Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc 98778 2016-08-09 14:41:08Z gcosmo $ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4VEmProcess 33 // File name: G4VEmProcess 32 // 34 // 33 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 36 // 35 // Creation date: 01.10.2003 37 // Creation date: 01.10.2003 36 // 38 // 37 // Modifications: by V.Ivanchenko << 39 // Modifications: >> 40 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 41 // 30-09-08 optimise integral option (V.Ivanchenko) >> 42 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 43 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 44 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 46 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 47 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 48 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 49 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 50 // 12-09-06 add SetModel() (mma) >> 51 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) >> 52 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 53 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) >> 54 // 17-02-10 Added pointer currentParticle (VI) >> 55 // 30-05-12 allow Russian roulette, brem splitting (D. Sawkey) 38 // 56 // 39 // Class Description: based class for discrete << 57 // Class Description: 40 // 58 // 41 59 42 // ------------------------------------------- 60 // ------------------------------------------------------------------- 43 // 61 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 64 47 #include "G4VEmProcess.hh" 65 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" 66 #include "G4PhysicalConstants.hh" 49 #include "G4SystemOfUnits.hh" 67 #include "G4SystemOfUnits.hh" 50 #include "G4ProcessManager.hh" 68 #include "G4ProcessManager.hh" 51 #include "G4LossTableManager.hh" 69 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" 70 #include "G4LossTableBuilder.hh" 53 #include "G4Step.hh" 71 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 72 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 73 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 74 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 75 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 59 #include "G4PhysicsLogVector.hh" 76 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 77 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 78 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 79 #include "G4Region.hh" 63 #include "G4Gamma.hh" 80 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 81 #include "G4Electron.hh" 65 #include "G4Positron.hh" 82 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 83 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" 84 #include "G4EmBiasingManager.hh" 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" 85 #include "G4GenericIon.hh" 74 #include "G4Log.hh" 86 #include "G4Log.hh" 75 #include <iostream> 87 #include <iostream> 76 88 77 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 90 79 G4VEmProcess::G4VEmProcess(const G4String& nam 91 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 92 G4VDiscreteProcess(name, type), >> 93 secondaryParticle(nullptr), >> 94 buildLambdaTable(true), >> 95 numberOfModels(0), >> 96 theLambdaTable(nullptr), >> 97 theLambdaTablePrim(nullptr), >> 98 theDensityFactor(nullptr), >> 99 theDensityIdx(nullptr), >> 100 integral(false), >> 101 applyCuts(false), >> 102 startFromNull(false), >> 103 splineFlag(true), >> 104 currentModel(nullptr), >> 105 particle(nullptr), >> 106 currentParticle(nullptr), >> 107 currentCouple(nullptr) 81 { 108 { 82 theParameters = G4EmParameters::Instance(); 109 theParameters = G4EmParameters::Instance(); 83 SetVerboseLevel(1); 110 SetVerboseLevel(1); 84 111 85 // Size of tables << 112 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 113 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 114 maxKinEnergy = 100.0*TeV; >> 115 nLambdaBins = 77; >> 116 minKinEnergyPrim = DBL_MAX; >> 117 actBinning = actSpline = actMinKinEnergy = actMaxKinEnergy = false; 88 118 89 // default lambda factor 119 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 120 lambdaFactor = 0.8; >> 121 >> 122 // default limit on polar angle >> 123 biasFactor = fFactor = 1.0; 91 124 92 // particle types 125 // particle types 93 theGamma = G4Gamma::Gamma(); << 126 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 127 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 128 thePositron = G4Positron::Positron(); >> 129 >> 130 theCuts = theCutsGamma = theCutsElectron = theCutsPositron = nullptr; 96 131 97 pParticleChange = &fParticleChange; 132 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( 133 fParticleChange.SetSecondaryWeightByProcess(true); 99 secParticles.reserve(5); 134 secParticles.reserve(5); 100 135 >> 136 baseMaterial = currentMaterial = nullptr; >> 137 >> 138 preStepLambda = preStepKinEnergy = 0.0; >> 139 mfpKinEnergy = DBL_MAX; >> 140 >> 141 idxLambda = idxLambdaPrim = currentCoupleIndex >> 142 = basedCoupleIndex = 0; >> 143 101 modelManager = new G4EmModelManager(); 144 modelManager = new G4EmModelManager(); >> 145 biasManager = nullptr; >> 146 biasFlag = false; >> 147 weightFlag = false; 102 lManager = G4LossTableManager::Instance(); 148 lManager = G4LossTableManager::Instance(); 103 lManager->Register(this); 149 lManager->Register(this); 104 isTheMaster = lManager->IsMaster(); << 150 secID = fluoID = augerID = biasID = -1; 105 G4LossTableBuilder* bld = lManager->GetTable << 151 mainSecondaries = 100; 106 theDensityFactor = bld->GetDensityFactors(); << 152 if("phot" == GetProcessName() || "compt" == GetProcessName()) { 107 theDensityIdx = bld->GetCoupleIndexes(); << 153 mainSecondaries = 1; >> 154 } 108 } 155 } 109 156 110 //....oooOO0OOooo........oooOO0OOooo........oo 157 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 158 112 G4VEmProcess::~G4VEmProcess() 159 G4VEmProcess::~G4VEmProcess() 113 { 160 { 114 if(isTheMaster) { << 161 /* 115 delete theData; << 162 if(1 < verboseLevel) { 116 delete theEnergyOfCrossSectionMax; << 163 G4cout << "G4VEmProcess destruct " << GetProcessName() >> 164 << " " << this << " " << theLambdaTable <<G4endl; >> 165 } >> 166 */ >> 167 if(lManager->IsMaster()) { >> 168 if(theLambdaTable) { >> 169 theLambdaTable->clearAndDestroy(); >> 170 delete theLambdaTable; >> 171 } >> 172 if(theLambdaTablePrim) { >> 173 theLambdaTablePrim->clearAndDestroy(); >> 174 delete theLambdaTablePrim; >> 175 } 117 } 176 } 118 delete modelManager; 177 delete modelManager; 119 delete biasManager; 178 delete biasManager; 120 lManager->DeRegister(this); 179 lManager->DeRegister(this); >> 180 //G4cout << "G4VEmProcess removed " << G4endl; 121 } 181 } 122 182 123 //....oooOO0OOooo........oooOO0OOooo........oo 183 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 184 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 185 void G4VEmProcess::Clear() >> 186 { >> 187 currentCouple = nullptr; >> 188 preStepLambda = 0.0; >> 189 mfpKinEnergy = DBL_MAX; >> 190 idxLambda = idxLambdaPrim = 0; >> 191 } >> 192 >> 193 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 194 >> 195 G4double G4VEmProcess::MinPrimaryEnergy(const G4ParticleDefinition*, >> 196 const G4Material*) >> 197 { >> 198 return 0.0; >> 199 } >> 200 >> 201 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 202 >> 203 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 126 const G4Region* 204 const G4Region* region) 127 { 205 { 128 if(nullptr == ptr) { return; } << 129 G4VEmFluctuationModel* fm = nullptr; 206 G4VEmFluctuationModel* fm = nullptr; 130 modelManager->AddEmModel(order, ptr, fm, reg << 207 modelManager->AddEmModel(order, p, fm, region); 131 ptr->SetParticleChange(pParticleChange); << 208 if(p) { p->SetParticleChange(pParticleChange); } 132 } 209 } 133 210 134 //....oooOO0OOooo........oooOO0OOooo........oo 211 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 212 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 213 void G4VEmProcess::SetEmModel(G4VEmModel* p, G4int index) 137 { 214 { 138 if(nullptr == ptr) { return; } << 215 G4int n = emModels.size(); 139 if(!emModels.empty()) { << 216 if(index >= n) { 140 for(auto & em : emModels) { if(em == ptr) << 217 for(G4int i=n; i<=index; ++i) {emModels.push_back(nullptr);} 141 } 218 } 142 emModels.push_back(ptr); << 219 emModels[index] = p; >> 220 } >> 221 >> 222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 223 >> 224 G4VEmModel* G4VEmProcess::EmModel(G4int index) const >> 225 { >> 226 G4VEmModel* p = nullptr; >> 227 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 228 return p; >> 229 } >> 230 >> 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 232 >> 233 void G4VEmProcess::UpdateEmModel(const G4String& nam, >> 234 G4double emin, G4double emax) >> 235 { >> 236 modelManager->UpdateEmModel(nam, emin, emax); >> 237 } >> 238 >> 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 240 >> 241 G4int G4VEmProcess::GetNumberOfModels() const >> 242 { >> 243 return modelManager->NumberOfModels(); >> 244 } >> 245 >> 246 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 247 >> 248 G4int G4VEmProcess::GetNumberOfRegionModels(size_t couple_index) const >> 249 { >> 250 return modelManager->NumberOfRegionModels(couple_index); >> 251 } >> 252 >> 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 254 >> 255 G4VEmModel* G4VEmProcess::GetRegionModel(G4int idx, size_t couple_index) const >> 256 { >> 257 return modelManager->GetRegionModel(idx, couple_index); >> 258 } >> 259 >> 260 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 261 >> 262 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver) const >> 263 { >> 264 return modelManager->GetModel(idx, ver); 143 } 265 } 144 266 145 //....oooOO0OOooo........oooOO0OOooo........oo 267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 268 147 void G4VEmProcess::PreparePhysicsTable(const G 269 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 148 { 270 { 149 if(nullptr == particle) { SetParticle(&part) << 271 G4bool isMaster = true; >> 272 const G4VEmProcess* masterProcess = >> 273 static_cast<const G4VEmProcess*>(GetMasterProcess()); >> 274 if(masterProcess && masterProcess != this) { isMaster = false; } >> 275 >> 276 if(!particle) { SetParticle(&part); } 150 277 151 if(part.GetParticleType() == "nucleus" && 278 if(part.GetParticleType() == "nucleus" && 152 part.GetParticleSubType() == "generic") { 279 part.GetParticleSubType() == "generic") { 153 280 154 G4String pname = part.GetParticleName(); 281 G4String pname = part.GetParticleName(); 155 if(pname != "deuteron" && pname != "triton 282 if(pname != "deuteron" && pname != "triton" && 156 pname != "He3" && pname != "alpha" && p << 283 pname != "alpha" && pname != "He3" && 157 pname != "helium" && pname != "hydrogen << 284 pname != "alpha+" && pname != "helium" && >> 285 pname != "hydrogen") { 158 286 159 particle = G4GenericIon::GenericIon(); 287 particle = G4GenericIon::GenericIon(); 160 isIon = true; << 161 } 288 } 162 } 289 } >> 290 >> 291 if(1 < verboseLevel) { >> 292 G4cout << "G4VEmProcess::PreparePhysicsTable() for " >> 293 << GetProcessName() >> 294 << " and particle " << part.GetParticleName() >> 295 << " local particle " << particle->GetParticleName() >> 296 << G4endl; >> 297 } >> 298 163 if(particle != &part) { return; } 299 if(particle != &part) { return; } 164 300 165 lManager->PreparePhysicsTable(&part, this); << 301 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 166 302 167 // for new run << 303 lManager->PreparePhysicsTable(&part, this, isMaster); 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; << 170 fLambdaEnergy = 0.0; << 171 304 >> 305 Clear(); 172 InitialiseProcess(particle); 306 InitialiseProcess(particle); 173 307 174 G4LossTableBuilder* bld = lManager->GetTable << 175 const G4ProductionCutsTable* theCoupleTable= 308 const G4ProductionCutsTable* theCoupleTable= 176 G4ProductionCutsTable::GetProductionCutsTa 309 G4ProductionCutsTable::GetProductionCutsTable(); 177 theCutsGamma = theCoupleTable->GetEnergyC << 310 size_t n = theCoupleTable->GetTableSize(); 178 theCutsElectron = theCoupleTable->GetEnergyC << 311 179 theCutsPositron = theCoupleTable->GetEnergyC << 312 theEnergyOfCrossSectionMax.resize(n, 0.0); >> 313 theCrossSectionMax.resize(n, DBL_MAX); 180 314 181 // initialisation of the process 315 // initialisation of the process 182 if(!actMinKinEnergy) { minKinEnergy = thePar 316 if(!actMinKinEnergy) { minKinEnergy = theParameters->MinKinEnergy(); } 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar 317 if(!actMaxKinEnergy) { maxKinEnergy = theParameters->MaxKinEnergy(); } >> 318 if(!actSpline) { splineFlag = theParameters->Spline(); } 184 319 185 applyCuts = theParameters->ApplyCuts() << 320 if(isMaster) { SetVerboseLevel(theParameters->Verbose()); } 186 lambdaFactor = theParameters->LambdaFacto << 321 else { SetVerboseLevel(theParameters->WorkerVerbose()); } 187 invLambdaFactor = 1.0/lambdaFactor; << 322 applyCuts = theParameters->ApplyCuts(); >> 323 lambdaFactor = theParameters->LambdaFactor(); 188 theParameters->DefineRegParamForEM(this); 324 theParameters->DefineRegParamForEM(this); 189 325 190 // integral option may be disabled << 326 // initialisation of models 191 if(!theParameters->Integral()) { fXSType = f << 327 numberOfModels = modelManager->NumberOfModels(); 192 << 328 for(G4int i=0; i<numberOfModels; ++i) { 193 // prepare tables << 329 G4VEmModel* mod = modelManager->GetModel(i); 194 if(isTheMaster) { << 330 if(0 == i) { currentModel = mod; } 195 if(nullptr == theData) { theData = new G4E << 331 mod->SetPolarAngleLimit(theParameters->MscThetaLimit()); 196 << 332 mod->SetMasterThread(isMaster); 197 if(buildLambdaTable) { << 333 if(mod->HighEnergyLimit() > maxKinEnergy) { 198 theLambdaTable = theData->MakeTable(0); << 334 mod->SetHighEnergyLimit(maxKinEnergy); 199 bld->InitialiseBaseMaterials(theLambdaTa << 200 } << 201 // high energy table << 202 if(minKinEnergyPrim < maxKinEnergy) { << 203 theLambdaTablePrim = theData->MakeTable( << 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } 335 } 206 } 336 } 207 // models << 337 208 baseMat = bld->GetBaseMaterialFlag(); << 338 if(lManager->AtomDeexcitation()) { modelManager->SetFluoFlag(true); } 209 numberOfModels = modelManager->NumberOfModel << 339 theCuts = modelManager->Initialise(particle,secondaryParticle, 210 currentModel = modelManager->GetModel(0); << 340 2.,verboseLevel); 211 if(nullptr != lManager->AtomDeexcitation()) << 341 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); 212 modelManager->SetFluoFlag(true); << 342 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 343 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); >> 344 >> 345 // prepare tables >> 346 if(buildLambdaTable && isMaster){ >> 347 theLambdaTable = >> 348 G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); >> 349 bld->InitialiseBaseMaterials(theLambdaTable); >> 350 } >> 351 // high energy table >> 352 if(isMaster && minKinEnergyPrim < maxKinEnergy){ >> 353 theLambdaTablePrim = >> 354 G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTablePrim); >> 355 bld->InitialiseBaseMaterials(theLambdaTablePrim); 213 } 356 } 214 // forced biasing 357 // forced biasing 215 if(nullptr != biasManager) { << 358 if(biasManager) { 216 biasManager->Initialise(part, GetProcessNa << 359 biasManager->Initialise(part,GetProcessName(),verboseLevel); 217 biasFlag = false; << 360 biasFlag = false; 218 } << 361 } 219 << 362 // defined ID of secondary particles 220 theCuts = << 363 G4String nam1 = GetProcessName(); 221 G4EmTableUtil::PrepareEmProcess(this, part << 364 G4String nam2 = nam1 + "_fluo" ; 222 modelManag << 365 G4String nam3 = nam1 + "_auger"; 223 secID, tri << 366 G4String nam4 = nam1 + "_split"; 224 verboseLev << 367 secID = G4PhysicsModelCatalog::Register(nam1); >> 368 fluoID = G4PhysicsModelCatalog::Register(nam2); >> 369 augerID = G4PhysicsModelCatalog::Register(nam3); >> 370 biasID = G4PhysicsModelCatalog::Register(nam4); 225 } 371 } 226 372 227 //....oooOO0OOooo........oooOO0OOooo........oo 373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 374 229 void G4VEmProcess::BuildPhysicsTable(const G4P 375 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 376 { 231 if(nullptr == masterProc) { << 377 G4bool isMaster = true; 232 if(isTheMaster) { masterProc = this; } << 378 const G4VEmProcess* masterProc = 233 else { masterProc = static_cast<const G4VE << 379 static_cast<const G4VEmProcess*>(GetMasterProcess()); 234 } << 380 if(masterProc && masterProc != this) { isMaster = false; } 235 G4int nModels = modelManager->NumberOfModels << 381 236 G4bool isLocked = theParameters->IsPrintLock << 382 G4String num = part.GetParticleName(); 237 G4bool toBuild = (buildLambdaTable || minKin << 383 if(1 < verboseLevel) { 238 << 384 G4cout << "### G4VEmProcess::BuildPhysicsTable() for " 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 385 << GetProcessName() 240 nModels, verbo << 386 << " and particle " << num 241 isLocked, toBu << 387 << " buildLambdaTable= " << buildLambdaTable >> 388 << " isMaster= " << isMaster >> 389 << G4endl; >> 390 } >> 391 >> 392 if(particle == &part) { >> 393 >> 394 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 395 >> 396 // worker initialisation >> 397 if(!isMaster) { >> 398 theLambdaTable = masterProc->LambdaTable(); >> 399 theLambdaTablePrim = masterProc->LambdaTablePrim(); >> 400 >> 401 if(theLambdaTable) { >> 402 bld->InitialiseBaseMaterials(theLambdaTable); >> 403 } else if(theLambdaTablePrim) { >> 404 bld->InitialiseBaseMaterials(theLambdaTablePrim); >> 405 } >> 406 theDensityFactor = bld->GetDensityFactors(); >> 407 theDensityIdx = bld->GetCoupleIndexes(); >> 408 if(theLambdaTable) { FindLambdaMax(); } >> 409 >> 410 // local initialisation of models >> 411 G4bool printing = true; >> 412 numberOfModels = modelManager->NumberOfModels(); >> 413 for(G4int i=0; i<numberOfModels; ++i) { >> 414 G4VEmModel* mod = GetModelByIndex(i, printing); >> 415 G4VEmModel* mod0= masterProc->GetModelByIndex(i, printing); >> 416 mod->InitialiseLocal(particle, mod0); >> 417 } >> 418 // master thread >> 419 } else { >> 420 theDensityFactor = bld->GetDensityFactors(); >> 421 theDensityIdx = bld->GetCoupleIndexes(); >> 422 if(buildLambdaTable || minKinEnergyPrim < maxKinEnergy) { >> 423 BuildLambdaTable(); >> 424 } >> 425 } >> 426 } >> 427 >> 428 // explicitly defined printout by particle name >> 429 if(1 < verboseLevel || >> 430 (0 < verboseLevel && (num == "gamma" || num == "e-" || >> 431 num == "e+" || num == "mu+" || >> 432 num == "mu-" || num == "proton"|| >> 433 num == "pi+" || num == "pi-" || >> 434 num == "kaon+" || num == "kaon-" || >> 435 num == "alpha" || num == "anti_proton" || >> 436 num == "GenericIon"))) >> 437 { >> 438 PrintInfoProcess(part); >> 439 } >> 440 >> 441 if(1 < verboseLevel) { >> 442 G4cout << "### G4VEmProcess::BuildPhysicsTable() done for " >> 443 << GetProcessName() >> 444 << " and particle " << num >> 445 << G4endl; >> 446 } 242 } 447 } 243 448 244 //....oooOO0OOooo........oooOO0OOooo........oo 449 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 450 246 void G4VEmProcess::BuildLambdaTable() 451 void G4VEmProcess::BuildLambdaTable() 247 { 452 { >> 453 if(1 < verboseLevel) { >> 454 G4cout << "G4EmProcess::BuildLambdaTable() for process " >> 455 << GetProcessName() << " and particle " >> 456 << particle->GetParticleName() << " " << this >> 457 << G4endl; >> 458 } >> 459 >> 460 // Access to materials >> 461 const G4ProductionCutsTable* theCoupleTable= >> 462 G4ProductionCutsTable::GetProductionCutsTable(); >> 463 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 464 >> 465 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 466 >> 467 G4PhysicsLogVector* aVector = nullptr; >> 468 G4PhysicsLogVector* aVectorPrim = nullptr; >> 469 G4PhysicsLogVector* bVectorPrim = nullptr; >> 470 248 G4double scale = theParameters->MaxKinEnergy 471 G4double scale = theParameters->MaxKinEnergy()/theParameters->MinKinEnergy(); 249 G4int nbin = << 472 G4int nbin = theParameters->NumberOfBinsPerDecade() 250 theParameters->NumberOfBinsPerDecade()*G4l << 473 *G4lrint(std::log10(scale)); >> 474 scale = G4Log(scale); 251 if(actBinning) { nbin = std::max(nbin, nLamb 475 if(actBinning) { nbin = std::max(nbin, nLambdaBins); } 252 scale = nbin/G4Log(scale); << 476 G4double emax1 = std::min(maxKinEnergy, minKinEnergyPrim); 253 << 477 254 G4LossTableBuilder* bld = lManager->GetTable << 478 for(size_t i=0; i<numOfCouples; ++i) { 255 G4EmTableUtil::BuildLambdaTable(this, partic << 479 256 bld, theLamb << 480 if (bld->GetFlag(i)) { 257 minKinEnergy << 481 258 maxKinEnergy << 482 // create physics vector and fill it 259 startFromNul << 483 const G4MaterialCutsCouple* couple = >> 484 theCoupleTable->GetMaterialCutsCouple(i); >> 485 >> 486 // build main table >> 487 if(buildLambdaTable) { >> 488 delete (*theLambdaTable)[i]; >> 489 >> 490 // if start from zero then change the scale >> 491 G4double emin = minKinEnergy; >> 492 G4bool startNull = false; >> 493 if(startFromNull) { >> 494 G4double e = MinPrimaryEnergy(particle,couple->GetMaterial()); >> 495 if(e >= emin) { >> 496 emin = e; >> 497 startNull = true; >> 498 } >> 499 } >> 500 G4double emax = emax1; >> 501 if(emax <= emin) { emax = 2*emin; } >> 502 G4int bin = G4lrint(nbin*G4Log(emax/emin)/scale); >> 503 if(bin < 3) { bin = 3; } >> 504 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 505 aVector->SetSpline(splineFlag); >> 506 modelManager->FillLambdaVector(aVector, couple, startNull); >> 507 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 508 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 509 } >> 510 // build high energy table >> 511 if(minKinEnergyPrim < maxKinEnergy) { >> 512 delete (*theLambdaTablePrim)[i]; >> 513 >> 514 // start not from zero >> 515 if(!bVectorPrim) { >> 516 G4int bin = G4lrint(nbin*G4Log(maxKinEnergy/minKinEnergyPrim)/scale); >> 517 if(bin < 3) { bin = 3; } >> 518 aVectorPrim = >> 519 new G4PhysicsLogVector(minKinEnergyPrim, maxKinEnergy, bin); >> 520 bVectorPrim = aVectorPrim; >> 521 } else { >> 522 aVectorPrim = new G4PhysicsLogVector(*bVectorPrim); >> 523 } >> 524 // always use spline >> 525 aVectorPrim->SetSpline(splineFlag); >> 526 modelManager->FillLambdaVector(aVectorPrim, couple, false, >> 527 fIsCrossSectionPrim); >> 528 aVectorPrim->FillSecondDerivatives(); >> 529 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTablePrim, i, >> 530 aVectorPrim); >> 531 } >> 532 } >> 533 } >> 534 >> 535 if(buildLambdaTable) { FindLambdaMax(); } >> 536 >> 537 if(1 < verboseLevel) { >> 538 G4cout << "Lambda table is built for " >> 539 << particle->GetParticleName() >> 540 << G4endl; >> 541 } 260 } 542 } 261 543 262 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 545 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 546 void G4VEmProcess::PrintInfoProcess(const G4ParticleDefinition& part) 265 const G4ParticleDefinition& << 547 { 266 { << 548 if(verboseLevel > 0) { 267 G4String indent = (rst ? " " : ""); << 549 G4cout << std::setprecision(6); 268 out << std::setprecision(6); << 550 G4cout << G4endl << GetProcessName() << ": for " 269 out << G4endl << indent << GetProcessName() << 551 << part.GetParticleName(); 270 if (!rst) { << 552 if(integral) { G4cout << ", integral: 1 "; } 271 out << " for " << part.GetParticleName(); << 553 if(applyCuts) { G4cout << ", applyCuts: 1 "; } 272 } << 554 G4cout << " SubType= " << GetProcessSubType();; 273 if(fXSType != fEmNoIntegral) { out << " XSt << 555 if(biasFactor != 1.0) { G4cout << " BiasingFactor= " << biasFactor; } 274 if(applyCuts) { out << " applyCuts:1 "; } << 556 G4cout << " BuildTable= " << buildLambdaTable; 275 G4int subtype = GetProcessSubType(); << 557 G4cout << G4endl; 276 out << " SubType=" << subtype; << 558 if(buildLambdaTable) { 277 if (subtype == fAnnihilation) { << 559 if(particle == &part) { 278 G4int mod = theParameters->PositronAtRestM << 560 size_t length = theLambdaTable->length(); 279 const G4String namp[2] = {"Simple", "Allis << 561 for(size_t i=0; i<length; ++i) { 280 out << " AtRestModel:" << namp[mod]; << 562 G4PhysicsVector* v = (*theLambdaTable)[i]; 281 } << 563 if(v) { 282 if(biasFactor != 1.0) { out << " BiasingFac << 564 G4cout << " Lambda table from "; 283 out << " BuildTable=" << buildLambdaTable << << 565 G4double emin = v->Energy(0); 284 if(buildLambdaTable) { << 566 G4double emax = v->GetMaxEnergy(); 285 if(particle == &part) { << 567 G4int nbin = v->GetVectorLength() - 1; 286 for(auto & v : *theLambdaTable) { << 568 if(emin > minKinEnergy) { G4cout << "threshold "; } 287 if(nullptr != v) { << 569 else { G4cout << G4BestUnit(emin,"Energy"); } 288 out << " Lambda table from "; << 570 G4cout << " to " 289 G4double emin = v->Energy(0); << 571 << G4BestUnit(emax,"Energy") 290 G4double emax = v->GetMaxEnergy(); << 572 << ", " << G4lrint(nbin/std::log10(emax/emin)) 291 G4int nbin = G4int(v->GetVectorLengt << 573 << " bins per decade, spline: " 292 if(emin > minKinEnergy) { out << "th << 574 << splineFlag 293 else { out << G4BestUnit(emin,"Energ << 575 << G4endl; 294 out << " to " << 576 break; 295 << G4BestUnit(emax,"Energy") << 577 } 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } 578 } >> 579 } else { >> 580 G4cout << " Used Lambda table of " >> 581 << particle->GetParticleName() << G4endl;; 301 } 582 } 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } 583 } 306 } << 584 if(minKinEnergyPrim < maxKinEnergy) { 307 if(minKinEnergyPrim < maxKinEnergy) { << 585 if(particle == &part) { 308 if(particle == &part) { << 586 size_t length = theLambdaTablePrim->length(); 309 for(auto & v : *theLambdaTablePrim) { << 587 for(size_t i=0; i<length; ++i) { 310 if(nullptr != v) { << 588 G4PhysicsVector* v = (*theLambdaTablePrim)[i]; 311 out << " LambdaPrime table from << 589 if(v) { 312 << G4BestUnit(v->Energy(0),"Ener << 590 G4cout << " LambdaPrime table from " 313 << " to " << 591 << G4BestUnit(v->Energy(0),"Energy") 314 << G4BestUnit(v->GetMaxEnergy(), << 592 << " to " 315 << " in " << v->GetVectorLength( << 593 << G4BestUnit(v->GetMaxEnergy(),"Energy") 316 << " bins " << G4endl; << 594 << " in " << v->GetVectorLength()-1 317 break; << 595 << " bins " >> 596 << G4endl; >> 597 break; >> 598 } 318 } 599 } >> 600 } else { >> 601 G4cout << " Used LambdaPrime table of " >> 602 << particle->GetParticleName() << G4endl;; 319 } 603 } 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } 604 } >> 605 PrintInfo(); >> 606 modelManager->DumpModelList(verboseLevel); 324 } 607 } 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 608 328 if(verboseLevel > 2 && buildLambdaTable) { 609 if(verboseLevel > 2 && buildLambdaTable) { 329 out << " LambdaTable address= " << th << 610 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; 330 if(theLambdaTable && particle == &part) { 611 if(theLambdaTable && particle == &part) { 331 out << (*theLambdaTable) << G4endl; << 612 G4cout << (*theLambdaTable) << G4endl; 332 } 613 } 333 } 614 } 334 } 615 } 335 616 336 //....oooOO0OOooo........oooOO0OOooo........oo 617 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 618 338 void G4VEmProcess::StartTracking(G4Track* trac 619 void G4VEmProcess::StartTracking(G4Track* track) 339 { 620 { 340 // reset parameters for the new track 621 // reset parameters for the new track 341 currentParticle = track->GetParticleDefiniti 622 currentParticle = track->GetParticleDefinition(); 342 theNumberOfInteractionLengthLeft = -1.0; 623 theNumberOfInteractionLengthLeft = -1.0; 343 mfpKinEnergy = DBL_MAX; << 624 mfpKinEnergy = DBL_MAX; 344 preStepLambda = 0.0; << 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 625 348 // forced biasing only for primary particles 626 // forced biasing only for primary particles 349 if(biasManager) { 627 if(biasManager) { 350 if(0 == track->GetParentID()) { 628 if(0 == track->GetParentID()) { 351 // primary particle 629 // primary particle 352 biasFlag = true; 630 biasFlag = true; 353 biasManager->ResetForcedInteraction(); 631 biasManager->ResetForcedInteraction(); 354 } 632 } 355 } 633 } 356 } 634 } 357 635 358 //....oooOO0OOooo........oooOO0OOooo........oo 636 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 637 360 G4double G4VEmProcess::PostStepGetPhysicalInte 638 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 639 const G4Track& track, 362 G4double previo 640 G4double previousStepSize, 363 G4ForceCondition* 641 G4ForceCondition* condition) 364 { 642 { 365 *condition = NotForced; 643 *condition = NotForced; 366 G4double x = DBL_MAX; 644 G4double x = DBL_MAX; 367 645 368 DefineMaterial(track.GetMaterialCutsCouple() << 369 preStepKinEnergy = track.GetKineticEnergy(); 646 preStepKinEnergy = track.GetKineticEnergy(); 370 const G4double scaledEnergy = preStepKinEner << 647 DefineMaterial(track.GetMaterialCutsCouple()); 371 SelectModel(scaledEnergy, currentCoupleIndex << 648 SelectModel(preStepKinEnergy, currentCoupleIndex); 372 /* << 649 373 G4cout << "PostStepGetPhysicalInteractionLen << 650 if(!currentModel->IsActive(preStepKinEnergy)) { 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; 651 theNumberOfInteractionLengthLeft = -1.0; 378 currentInteractionLength = DBL_MAX; 652 currentInteractionLength = DBL_MAX; 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; 653 return x; 382 } 654 } 383 655 384 // forced biasing only for primary particles 656 // forced biasing only for primary particles 385 if(biasManager) { 657 if(biasManager) { 386 if(0 == track.GetParentID()) { 658 if(0 == track.GetParentID()) { 387 if(biasFlag && 659 if(biasFlag && 388 biasManager->ForcedInteractionRegion( << 660 biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 389 return biasManager->GetStepLimit((G4in << 661 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); 390 } 662 } 391 } 663 } 392 } 664 } 393 665 394 // compute mean free path 666 // compute mean free path >> 667 if(preStepKinEnergy < mfpKinEnergy) { >> 668 if (integral) { ComputeIntegralLambda(preStepKinEnergy); } >> 669 else { preStepLambda = GetCurrentLambda(preStepKinEnergy); } >> 670 >> 671 // zero cross section >> 672 if(preStepLambda <= 0.0) { >> 673 theNumberOfInteractionLengthLeft = -1.0; >> 674 currentInteractionLength = DBL_MAX; >> 675 } >> 676 } 395 677 396 ComputeIntegralLambda(preStepKinEnergy, trac << 678 // non-zero cross section 397 << 679 if(preStepLambda > 0.0) { 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 680 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 681 if (theNumberOfInteractionLengthLeft < 0.0) { 407 682 408 // beggining of tracking (or just after 683 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 684 theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() ); 410 theInitialNumberOfInteractionLength = th 685 theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 411 686 412 } else { << 687 } else if(currentInteractionLength < DBL_MAX) { 413 688 414 theNumberOfInteractionLengthLeft -= 689 theNumberOfInteractionLengthLeft -= 415 previousStepSize/currentInteractionLen 690 previousStepSize/currentInteractionLength; 416 theNumberOfInteractionLengthLeft = 691 theNumberOfInteractionLengthLeft = 417 std::max(theNumberOfInteractionLengthL 692 std::max(theNumberOfInteractionLengthLeft, 0.0); 418 } 693 } 419 694 420 // new mean free path and step limit for t 695 // new mean free path and step limit for the next step 421 currentInteractionLength = 1.0/preStepLamb 696 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 697 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 423 } << 698 /* 424 return x; << 699 #ifdef G4VERBOSE 425 } << 700 if (verboseLevel>2){ 426 << 701 G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength "; 427 //....oooOO0OOooo........oooOO0OOooo........oo << 702 G4cout << "[ " << GetProcessName() << "]" << G4endl; 428 << 703 G4cout << " for " << currentParticle->GetParticleName() 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 704 << " in Material " << currentMaterial->GetName() 430 { << 705 << " Ekin(MeV)= " << preStepKinEnergy/MeV 431 if (fXSType == fEmNoIntegral) { << 706 <<G4endl; 432 preStepLambda = GetCurrentLambda(e, LogEki << 707 G4cout << " MeanFreePath = " << currentInteractionLength/cm << "[cm]" 433 << 708 << " InteractionLength= " << x/cm <<"[cm] " <<G4endl; 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } 709 } 459 } else { << 710 #endif 460 preStepLambda = GetCurrentLambda(e, LogEki << 711 */ 461 } 712 } >> 713 return x; 462 } 714 } 463 715 464 //....oooOO0OOooo........oooOO0OOooo........oo 716 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 717 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 718 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 719 const G4Step& step) 468 { 720 { 469 // clear number of interaction lengths in an << 721 // In all cases clear number of interaction lengths 470 theNumberOfInteractionLengthLeft = -1.0; 722 theNumberOfInteractionLengthLeft = -1.0; 471 mfpKinEnergy = DBL_MAX; << 723 mfpKinEnergy = DBL_MAX; 472 724 473 fParticleChange.InitializeForPostStep(track) 725 fParticleChange.InitializeForPostStep(track); 474 726 475 // Do not make anything if particle is stopp 727 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 728 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) 729 if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; } 478 730 479 const G4double finalT = track.GetKineticEner << 731 G4double finalT = track.GetKineticEnergy(); 480 732 481 // forced process - should happen only once 733 // forced process - should happen only once per track 482 if(biasFlag) { 734 if(biasFlag) { 483 if(biasManager->ForcedInteractionRegion((G << 735 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 484 biasFlag = false; 736 biasFlag = false; 485 } 737 } 486 } 738 } 487 739 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 << 493 // Integral approach 740 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 741 if (integral) { 495 const G4double logFinalT = << 742 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 743 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 498 #ifdef G4VERBOSE << 499 if(preStepLambda < lx && 1 < verboseLevel) << 500 G4cout << "WARNING: for " << currentPart 744 G4cout << "WARNING: for " << currentParticle->GetParticleName() 501 << " and " << GetProcessName() << << 745 << " and " << GetProcessName() 502 << " preLambda= " << preStepLambd << 746 << " E(MeV)= " << finalT/MeV 503 << " < " << lx << " (postLambda) << 747 << " preLambda= " << preStepLambda << " < " >> 748 << lx << " (postLambda) " >> 749 << G4endl; 504 } 750 } 505 #endif << 751 506 // if false interaction then use new cross << 752 if(preStepLambda*G4UniformRand() > lx) { 507 // if both values are zero - no interactio << 753 ClearNumberOfInteractionLengthLeft(); 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 754 return &fParticleChange; 510 } 755 } 511 } 756 } 512 757 >> 758 SelectModel(finalT, currentCoupleIndex); >> 759 if(!currentModel->IsActive(finalT)) { return &fParticleChange; } >> 760 513 // define new weight for primary and seconda 761 // define new weight for primary and secondaries 514 G4double weight = fParticleChange.GetParentW 762 G4double weight = fParticleChange.GetParentWeight(); 515 if(weightFlag) { 763 if(weightFlag) { 516 weight /= biasFactor; 764 weight /= biasFactor; 517 fParticleChange.ProposeWeight(weight); 765 fParticleChange.ProposeWeight(weight); 518 } 766 } 519 767 520 #ifdef G4VERBOSE << 768 /* 521 if(1 < verboseLevel) { << 769 if(0 < verboseLevel) { 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 770 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 771 << finalT/MeV 524 << " MeV; model= (" << currentModel 772 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 773 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 774 << G4endl; 527 } 775 } 528 #endif << 776 */ 529 777 530 // sample secondaries 778 // sample secondaries 531 secParticles.clear(); 779 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 780 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl 781 currentCouple, 534 track.GetDyn 782 track.GetDynamicParticle(), 535 (*theCuts)[c 783 (*theCuts)[currentCoupleIndex]); 536 784 537 G4int num0 = (G4int)secParticles.size(); << 785 G4int num0 = secParticles.size(); 538 786 539 // splitting or Russian roulette 787 // splitting or Russian roulette 540 if(biasManager) { 788 if(biasManager) { 541 if(biasManager->SecondaryBiasingRegion((G4 << 789 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 542 G4double eloss = 0.0; 790 G4double eloss = 0.0; 543 weight *= biasManager->ApplySecondaryBia 791 weight *= biasManager->ApplySecondaryBiasing( 544 secParticles, track, currentModel, &fP 792 secParticles, track, currentModel, &fParticleChange, eloss, 545 (G4int)currentCoupleIndex, (*theCuts)[ << 793 currentCoupleIndex, (*theCuts)[currentCoupleIndex], 546 step.GetPostStepPoint()->GetSafety()); 794 step.GetPostStepPoint()->GetSafety()); 547 if(eloss > 0.0) { 795 if(eloss > 0.0) { 548 eloss += fParticleChange.GetLocalEnerg 796 eloss += fParticleChange.GetLocalEnergyDeposit(); 549 fParticleChange.ProposeLocalEnergyDepo 797 fParticleChange.ProposeLocalEnergyDeposit(eloss); 550 } 798 } 551 } 799 } 552 } 800 } 553 801 554 // save secondaries 802 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 803 G4int num = secParticles.size(); 556 if(num > 0) { 804 if(num > 0) { 557 805 558 fParticleChange.SetNumberOfSecondaries(num 806 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 807 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); 808 G4double time = track.GetGlobalTime(); 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 809 567 for (G4int i=0; i<num; ++i) { 810 for (G4int i=0; i<num; ++i) { 568 G4DynamicParticle* dp = secParticles[i]; << 811 if (secParticles[i]) { 569 if (nullptr != dp) { << 812 G4DynamicParticle* dp = secParticles[i]; 570 const G4ParticleDefinition* p = dp->Ge 813 const G4ParticleDefinition* p = dp->GetParticleDefinition(); 571 G4double e = dp->GetKineticEnergy(); 814 G4double e = dp->GetKineticEnergy(); 572 G4bool good = true; 815 G4bool good = true; 573 if(applyCuts) { 816 if(applyCuts) { 574 if (p == theGamma) { 817 if (p == theGamma) { 575 if (e < (*theCutsGamma)[currentCou 818 if (e < (*theCutsGamma)[currentCoupleIndex]) { good = false; } 576 819 577 } else if (p == theElectron) { 820 } else if (p == theElectron) { 578 if (e < (*theCutsElectron)[current 821 if (e < (*theCutsElectron)[currentCoupleIndex]) { good = false; } 579 822 580 } else if (p == thePositron) { 823 } else if (p == thePositron) { 581 if (electron_mass_c2 < (*theCutsGa 824 if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] && 582 e < (*theCutsPositron)[current 825 e < (*theCutsPositron)[currentCoupleIndex]) { 583 good = false; 826 good = false; 584 e += 2.0*electron_mass_c2; 827 e += 2.0*electron_mass_c2; 585 } 828 } 586 } 829 } 587 // added secondary if it is good 830 // added secondary if it is good 588 } 831 } 589 if (good) { 832 if (good) { 590 G4Track* t = new G4Track(dp, time, t 833 G4Track* t = new G4Track(dp, time, track.GetPosition()); 591 t->SetTouchableHandle(track.GetTouch 834 t->SetTouchableHandle(track.GetTouchableHandle()); 592 if (biasManager) { << 835 t->SetWeight(weight); 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); 836 pParticleChange->AddSecondary(t); 598 837 599 // define type of secondary 838 // define type of secondary 600 if(i < mainSecondaries) { << 839 if(i < mainSecondaries) { t->SetCreatorModelIndex(secID); } 601 t->SetCreatorModelID(secID); << 840 else if(i < num0) { 602 if(GetProcessSubType() == fCompton << 841 if(p == theGamma) { 603 t->SetCreatorModelID(_ComptonGam << 842 t->SetCreatorModelIndex(fluoID); 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { 843 } else { 617 t->SetCreatorModelID(biasID); << 844 t->SetCreatorModelIndex(augerID); 618 } 845 } >> 846 } else { >> 847 t->SetCreatorModelIndex(biasID); 619 } 848 } 620 /* << 849 621 G4cout << "Secondary(post step) has << 850 //G4cout << "Secondary(post step) has weight " << t->GetWeight() 622 << ", Ekin= " << t->GetKineti << 851 // << ", Ekin= " << t->GetKineticEnergy()/MeV << " MeV" <<G4endl; 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { 852 } else { 627 delete dp; 853 delete dp; 628 edep += e; 854 edep += e; 629 } 855 } 630 } 856 } 631 } 857 } 632 fParticleChange.ProposeLocalEnergyDeposit( 858 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 859 } 634 860 635 if(0.0 == fParticleChange.GetProposedKinetic 861 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 636 fAlive == fParticleChange.GetTrackStatus( 862 fAlive == fParticleChange.GetTrackStatus()) { 637 if(particle->GetProcessManager()->GetAtRes 863 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 638 { fParticleChange.ProposeTrackStatus( 864 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 639 else { fParticleChange.ProposeTrackStatus( 865 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 640 } 866 } 641 867 642 return &fParticleChange; 868 return &fParticleChange; 643 } 869 } 644 870 645 //....oooOO0OOooo........oooOO0OOooo........oo 871 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 872 647 G4bool G4VEmProcess::StorePhysicsTable(const G 873 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 648 const G << 874 const G4String& directory, 649 G4bool << 875 G4bool ascii) 650 { 876 { 651 if(!isTheMaster || part != particle) { retur << 877 G4bool yes = true; 652 if(G4EmTableUtil::StoreTable(this, part, the << 878 const G4VEmProcess* masterProc = 653 directory, "Lambda", << 879 static_cast<const G4VEmProcess*>(GetMasterProcess()); 654 verboseLevel, a << 880 if(masterProc && masterProc != this) { return yes; } 655 G4EmTableUtil::StoreTable(this, part, the << 881 656 directory, "LambdaPrim", << 882 if ( theLambdaTable && part == particle) { 657 verboseLevel, a << 883 const G4String name = 658 return true; << 884 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 885 yes = theLambdaTable->StorePhysicsTable(name,ascii); >> 886 >> 887 if ( yes ) { >> 888 G4cout << "Physics table is stored for " << particle->GetParticleName() >> 889 << " and process " << GetProcessName() >> 890 << " in the directory <" << directory >> 891 << "> " << G4endl; >> 892 } else { >> 893 G4cout << "Fail to store Physics Table for " >> 894 << particle->GetParticleName() >> 895 << " and process " << GetProcessName() >> 896 << " in the directory <" << directory >> 897 << "> " << G4endl; >> 898 } >> 899 } >> 900 if ( theLambdaTablePrim && part == particle) { >> 901 const G4String name = >> 902 GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 903 yes = theLambdaTablePrim->StorePhysicsTable(name,ascii); >> 904 >> 905 if ( yes ) { >> 906 G4cout << "Physics table prim is stored for " >> 907 << particle->GetParticleName() >> 908 << " and process " << GetProcessName() >> 909 << " in the directory <" << directory >> 910 << "> " << G4endl; >> 911 } else { >> 912 G4cout << "Fail to store Physics Table Prim for " >> 913 << particle->GetParticleName() >> 914 << " and process " << GetProcessName() >> 915 << " in the directory <" << directory >> 916 << "> " << G4endl; >> 917 } 659 } 918 } 660 return false; << 919 return yes; 661 } 920 } 662 921 663 //....oooOO0OOooo........oooOO0OOooo........oo 922 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 664 923 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons 924 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 666 cons << 925 const G4String& directory, 667 G4bo 926 G4bool ascii) 668 { 927 { 669 if(!isTheMaster || part != particle) { retur << 928 if(1 < verboseLevel) { >> 929 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " >> 930 << part->GetParticleName() << " and process " >> 931 << GetProcessName() << G4endl; >> 932 } 670 G4bool yes = true; 933 G4bool yes = true; >> 934 >> 935 if((!buildLambdaTable && minKinEnergyPrim > maxKinEnergy) >> 936 || particle != part) { return yes; } >> 937 >> 938 const G4String particleName = part->GetParticleName(); >> 939 G4String filename; >> 940 671 if(buildLambdaTable) { 941 if(buildLambdaTable) { 672 yes = G4EmTableUtil::RetrieveTable(this, p << 942 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 673 "Lambda << 943 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 674 ascii, << 944 filename,ascii); 675 } << 945 if ( yes ) { 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 946 if (0 < verboseLevel) { 677 yes = G4EmTableUtil::RetrieveTable(this, p << 947 G4cout << "Lambda table for " << particleName 678 "Lambda << 948 << " is Retrieved from <" 679 ascii, << 949 << filename << ">" >> 950 << G4endl; >> 951 } >> 952 if(theParameters->Spline()) { >> 953 size_t n = theLambdaTable->length(); >> 954 for(size_t i=0; i<n; ++i) { >> 955 if((* theLambdaTable)[i]) { >> 956 (* theLambdaTable)[i]->SetSpline(true); >> 957 } >> 958 } >> 959 } >> 960 } else { >> 961 if (1 < verboseLevel) { >> 962 G4cout << "Lambda table for " << particleName << " in file <" >> 963 << filename << "> is not exist" >> 964 << G4endl; >> 965 } >> 966 } >> 967 } >> 968 if(minKinEnergyPrim < maxKinEnergy) { >> 969 filename = GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 970 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTablePrim, >> 971 filename,ascii); >> 972 if ( yes ) { >> 973 if (0 < verboseLevel) { >> 974 G4cout << "Lambda table prim for " << particleName >> 975 << " is Retrieved from <" >> 976 << filename << ">" >> 977 << G4endl; >> 978 } >> 979 if(theParameters->Spline()) { >> 980 size_t n = theLambdaTablePrim->length(); >> 981 for(size_t i=0; i<n; ++i) { >> 982 if((* theLambdaTablePrim)[i]) { >> 983 (* theLambdaTablePrim)[i]->SetSpline(true); >> 984 } >> 985 } >> 986 } >> 987 } else { >> 988 if (1 < verboseLevel) { >> 989 G4cout << "Lambda table prim for " << particleName << " in file <" >> 990 << filename << "> is not exist" >> 991 << G4endl; >> 992 } >> 993 } 680 } 994 } >> 995 681 return yes; 996 return yes; 682 } 997 } 683 998 684 //....oooOO0OOooo........oooOO0OOooo........oo 999 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 685 1000 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 1001 G4double 687 const G << 1002 G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, >> 1003 const G4MaterialCutsCouple* couple) 688 { 1004 { 689 CurrentSetup(couple, kinEnergy); << 1005 // Cross section per atom is calculated 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 1006 DefineMaterial(couple); >> 1007 G4double cross = 0.0; >> 1008 if(buildLambdaTable && theLambdaTable) { >> 1009 cross = GetCurrentLambda(kineticEnergy); >> 1010 } else { >> 1011 SelectModel(kineticEnergy, currentCoupleIndex); >> 1012 cross = fFactor*currentModel->CrossSectionPerVolume(currentMaterial, >> 1013 currentParticle, >> 1014 kineticEnergy); >> 1015 } >> 1016 >> 1017 if(cross < 0.0) { cross = 0.0; } >> 1018 return cross; 691 } 1019 } 692 1020 693 //....oooOO0OOooo........oooOO0OOooo........oo 1021 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 1022 695 G4double G4VEmProcess::GetMeanFreePath(const G 1023 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 696 G4doubl 1024 G4double, 697 G4Force 1025 G4ForceCondition* condition) 698 { 1026 { 699 *condition = NotForced; 1027 *condition = NotForced; 700 return G4VEmProcess::MeanFreePath(track); 1028 return G4VEmProcess::MeanFreePath(track); 701 } 1029 } 702 1030 703 //....oooOO0OOooo........oooOO0OOooo........oo 1031 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 1032 705 G4double << 1033 G4double G4VEmProcess::MeanFreePath(const G4Track& track) 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { 1034 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 1035 DefineMaterial(track.GetMaterialCutsCouple()); 710 return (currentModel) ? << 1036 preStepLambda = GetCurrentLambda(track.GetKineticEnergy()); 711 currentModel->ComputeCrossSectionPerAtom(c << 1037 G4double x = DBL_MAX; 712 Z << 1038 if(0.0 < preStepLambda) { x = 1.0/preStepLambda; } >> 1039 return x; 713 } 1040 } 714 1041 715 //....oooOO0OOooo........oooOO0OOooo........oo 1042 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 1043 717 G4PhysicsVector* << 1044 G4double 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 1045 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, >> 1046 G4double Z, G4double A, G4double cut) 719 { 1047 { 720 DefineMaterial(couple); << 1048 SelectModel(kineticEnergy, currentCoupleIndex); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 1049 G4double x = 0.0; 722 << 1050 if(currentModel) { 723 return newv; << 1051 x = currentModel->ComputeCrossSectionPerAtom(currentParticle,kineticEnergy, >> 1052 Z,A,cut); >> 1053 } >> 1054 return x; 724 } 1055 } 725 1056 726 //....oooOO0OOooo........oooOO0OOooo........oo 1057 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 727 1058 728 const G4Element* G4VEmProcess::GetCurrentEleme << 1059 void G4VEmProcess::FindLambdaMax() 729 { 1060 { 730 return (nullptr != currentModel) ? << 1061 if(1 < verboseLevel) { 731 currentModel->GetCurrentElement(currentMat << 1062 G4cout << "### G4VEmProcess::FindLambdaMax: " >> 1063 << particle->GetParticleName() >> 1064 << " and process " << GetProcessName() << " " << G4endl; >> 1065 } >> 1066 size_t n = theLambdaTable->length(); >> 1067 G4PhysicsVector* pv; >> 1068 G4double e, ss, emax, smax; >> 1069 >> 1070 size_t i; >> 1071 >> 1072 // first loop on existing vectors >> 1073 for (i=0; i<n; ++i) { >> 1074 pv = (*theLambdaTable)[i]; >> 1075 if(pv) { >> 1076 size_t nb = pv->GetVectorLength(); >> 1077 emax = DBL_MAX; >> 1078 smax = 0.0; >> 1079 if(nb > 0) { >> 1080 for (size_t j=0; j<nb; ++j) { >> 1081 e = pv->Energy(j); >> 1082 ss = (*pv)(j); >> 1083 if(ss > smax) { >> 1084 smax = ss; >> 1085 emax = e; >> 1086 } >> 1087 } >> 1088 } >> 1089 theEnergyOfCrossSectionMax[i] = emax; >> 1090 theCrossSectionMax[i] = smax; >> 1091 if(1 < verboseLevel) { >> 1092 G4cout << "For " << particle->GetParticleName() >> 1093 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 1094 << " lambda= " << smax << G4endl; >> 1095 } >> 1096 } >> 1097 } >> 1098 // second loop using base materials >> 1099 for (i=0; i<n; ++i) { >> 1100 pv = (*theLambdaTable)[i]; >> 1101 if(!pv){ >> 1102 G4int j = (*theDensityIdx)[i]; >> 1103 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 1104 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 1105 } >> 1106 } 732 } 1107 } 733 1108 734 //....oooOO0OOooo........oooOO0OOooo........oo 1109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 1110 736 const G4Element* G4VEmProcess::GetTargetElemen << 1111 G4PhysicsVector* >> 1112 G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 737 { 1113 { 738 return (nullptr != currentModel) ? << 1114 G4PhysicsVector* v = 739 currentModel->GetCurrentElement(currentMat << 1115 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 1116 v->SetSpline(theParameters->Spline()); >> 1117 return v; 740 } 1118 } 741 1119 742 //....oooOO0OOooo........oooOO0OOooo........oo 1120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 1121 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 1122 const G4Element* G4VEmProcess::GetCurrentElement() const 745 { 1123 { 746 return (nullptr != currentModel) ? << 1124 const G4Element* elm = nullptr; 747 currentModel->GetCurrentIsotope(GetCurrent << 1125 if(currentModel) {elm = currentModel->GetCurrentElement(); } >> 1126 return elm; 748 } 1127 } 749 1128 750 //....oooOO0OOooo........oooOO0OOooo........oo 1129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 1130 752 void G4VEmProcess::SetCrossSectionBiasingFacto 1131 void G4VEmProcess::SetCrossSectionBiasingFactor(G4double f, G4bool flag) 753 { 1132 { 754 if(f > 0.0) { 1133 if(f > 0.0) { 755 biasFactor = f; 1134 biasFactor = f; 756 weightFlag = flag; 1135 weightFlag = flag; 757 if(1 < verboseLevel) { 1136 if(1 < verboseLevel) { 758 G4cout << "### SetCrossSectionBiasingFac 1137 G4cout << "### SetCrossSectionBiasingFactor: for " 759 << particle->GetParticleName() 1138 << particle->GetParticleName() 760 << " and process " << GetProcessN 1139 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig 1140 << " biasFactor= " << f << " weightFlag= " << flag 762 << G4endl; 1141 << G4endl; 763 } 1142 } 764 } 1143 } 765 } 1144 } 766 1145 767 //....oooOO0OOooo........oooOO0OOooo........oo 1146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 1147 769 void 1148 void 770 G4VEmProcess::ActivateForcedInteraction(G4doub 1149 G4VEmProcess::ActivateForcedInteraction(G4double length, const G4String& r, 771 G4bool 1150 G4bool flag) 772 { 1151 { 773 if(nullptr == biasManager) { biasManager = n << 1152 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 774 if(1 < verboseLevel) { 1153 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: 1154 G4cout << "### ActivateForcedInteraction: for " 776 << particle->GetParticleName() 1155 << particle->GetParticleName() 777 << " and process " << GetProcessNam 1156 << " and process " << GetProcessName() 778 << " length(mm)= " << length/mm 1157 << " length(mm)= " << length/mm 779 << " in G4Region <" << r 1158 << " in G4Region <" << r 780 << "> weightFlag= " << flag 1159 << "> weightFlag= " << flag 781 << G4endl; 1160 << G4endl; 782 } 1161 } 783 weightFlag = flag; 1162 weightFlag = flag; 784 biasManager->ActivateForcedInteraction(lengt 1163 biasManager->ActivateForcedInteraction(length, r); 785 } 1164 } 786 1165 787 //....oooOO0OOooo........oooOO0OOooo........oo 1166 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 788 1167 789 void 1168 void 790 G4VEmProcess::ActivateSecondaryBiasing(const G 1169 G4VEmProcess::ActivateSecondaryBiasing(const G4String& region, 791 G4double factor, 1170 G4double factor, 792 G4double energyLimit) 1171 G4double energyLimit) 793 { 1172 { 794 if (0.0 <= factor) { 1173 if (0.0 <= factor) { 795 1174 796 // Range cut can be applied only for e- 1175 // Range cut can be applied only for e- 797 if(0.0 == factor && secondaryParticle != G 1176 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 798 { return; } 1177 { return; } 799 1178 800 if(!biasManager) { biasManager = new G4EmB 1179 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 801 biasManager->ActivateSecondaryBiasing(regi 1180 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 802 if(1 < verboseLevel) { 1181 if(1 < verboseLevel) { 803 G4cout << "### ActivateSecondaryBiasing: 1182 G4cout << "### ActivateSecondaryBiasing: for " 804 << " process " << GetProcessName() 1183 << " process " << GetProcessName() 805 << " factor= " << factor 1184 << " factor= " << factor 806 << " in G4Region <" << region 1185 << " in G4Region <" << region 807 << "> energyLimit(MeV)= " << energyLimi 1186 << "> energyLimit(MeV)= " << energyLimit/MeV 808 << G4endl; 1187 << G4endl; 809 } 1188 } 810 } 1189 } 811 } 1190 } 812 1191 813 //....oooOO0OOooo........oooOO0OOooo........oo 1192 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 1193 815 void G4VEmProcess::SetLambdaBinning(G4int n) 1194 void G4VEmProcess::SetLambdaBinning(G4int n) 816 { 1195 { 817 if(5 < n && n < 10000000) { 1196 if(5 < n && n < 10000000) { 818 nLambdaBins = n; 1197 nLambdaBins = n; 819 actBinning = true; 1198 actBinning = true; 820 } else { 1199 } else { 821 G4double e = (G4double)n; 1200 G4double e = (G4double)n; 822 PrintWarning("SetLambdaBinning", e); 1201 PrintWarning("SetLambdaBinning", e); 823 } 1202 } 824 } 1203 } 825 1204 826 //....oooOO0OOooo........oooOO0OOooo........oo 1205 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 827 1206 828 void G4VEmProcess::SetMinKinEnergy(G4double e) 1207 void G4VEmProcess::SetMinKinEnergy(G4double e) 829 { 1208 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { 1209 if(1.e-3*eV < e && e < maxKinEnergy) { 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma 1210 nLambdaBins = G4lrint(nLambdaBins*G4Log(maxKinEnergy/e) 832 /G4Log(maxKinEnergy/ 1211 /G4Log(maxKinEnergy/minKinEnergy)); 833 minKinEnergy = e; 1212 minKinEnergy = e; 834 actMinKinEnergy = true; 1213 actMinKinEnergy = true; 835 } else { PrintWarning("SetMinKinEnergy", e); 1214 } else { PrintWarning("SetMinKinEnergy", e); } 836 } 1215 } 837 1216 838 //....oooOO0OOooo........oooOO0OOooo........oo 1217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 1218 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) 1219 void G4VEmProcess::SetMaxKinEnergy(G4double e) 841 { 1220 { 842 if(minKinEnergy < e && e < 1.e+6*TeV) { 1221 if(minKinEnergy < e && e < 1.e+6*TeV) { 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ 1222 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/minKinEnergy) 844 /G4Log(maxKinEnergy/ 1223 /G4Log(maxKinEnergy/minKinEnergy)); 845 maxKinEnergy = e; 1224 maxKinEnergy = e; 846 actMaxKinEnergy = true; 1225 actMaxKinEnergy = true; 847 } else { PrintWarning("SetMaxKinEnergy", e); 1226 } else { PrintWarning("SetMaxKinEnergy", e); } 848 } 1227 } 849 1228 850 //....oooOO0OOooo........oooOO0OOooo........oo 1229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 851 1230 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl 1231 void G4VEmProcess::SetMinKinEnergyPrim(G4double e) 853 { 1232 { 854 if(theParameters->MinKinEnergy() <= e && 1233 if(theParameters->MinKinEnergy() <= e && 855 e <= theParameters->MaxKinEnergy()) { min 1234 e <= theParameters->MaxKinEnergy()) { minKinEnergyPrim = e; } 856 else { PrintWarning("SetMinKinEnergyPrim", e 1235 else { PrintWarning("SetMinKinEnergyPrim", e); } 857 } 1236 } 858 1237 859 //....oooOO0OOooo........oooOO0OOooo........oo 1238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 860 1239 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } << 872 << 873 //....oooOO0OOooo........oooOO0OOooo........oo << 874 << 875 void G4VEmProcess::PrintWarning(G4String tit, 1240 void G4VEmProcess::PrintWarning(G4String tit, G4double val) 876 { 1241 { 877 G4String ss = "G4VEmProcess::" + tit; 1242 G4String ss = "G4VEmProcess::" + tit; 878 G4ExceptionDescription ed; 1243 G4ExceptionDescription ed; 879 ed << "Parameter is out of range: " << val 1244 ed << "Parameter is out of range: " << val 880 << " it will have no effect!\n" << " Pro 1245 << " it will have no effect!\n" << " Process " 881 << GetProcessName() << " nbins= " << the 1246 << GetProcessName() << " nbins= " << theParameters->NumberOfBins() 882 << " Emin(keV)= " << theParameters->MinKi 1247 << " Emin(keV)= " << theParameters->MinKinEnergy()/keV 883 << " Emax(GeV)= " << theParameters->MaxKi 1248 << " Emax(GeV)= " << theParameters->MaxKinEnergy()/GeV; 884 G4Exception(ss, "em0044", JustWarning, ed); 1249 G4Exception(ss, "em0044", JustWarning, ed); 885 } 1250 } 886 1251 887 //....oooOO0OOooo........oooOO0OOooo........oo 1252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 1253 889 void G4VEmProcess::ProcessDescription(std::ost << 1254 void G4VEmProcess::ProcessDescription(std::ostream& outFile) const 890 { 1255 { 891 if(nullptr != particle) { << 1256 outFile << "EM process <" << GetProcessName() << ">" << G4endl; 892 StreamInfo(out, *particle, true); << 893 } << 894 } 1257 } 895 1258 896 //....oooOO0OOooo........oooOO0OOooo........oo 1259 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 1260