Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmProcess.cc 93264 2015-10-14 09:30:04Z gcosmo $ >> 27 // 26 // ------------------------------------------- 28 // ------------------------------------------------------------------- 27 // 29 // 28 // GEANT4 Class file 30 // GEANT4 Class file 29 // 31 // 30 // 32 // 31 // File name: G4VEmProcess 33 // File name: G4VEmProcess 32 // 34 // 33 // Author: Vladimir Ivanchenko on base 35 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 36 // 35 // Creation date: 01.10.2003 37 // Creation date: 01.10.2003 36 // 38 // 37 // Modifications: by V.Ivanchenko << 39 // Modifications: >> 40 // 30-06-04 make it to be pure discrete process (V.Ivanchenko) >> 41 // 30-09-08 optimise integral option (V.Ivanchenko) >> 42 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 43 // 11-03-05 Shift verbose level by 1, add applyCuts and killPrimary flags (VI) >> 44 // 14-03-05 Update logic PostStepDoIt (V.Ivanchenko) >> 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 46 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivanchenko) >> 47 // 25-07-05 Add protection: integral mode only for charged particles (VI) >> 48 // 04-09-05 default lambdaFactor 0.8 (V.Ivanchenko) >> 49 // 11-01-06 add A to parameters of ComputeCrossSectionPerAtom (VI) >> 50 // 12-09-06 add SetModel() (mma) >> 51 // 12-04-07 remove double call to Clear model manager (V.Ivanchenko) >> 52 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 53 // 24-06-09 Removed hidden bin in G4PhysicsVector (V.Ivanchenko) >> 54 // 17-02-10 Added pointer currentParticle (VI) >> 55 // 30-05-12 allow Russian roulette, brem splitting (D. Sawkey) 38 // 56 // 39 // Class Description: based class for discrete << 57 // Class Description: 40 // 58 // 41 59 42 // ------------------------------------------- 60 // ------------------------------------------------------------------- 43 // 61 // 44 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 64 47 #include "G4VEmProcess.hh" 65 #include "G4VEmProcess.hh" 48 #include "G4PhysicalConstants.hh" 66 #include "G4PhysicalConstants.hh" 49 #include "G4SystemOfUnits.hh" 67 #include "G4SystemOfUnits.hh" 50 #include "G4ProcessManager.hh" 68 #include "G4ProcessManager.hh" 51 #include "G4LossTableManager.hh" 69 #include "G4LossTableManager.hh" 52 #include "G4LossTableBuilder.hh" 70 #include "G4LossTableBuilder.hh" 53 #include "G4Step.hh" 71 #include "G4Step.hh" 54 #include "G4ParticleDefinition.hh" 72 #include "G4ParticleDefinition.hh" 55 #include "G4VEmModel.hh" 73 #include "G4VEmModel.hh" 56 #include "G4DataVector.hh" 74 #include "G4DataVector.hh" 57 #include "G4PhysicsTable.hh" 75 #include "G4PhysicsTable.hh" 58 #include "G4EmDataHandler.hh" << 59 #include "G4PhysicsLogVector.hh" 76 #include "G4PhysicsLogVector.hh" 60 #include "G4VParticleChange.hh" 77 #include "G4VParticleChange.hh" 61 #include "G4ProductionCutsTable.hh" 78 #include "G4ProductionCutsTable.hh" 62 #include "G4Region.hh" 79 #include "G4Region.hh" 63 #include "G4Gamma.hh" 80 #include "G4Gamma.hh" 64 #include "G4Electron.hh" 81 #include "G4Electron.hh" 65 #include "G4Positron.hh" 82 #include "G4Positron.hh" 66 #include "G4PhysicsTableHelper.hh" 83 #include "G4PhysicsTableHelper.hh" 67 #include "G4EmBiasingManager.hh" 84 #include "G4EmBiasingManager.hh" 68 #include "G4EmParameters.hh" << 69 #include "G4EmProcessSubType.hh" << 70 #include "G4EmTableUtil.hh" << 71 #include "G4EmUtility.hh" << 72 #include "G4DNAModelSubType.hh" << 73 #include "G4GenericIon.hh" 85 #include "G4GenericIon.hh" 74 #include "G4Log.hh" 86 #include "G4Log.hh" 75 #include <iostream> 87 #include <iostream> 76 88 77 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 78 90 79 G4VEmProcess::G4VEmProcess(const G4String& nam 91 G4VEmProcess::G4VEmProcess(const G4String& name, G4ProcessType type): 80 G4VDiscreteProcess(name, type) << 92 G4VDiscreteProcess(name, type), >> 93 secondaryParticle(nullptr), >> 94 buildLambdaTable(true), >> 95 numberOfModels(0), >> 96 theLambdaTable(nullptr), >> 97 theLambdaTablePrim(nullptr), >> 98 theDensityFactor(nullptr), >> 99 theDensityIdx(nullptr), >> 100 integral(false), >> 101 applyCuts(false), >> 102 startFromNull(false), >> 103 splineFlag(true), >> 104 currentModel(nullptr), >> 105 particle(nullptr), >> 106 currentParticle(nullptr), >> 107 currentCouple(nullptr) 81 { 108 { 82 theParameters = G4EmParameters::Instance(); 109 theParameters = G4EmParameters::Instance(); 83 SetVerboseLevel(1); 110 SetVerboseLevel(1); 84 111 85 // Size of tables << 112 // Size of tables assuming spline 86 minKinEnergy = 0.1*CLHEP::keV; << 113 minKinEnergy = 0.1*keV; 87 maxKinEnergy = 100.0*CLHEP::TeV; << 114 maxKinEnergy = 10.0*TeV; >> 115 nLambdaBins = 77; >> 116 minKinEnergyPrim = DBL_MAX; >> 117 actBinning = false; >> 118 actSpline = false; >> 119 actMinKinEnergy = false; >> 120 actMaxKinEnergy = false; 88 121 89 // default lambda factor 122 // default lambda factor 90 invLambdaFactor = 1.0/lambdaFactor; << 123 lambdaFactor = 0.8; >> 124 >> 125 // default limit on polar angle >> 126 biasFactor = fFactor = 1.0; 91 127 92 // particle types 128 // particle types 93 theGamma = G4Gamma::Gamma(); << 129 theGamma = G4Gamma::Gamma(); 94 theElectron = G4Electron::Electron(); << 130 theElectron = G4Electron::Electron(); 95 thePositron = G4Positron::Positron(); << 131 thePositron = G4Positron::Positron(); >> 132 >> 133 theCuts = theCutsGamma = theCutsElectron = theCutsPositron = nullptr; 96 134 97 pParticleChange = &fParticleChange; 135 pParticleChange = &fParticleChange; 98 fParticleChange.SetSecondaryWeightByProcess( 136 fParticleChange.SetSecondaryWeightByProcess(true); 99 secParticles.reserve(5); 137 secParticles.reserve(5); 100 138 >> 139 baseMaterial = currentMaterial = nullptr; >> 140 >> 141 preStepLambda = preStepKinEnergy = 0.0; >> 142 mfpKinEnergy = DBL_MAX; >> 143 >> 144 idxLambda = idxLambdaPrim = currentCoupleIndex >> 145 = basedCoupleIndex = 0; >> 146 101 modelManager = new G4EmModelManager(); 147 modelManager = new G4EmModelManager(); >> 148 biasManager = nullptr; >> 149 biasFlag = false; >> 150 weightFlag = false; 102 lManager = G4LossTableManager::Instance(); 151 lManager = G4LossTableManager::Instance(); 103 lManager->Register(this); 152 lManager->Register(this); 104 isTheMaster = lManager->IsMaster(); << 153 secID = fluoID = augerID = biasID = -1; 105 G4LossTableBuilder* bld = lManager->GetTable << 154 mainSecondaries = 100; 106 theDensityFactor = bld->GetDensityFactors(); << 155 if("phot" == GetProcessName() || "compt" == GetProcessName()) { 107 theDensityIdx = bld->GetCoupleIndexes(); << 156 mainSecondaries = 1; >> 157 } 108 } 158 } 109 159 110 //....oooOO0OOooo........oooOO0OOooo........oo 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 111 161 112 G4VEmProcess::~G4VEmProcess() 162 G4VEmProcess::~G4VEmProcess() 113 { 163 { 114 if(isTheMaster) { << 164 /* 115 delete theData; << 165 if(1 < verboseLevel) { 116 delete theEnergyOfCrossSectionMax; << 166 G4cout << "G4VEmProcess destruct " << GetProcessName() >> 167 << " " << this << " " << theLambdaTable <<G4endl; >> 168 } >> 169 */ >> 170 if(lManager->IsMaster()) { >> 171 if(theLambdaTable) { >> 172 theLambdaTable->clearAndDestroy(); >> 173 delete theLambdaTable; >> 174 } >> 175 if(theLambdaTablePrim) { >> 176 theLambdaTablePrim->clearAndDestroy(); >> 177 delete theLambdaTablePrim; >> 178 } 117 } 179 } 118 delete modelManager; 180 delete modelManager; 119 delete biasManager; 181 delete biasManager; 120 lManager->DeRegister(this); 182 lManager->DeRegister(this); >> 183 //G4cout << "G4VEmProcess removed " << G4endl; 121 } 184 } 122 185 123 //....oooOO0OOooo........oooOO0OOooo........oo 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 124 187 125 void G4VEmProcess::AddEmModel(G4int order, G4V << 188 void G4VEmProcess::Clear() >> 189 { >> 190 currentCouple = nullptr; >> 191 preStepLambda = 0.0; >> 192 mfpKinEnergy = DBL_MAX; >> 193 idxLambda = idxLambdaPrim = 0; >> 194 } >> 195 >> 196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 197 >> 198 G4double G4VEmProcess::MinPrimaryEnergy(const G4ParticleDefinition*, >> 199 const G4Material*) >> 200 { >> 201 return 0.0; >> 202 } >> 203 >> 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 205 >> 206 void G4VEmProcess::AddEmModel(G4int order, G4VEmModel* p, 126 const G4Region* 207 const G4Region* region) 127 { 208 { 128 if(nullptr == ptr) { return; } << 129 G4VEmFluctuationModel* fm = nullptr; 209 G4VEmFluctuationModel* fm = nullptr; 130 modelManager->AddEmModel(order, ptr, fm, reg << 210 modelManager->AddEmModel(order, p, fm, region); 131 ptr->SetParticleChange(pParticleChange); << 211 if(p) { p->SetParticleChange(pParticleChange); } 132 } 212 } 133 213 134 //....oooOO0OOooo........oooOO0OOooo........oo 214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 135 215 136 void G4VEmProcess::SetEmModel(G4VEmModel* ptr, << 216 void G4VEmProcess::SetEmModel(G4VEmModel* p, G4int index) 137 { 217 { 138 if(nullptr == ptr) { return; } << 218 G4int n = emModels.size(); 139 if(!emModels.empty()) { << 219 if(index >= n) { for(G4int i=n; i<=index; ++i) {emModels.push_back(0);} } 140 for(auto & em : emModels) { if(em == ptr) << 220 emModels[index] = p; 141 } << 221 } 142 emModels.push_back(ptr); << 222 >> 223 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 224 >> 225 G4VEmModel* G4VEmProcess::EmModel(G4int index) const >> 226 { >> 227 G4VEmModel* p = nullptr; >> 228 if(index >= 0 && index < G4int(emModels.size())) { p = emModels[index]; } >> 229 return p; >> 230 } >> 231 >> 232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 233 >> 234 void G4VEmProcess::UpdateEmModel(const G4String& nam, >> 235 G4double emin, G4double emax) >> 236 { >> 237 modelManager->UpdateEmModel(nam, emin, emax); >> 238 } >> 239 >> 240 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 241 >> 242 G4VEmModel* G4VEmProcess::GetModelByIndex(G4int idx, G4bool ver) const >> 243 { >> 244 return modelManager->GetModel(idx, ver); 143 } 245 } 144 246 145 //....oooOO0OOooo........oooOO0OOooo........oo 247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 146 248 147 void G4VEmProcess::PreparePhysicsTable(const G 249 void G4VEmProcess::PreparePhysicsTable(const G4ParticleDefinition& part) 148 { 250 { 149 if(nullptr == particle) { SetParticle(&part) << 251 G4bool isMaster = true; >> 252 const G4VEmProcess* masterProcess = >> 253 static_cast<const G4VEmProcess*>(GetMasterProcess()); >> 254 if(masterProcess && masterProcess != this) { isMaster = false; } >> 255 >> 256 if(!particle) { SetParticle(&part); } 150 257 151 if(part.GetParticleType() == "nucleus" && 258 if(part.GetParticleType() == "nucleus" && 152 part.GetParticleSubType() == "generic") { 259 part.GetParticleSubType() == "generic") { 153 260 154 G4String pname = part.GetParticleName(); 261 G4String pname = part.GetParticleName(); 155 if(pname != "deuteron" && pname != "triton 262 if(pname != "deuteron" && pname != "triton" && 156 pname != "He3" && pname != "alpha" && p << 263 pname != "alpha" && pname != "He3" && 157 pname != "helium" && pname != "hydrogen << 264 pname != "alpha+" && pname != "helium" && >> 265 pname != "hydrogen") { 158 266 159 particle = G4GenericIon::GenericIon(); 267 particle = G4GenericIon::GenericIon(); 160 isIon = true; << 161 } 268 } 162 } 269 } >> 270 >> 271 if(1 < verboseLevel) { >> 272 G4cout << "G4VEmProcess::PreparePhysicsTable() for " >> 273 << GetProcessName() >> 274 << " and particle " << part.GetParticleName() >> 275 << " local particle " << particle->GetParticleName() >> 276 << G4endl; >> 277 } >> 278 163 if(particle != &part) { return; } 279 if(particle != &part) { return; } 164 280 165 lManager->PreparePhysicsTable(&part, this); << 281 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 166 282 167 // for new run << 283 lManager->PreparePhysicsTable(&part, this, isMaster); 168 currentCouple = nullptr; << 169 preStepLambda = 0.0; << 170 fLambdaEnergy = 0.0; << 171 284 >> 285 Clear(); 172 InitialiseProcess(particle); 286 InitialiseProcess(particle); 173 287 174 G4LossTableBuilder* bld = lManager->GetTable << 175 const G4ProductionCutsTable* theCoupleTable= 288 const G4ProductionCutsTable* theCoupleTable= 176 G4ProductionCutsTable::GetProductionCutsTa 289 G4ProductionCutsTable::GetProductionCutsTable(); 177 theCutsGamma = theCoupleTable->GetEnergyC << 290 size_t n = theCoupleTable->GetTableSize(); 178 theCutsElectron = theCoupleTable->GetEnergyC << 291 179 theCutsPositron = theCoupleTable->GetEnergyC << 292 theEnergyOfCrossSectionMax.resize(n, 0.0); >> 293 theCrossSectionMax.resize(n, DBL_MAX); 180 294 181 // initialisation of the process 295 // initialisation of the process 182 if(!actMinKinEnergy) { minKinEnergy = thePar 296 if(!actMinKinEnergy) { minKinEnergy = theParameters->MinKinEnergy(); } 183 if(!actMaxKinEnergy) { maxKinEnergy = thePar 297 if(!actMaxKinEnergy) { maxKinEnergy = theParameters->MaxKinEnergy(); } >> 298 if(isMaster) { SetVerboseLevel(theParameters->Verbose()); } >> 299 else { SetVerboseLevel(theParameters->WorkerVerbose()); } >> 300 applyCuts = theParameters->ApplyCuts(); >> 301 lambdaFactor = theParameters->LambdaFactor(); 184 302 185 applyCuts = theParameters->ApplyCuts() << 303 // initialisation of models 186 lambdaFactor = theParameters->LambdaFacto << 304 numberOfModels = modelManager->NumberOfModels(); 187 invLambdaFactor = 1.0/lambdaFactor; << 305 for(G4int i=0; i<numberOfModels; ++i) { 188 theParameters->DefineRegParamForEM(this); << 306 G4VEmModel* mod = modelManager->GetModel(i); >> 307 if(0 == i) { currentModel = mod; } >> 308 mod->SetPolarAngleLimit(theParameters->MscThetaLimit()); >> 309 mod->SetMasterThread(isMaster); >> 310 if(mod->HighEnergyLimit() > maxKinEnergy) { >> 311 mod->SetHighEnergyLimit(maxKinEnergy); >> 312 } >> 313 } 189 314 190 // integral option may be disabled << 315 if(lManager->AtomDeexcitation()) { modelManager->SetFluoFlag(true); } 191 if(!theParameters->Integral()) { fXSType = f << 316 theCuts = modelManager->Initialise(particle,secondaryParticle, >> 317 2.,verboseLevel); >> 318 theCutsGamma = theCoupleTable->GetEnergyCutsVector(idxG4GammaCut); >> 319 theCutsElectron = theCoupleTable->GetEnergyCutsVector(idxG4ElectronCut); >> 320 theCutsPositron = theCoupleTable->GetEnergyCutsVector(idxG4PositronCut); 192 321 193 // prepare tables 322 // prepare tables 194 if(isTheMaster) { << 323 if(buildLambdaTable && isMaster){ 195 if(nullptr == theData) { theData = new G4E << 324 theLambdaTable = 196 << 325 G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTable); 197 if(buildLambdaTable) { << 326 bld->InitialiseBaseMaterials(theLambdaTable); 198 theLambdaTable = theData->MakeTable(0); << 327 } 199 bld->InitialiseBaseMaterials(theLambdaTa << 328 // high energy table 200 } << 329 if(isMaster && minKinEnergyPrim < maxKinEnergy){ 201 // high energy table << 330 theLambdaTablePrim = 202 if(minKinEnergyPrim < maxKinEnergy) { << 331 G4PhysicsTableHelper::PreparePhysicsTable(theLambdaTablePrim); 203 theLambdaTablePrim = theData->MakeTable( << 332 bld->InitialiseBaseMaterials(theLambdaTablePrim); 204 bld->InitialiseBaseMaterials(theLambdaTa << 205 } << 206 } << 207 // models << 208 baseMat = bld->GetBaseMaterialFlag(); << 209 numberOfModels = modelManager->NumberOfModel << 210 currentModel = modelManager->GetModel(0); << 211 if(nullptr != lManager->AtomDeexcitation()) << 212 modelManager->SetFluoFlag(true); << 213 } 333 } 214 // forced biasing 334 // forced biasing 215 if(nullptr != biasManager) { << 335 if(biasManager) { 216 biasManager->Initialise(part, GetProcessNa << 336 biasManager->Initialise(part,GetProcessName(),verboseLevel); 217 biasFlag = false; << 337 biasFlag = false; 218 } << 338 } 219 << 339 // defined ID of secondary particles 220 theCuts = << 340 G4String nam1 = GetProcessName(); 221 G4EmTableUtil::PrepareEmProcess(this, part << 341 G4String nam2 = nam1 + "_fluo" ; 222 modelManag << 342 G4String nam3 = nam1 + "_auger"; 223 secID, tri << 343 G4String nam4 = nam1 + "_split"; 224 verboseLev << 344 secID = G4PhysicsModelCatalog::Register(nam1); >> 345 fluoID = G4PhysicsModelCatalog::Register(nam2); >> 346 augerID = G4PhysicsModelCatalog::Register(nam3); >> 347 biasID = G4PhysicsModelCatalog::Register(nam4); 225 } 348 } 226 349 227 //....oooOO0OOooo........oooOO0OOooo........oo 350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 351 229 void G4VEmProcess::BuildPhysicsTable(const G4P 352 void G4VEmProcess::BuildPhysicsTable(const G4ParticleDefinition& part) 230 { 353 { 231 if(nullptr == masterProc) { << 354 G4bool isMaster = true; 232 if(isTheMaster) { masterProc = this; } << 355 const G4VEmProcess* masterProc = 233 else { masterProc = static_cast<const G4VE << 356 static_cast<const G4VEmProcess*>(GetMasterProcess()); 234 } << 357 if(masterProc && masterProc != this) { isMaster = false; } 235 G4int nModels = modelManager->NumberOfModels << 358 236 G4bool isLocked = theParameters->IsPrintLock << 359 G4String num = part.GetParticleName(); 237 G4bool toBuild = (buildLambdaTable || minKin << 360 if(1 < verboseLevel) { 238 << 361 G4cout << "### G4VEmProcess::BuildPhysicsTable() for " 239 G4EmTableUtil::BuildEmProcess(this, masterPr << 362 << GetProcessName() 240 nModels, verbo << 363 << " and particle " << num 241 isLocked, toBu << 364 << " buildLambdaTable= " << buildLambdaTable >> 365 << " isMaster= " << isMaster >> 366 << G4endl; >> 367 } >> 368 >> 369 if(particle == &part) { >> 370 >> 371 G4LossTableBuilder* bld = lManager->GetTableBuilder(); >> 372 >> 373 // worker initialisation >> 374 if(!isMaster) { >> 375 theLambdaTable = masterProc->LambdaTable(); >> 376 theLambdaTablePrim = masterProc->LambdaTablePrim(); >> 377 >> 378 if(theLambdaTable) { >> 379 bld->InitialiseBaseMaterials(theLambdaTable); >> 380 } else if(theLambdaTablePrim) { >> 381 bld->InitialiseBaseMaterials(theLambdaTablePrim); >> 382 } >> 383 theDensityFactor = bld->GetDensityFactors(); >> 384 theDensityIdx = bld->GetCoupleIndexes(); >> 385 if(theLambdaTable) { FindLambdaMax(); } >> 386 >> 387 // local initialisation of models >> 388 G4bool printing = true; >> 389 numberOfModels = modelManager->NumberOfModels(); >> 390 for(G4int i=0; i<numberOfModels; ++i) { >> 391 G4VEmModel* mod = GetModelByIndex(i, printing); >> 392 G4VEmModel* mod0= masterProc->GetModelByIndex(i, printing); >> 393 mod->InitialiseLocal(particle, mod0); >> 394 } >> 395 // master thread >> 396 } else { >> 397 theDensityFactor = bld->GetDensityFactors(); >> 398 theDensityIdx = bld->GetCoupleIndexes(); >> 399 if(buildLambdaTable || minKinEnergyPrim < maxKinEnergy) { >> 400 BuildLambdaTable(); >> 401 } >> 402 } >> 403 } >> 404 >> 405 // explicitly defined printout by particle name >> 406 if(1 < verboseLevel || >> 407 (0 < verboseLevel && (num == "gamma" || num == "e-" || >> 408 num == "e+" || num == "mu+" || >> 409 num == "mu-" || num == "proton"|| >> 410 num == "pi+" || num == "pi-" || >> 411 num == "kaon+" || num == "kaon-" || >> 412 num == "alpha" || num == "anti_proton" || >> 413 num == "GenericIon"))) >> 414 { >> 415 PrintInfoProcess(part); >> 416 } >> 417 >> 418 if(1 < verboseLevel) { >> 419 G4cout << "### G4VEmProcess::BuildPhysicsTable() done for " >> 420 << GetProcessName() >> 421 << " and particle " << num >> 422 << G4endl; >> 423 } 242 } 424 } 243 425 244 //....oooOO0OOooo........oooOO0OOooo........oo 426 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 245 427 246 void G4VEmProcess::BuildLambdaTable() 428 void G4VEmProcess::BuildLambdaTable() 247 { 429 { 248 G4double scale = theParameters->MaxKinEnergy << 430 if(1 < verboseLevel) { 249 G4int nbin = << 431 G4cout << "G4EmProcess::BuildLambdaTable() for process " 250 theParameters->NumberOfBinsPerDecade()*G4l << 432 << GetProcessName() << " and particle " 251 if(actBinning) { nbin = std::max(nbin, nLamb << 433 << particle->GetParticleName() << " " << this 252 scale = nbin/G4Log(scale); << 434 << G4endl; 253 << 435 } >> 436 >> 437 // Access to materials >> 438 const G4ProductionCutsTable* theCoupleTable= >> 439 G4ProductionCutsTable::GetProductionCutsTable(); >> 440 size_t numOfCouples = theCoupleTable->GetTableSize(); >> 441 254 G4LossTableBuilder* bld = lManager->GetTable 442 G4LossTableBuilder* bld = lManager->GetTableBuilder(); 255 G4EmTableUtil::BuildLambdaTable(this, partic << 443 256 bld, theLamb << 444 G4PhysicsLogVector* aVector = nullptr; 257 minKinEnergy << 445 G4PhysicsLogVector* aVectorPrim = nullptr; 258 maxKinEnergy << 446 G4PhysicsLogVector* bVectorPrim = nullptr; 259 startFromNul << 447 >> 448 G4double scale = >> 449 G4Log(theParameters->MaxKinEnergy()/theParameters->MinKinEnergy()); >> 450 G4int nbin = theParameters->NumberOfBins(); >> 451 if(actBinning) { nbin = std::max(nbin, nLambdaBins); } >> 452 G4double emax1 = std::min(maxKinEnergy, minKinEnergyPrim); >> 453 if(!actSpline) { splineFlag = theParameters->Spline(); } >> 454 >> 455 for(size_t i=0; i<numOfCouples; ++i) { >> 456 >> 457 if (bld->GetFlag(i)) { >> 458 >> 459 // create physics vector and fill it >> 460 const G4MaterialCutsCouple* couple = >> 461 theCoupleTable->GetMaterialCutsCouple(i); >> 462 >> 463 // build main table >> 464 if(buildLambdaTable) { >> 465 delete (*theLambdaTable)[i]; >> 466 >> 467 // if start from zero then change the scale >> 468 G4double emin = minKinEnergy; >> 469 G4bool startNull = false; >> 470 if(startFromNull) { >> 471 G4double e = MinPrimaryEnergy(particle,couple->GetMaterial()); >> 472 if(e >= emin) { >> 473 emin = e; >> 474 startNull = true; >> 475 } >> 476 } >> 477 G4double emax = emax1; >> 478 if(emax <= emin) { emax = 2*emin; } >> 479 G4int bin = G4lrint(nbin*G4Log(emax/emin)/scale); >> 480 if(bin < 3) { bin = 3; } >> 481 aVector = new G4PhysicsLogVector(emin, emax, bin); >> 482 aVector->SetSpline(splineFlag); >> 483 modelManager->FillLambdaVector(aVector, couple, startNull); >> 484 if(splineFlag) { aVector->FillSecondDerivatives(); } >> 485 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTable, i, aVector); >> 486 } >> 487 // build high energy table >> 488 if(minKinEnergyPrim < maxKinEnergy) { >> 489 delete (*theLambdaTablePrim)[i]; >> 490 >> 491 // start not from zero >> 492 if(!bVectorPrim) { >> 493 G4int bin = G4lrint(nbin*G4Log(maxKinEnergy/minKinEnergyPrim)/scale); >> 494 if(bin < 3) { bin = 3; } >> 495 aVectorPrim = >> 496 new G4PhysicsLogVector(minKinEnergyPrim, maxKinEnergy, bin); >> 497 bVectorPrim = aVectorPrim; >> 498 } else { >> 499 aVectorPrim = new G4PhysicsLogVector(*bVectorPrim); >> 500 } >> 501 // always use spline >> 502 aVectorPrim->SetSpline(splineFlag); >> 503 modelManager->FillLambdaVector(aVectorPrim, couple, false, >> 504 fIsCrossSectionPrim); >> 505 aVectorPrim->FillSecondDerivatives(); >> 506 G4PhysicsTableHelper::SetPhysicsVector(theLambdaTablePrim, i, >> 507 aVectorPrim); >> 508 } >> 509 } >> 510 } >> 511 >> 512 if(buildLambdaTable) { FindLambdaMax(); } >> 513 >> 514 if(1 < verboseLevel) { >> 515 G4cout << "Lambda table is built for " >> 516 << particle->GetParticleName() >> 517 << G4endl; >> 518 } 260 } 519 } 261 520 262 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 263 522 264 void G4VEmProcess::StreamInfo(std::ostream& ou << 523 void G4VEmProcess::PrintInfoProcess(const G4ParticleDefinition& part) 265 const G4ParticleDefinition& << 524 { 266 { << 525 if(verboseLevel > 0) { 267 G4String indent = (rst ? " " : ""); << 526 G4cout << std::setprecision(6); 268 out << std::setprecision(6); << 527 G4cout << G4endl << GetProcessName() << ": for " 269 out << G4endl << indent << GetProcessName() << 528 << part.GetParticleName(); 270 if (!rst) { << 529 if(integral) { G4cout << ", integral: 1 "; } 271 out << " for " << part.GetParticleName(); << 530 if(applyCuts) { G4cout << ", applyCuts: 1 "; } 272 } << 531 G4cout << " SubType= " << GetProcessSubType();; 273 if(fXSType != fEmNoIntegral) { out << " XSt << 532 if(biasFactor != 1.0) { G4cout << " BiasingFactor= " << biasFactor; } 274 if(applyCuts) { out << " applyCuts:1 "; } << 533 G4cout << " BuildTable= " << buildLambdaTable; 275 G4int subtype = GetProcessSubType(); << 534 G4cout << G4endl; 276 out << " SubType=" << subtype; << 535 if(buildLambdaTable) { 277 if (subtype == fAnnihilation) { << 536 if(particle == &part) { 278 G4int mod = theParameters->PositronAtRestM << 537 size_t length = theLambdaTable->length(); 279 const G4String namp[2] = {"Simple", "Allis << 538 for(size_t i=0; i<length; ++i) { 280 out << " AtRestModel:" << namp[mod]; << 539 G4PhysicsVector* v = (*theLambdaTable)[i]; 281 } << 540 if(v) { 282 if(biasFactor != 1.0) { out << " BiasingFac << 541 G4cout << " Lambda table from "; 283 out << " BuildTable=" << buildLambdaTable << << 542 G4double emin = v->Energy(0); 284 if(buildLambdaTable) { << 543 G4double emax = v->GetMaxEnergy(); 285 if(particle == &part) { << 544 G4int nbin = v->GetVectorLength() - 1; 286 for(auto & v : *theLambdaTable) { << 545 if(emin > minKinEnergy) { G4cout << "threshold "; } 287 if(nullptr != v) { << 546 else { G4cout << G4BestUnit(emin,"Energy"); } 288 out << " Lambda table from "; << 547 G4cout << " to " 289 G4double emin = v->Energy(0); << 548 << G4BestUnit(emax,"Energy") 290 G4double emax = v->GetMaxEnergy(); << 549 << ", " << G4lrint(nbin/std::log10(emax/emin)) 291 G4int nbin = G4int(v->GetVectorLengt << 550 << " bins per decade, spline: " 292 if(emin > minKinEnergy) { out << "th << 551 << splineFlag 293 else { out << G4BestUnit(emin,"Energ << 552 << G4endl; 294 out << " to " << 553 break; 295 << G4BestUnit(emax,"Energy") << 554 } 296 << ", " << G4lrint(nbin/std::log << 297 << " bins/decade, spline: " << 298 << splineFlag << G4endl; << 299 break; << 300 } 555 } >> 556 } else { >> 557 G4cout << " Used Lambda table of " >> 558 << particle->GetParticleName() << G4endl;; 301 } 559 } 302 } else { << 303 out << " Used Lambda table of " << 304 << particle->GetParticleName() << G4endl << 305 } 560 } 306 } << 561 if(minKinEnergyPrim < maxKinEnergy) { 307 if(minKinEnergyPrim < maxKinEnergy) { << 562 if(particle == &part) { 308 if(particle == &part) { << 563 size_t length = theLambdaTablePrim->length(); 309 for(auto & v : *theLambdaTablePrim) { << 564 for(size_t i=0; i<length; ++i) { 310 if(nullptr != v) { << 565 G4PhysicsVector* v = (*theLambdaTablePrim)[i]; 311 out << " LambdaPrime table from << 566 if(v) { 312 << G4BestUnit(v->Energy(0),"Ener << 567 G4cout << " LambdaPrime table from " 313 << " to " << 568 << G4BestUnit(v->Energy(0),"Energy") 314 << G4BestUnit(v->GetMaxEnergy(), << 569 << " to " 315 << " in " << v->GetVectorLength( << 570 << G4BestUnit(v->GetMaxEnergy(),"Energy") 316 << " bins " << G4endl; << 571 << " in " << v->GetVectorLength()-1 317 break; << 572 << " bins " >> 573 << G4endl; >> 574 break; >> 575 } 318 } 576 } >> 577 } else { >> 578 G4cout << " Used LambdaPrime table of " >> 579 << particle->GetParticleName() << G4endl;; 319 } 580 } 320 } else { << 321 out << " Used LambdaPrime table of << 322 << particle->GetParticleName() << 323 } 581 } >> 582 PrintInfo(); >> 583 modelManager->DumpModelList(verboseLevel); 324 } 584 } 325 StreamProcessInfo(out); << 326 modelManager->DumpModelList(out, verboseLeve << 327 585 328 if(verboseLevel > 2 && buildLambdaTable) { 586 if(verboseLevel > 2 && buildLambdaTable) { 329 out << " LambdaTable address= " << th << 587 G4cout << " LambdaTable address= " << theLambdaTable << G4endl; 330 if(theLambdaTable && particle == &part) { 588 if(theLambdaTable && particle == &part) { 331 out << (*theLambdaTable) << G4endl; << 589 G4cout << (*theLambdaTable) << G4endl; 332 } 590 } 333 } 591 } 334 } 592 } 335 593 336 //....oooOO0OOooo........oooOO0OOooo........oo 594 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 337 595 338 void G4VEmProcess::StartTracking(G4Track* trac 596 void G4VEmProcess::StartTracking(G4Track* track) 339 { 597 { 340 // reset parameters for the new track 598 // reset parameters for the new track 341 currentParticle = track->GetParticleDefiniti 599 currentParticle = track->GetParticleDefinition(); 342 theNumberOfInteractionLengthLeft = -1.0; 600 theNumberOfInteractionLengthLeft = -1.0; 343 mfpKinEnergy = DBL_MAX; << 601 mfpKinEnergy = DBL_MAX; 344 preStepLambda = 0.0; << 345 << 346 if(isIon) { massRatio = proton_mass_c2/curre << 347 602 348 // forced biasing only for primary particles 603 // forced biasing only for primary particles 349 if(biasManager) { 604 if(biasManager) { 350 if(0 == track->GetParentID()) { 605 if(0 == track->GetParentID()) { 351 // primary particle 606 // primary particle 352 biasFlag = true; 607 biasFlag = true; 353 biasManager->ResetForcedInteraction(); 608 biasManager->ResetForcedInteraction(); 354 } 609 } 355 } 610 } 356 } 611 } 357 612 358 //....oooOO0OOooo........oooOO0OOooo........oo 613 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 359 614 360 G4double G4VEmProcess::PostStepGetPhysicalInte 615 G4double G4VEmProcess::PostStepGetPhysicalInteractionLength( 361 const G4Track& tr 616 const G4Track& track, 362 G4double previo 617 G4double previousStepSize, 363 G4ForceCondition* 618 G4ForceCondition* condition) 364 { 619 { 365 *condition = NotForced; 620 *condition = NotForced; 366 G4double x = DBL_MAX; 621 G4double x = DBL_MAX; 367 622 368 DefineMaterial(track.GetMaterialCutsCouple() << 369 preStepKinEnergy = track.GetKineticEnergy(); 623 preStepKinEnergy = track.GetKineticEnergy(); 370 const G4double scaledEnergy = preStepKinEner << 624 DefineMaterial(track.GetMaterialCutsCouple()); 371 SelectModel(scaledEnergy, currentCoupleIndex << 625 SelectModel(preStepKinEnergy, currentCoupleIndex); 372 /* << 626 373 G4cout << "PostStepGetPhysicalInteractionLen << 627 if(!currentModel->IsActive(preStepKinEnergy)) { 374 << " couple: " << currentCouple << G << 375 */ << 376 if(!currentModel->IsActive(scaledEnergy)) { << 377 theNumberOfInteractionLengthLeft = -1.0; 628 theNumberOfInteractionLengthLeft = -1.0; 378 currentInteractionLength = DBL_MAX; 629 currentInteractionLength = DBL_MAX; 379 mfpKinEnergy = DBL_MAX; << 380 preStepLambda = 0.0; << 381 return x; 630 return x; 382 } 631 } 383 632 384 // forced biasing only for primary particles 633 // forced biasing only for primary particles 385 if(biasManager) { 634 if(biasManager) { 386 if(0 == track.GetParentID()) { 635 if(0 == track.GetParentID()) { 387 if(biasFlag && 636 if(biasFlag && 388 biasManager->ForcedInteractionRegion( << 637 biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 389 return biasManager->GetStepLimit((G4in << 638 return biasManager->GetStepLimit(currentCoupleIndex, previousStepSize); 390 } 639 } 391 } 640 } 392 } 641 } 393 642 394 // compute mean free path 643 // compute mean free path >> 644 if(preStepKinEnergy < mfpKinEnergy) { >> 645 if (integral) { ComputeIntegralLambda(preStepKinEnergy); } >> 646 else { preStepLambda = GetCurrentLambda(preStepKinEnergy); } >> 647 >> 648 // zero cross section >> 649 if(preStepLambda <= 0.0) { >> 650 theNumberOfInteractionLengthLeft = -1.0; >> 651 currentInteractionLength = DBL_MAX; >> 652 } >> 653 } 395 654 396 ComputeIntegralLambda(preStepKinEnergy, trac << 655 // non-zero cross section 397 << 656 if(preStepLambda > 0.0) { 398 // zero cross section << 399 if(preStepLambda <= 0.0) { << 400 theNumberOfInteractionLengthLeft = -1.0; << 401 currentInteractionLength = DBL_MAX; << 402 << 403 } else { << 404 657 405 // non-zero cross section << 406 if (theNumberOfInteractionLengthLeft < 0.0 658 if (theNumberOfInteractionLengthLeft < 0.0) { 407 659 408 // beggining of tracking (or just after 660 // beggining of tracking (or just after DoIt of this process) 409 theNumberOfInteractionLengthLeft = -G4Lo << 661 theNumberOfInteractionLengthLeft = -G4Log( G4UniformRand() ); 410 theInitialNumberOfInteractionLength = th 662 theInitialNumberOfInteractionLength = theNumberOfInteractionLengthLeft; 411 663 412 } else { << 664 } else if(currentInteractionLength < DBL_MAX) { 413 665 >> 666 // subtract NumberOfInteractionLengthLeft using previous step 414 theNumberOfInteractionLengthLeft -= 667 theNumberOfInteractionLengthLeft -= 415 previousStepSize/currentInteractionLen 668 previousStepSize/currentInteractionLength; >> 669 //SubtractNumberOfInteractionLengthLeft(previousStepSize); 416 theNumberOfInteractionLengthLeft = 670 theNumberOfInteractionLengthLeft = 417 std::max(theNumberOfInteractionLengthL 671 std::max(theNumberOfInteractionLengthLeft, 0.0); 418 } 672 } 419 673 420 // new mean free path and step limit for t 674 // new mean free path and step limit for the next step 421 currentInteractionLength = 1.0/preStepLamb 675 currentInteractionLength = 1.0/preStepLambda; 422 x = theNumberOfInteractionLengthLeft * cur 676 x = theNumberOfInteractionLengthLeft * currentInteractionLength; 423 } << 677 /* 424 return x; << 678 #ifdef G4VERBOSE 425 } << 679 if (verboseLevel>2){ 426 << 680 G4cout << "G4VEmProcess::PostStepGetPhysicalInteractionLength "; 427 //....oooOO0OOooo........oooOO0OOooo........oo << 681 G4cout << "[ " << GetProcessName() << "]" << G4endl; 428 << 682 G4cout << " for " << currentParticle->GetParticleName() 429 void G4VEmProcess::ComputeIntegralLambda(G4dou << 683 << " in Material " << currentMaterial->GetName() 430 { << 684 << " Ekin(MeV)= " << preStepKinEnergy/MeV 431 if (fXSType == fEmNoIntegral) { << 685 <<G4endl; 432 preStepLambda = GetCurrentLambda(e, LogEki << 686 G4cout << " MeanFreePath = " << currentInteractionLength/cm << "[cm]" 433 << 687 << " InteractionLength= " << x/cm <<"[cm] " <<G4endl; 434 } else if (fXSType == fEmIncreasing) { << 435 if(e*invLambdaFactor < mfpKinEnergy) { << 436 preStepLambda = GetCurrentLambda(e, LogE << 437 mfpKinEnergy = (preStepLambda > 0.0) ? e << 438 } << 439 << 440 } else if(fXSType == fEmDecreasing) { << 441 if(e < mfpKinEnergy) { << 442 const G4double e1 = e*lambdaFactor; << 443 preStepLambda = GetCurrentLambda(e1); << 444 mfpKinEnergy = e1; << 445 } << 446 << 447 } else if(fXSType == fEmOnePeak) { << 448 const G4double epeak = (*theEnergyOfCrossS << 449 if(e <= epeak) { << 450 if(e*invLambdaFactor < mfpKinEnergy) { << 451 preStepLambda = GetCurrentLambda(e, Lo << 452 mfpKinEnergy = (preStepLambda > 0.0) ? << 453 } << 454 } else if(e < mfpKinEnergy) { << 455 const G4double e1 = std::max(epeak, e*la << 456 preStepLambda = GetCurrentLambda(e1); << 457 mfpKinEnergy = e1; << 458 } 688 } 459 } else { << 689 #endif 460 preStepLambda = GetCurrentLambda(e, LogEki << 690 */ 461 } 691 } >> 692 return x; 462 } 693 } 463 694 464 //....oooOO0OOooo........oooOO0OOooo........oo 695 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 465 696 466 G4VParticleChange* G4VEmProcess::PostStepDoIt( 697 G4VParticleChange* G4VEmProcess::PostStepDoIt(const G4Track& track, 467 698 const G4Step& step) 468 { 699 { 469 // clear number of interaction lengths in an << 700 // In all cases clear number of interaction lengths 470 theNumberOfInteractionLengthLeft = -1.0; 701 theNumberOfInteractionLengthLeft = -1.0; 471 mfpKinEnergy = DBL_MAX; << 702 mfpKinEnergy = DBL_MAX; 472 703 473 fParticleChange.InitializeForPostStep(track) 704 fParticleChange.InitializeForPostStep(track); 474 705 475 // Do not make anything if particle is stopp 706 // Do not make anything if particle is stopped, the annihilation then 476 // should be performed by the AtRestDoIt! 707 // should be performed by the AtRestDoIt! 477 if (track.GetTrackStatus() == fStopButAlive) 708 if (track.GetTrackStatus() == fStopButAlive) { return &fParticleChange; } 478 709 479 const G4double finalT = track.GetKineticEner << 710 G4double finalT = track.GetKineticEnergy(); 480 711 481 // forced process - should happen only once 712 // forced process - should happen only once per track 482 if(biasFlag) { 713 if(biasFlag) { 483 if(biasManager->ForcedInteractionRegion((G << 714 if(biasManager->ForcedInteractionRegion(currentCoupleIndex)) { 484 biasFlag = false; 715 biasFlag = false; 485 } 716 } 486 } 717 } 487 718 488 // check active and select model << 489 const G4double scaledEnergy = finalT*massRat << 490 SelectModel(scaledEnergy, currentCoupleIndex << 491 if(!currentModel->IsActive(scaledEnergy)) { << 492 << 493 // Integral approach 719 // Integral approach 494 if (fXSType != fEmNoIntegral) { << 720 if (integral) { 495 const G4double logFinalT = << 721 G4double lx = GetLambda(finalT, currentCouple); 496 track.GetDynamicParticle()->GetLogKineti << 722 if(preStepLambda<lx && 1 < verboseLevel) { 497 const G4double lx = std::max(GetCurrentLam << 498 #ifdef G4VERBOSE << 499 if(preStepLambda < lx && 1 < verboseLevel) << 500 G4cout << "WARNING: for " << currentPart 723 G4cout << "WARNING: for " << currentParticle->GetParticleName() 501 << " and " << GetProcessName() << << 724 << " and " << GetProcessName() 502 << " preLambda= " << preStepLambd << 725 << " E(MeV)= " << finalT/MeV 503 << " < " << lx << " (postLambda) << 726 << " preLambda= " << preStepLambda << " < " >> 727 << lx << " (postLambda) " >> 728 << G4endl; 504 } 729 } 505 #endif << 730 506 // if false interaction then use new cross << 731 if(preStepLambda*G4UniformRand() > lx) { 507 // if both values are zero - no interactio << 732 ClearNumberOfInteractionLengthLeft(); 508 if(preStepLambda*G4UniformRand() >= lx) { << 509 return &fParticleChange; 733 return &fParticleChange; 510 } 734 } 511 } 735 } 512 736 >> 737 SelectModel(finalT, currentCoupleIndex); >> 738 if(!currentModel->IsActive(finalT)) { return &fParticleChange; } >> 739 513 // define new weight for primary and seconda 740 // define new weight for primary and secondaries 514 G4double weight = fParticleChange.GetParentW 741 G4double weight = fParticleChange.GetParentWeight(); 515 if(weightFlag) { 742 if(weightFlag) { 516 weight /= biasFactor; 743 weight /= biasFactor; 517 fParticleChange.ProposeWeight(weight); 744 fParticleChange.ProposeWeight(weight); 518 } 745 } 519 746 520 #ifdef G4VERBOSE << 747 /* 521 if(1 < verboseLevel) { << 748 if(0 < verboseLevel) { 522 G4cout << "G4VEmProcess::PostStepDoIt: Sam 749 G4cout << "G4VEmProcess::PostStepDoIt: Sample secondary; E= " 523 << finalT/MeV 750 << finalT/MeV 524 << " MeV; model= (" << currentModel 751 << " MeV; model= (" << currentModel->LowEnergyLimit() 525 << ", " << currentModel->HighEnerg 752 << ", " << currentModel->HighEnergyLimit() << ")" 526 << G4endl; 753 << G4endl; 527 } 754 } 528 #endif << 755 */ 529 756 530 // sample secondaries 757 // sample secondaries 531 secParticles.clear(); 758 secParticles.clear(); 532 currentModel->SampleSecondaries(&secParticle 759 currentModel->SampleSecondaries(&secParticles, 533 currentCoupl 760 currentCouple, 534 track.GetDyn 761 track.GetDynamicParticle(), 535 (*theCuts)[c 762 (*theCuts)[currentCoupleIndex]); 536 763 537 G4int num0 = (G4int)secParticles.size(); << 764 G4int num0 = secParticles.size(); 538 765 539 // splitting or Russian roulette 766 // splitting or Russian roulette 540 if(biasManager) { 767 if(biasManager) { 541 if(biasManager->SecondaryBiasingRegion((G4 << 768 if(biasManager->SecondaryBiasingRegion(currentCoupleIndex)) { 542 G4double eloss = 0.0; 769 G4double eloss = 0.0; 543 weight *= biasManager->ApplySecondaryBia 770 weight *= biasManager->ApplySecondaryBiasing( 544 secParticles, track, currentModel, &fP 771 secParticles, track, currentModel, &fParticleChange, eloss, 545 (G4int)currentCoupleIndex, (*theCuts)[ << 772 currentCoupleIndex, (*theCuts)[currentCoupleIndex], 546 step.GetPostStepPoint()->GetSafety()); 773 step.GetPostStepPoint()->GetSafety()); 547 if(eloss > 0.0) { 774 if(eloss > 0.0) { 548 eloss += fParticleChange.GetLocalEnerg 775 eloss += fParticleChange.GetLocalEnergyDeposit(); 549 fParticleChange.ProposeLocalEnergyDepo 776 fParticleChange.ProposeLocalEnergyDeposit(eloss); 550 } 777 } 551 } 778 } 552 } 779 } 553 780 554 // save secondaries 781 // save secondaries 555 G4int num = (G4int)secParticles.size(); << 782 G4int num = secParticles.size(); 556 if(num > 0) { 783 if(num > 0) { 557 784 558 fParticleChange.SetNumberOfSecondaries(num 785 fParticleChange.SetNumberOfSecondaries(num); 559 G4double edep = fParticleChange.GetLocalEn 786 G4double edep = fParticleChange.GetLocalEnergyDeposit(); 560 G4double time = track.GetGlobalTime(); 787 G4double time = track.GetGlobalTime(); 561 << 562 G4int n1(0), n2(0); << 563 if(num0 > mainSecondaries) { << 564 currentModel->FillNumberOfSecondaries(n1 << 565 } << 566 788 567 for (G4int i=0; i<num; ++i) { 789 for (G4int i=0; i<num; ++i) { 568 G4DynamicParticle* dp = secParticles[i]; << 790 if (secParticles[i]) { 569 if (nullptr != dp) { << 791 G4DynamicParticle* dp = secParticles[i]; 570 const G4ParticleDefinition* p = dp->Ge 792 const G4ParticleDefinition* p = dp->GetParticleDefinition(); 571 G4double e = dp->GetKineticEnergy(); 793 G4double e = dp->GetKineticEnergy(); 572 G4bool good = true; 794 G4bool good = true; 573 if(applyCuts) { 795 if(applyCuts) { 574 if (p == theGamma) { 796 if (p == theGamma) { 575 if (e < (*theCutsGamma)[currentCou 797 if (e < (*theCutsGamma)[currentCoupleIndex]) { good = false; } 576 798 577 } else if (p == theElectron) { 799 } else if (p == theElectron) { 578 if (e < (*theCutsElectron)[current 800 if (e < (*theCutsElectron)[currentCoupleIndex]) { good = false; } 579 801 580 } else if (p == thePositron) { 802 } else if (p == thePositron) { 581 if (electron_mass_c2 < (*theCutsGa 803 if (electron_mass_c2 < (*theCutsGamma)[currentCoupleIndex] && 582 e < (*theCutsPositron)[current 804 e < (*theCutsPositron)[currentCoupleIndex]) { 583 good = false; 805 good = false; 584 e += 2.0*electron_mass_c2; 806 e += 2.0*electron_mass_c2; 585 } 807 } 586 } 808 } 587 // added secondary if it is good 809 // added secondary if it is good 588 } 810 } 589 if (good) { 811 if (good) { 590 G4Track* t = new G4Track(dp, time, t 812 G4Track* t = new G4Track(dp, time, track.GetPosition()); 591 t->SetTouchableHandle(track.GetTouch 813 t->SetTouchableHandle(track.GetTouchableHandle()); 592 if (biasManager) { << 814 t->SetWeight(weight); 593 t->SetWeight(weight * biasManager- << 594 } else { << 595 t->SetWeight(weight); << 596 } << 597 pParticleChange->AddSecondary(t); 815 pParticleChange->AddSecondary(t); 598 816 599 // define type of secondary 817 // define type of secondary 600 if(i < mainSecondaries) { << 818 if(i < mainSecondaries) { t->SetCreatorModelIndex(secID); } 601 t->SetCreatorModelID(secID); << 819 else if(i < num0) { 602 if(GetProcessSubType() == fCompton << 820 if(p == theGamma) { 603 t->SetCreatorModelID(_ComptonGam << 821 t->SetCreatorModelIndex(fluoID); 604 } << 605 } else if(i < mainSecondaries + n1) << 606 t->SetCreatorModelID(tripletID); << 607 } else if(i < mainSecondaries + n1 + << 608 t->SetCreatorModelID(_IonRecoil); << 609 } else { << 610 if(i < num0) { << 611 if(p == theGamma) { << 612 t->SetCreatorModelID(fluoID); << 613 } else { << 614 t->SetCreatorModelID(augerID); << 615 } << 616 } else { 822 } else { 617 t->SetCreatorModelID(biasID); << 823 t->SetCreatorModelIndex(augerID); 618 } 824 } >> 825 } else { >> 826 t->SetCreatorModelIndex(biasID); 619 } 827 } 620 /* << 828 621 G4cout << "Secondary(post step) has << 829 //G4cout << "Secondary(post step) has weight " << t->GetWeight() 622 << ", Ekin= " << t->GetKineti << 830 // << ", Ekin= " << t->GetKineticEnergy()/MeV << " MeV" <<G4endl; 623 << GetProcessName() << " fluo << 624 << " augerID= " << augerID << << 625 */ << 626 } else { 831 } else { 627 delete dp; 832 delete dp; 628 edep += e; 833 edep += e; 629 } 834 } 630 } 835 } 631 } 836 } 632 fParticleChange.ProposeLocalEnergyDeposit( 837 fParticleChange.ProposeLocalEnergyDeposit(edep); 633 } 838 } 634 839 635 if(0.0 == fParticleChange.GetProposedKinetic 840 if(0.0 == fParticleChange.GetProposedKineticEnergy() && 636 fAlive == fParticleChange.GetTrackStatus( 841 fAlive == fParticleChange.GetTrackStatus()) { 637 if(particle->GetProcessManager()->GetAtRes 842 if(particle->GetProcessManager()->GetAtRestProcessVector()->size() > 0) 638 { fParticleChange.ProposeTrackStatus( 843 { fParticleChange.ProposeTrackStatus(fStopButAlive); } 639 else { fParticleChange.ProposeTrackStatus( 844 else { fParticleChange.ProposeTrackStatus(fStopAndKill); } 640 } 845 } 641 846 642 return &fParticleChange; 847 return &fParticleChange; 643 } 848 } 644 849 645 //....oooOO0OOooo........oooOO0OOooo........oo 850 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 851 647 G4bool G4VEmProcess::StorePhysicsTable(const G 852 G4bool G4VEmProcess::StorePhysicsTable(const G4ParticleDefinition* part, 648 const G << 853 const G4String& directory, 649 G4bool << 854 G4bool ascii) 650 { 855 { 651 if(!isTheMaster || part != particle) { retur << 856 G4bool yes = true; 652 if(G4EmTableUtil::StoreTable(this, part, the << 857 const G4VEmProcess* masterProc = 653 directory, "Lambda", << 858 static_cast<const G4VEmProcess*>(GetMasterProcess()); 654 verboseLevel, a << 859 if(masterProc && masterProc != this) { return yes; } 655 G4EmTableUtil::StoreTable(this, part, the << 860 656 directory, "LambdaPrim", << 861 if ( theLambdaTable && part == particle) { 657 verboseLevel, a << 862 const G4String name = 658 return true; << 863 GetPhysicsTableFileName(part,directory,"Lambda",ascii); >> 864 yes = theLambdaTable->StorePhysicsTable(name,ascii); >> 865 >> 866 if ( yes ) { >> 867 G4cout << "Physics table is stored for " << particle->GetParticleName() >> 868 << " and process " << GetProcessName() >> 869 << " in the directory <" << directory >> 870 << "> " << G4endl; >> 871 } else { >> 872 G4cout << "Fail to store Physics Table for " >> 873 << particle->GetParticleName() >> 874 << " and process " << GetProcessName() >> 875 << " in the directory <" << directory >> 876 << "> " << G4endl; >> 877 } 659 } 878 } 660 return false; << 879 if ( theLambdaTablePrim && part == particle) { >> 880 const G4String name = >> 881 GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 882 yes = theLambdaTablePrim->StorePhysicsTable(name,ascii); >> 883 >> 884 if ( yes ) { >> 885 G4cout << "Physics table prim is stored for " >> 886 << particle->GetParticleName() >> 887 << " and process " << GetProcessName() >> 888 << " in the directory <" << directory >> 889 << "> " << G4endl; >> 890 } else { >> 891 G4cout << "Fail to store Physics Table Prim for " >> 892 << particle->GetParticleName() >> 893 << " and process " << GetProcessName() >> 894 << " in the directory <" << directory >> 895 << "> " << G4endl; >> 896 } >> 897 } >> 898 return yes; 661 } 899 } 662 900 663 //....oooOO0OOooo........oooOO0OOooo........oo 901 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 664 902 665 G4bool G4VEmProcess::RetrievePhysicsTable(cons 903 G4bool G4VEmProcess::RetrievePhysicsTable(const G4ParticleDefinition* part, 666 cons << 904 const G4String& directory, 667 G4bo 905 G4bool ascii) 668 { 906 { 669 if(!isTheMaster || part != particle) { retur << 907 if(1 < verboseLevel) { >> 908 G4cout << "G4VEmProcess::RetrievePhysicsTable() for " >> 909 << part->GetParticleName() << " and process " >> 910 << GetProcessName() << G4endl; >> 911 } 670 G4bool yes = true; 912 G4bool yes = true; >> 913 >> 914 if((!buildLambdaTable && minKinEnergyPrim > maxKinEnergy) >> 915 || particle != part) { return yes; } >> 916 >> 917 const G4String particleName = part->GetParticleName(); >> 918 G4String filename; >> 919 671 if(buildLambdaTable) { 920 if(buildLambdaTable) { 672 yes = G4EmTableUtil::RetrieveTable(this, p << 921 filename = GetPhysicsTableFileName(part,directory,"Lambda",ascii); 673 "Lambda << 922 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTable, 674 ascii, << 923 filename,ascii); 675 } << 924 if ( yes ) { 676 if(yes && minKinEnergyPrim < maxKinEnergy) { << 925 if (0 < verboseLevel) { 677 yes = G4EmTableUtil::RetrieveTable(this, p << 926 G4cout << "Lambda table for " << particleName 678 "Lambda << 927 << " is Retrieved from <" 679 ascii, << 928 << filename << ">" >> 929 << G4endl; >> 930 } >> 931 if(theParameters->Spline()) { >> 932 size_t n = theLambdaTable->length(); >> 933 for(size_t i=0; i<n; ++i) { >> 934 if((* theLambdaTable)[i]) { >> 935 (* theLambdaTable)[i]->SetSpline(true); >> 936 } >> 937 } >> 938 } >> 939 } else { >> 940 if (1 < verboseLevel) { >> 941 G4cout << "Lambda table for " << particleName << " in file <" >> 942 << filename << "> is not exist" >> 943 << G4endl; >> 944 } >> 945 } >> 946 } >> 947 if(minKinEnergyPrim < maxKinEnergy) { >> 948 filename = GetPhysicsTableFileName(part,directory,"LambdaPrim",ascii); >> 949 yes = G4PhysicsTableHelper::RetrievePhysicsTable(theLambdaTablePrim, >> 950 filename,ascii); >> 951 if ( yes ) { >> 952 if (0 < verboseLevel) { >> 953 G4cout << "Lambda table prim for " << particleName >> 954 << " is Retrieved from <" >> 955 << filename << ">" >> 956 << G4endl; >> 957 } >> 958 if(theParameters->Spline()) { >> 959 size_t n = theLambdaTablePrim->length(); >> 960 for(size_t i=0; i<n; ++i) { >> 961 if((* theLambdaTablePrim)[i]) { >> 962 (* theLambdaTablePrim)[i]->SetSpline(true); >> 963 } >> 964 } >> 965 } >> 966 } else { >> 967 if (1 < verboseLevel) { >> 968 G4cout << "Lambda table prim for " << particleName << " in file <" >> 969 << filename << "> is not exist" >> 970 << G4endl; >> 971 } >> 972 } 680 } 973 } >> 974 681 return yes; 975 return yes; 682 } 976 } 683 977 684 //....oooOO0OOooo........oooOO0OOooo........oo 978 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 685 979 686 G4double G4VEmProcess::GetCrossSection(G4doubl << 980 G4double 687 const G << 981 G4VEmProcess::CrossSectionPerVolume(G4double kineticEnergy, >> 982 const G4MaterialCutsCouple* couple) 688 { 983 { 689 CurrentSetup(couple, kinEnergy); << 984 // Cross section per atom is calculated 690 return GetCurrentLambda(kinEnergy, G4Log(kin << 985 DefineMaterial(couple); >> 986 G4double cross = 0.0; >> 987 if(buildLambdaTable && theLambdaTable) { >> 988 cross = GetCurrentLambda(kineticEnergy); >> 989 } else { >> 990 SelectModel(kineticEnergy, currentCoupleIndex); >> 991 cross = fFactor*currentModel->CrossSectionPerVolume(currentMaterial, >> 992 currentParticle, >> 993 kineticEnergy); >> 994 } >> 995 >> 996 if(cross < 0.0) { cross = 0.0; } >> 997 return cross; 691 } 998 } 692 999 693 //....oooOO0OOooo........oooOO0OOooo........oo 1000 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 694 1001 695 G4double G4VEmProcess::GetMeanFreePath(const G 1002 G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 696 G4doubl 1003 G4double, 697 G4Force 1004 G4ForceCondition* condition) 698 { 1005 { 699 *condition = NotForced; 1006 *condition = NotForced; 700 return G4VEmProcess::MeanFreePath(track); 1007 return G4VEmProcess::MeanFreePath(track); 701 } 1008 } 702 1009 703 //....oooOO0OOooo........oooOO0OOooo........oo 1010 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 1011 705 G4double << 1012 G4double G4VEmProcess::MeanFreePath(const G4Track& track) 706 G4VEmProcess::ComputeCrossSectionPerAtom(G4dou << 707 G4dou << 708 { 1013 { 709 SelectModel(kinEnergy, currentCoupleIndex); << 1014 DefineMaterial(track.GetMaterialCutsCouple()); 710 return (currentModel) ? << 1015 preStepLambda = GetCurrentLambda(track.GetKineticEnergy()); 711 currentModel->ComputeCrossSectionPerAtom(c << 1016 G4double x = DBL_MAX; 712 Z << 1017 if(0.0 < preStepLambda) { x = 1.0/preStepLambda; } >> 1018 return x; 713 } 1019 } 714 1020 715 //....oooOO0OOooo........oooOO0OOooo........oo 1021 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 1022 717 G4PhysicsVector* << 1023 G4double 718 G4VEmProcess::LambdaPhysicsVector(const G4Mate << 1024 G4VEmProcess::ComputeCrossSectionPerAtom(G4double kineticEnergy, >> 1025 G4double Z, G4double A, G4double cut) 719 { 1026 { 720 DefineMaterial(couple); << 1027 SelectModel(kineticEnergy, currentCoupleIndex); 721 G4PhysicsVector* newv = new G4PhysicsLogVect << 1028 G4double x = 0.0; 722 << 1029 if(currentModel) { 723 return newv; << 1030 x = currentModel->ComputeCrossSectionPerAtom(currentParticle,kineticEnergy, >> 1031 Z,A,cut); >> 1032 } >> 1033 return x; 724 } 1034 } 725 1035 726 //....oooOO0OOooo........oooOO0OOooo........oo 1036 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 727 1037 728 const G4Element* G4VEmProcess::GetCurrentEleme << 1038 void G4VEmProcess::FindLambdaMax() 729 { 1039 { 730 return (nullptr != currentModel) ? << 1040 if(1 < verboseLevel) { 731 currentModel->GetCurrentElement(currentMat << 1041 G4cout << "### G4VEmProcess::FindLambdaMax: " >> 1042 << particle->GetParticleName() >> 1043 << " and process " << GetProcessName() << " " << G4endl; >> 1044 } >> 1045 size_t n = theLambdaTable->length(); >> 1046 G4PhysicsVector* pv; >> 1047 G4double e, ss, emax, smax; >> 1048 >> 1049 size_t i; >> 1050 >> 1051 // first loop on existing vectors >> 1052 for (i=0; i<n; ++i) { >> 1053 pv = (*theLambdaTable)[i]; >> 1054 if(pv) { >> 1055 size_t nb = pv->GetVectorLength(); >> 1056 emax = DBL_MAX; >> 1057 smax = 0.0; >> 1058 if(nb > 0) { >> 1059 for (size_t j=0; j<nb; ++j) { >> 1060 e = pv->Energy(j); >> 1061 ss = (*pv)(j); >> 1062 if(ss > smax) { >> 1063 smax = ss; >> 1064 emax = e; >> 1065 } >> 1066 } >> 1067 } >> 1068 theEnergyOfCrossSectionMax[i] = emax; >> 1069 theCrossSectionMax[i] = smax; >> 1070 if(1 < verboseLevel) { >> 1071 G4cout << "For " << particle->GetParticleName() >> 1072 << " Max CS at i= " << i << " emax(MeV)= " << emax/MeV >> 1073 << " lambda= " << smax << G4endl; >> 1074 } >> 1075 } >> 1076 } >> 1077 // second loop using base materials >> 1078 for (i=0; i<n; ++i) { >> 1079 pv = (*theLambdaTable)[i]; >> 1080 if(!pv){ >> 1081 G4int j = (*theDensityIdx)[i]; >> 1082 theEnergyOfCrossSectionMax[i] = theEnergyOfCrossSectionMax[j]; >> 1083 theCrossSectionMax[i] = (*theDensityFactor)[i]*theCrossSectionMax[j]; >> 1084 } >> 1085 } 732 } 1086 } 733 1087 734 //....oooOO0OOooo........oooOO0OOooo........oo 1088 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 735 1089 736 const G4Element* G4VEmProcess::GetTargetElemen << 1090 G4PhysicsVector* >> 1091 G4VEmProcess::LambdaPhysicsVector(const G4MaterialCutsCouple*) 737 { 1092 { 738 return (nullptr != currentModel) ? << 1093 G4PhysicsVector* v = 739 currentModel->GetCurrentElement(currentMat << 1094 new G4PhysicsLogVector(minKinEnergy, maxKinEnergy, nLambdaBins); >> 1095 v->SetSpline(theParameters->Spline()); >> 1096 return v; 740 } 1097 } 741 1098 742 //....oooOO0OOooo........oooOO0OOooo........oo 1099 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 743 1100 744 const G4Isotope* G4VEmProcess::GetTargetIsotop << 1101 const G4Element* G4VEmProcess::GetCurrentElement() const 745 { 1102 { 746 return (nullptr != currentModel) ? << 1103 const G4Element* elm = nullptr; 747 currentModel->GetCurrentIsotope(GetCurrent << 1104 if(currentModel) {elm = currentModel->GetCurrentElement(); } >> 1105 return elm; 748 } 1106 } 749 1107 750 //....oooOO0OOooo........oooOO0OOooo........oo 1108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 1109 752 void G4VEmProcess::SetCrossSectionBiasingFacto 1110 void G4VEmProcess::SetCrossSectionBiasingFactor(G4double f, G4bool flag) 753 { 1111 { 754 if(f > 0.0) { 1112 if(f > 0.0) { 755 biasFactor = f; 1113 biasFactor = f; 756 weightFlag = flag; 1114 weightFlag = flag; 757 if(1 < verboseLevel) { 1115 if(1 < verboseLevel) { 758 G4cout << "### SetCrossSectionBiasingFac 1116 G4cout << "### SetCrossSectionBiasingFactor: for " 759 << particle->GetParticleName() 1117 << particle->GetParticleName() 760 << " and process " << GetProcessN 1118 << " and process " << GetProcessName() 761 << " biasFactor= " << f << " weig 1119 << " biasFactor= " << f << " weightFlag= " << flag 762 << G4endl; 1120 << G4endl; 763 } 1121 } 764 } 1122 } 765 } 1123 } 766 1124 767 //....oooOO0OOooo........oooOO0OOooo........oo 1125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 1126 769 void 1127 void 770 G4VEmProcess::ActivateForcedInteraction(G4doub 1128 G4VEmProcess::ActivateForcedInteraction(G4double length, const G4String& r, 771 G4bool 1129 G4bool flag) 772 { 1130 { 773 if(nullptr == biasManager) { biasManager = n << 1131 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 774 if(1 < verboseLevel) { 1132 if(1 < verboseLevel) { 775 G4cout << "### ActivateForcedInteraction: 1133 G4cout << "### ActivateForcedInteraction: for " 776 << particle->GetParticleName() 1134 << particle->GetParticleName() 777 << " and process " << GetProcessNam 1135 << " and process " << GetProcessName() 778 << " length(mm)= " << length/mm 1136 << " length(mm)= " << length/mm 779 << " in G4Region <" << r 1137 << " in G4Region <" << r 780 << "> weightFlag= " << flag 1138 << "> weightFlag= " << flag 781 << G4endl; 1139 << G4endl; 782 } 1140 } 783 weightFlag = flag; 1141 weightFlag = flag; 784 biasManager->ActivateForcedInteraction(lengt 1142 biasManager->ActivateForcedInteraction(length, r); 785 } 1143 } 786 1144 787 //....oooOO0OOooo........oooOO0OOooo........oo 1145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 788 1146 789 void 1147 void 790 G4VEmProcess::ActivateSecondaryBiasing(const G 1148 G4VEmProcess::ActivateSecondaryBiasing(const G4String& region, 791 G4double factor, 1149 G4double factor, 792 G4double energyLimit) 1150 G4double energyLimit) 793 { 1151 { 794 if (0.0 <= factor) { 1152 if (0.0 <= factor) { 795 1153 796 // Range cut can be applied only for e- 1154 // Range cut can be applied only for e- 797 if(0.0 == factor && secondaryParticle != G 1155 if(0.0 == factor && secondaryParticle != G4Electron::Electron()) 798 { return; } 1156 { return; } 799 1157 800 if(!biasManager) { biasManager = new G4EmB 1158 if(!biasManager) { biasManager = new G4EmBiasingManager(); } 801 biasManager->ActivateSecondaryBiasing(regi 1159 biasManager->ActivateSecondaryBiasing(region, factor, energyLimit); 802 if(1 < verboseLevel) { 1160 if(1 < verboseLevel) { 803 G4cout << "### ActivateSecondaryBiasing: 1161 G4cout << "### ActivateSecondaryBiasing: for " 804 << " process " << GetProcessName() 1162 << " process " << GetProcessName() 805 << " factor= " << factor 1163 << " factor= " << factor 806 << " in G4Region <" << region 1164 << " in G4Region <" << region 807 << "> energyLimit(MeV)= " << energyLimi 1165 << "> energyLimit(MeV)= " << energyLimit/MeV 808 << G4endl; 1166 << G4endl; 809 } 1167 } 810 } 1168 } 811 } 1169 } 812 1170 813 //....oooOO0OOooo........oooOO0OOooo........oo 1171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 814 1172 815 void G4VEmProcess::SetLambdaBinning(G4int n) 1173 void G4VEmProcess::SetLambdaBinning(G4int n) 816 { 1174 { 817 if(5 < n && n < 10000000) { 1175 if(5 < n && n < 10000000) { 818 nLambdaBins = n; 1176 nLambdaBins = n; 819 actBinning = true; 1177 actBinning = true; 820 } else { 1178 } else { 821 G4double e = (G4double)n; 1179 G4double e = (G4double)n; 822 PrintWarning("SetLambdaBinning", e); 1180 PrintWarning("SetLambdaBinning", e); 823 } 1181 } 824 } 1182 } 825 1183 826 //....oooOO0OOooo........oooOO0OOooo........oo 1184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 827 1185 828 void G4VEmProcess::SetMinKinEnergy(G4double e) 1186 void G4VEmProcess::SetMinKinEnergy(G4double e) 829 { 1187 { 830 if(1.e-3*eV < e && e < maxKinEnergy) { 1188 if(1.e-3*eV < e && e < maxKinEnergy) { 831 nLambdaBins = G4lrint(nLambdaBins*G4Log(ma 1189 nLambdaBins = G4lrint(nLambdaBins*G4Log(maxKinEnergy/e) 832 /G4Log(maxKinEnergy/ 1190 /G4Log(maxKinEnergy/minKinEnergy)); 833 minKinEnergy = e; 1191 minKinEnergy = e; 834 actMinKinEnergy = true; 1192 actMinKinEnergy = true; 835 } else { PrintWarning("SetMinKinEnergy", e); 1193 } else { PrintWarning("SetMinKinEnergy", e); } 836 } 1194 } 837 1195 838 //....oooOO0OOooo........oooOO0OOooo........oo 1196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 1197 840 void G4VEmProcess::SetMaxKinEnergy(G4double e) 1198 void G4VEmProcess::SetMaxKinEnergy(G4double e) 841 { 1199 { 842 if(minKinEnergy < e && e < 1.e+6*TeV) { 1200 if(minKinEnergy < e && e < 1.e+6*TeV) { 843 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/ 1201 nLambdaBins = G4lrint(nLambdaBins*G4Log(e/minKinEnergy) 844 /G4Log(maxKinEnergy/ 1202 /G4Log(maxKinEnergy/minKinEnergy)); 845 maxKinEnergy = e; 1203 maxKinEnergy = e; 846 actMaxKinEnergy = true; 1204 actMaxKinEnergy = true; 847 } else { PrintWarning("SetMaxKinEnergy", e); 1205 } else { PrintWarning("SetMaxKinEnergy", e); } 848 } 1206 } 849 1207 850 //....oooOO0OOooo........oooOO0OOooo........oo 1208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 851 1209 852 void G4VEmProcess::SetMinKinEnergyPrim(G4doubl 1210 void G4VEmProcess::SetMinKinEnergyPrim(G4double e) 853 { 1211 { 854 if(theParameters->MinKinEnergy() <= e && 1212 if(theParameters->MinKinEnergy() <= e && 855 e <= theParameters->MaxKinEnergy()) { min 1213 e <= theParameters->MaxKinEnergy()) { minKinEnergyPrim = e; } 856 else { PrintWarning("SetMinKinEnergyPrim", e 1214 else { PrintWarning("SetMinKinEnergyPrim", e); } 857 } 1215 } 858 1216 859 //....oooOO0OOooo........oooOO0OOooo........oo 1217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 860 1218 861 G4VEmProcess* G4VEmProcess::GetEmProcess(const << 862 { << 863 return (nam == GetProcessName()) ? this : nu << 864 } << 865 << 866 //....oooOO0OOooo........oooOO0OOooo........oo << 867 << 868 G4double G4VEmProcess::PolarAngleLimit() const << 869 { << 870 return theParameters->MscThetaLimit(); << 871 } << 872 << 873 //....oooOO0OOooo........oooOO0OOooo........oo << 874 << 875 void G4VEmProcess::PrintWarning(G4String tit, 1219 void G4VEmProcess::PrintWarning(G4String tit, G4double val) 876 { 1220 { 877 G4String ss = "G4VEmProcess::" + tit; 1221 G4String ss = "G4VEmProcess::" + tit; 878 G4ExceptionDescription ed; 1222 G4ExceptionDescription ed; 879 ed << "Parameter is out of range: " << val 1223 ed << "Parameter is out of range: " << val 880 << " it will have no effect!\n" << " Pro 1224 << " it will have no effect!\n" << " Process " 881 << GetProcessName() << " nbins= " << the 1225 << GetProcessName() << " nbins= " << theParameters->NumberOfBins() 882 << " Emin(keV)= " << theParameters->MinKi 1226 << " Emin(keV)= " << theParameters->MinKinEnergy()/keV 883 << " Emax(GeV)= " << theParameters->MaxKi 1227 << " Emax(GeV)= " << theParameters->MaxKinEnergy()/GeV; 884 G4Exception(ss, "em0044", JustWarning, ed); 1228 G4Exception(ss, "em0044", JustWarning, ed); 885 } 1229 } 886 1230 887 //....oooOO0OOooo........oooOO0OOooo........oo 1231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 888 1232 889 void G4VEmProcess::ProcessDescription(std::ost << 1233 void G4VEmProcess::ProcessDescription(std::ostream& outFile) const 890 { 1234 { 891 if(nullptr != particle) { << 1235 outFile << "EM process <" << GetProcessName() << ">" << G4endl; 892 StreamInfo(out, *particle, true); << 893 } << 894 } 1236 } 895 1237 896 //....oooOO0OOooo........oooOO0OOooo........oo 1238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 1239