482 // if start from zero then change the scale >> 483 G4double emin = minKinEnergy; >> 484 G4bool startNull = false; >> 485 if(startFromNull) { >> 486 G4double e = MinPrimaryEnergy(particle,couple->GetMaterial()); >> 487 if(e >= emin) { >> 488 emin = e; >> 489 startNull = true; >> 490 } >> 491 } >> 492 G4double emax = emax1; >> 493 if(emax <= emin) { emax = 2*emin; } >> 494 G4int bin = G4lrint(nbin*G4Log(emax/emin)/scale); >> 495 if(bin < 3) { bin = 3; } >> 496 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 497 aVector->SetSpline(splineFlag); >> 498 modelManager->FillLambdaVector(aVector, couple, startNull); >> 499 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 500 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 501 } >> 502 // build high energy table >> 503 if(minKinEnergyPrim < maxKinEnergy) { >> 504 delete (*theLambdaTablePrim)[i]; >> 505 >> 506 // start not from zero >> 507 if(!bVectorPrim) { >> 508 G4int bin = G4lrint(nbin*G4Log(maxKinEnergy/minKinEnergyPrim)/scale); >> 509 if(bin < 3) { bin = 3; } >> 510 aVectorPrim = >> 511 new G4PhysicsLogVector(minKinEnergyPrim, maxKinEnergy, bin); >> 512 bVectorPrim = aVectorPrim; >> 513 } else { >> 514 aVectorPrim = new G4PhysicsLogVector(*bVectorPrim); >> 515 } >> 516 // always use spline >> 517 aVectorPrim->SetSpline(splineFlag); >> 518 modelManager->FillLambdaVector(aVectorPrim, couple, false, >> 519 fIsCrossSectionPrim); >> 520 aVectorPrim->FillSecondDerivatives(); >> 521 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTablePrim, i, >> 522 aVectorPrim); >> 523 } >> 524 } >> 525 } >> 526 >> 527 if(buildLambdaTable) { FindLambdaMax(); } >> 528 >> 529 if(1 < verboseLevel) { >> 530 G4cout << "Lambda table is built for " >> 531 << particle->GetParticleName() >> 532 << G4endl; >> 533 } 260 } 534 } 261 535 262 //....oooOO0OOooo........oooOO0OOooo........oo 536 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 537 264 void G4VEmProcess::StreamInfo(std::ostream& ou 538 void G4VEmProcess::StreamInfo(std::ostream& out, 265 const G4ParticleDefinition& 539 const G4ParticleDefinition& part, G4bool rst) const 266 { 540 { 267 G4String indent = (rst ? " " : ""); 541 G4String indent = (rst ? " " : ""); 268 out << std::setprecision(6); 542 out << std::setprecision(6); 269 out << G4endl << indent << GetProcessName() 543 out << G4endl << indent << GetProcessName() << ": "; 270 if (!rst) { 544 if (!rst) { 271 out << " for " << part.GetParticleName(); 545 out << " for " << part.GetParticleName(); >> 546 if (integral) { out << ","; } 272 } 547 } 273 if(fXSType != fEmNoIntegral) { out << " XSt << 548 if(integral) { out << " integral:1 "; } 274 if(applyCuts) { out << " applyCuts:1 "; } 549 if(applyCuts) { out << " applyCuts:1 "; } 275 G4int subtype = GetProcessSubType(); << 550 out << " SubType=" << GetProcessSubType(); 276 out << " SubType=" << subtype; << 551 if(biasFactor != 1.0) { out << " BiasingFactor= " << biasFactor; } 277 if (subtype == fAnnihilation) { << 278 G4int mod = theParameters->PositronAtRestM << 279 const G4String namp[2] = {"Simple", "Allis << 280 out << " AtRestModel:" << namp[mod]; << 281 } << 282 if(biasFactor != 1.0) { out << " BiasingFac << 283 out << " BuildTable=" << buildLambdaTable << 552 out << " BuildTable=" << buildLambdaTable << G4endl; 284 if(buildLambdaTable) { 553 if(buildLambdaTable) { 285 if(particle == &part) { 554 if(particle == &part) { 286 for(auto & v : *theLambdaTable) { << 555 size_t length = theLambdaTable->length(); 287 if(nullptr != v) { << 556 for(size_t i=0; i<length; ++i) { >> 557 G4PhysicsVector* v = (*theLambdaTable)[i]; >> 558 if(v) { 288 out << " Lambda table from "; 559 out << " Lambda table from "; 289 G4double emin = v->Energy(0); 560 G4double emin = v->Energy(0); 290 G4double emax = v->GetMaxEnergy(); 561 G4double emax = v->GetMaxEnergy(); 291 G4int nbin = G4int(v->GetVectorLengt << 562 G4int nbin = v->GetVectorLength() - 1; 292 if(emin > minKinEnergy) { out << "th 563 if(emin > minKinEnergy) { out << "threshold "; } 293 else { out << G4BestUnit(emin,"Energ 564 else { out << G4BestUnit(emin,"Energy"); } 294 out << " to " 565 out << " to " 295 << G4BestUnit(emax,"Energy") 566 << G4BestUnit(emax,"Energy") 296 << ", " << G4lrint(nbin/std::log 567 << ", " << G4lrint(nbin/std::log10(emax/emin)) 297 << " bins/decade, spline: " 568 << " bins/decade, spline: " 298 << splineFlag << G4endl; 569 << splineFlag << G4endl; 299 break; 570 break; 300 } 571 } 301 } 572 } 302 } else { 573 } else { 303 out << " Used Lambda table of " 574 out << " Used Lambda table of " 304 << particle->GetParticleName() << G4endl 575 << particle->GetParticleName() << G4endl; 305 } 576 } 306 } 577 } 307 if(minKinEnergyPrim < maxKinEnergy) { 578 if(minKinEnergyPrim < maxKinEnergy) { 308 if(particle == &part) { << 579 if(particle == &part) { 309 for(auto & v : *theLambdaTablePrim) { << 580 size_t length = theLambdaTablePrim->length(); 310 if(nullptr != v) { << 581 for(size_t i=0; i<length; ++i) { >> 582 G4PhysicsVector* v = (*theLambdaTablePrim)[i]; >> 583 if(v) { 311 out << " LambdaPrime table from 584 out << " LambdaPrime table from " 312 << G4BestUnit(v->Energy(0),"Ener 585 << G4BestUnit(v->Energy(0),"Energy") 313 << " to " 586 << " to " 314 << G4BestUnit(v->GetMaxEnergy(), 587 << G4BestUnit(v->GetMaxEnergy(),"Energy") 315 << " in " << v->GetVectorLength( 588 << " in " << v->GetVectorLength()-1 316 << " bins " << G4endl; 589 << " bins " << G4endl; 317 break; 590 break; 318 } 591 } 319 } 592 } 320 } else { 593 } else { 321 out << " Used LambdaPrime table of 594 out << " Used LambdaPrime table of " 322 << particle->GetParticleName() 595 << particle->GetParticleName() << G4endl; 323 } 596 } 324 } 597 } 325 StreamProcessInfo(out); 598 StreamProcessInfo(out); 326 modelManager->DumpModelList(out, verboseLeve 599 modelManager->DumpModelList(out, verboseLevel); 327 600 328 if(verboseLevel > 2 && buildLambdaTable) { 601 if(verboseLevel > 2 && buildLambdaTable) { 329 out << " LambdaTable address= " << th 602 out << " LambdaTable address= " << theLambdaTable << G4endl; 330 if(theLambdaTable && particle == &part) { 603 if(theLambdaTable && particle == &part) { 331 out << (*theLambdaTable) << G4endl; 604 out << (*theLambdaTable) << G4endl; 332 } 605 } 333 } 606 } 334 } 607 } 335 608 336 //....oooOO0OOooo........oooOO0OOooo........oo 609 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 610 338 void G4VEmProcess::StartTracking(G4Track* trac 611 void G4VEmProcess::StartTracking(G4Track* track) 339 { 612 { 340 // reset parameters for the new track 613 // reset parameters for the new track 341 currentParticle = track->GetParticleDefiniti 614 currentParticle = track->GetParticleDefinition(); 342 theNumberOfInteractionLengthLeft = -1.0; 615 theNumberOfInteractionLengthLeft = -1.0; 343 mfpKinEnergy = DBL_MAX; << 616 mfpKinEnergy = DBL_MAX; 344 preStepLambda = 0.0; << 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre 617 if(isIon) { massRatio = proton_mass_c2/currentParticle->GetPDGMass(); } 347 618 348 // forced biasing only for primary particles 619 // forced biasing only for primary particles 349 if(biasManager) { 620 if(biasManager) { 350 if(0 == track->GetParentID()) { 621 if(0 == track->GetParentID()) { 351 // primary particle 622 // primary particle 352 biasFlag = true; 623 biasFlag = true; 353 biasManager->ResetForcedInteraction(); 624 biasManager->ResetForcedInteraction(); 354 } 625 } 355 } 626 } 356 } 627 } 357 628 358 //....oooOO0OOooo........oooOO0OOooo........oo 629 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 630 360 G4double G4VEmProcess::PostStepGetPhysicalInte 631 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 632 const G4Track& track, 362 G4double previo 633 G4double previousStepSize, 363 G4ForceCondition* 634 G4ForceCondition* condition) 364 { 635 { 365 *condition = NotForced; 636 *condition = NotForced; 366 G4double x = DBL_MAX; 637 G4double x = DBL_MAX; 367 638 368 DefineMaterial(track.GetMaterialCutsCouple() 639 DefineMaterial(track.GetMaterialCutsCouple()); 369 preStepKinEnergy = track.GetKineticEnergy(); 640 preStepKinEnergy = track.GetKineticEnergy(); 370 const G4double scaledEnergy = preStepKinEner << 641 G4double scaledEnergy = preStepKinEnergy*massRatio; 371 SelectModel(scaledEnergy, currentCoupleIndex 642 SelectModel(scaledEnergy, currentCoupleIndex); 372 /* << 643 373 G4cout << "PostStepGetPhysicalInteractionLen << 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { 644 if(!currentModel->IsActive(scaledEnergy)) { 377 theNumberOfInteractionLengthLeft = -1.0; 645 theNumberOfInteractionLengthLeft = -1.0; 378 currentInteractionLength = DBL_MAX; 646 currentInteractionLength = DBL_MAX; 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; 647 return x; 382 } 648 } 383 649 384 // forced biasing only for primary particles 650 // forced biasing only for primary particles 385 if(biasManager) { 651 if(biasManager) { 386 if(0 == track.GetParentID()) { 652 if(0 == track.GetParentID()) { 387 if(biasFlag && 653 if(biasFlag && 388 biasManager->ForcedInteractionRegion( << 654 biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 389 return biasManager->GetStepLimit((G4in << 655 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); 390 } 656 } 391 } 657 } 392 } 658 } 393 659 394 // compute mean free path 660 // compute mean free path >> 661 if(preStepKinEnergy < mfpKinEnergy) { >> 662 if (integral) { ComputeIntegralLambda(preStepKinEnergy); } >> 663 else { preStepLambda = GetCurrentLambda(preStepKinEnergy); } >> 664 >> 665 // zero cross section >> 666 if(preStepLambda <= 0.0) { >> 667 theNumberOfInteractionLengthLeft = -1.0; >> 668 currentInteractionLength = DBL_MAX; >> 669 } >> 670 } 395 671 396 ComputeIntegralLambda(preStepKinEnergy, trac << 672 // non-zero cross section 397 << 673 if(preStepLambda > 0.0) { 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 674 403 } else { << 404 << 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 675 if (theNumberOfInteractionLengthLeft < 0.0) { 407 676 408 // beggining of tracking (or just after 677 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 678 theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() ); 410 theInitialNumberOfInteractionLength = th 679 theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 411 680 412 } else { << 681 } else if(currentInteractionLength < DBL_MAX) { 413 682 414 theNumberOfInteractionLengthLeft -= 683 theNumberOfInteractionLengthLeft -= 415 previousStepSize/currentInteractionLen 684 previousStepSize/currentInteractionLength; 416 theNumberOfInteractionLengthLeft = 685 theNumberOfInteractionLengthLeft = 417 std::max(theNumberOfInteractionLengthL 686 std::max(theNumberOfInteractionLengthLeft, 0.0); 418 } 687 } 419 688 420 // new mean free path and step limit for t 689 // new mean free path and step limit for the next step 421 currentInteractionLength = 1.0/preStepLamb 690 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 691 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 423 } 692 } 424 return x; 693 return x; 425 } 694 } 426 695 427 //....oooOO0OOooo........oooOO0OOooo........oo 696 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 428 697 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 698 void G4VEmProcess::ComputeIntegralLambda(G4double e) 430 { 699 { 431 if (fXSType == fEmNoIntegral) { << 700 // condition to skip recomputation of cross section 432 preStepLambda = GetCurrentLambda(e, LogEki << 701 G4double epeak = theEnergyOfCrossSectionMax[currentCoupleIndex]; >> 702 if(e <= epeak && e/lambdaFactor >= mfpKinEnergy) { return; } >> 703 >> 704 // recomputation is needed >> 705 if (e <= epeak) { >> 706 preStepLambda = GetCurrentLambda(e); >> 707 mfpKinEnergy = e; 433 708 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } << 459 } else { 709 } else { 460 preStepLambda = GetCurrentLambda(e, LogEki << 710 G4double e1 = e*lambdaFactor; >> 711 if(e1 > epeak) { >> 712 preStepLambda = GetCurrentLambda(e); >> 713 mfpKinEnergy = e; >> 714 G4double preStepLambda1 = GetCurrentLambda(e1); >> 715 if(preStepLambda1 > preStepLambda) { >> 716 mfpKinEnergy = e1; >> 717 preStepLambda = preStepLambda1; >> 718 } >> 719 } else { >> 720 preStepLambda = fFactor*theCrossSectionMax[currentCoupleIndex]; >> 721 mfpKinEnergy = epeak; >> 722 } 461 } 723 } 462 } 724 } 463 725 464 //....oooOO0OOooo........oooOO0OOooo........oo 726 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 727 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 728 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 729 const G4Step& step) 468 { 730 { 469 // clear number of interaction lengths in an << 731 // In all cases clear number of interaction lengths 470 theNumberOfInteractionLengthLeft = -1.0; 732 theNumberOfInteractionLengthLeft = -1.0; 471 mfpKinEnergy = DBL_MAX; << 733 mfpKinEnergy = DBL_MAX; 472 734 473 fParticleChange.InitializeForPostStep(track) 735 fParticleChange.InitializeForPostStep(track); 474 736 475 // Do not make anything if particle is stopp 737 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 738 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) 739 if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; } 478 740 479 const G4double finalT = track.GetKineticEner << 741 G4double finalT = track.GetKineticEnergy(); 480 742 481 // forced process - should happen only once 743 // forced process - should happen only once per track 482 if(biasFlag) { 744 if(biasFlag) { 483 if(biasManager->ForcedInteractionRegion((G << 745 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 484 biasFlag = false; 746 biasFlag = false; 485 } 747 } 486 } 748 } 487 749 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 << 493 // Integral approach 750 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 751 if (integral) { 495 const G4double logFinalT = << 752 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 753 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 498 #ifdef G4VERBOSE << 499 if(preStepLambda < lx && 1 < verboseLevel) << 500 G4cout << "WARNING: for " << currentPart 754 G4cout << "WARNING: for " << currentParticle->GetParticleName() 501 << " and " << GetProcessName() << << 755 << " and " << GetProcessName() 502 << " preLambda= " << preStepLambd << 756 << " E(MeV)= " << finalT/MeV 503 << " < " << lx << " (postLambda) << 757 << " preLambda= " << preStepLambda << " < " 504 } << 758 << lx << " (postLambda) " 505 #endif << 759 << G4endl; 506 // if false interaction then use new cross << 760 } 507 // if both values are zero - no interactio << 761 508 if(preStepLambda*G4UniformRand() >= lx) { << 762 if(preStepLambda*G4UniformRand() > lx) { >> 763 ClearNumberOfInteractionLengthLeft(); 509 return &fParticleChange; 764 return &fParticleChange; 510 } 765 } 511 } 766 } 512 767 >> 768 G4double scaledEnergy = finalT*massRatio; >> 769 SelectModel(scaledEnergy, currentCoupleIndex); >> 770 if(!currentModel->IsActive(scaledEnergy)) { return &fParticleChange; } >> 771 513 // define new weight for primary and seconda 772 // define new weight for primary and secondaries 514 G4double weight = fParticleChange.GetParentW 773 G4double weight = fParticleChange.GetParentWeight(); 515 if(weightFlag) { 774 if(weightFlag) { 516 weight /= biasFactor; 775 weight /= biasFactor; 517 fParticleChange.ProposeWeight(weight); 776 fParticleChange.ProposeWeight(weight); 518 } 777 } 519 778 520 #ifdef G4VERBOSE << 779 /* 521 if(1 < verboseLevel) { << 780 if(0 < verboseLevel) { 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 781 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 782 << finalT/MeV 524 << " MeV; model= (" << currentModel 783 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 784 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 785 << G4endl; 527 } 786 } 528 #endif << 787 */ 529 788 530 // sample secondaries 789 // sample secondaries 531 secParticles.clear(); 790 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 791 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl 792 currentCouple, 534 track.GetDyn 793 track.GetDynamicParticle(), 535 (*theCuts)[c 794 (*theCuts)[currentCoupleIndex]); 536 795 537 G4int num0 = (G4int)secParticles.size(); << 796 G4int num0 = secParticles.size(); 538 797 539 // splitting or Russian roulette 798 // splitting or Russian roulette 540 if(biasManager) { 799 if(biasManager) { 541 if(biasManager->SecondaryBiasingRegion((G4 << 800 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 542 G4double eloss = 0.0; 801 G4double eloss = 0.0; 543 weight *= biasManager->ApplySecondaryBia 802 weight *= biasManager->ApplySecondaryBiasing( 544 secParticles, track, currentModel, &fP 803 secParticles, track, currentModel, &fParticleChange, eloss, 545 (G4int)currentCoupleIndex, (*theCuts)[ << 804 currentCoupleIndex, (*theCuts)[currentCoupleIndex], 546 step.GetPostStepPoint()->GetSafety()); 805 step.GetPostStepPoint()->GetSafety()); 547 if(eloss > 0.0) { 806 if(eloss > 0.0) { 548 eloss += fParticleChange.GetLocalEnerg 807 eloss += fParticleChange.GetLocalEnergyDeposit(); 549 fParticleChange.ProposeLocalEnergyDepo 808 fParticleChange.ProposeLocalEnergyDeposit(eloss); 550 } 809 } 551 } 810 } 552 } 811 } 553 812 554 // save secondaries 813 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 814 G4int num = secParticles.size(); 556 if(num > 0) { 815 if(num > 0) { 557 816 558 fParticleChange.SetNumberOfSecondaries(num 817 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 818 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); 819 G4double time = track.GetGlobalTime(); 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 820 567 for (G4int i=0; i<num; ++i) { 821 for (G4int i=0; i<num; ++i) { 568 G4DynamicParticle* dp = secParticles[i]; << 822 if (secParticles[i]) { 569 if (nullptr != dp) { << 823 G4DynamicParticle* dp = secParticles[i]; 570 const G4ParticleDefinition* p = dp->Ge 824 const G4ParticleDefinition* p = dp->GetParticleDefinition(); 571 G4double e = dp->GetKineticEnergy(); 825 G4double e = dp->GetKineticEnergy(); 572 G4bool good = true; 826 G4bool good = true; 573 if(applyCuts) { 827 if(applyCuts) { 574 if (p == theGamma) { 828 if (p == theGamma) { 575 if (e < (*theCutsGamma)[currentCou 829 if (e < (*theCutsGamma)[currentCoupleIndex]) { good = false; } 576 830 577 } else if (p == theElectron) { 831 } else if (p == theElectron) { 578 if (e < (*theCutsElectron)[current 832 if (e < (*theCutsElectron)[currentCoupleIndex]) { good = false; } 579 833 580 } else if (p == thePositron) { 834 } else if (p == thePositron) { 581 if (electron_mass_c2 < (*theCutsGa 835 if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] && 582 e < (*theCutsPositron)[current 836 e < (*theCutsPositron)[currentCoupleIndex]) { 583 good = false; 837 good = false; 584 e += 2.0*electron_mass_c2; 838 e += 2.0*electron_mass_c2; 585 } 839 } 586 } 840 } 587 // added secondary if it is good 841 // added secondary if it is good 588 } 842 } 589 if (good) { 843 if (good) { 590 G4Track* t = new G4Track(dp, time, t 844 G4Track* t = new G4Track(dp, time, track.GetPosition()); 591 t->SetTouchableHandle(track.GetTouch 845 t->SetTouchableHandle(track.GetTouchableHandle()); 592 if (biasManager) { 846 if (biasManager) { 593 t->SetWeight(weight * biasManager- 847 t->SetWeight(weight * biasManager->GetWeight(i)); 594 } else { 848 } else { 595 t->SetWeight(weight); 849 t->SetWeight(weight); 596 } 850 } 597 pParticleChange->AddSecondary(t); 851 pParticleChange->AddSecondary(t); 598 852 599 // define type of secondary 853 // define type of secondary 600 if(i < mainSecondaries) { << 854 if(i < mainSecondaries) { t->SetCreatorModelIndex(secID); } 601 t->SetCreatorModelID(secID); << 855 else if(i < num0) { 602 if(GetProcessSubType() == fCompton << 856 if(p == theGamma) { 603 t->SetCreatorModelID(_ComptonGam << 857 t->SetCreatorModelIndex(fluoID); 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { 858 } else { 617 t->SetCreatorModelID(biasID); << 859 t->SetCreatorModelIndex(augerID); 618 } 860 } >> 861 } else { >> 862 t->SetCreatorModelIndex(biasID); 619 } 863 } 620 /* 864 /* 621 G4cout << "Secondary(post step) has 865 G4cout << "Secondary(post step) has weight " << t->GetWeight() 622 << ", Ekin= " << t->GetKineti 866 << ", Ekin= " << t->GetKineticEnergy()/MeV << " MeV " 623 << GetProcessName() << " fluo 867 << GetProcessName() << " fluoID= " << fluoID 624 << " augerID= " << augerID << 868 << " augerID= " << augerID <<G4endl; 625 */ 869 */ 626 } else { 870 } else { 627 delete dp; 871 delete dp; 628 edep += e; 872 edep += e; 629 } 873 } 630 } 874 } 631 } 875 } 632 fParticleChange.ProposeLocalEnergyDeposit( 876 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 877 } 634 878 635 if(0.0 == fParticleChange.GetProposedKinetic 879 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 636 fAlive == fParticleChange.GetTrackStatus( 880 fAlive == fParticleChange.GetTrackStatus()) { 637 if(particle->GetProcessManager()->GetAtRes 881 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 638 { fParticleChange.ProposeTrackStatus( 882 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 639 else { fParticleChange.ProposeTrackStatus( 883 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 640 } 884 } 641 885 642 return &fParticleChange; 886 return &fParticleChange; 643 } 887 } 644 888 645 //....oooOO0OOooo........oooOO0OOooo........oo 889 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 890 647 G4bool G4VEmProcess::StorePhysicsTable(const G 891 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 648 const G 892 const G4String& directory, 649 G4bool 893 G4bool ascii) 650 { 894 { 651 if(!isTheMaster || part != particle) { retur << 895 G4bool yes = true; 652 if(G4EmTableUtil::StoreTable(this, part, the << 896 if(!isTheMaster) { return yes; } 653 directory, "Lambda", << 897 654 verboseLevel, a << 898 if ( theLambdaTable && part == particle) { 655 G4EmTableUtil::StoreTable(this, part, the << 899 const G4String& nam = 656 directory, "LambdaPrim", << 900 GetPhysicsTableFileName(part,directory,"Lambda",ascii); 657 verboseLevel, a << 901 yes = theLambdaTable->StorePhysicsTable(nam,ascii); 658 return true; << 902 >> 903 if ( yes ) { >> 904 G4cout << "Physics table is stored for " << particle->GetParticleName() >> 905 << " and process " << GetProcessName() >> 906 << " in the directory <" << directory >> 907 << "> " << G4endl; >> 908 } else { >> 909 G4cout << "Fail to store Physics Table for " >> 910 << particle->GetParticleName() >> 911 << " and process " << GetProcessName() >> 912 << " in the directory <" << directory >> 913 << "> " << G4endl; >> 914 } 659 } 915 } 660 return false; << 916 if ( theLambdaTablePrim && part == particle) { >> 917 const G4String& name = >> 918 GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 919 yes = theLambdaTablePrim->StorePhysicsTable(name,ascii); >> 920 >> 921 if ( yes ) { >> 922 G4cout << "Physics table prim is stored for " >> 923 << particle->GetParticleName() >> 924 << " and process " << GetProcessName() >> 925 << " in the directory <" << directory >> 926 << "> " << G4endl; >> 927 } else { >> 928 G4cout << "Fail to store Physics Table Prim for " >> 929 << particle->GetParticleName() >> 930 << " and process " << GetProcessName() >> 931 << " in the directory <" << directory >> 932 << "> " << G4endl; >> 933 } >> 934 } >> 935 return yes; 661 } 936 } 662 937 663 //....oooOO0OOooo........oooOO0OOooo........oo 938 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 664 939 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons 940 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 666 cons << 941 const G4String& directory, 667 G4bo 942 G4bool ascii) 668 { 943 { 669 if(!isTheMaster || part != particle) { retur << 944 if(1 < verboseLevel) { >> 945 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " >> 946 << part->GetParticleName() << " and process " >> 947 << GetProcessName() << G4endl; >> 948 } 670 G4bool yes = true; 949 G4bool yes = true; >> 950 >> 951 if((!buildLambdaTable && minKinEnergyPrim > maxKinEnergy) >> 952 || particle != part) { return yes; } >> 953 >> 954 const G4String particleName = part->GetParticleName(); >> 955 671 if(buildLambdaTable) { 956 if(buildLambdaTable) { 672 yes = G4EmTableUtil::RetrieveTable(this, p << 957 const G4String& filename = 673 "Lambda << 958 GetPhysicsTableFileName(part,directory,"Lambda",ascii); 674 ascii, << 959 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 675 } << 960 filename,ascii); 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 961 if ( yes ) { 677 yes = G4EmTableUtil::RetrieveTable(this, p << 962 if (0 < verboseLevel) { 678 "Lambda << 963 G4cout << "Lambda table for " << particleName 679 ascii, << 964 << " is Retrieved from <" >> 965 << filename << ">" >> 966 << G4endl; >> 967 } >> 968 if(theParameters->Spline()) { >> 969 size_t n = theLambdaTable->length(); >> 970 for(size_t i=0; i<n; ++i) { >> 971 if((* theLambdaTable)[i]) { >> 972 (* theLambdaTable)[i]->SetSpline(true); >> 973 } >> 974 } >> 975 } >> 976 } else { >> 977 if (1 < verboseLevel) { >> 978 G4cout << "Lambda table for " << particleName << " in file <" >> 979 << filename << "> is not exist" >> 980 << G4endl; >> 981 } >> 982 } >> 983 } >> 984 if(minKinEnergyPrim < maxKinEnergy) { >> 985 const G4String& filename = >> 986 GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 987 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTablePrim, >> 988 filename,ascii); >> 989 if ( yes ) { >> 990 if (0 < verboseLevel) { >> 991 G4cout << "Lambda table prim for " << particleName >> 992 << " is Retrieved from <" >> 993 << filename << ">" >> 994 << G4endl; >> 995 } >> 996 if(theParameters->Spline()) { >> 997 size_t n = theLambdaTablePrim->length(); >> 998 for(size_t i=0; i<n; ++i) { >> 999 if((* theLambdaTablePrim)[i]) { >> 1000 (* theLambdaTablePrim)[i]->SetSpline(true); >> 1001 } >> 1002 } >> 1003 } >> 1004 } else { >> 1005 if (1 < verboseLevel) { >> 1006 G4cout << "Lambda table prim for " << particleName << " in file <" >> 1007 << filename << "> is not exist" >> 1008 << G4endl; >> 1009 } >> 1010 } 680 } 1011 } 681 return yes; 1012 return yes; 682 } 1013 } 683 1014 684 //....oooOO0OOooo........oooOO0OOooo........oo 1015 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 685 1016 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 1017 G4double 687 const G << 1018 G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, >> 1019 const G4MaterialCutsCouple* couple) 688 { 1020 { 689 CurrentSetup(couple, kinEnergy); << 1021 // Cross section per atom is calculated 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 1022 DefineMaterial(couple); >> 1023 G4double cross = 0.0; >> 1024 if(buildLambdaTable) { >> 1025 cross = GetCurrentLambda(kineticEnergy); >> 1026 } else { >> 1027 SelectModel(kineticEnergy, currentCoupleIndex); >> 1028 if(currentModel) { >> 1029 cross = fFactor*currentModel->CrossSectionPerVolume(currentMaterial, >> 1030 currentParticle, >> 1031 kineticEnergy); >> 1032 } >> 1033 } >> 1034 return std::max(cross, 0.0); 691 } 1035 } 692 1036 693 //....oooOO0OOooo........oooOO0OOooo........oo 1037 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 1038 695 G4double G4VEmProcess::GetMeanFreePath(const G 1039 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 696 G4doubl 1040 G4double, 697 G4Force 1041 G4ForceCondition* condition) 698 { 1042 { 699 *condition = NotForced; 1043 *condition = NotForced; 700 return G4VEmProcess::MeanFreePath(track); 1044 return G4VEmProcess::MeanFreePath(track); 701 } 1045 } 702 1046 703 //....oooOO0OOooo........oooOO0OOooo........oo 1047 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 1048 >> 1049 G4double G4VEmProcess::MeanFreePath(const G4Track& track) >> 1050 { >> 1051 G4double kinEnergy = track.GetKineticEnergy(); >> 1052 CurrentSetup(track.GetMaterialCutsCouple(), kinEnergy); >> 1053 G4double xs = GetCurrentLambda(kinEnergy); >> 1054 return (0.0 < xs) ? 1.0/xs : DBL_MAX; >> 1055 } >> 1056 >> 1057 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1058 705 G4double 1059 G4double 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou 1060 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kinEnergy, 707 G4dou 1061 G4double Z, G4double A, G4double cut) 708 { 1062 { 709 SelectModel(kinEnergy, currentCoupleIndex); 1063 SelectModel(kinEnergy, currentCoupleIndex); 710 return (currentModel) ? 1064 return (currentModel) ? 711 currentModel->ComputeCrossSectionPerAtom(c 1065 currentModel->ComputeCrossSectionPerAtom(currentParticle, kinEnergy, 712 Z 1066 Z, A, cut) : 0.0; 713 } 1067 } 714 1068 715 //....oooOO0OOooo........oooOO0OOooo........oo 1069 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 1070 717 G4PhysicsVector* << 1071 void G4VEmProcess::FindLambdaMax() 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 719 { << 720 DefineMaterial(couple); << 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 722 << 723 return newv; << 724 } << 725 << 726 //....oooOO0OOooo........oooOO0OOooo........oo << 727 << 728 const G4Element* G4VEmProcess::GetCurrentEleme << 729 { 1072 { 730 return (nullptr != currentModel) ? << 1073 if(1 < verboseLevel) { 731 currentModel->GetCurrentElement(currentMat << 1074 G4cout << "### G4VEmProcess::FindLambdaMax: " >> 1075 << particle->GetParticleName() >> 1076 << " and process " << GetProcessName() << " " << G4endl; >> 1077 } >> 1078 size_t n = theLambdaTable->length(); >> 1079 G4PhysicsVector* pv; >> 1080 G4double e, ss, emax, smax; >> 1081 >> 1082 size_t i; >> 1083 >> 1084 // first loop on existing vectors >> 1085 for (i=0; i<n; ++i) { >> 1086 pv = (*theLambdaTable)[i]; >> 1087 if(pv) { >> 1088 size_t nb = pv->GetVectorLength(); >> 1089 emax = DBL_MAX; >> 1090 smax = 0.0; >> 1091 if(nb > 0) { >> 1092 for (size_t j=0; j<nb; ++j) { >> 1093 e = pv->Energy(j); >> 1094 ss = (*pv)(j); >> 1095 if(ss > smax) { >> 1096 smax = ss; >> 1097 emax = e; >> 1098 } >> 1099 } >> 1100 } >> 1101 theEnergyOfCrossSectionMax[i] = emax; >> 1102 theCrossSectionMax[i] = smax; >> 1103 if(1 < verboseLevel) { >> 1104 G4cout << "For " << particle->GetParticleName() >> 1105 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 1106 << " lambda= " << smax << G4endl; >> 1107 } >> 1108 } >> 1109 } >> 1110 // second loop using base materials >> 1111 for (i=0; i<n; ++i) { >> 1112 pv = (*theLambdaTable)[i]; >> 1113 if(!pv){ >> 1114 G4int j = (*theDensityIdx)[i]; >> 1115 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 1116 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 1117 } >> 1118 } 732 } 1119 } 733 1120 734 //....oooOO0OOooo........oooOO0OOooo........oo 1121 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 1122 736 const G4Element* G4VEmProcess::GetTargetElemen << 1123 G4PhysicsVector* >> 1124 G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 737 { 1125 { 738 return (nullptr != currentModel) ? << 1126 G4PhysicsVector* v = 739 currentModel->GetCurrentElement(currentMat << 1127 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 1128 v->SetSpline(theParameters->Spline()); >> 1129 return v; 740 } 1130 } 741 1131 742 //....oooOO0OOooo........oooOO0OOooo........oo 1132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 1133 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 1134 const G4Element* G4VEmProcess::GetCurrentElement() const 745 { 1135 { 746 return (nullptr != currentModel) ? << 1136 const G4Element* elm = 747 currentModel->GetCurrentIsotope(GetCurrent << 1137 (currentModel) ? currentModel->GetCurrentElement() : nullptr; >> 1138 return elm; 748 } 1139 } 749 1140 750 //....oooOO0OOooo........oooOO0OOooo........oo 1141 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 1142 752 void G4VEmProcess::SetCrossSectionBiasingFacto 1143 void G4VEmProcess::SetCrossSectionBiasingFactor(G4double f, G4bool flag) 753 { 1144 { 754 if(f > 0.0) { 1145 if(f > 0.0) { 755 biasFactor = f; 1146 biasFactor = f; 756 weightFlag = flag; 1147 weightFlag = flag; 757 if(1 < verboseLevel) { 1148 if(1 < verboseLevel) { 758 G4cout << "### SetCrossSectionBiasingFac 1149 G4cout << "### SetCrossSectionBiasingFactor: for " 759 << particle->GetParticleName() 1150 << particle->GetParticleName() 760 << " and process " << GetProcessN 1151 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig 1152 << " biasFactor= " << f << " weightFlag= " << flag 762 << G4endl; 1153 << G4endl; 763 } 1154 } 764 } 1155 } 765 } 1156 } 766 1157 767 //....oooOO0OOooo........oooOO0OOooo........oo 1158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 1159 769 void 1160 void 770 G4VEmProcess::ActivateForcedInteraction(G4doub 1161 G4VEmProcess::ActivateForcedInteraction(G4double length, const G4String& r, 771 G4bool 1162 G4bool flag) 772 { 1163 { 773 if(nullptr == biasManager) { biasManager = n << 1164 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 774 if(1 < verboseLevel) { 1165 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: 1166 G4cout << "### ActivateForcedInteraction: for " 776 << particle->GetParticleName() 1167 << particle->GetParticleName() 777 << " and process " << GetProcessNam 1168 << " and process " << GetProcessName() 778 << " length(mm)= " << length/mm 1169 << " length(mm)= " << length/mm 779 << " in G4Region <" << r 1170 << " in G4Region <" << r 780 << "> weightFlag= " << flag 1171 << "> weightFlag= " << flag 781 << G4endl; 1172 << G4endl; 782 } 1173 } 783 weightFlag = flag; 1174 weightFlag = flag; 784 biasManager->ActivateForcedInteraction(lengt 1175 biasManager->ActivateForcedInteraction(length, r); 785 } 1176 } 786 1177 787 //....oooOO0OOooo........oooOO0OOooo........oo 1178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 788 1179 789 void 1180 void 790 G4VEmProcess::ActivateSecondaryBiasing(const G 1181 G4VEmProcess::ActivateSecondaryBiasing(const G4String& region, 791 G4double factor, 1182 G4double factor, 792 G4double energyLimit) 1183 G4double energyLimit) 793 { 1184 { 794 if (0.0 <= factor) { 1185 if (0.0 <= factor) { 795 1186 796 // Range cut can be applied only for e- 1187 // Range cut can be applied only for e- 797 if(0.0 == factor && secondaryParticle != G 1188 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 798 { return; } 1189 { return; } 799 1190 800 if(!biasManager) { biasManager = new G4EmB 1191 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 801 biasManager->ActivateSecondaryBiasing(regi 1192 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 802 if(1 < verboseLevel) { 1193 if(1 < verboseLevel) { 803 G4cout << "### ActivateSecondaryBiasing: 1194 G4cout << "### ActivateSecondaryBiasing: for " 804 << " process " << GetProcessName() 1195 << " process " << GetProcessName() 805 << " factor= " << factor 1196 << " factor= " << factor 806 << " in G4Region <" << region 1197 << " in G4Region <" << region 807 << "> energyLimit(MeV)= " << energyLimi 1198 << "> energyLimit(MeV)= " << energyLimit/MeV 808 << G4endl; 1199 << G4endl; 809 } 1200 } 810 } 1201 } 811 } 1202 } 812 1203 813 //....oooOO0OOooo........oooOO0OOooo........oo 1204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 1205 815 void G4VEmProcess::SetLambdaBinning(G4int n) 1206 void G4VEmProcess::SetLambdaBinning(G4int n) 816 { 1207 { 817 if(5 < n && n < 10000000) { 1208 if(5 < n && n < 10000000) { 818 nLambdaBins = n; 1209 nLambdaBins = n; 819 actBinning = true; 1210 actBinning = true; 820 } else { 1211 } else { 821 G4double e = (G4double)n; 1212 G4double e = (G4double)n; 822 PrintWarning("SetLambdaBinning", e); 1213 PrintWarning("SetLambdaBinning", e); 823 } 1214 } 824 } 1215 } 825 1216 826 //....oooOO0OOooo........oooOO0OOooo........oo 1217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 827 1218 828 void G4VEmProcess::SetMinKinEnergy(G4double e) 1219 void G4VEmProcess::SetMinKinEnergy(G4double e) 829 { 1220 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { 1221 if(1.e-3*eV < e && e < maxKinEnergy) { 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma 1222 nLambdaBins = G4lrint(nLambdaBins*G4Log(maxKinEnergy/e) 832 /G4Log(maxKinEnergy/ 1223 /G4Log(maxKinEnergy/minKinEnergy)); 833 minKinEnergy = e; 1224 minKinEnergy = e; 834 actMinKinEnergy = true; 1225 actMinKinEnergy = true; 835 } else { PrintWarning("SetMinKinEnergy", e); 1226 } else { PrintWarning("SetMinKinEnergy", e); } 836 } 1227 } 837 1228 838 //....oooOO0OOooo........oooOO0OOooo........oo 1229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 1230 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) 1231 void G4VEmProcess::SetMaxKinEnergy(G4double e) 841 { 1232 { 842 if(minKinEnergy < e && e < 1.e+6*TeV) { 1233 if(minKinEnergy < e && e < 1.e+6*TeV) { 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ 1234 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/minKinEnergy) 844 /G4Log(maxKinEnergy/ 1235 /G4Log(maxKinEnergy/minKinEnergy)); 845 maxKinEnergy = e; 1236 maxKinEnergy = e; 846 actMaxKinEnergy = true; 1237 actMaxKinEnergy = true; 847 } else { PrintWarning("SetMaxKinEnergy", e); 1238 } else { PrintWarning("SetMaxKinEnergy", e); } 848 } 1239 } 849 1240 850 //....oooOO0OOooo........oooOO0OOooo........oo 1241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 851 1242 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl 1243 void G4VEmProcess::SetMinKinEnergyPrim(G4double e) 853 { 1244 { 854 if(theParameters->MinKinEnergy() <= e && 1245 if(theParameters->MinKinEnergy() <= e && 855 e <= theParameters->MaxKinEnergy()) { min 1246 e <= theParameters->MaxKinEnergy()) { minKinEnergyPrim = e; } 856 else { PrintWarning("SetMinKinEnergyPrim", e 1247 else { PrintWarning("SetMinKinEnergyPrim", e); } 857 } 1248 } 858 1249 859 //....oooOO0OOooo........oooOO0OOooo........oo 1250 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 860 1251 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } << 872 << 873 //....oooOO0OOooo........oooOO0OOooo........oo << 874 << 875 void G4VEmProcess::PrintWarning(G4String tit, 1252 void G4VEmProcess::PrintWarning(G4String tit, G4double val) 876 { 1253 { 877 G4String ss = "G4VEmProcess::" + tit; 1254 G4String ss = "G4VEmProcess::" + tit; 878 G4ExceptionDescription ed; 1255 G4ExceptionDescription ed; 879 ed << "Parameter is out of range: " << val 1256 ed << "Parameter is out of range: " << val 880 << " it will have no effect!\n" << " Pro 1257 << " it will have no effect!\n" << " Process " 881 << GetProcessName() << " nbins= " << the 1258 << GetProcessName() << " nbins= " << theParameters->NumberOfBins() 882 << " Emin(keV)= " << theParameters->MinKi 1259 << " Emin(keV)= " << theParameters->MinKinEnergy()/keV 883 << " Emax(GeV)= " << theParameters->MaxKi 1260 << " Emax(GeV)= " << theParameters->MaxKinEnergy()/GeV; 884 G4Exception(ss, "em0044", JustWarning, ed); 1261 G4Exception(ss, "em0044", JustWarning, ed); 885 } 1262 } 886 1263 887 //....oooOO0OOooo........oooOO0OOooo........oo 1264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 1265 889 void G4VEmProcess::ProcessDescription(std::ost 1266 void G4VEmProcess::ProcessDescription(std::ostream& out) const 890 { 1267 { 891 if(nullptr != particle) { << 1268 if(particle) { 892 StreamInfo(out, *particle, true); 1269 StreamInfo(out, *particle, true); 893 } 1270 } 894 } 1271 } 895 1272 896 //....oooOO0OOooo........oooOO0OOooo........oo 1273 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 1274