Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VAtomDeexcitation.cc 86805 2014-11-18 13:25:55Z gcosmo $ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class class file 30 // GEANT4 Class class file 30 // 31 // 31 // 32 // 32 // File name: G4VAtomDeexcitation 33 // File name: G4VAtomDeexcitation 33 // 34 // 34 // Author: Alfonso Mantero & Vladimir I 35 // Author: Alfonso Mantero & Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 21.04.2010 37 // Creation date: 21.04.2010 37 // 38 // 38 // Modifications: 39 // Modifications: 39 // 40 // 40 // Class Description: 41 // Class Description: 41 // 42 // 42 // Abstract interface to energy loss models 43 // Abstract interface to energy loss models 43 44 44 // ------------------------------------------- 45 // ------------------------------------------------------------------- 45 // 46 // 46 47 47 #include "G4VAtomDeexcitation.hh" 48 #include "G4VAtomDeexcitation.hh" 48 #include "G4SystemOfUnits.hh" 49 #include "G4SystemOfUnits.hh" 49 #include "G4EmParameters.hh" << 50 #include "G4ParticleDefinition.hh" 50 #include "G4ParticleDefinition.hh" 51 #include "G4DynamicParticle.hh" 51 #include "G4DynamicParticle.hh" 52 #include "G4Step.hh" 52 #include "G4Step.hh" 53 #include "G4Region.hh" 53 #include "G4Region.hh" 54 #include "G4RegionStore.hh" 54 #include "G4RegionStore.hh" 55 #include "G4MaterialCutsCouple.hh" 55 #include "G4MaterialCutsCouple.hh" 56 #include "G4MaterialCutsCouple.hh" 56 #include "G4MaterialCutsCouple.hh" 57 #include "G4Material.hh" 57 #include "G4Material.hh" 58 #include "G4Element.hh" 58 #include "G4Element.hh" 59 #include "G4ElementVector.hh" 59 #include "G4ElementVector.hh" 60 #include "Randomize.hh" 60 #include "Randomize.hh" 61 #include "G4VParticleChange.hh" 61 #include "G4VParticleChange.hh" 62 #include "G4EmSecondaryParticleType.hh" << 62 #include "G4PhysicsModelCatalog.hh" 63 #include "G4Gamma.hh" 63 #include "G4Gamma.hh" 64 #include "G4Log.hh" << 65 << 66 #ifdef G4MULTITHREADED << 67 G4Mutex G4VAtomDeexcitation::atomDeexcitatio << 68 #endif << 69 64 70 //....oooOO0OOooo........oooOO0OOooo........oo 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 71 66 72 G4VAtomDeexcitation::G4VAtomDeexcitation(const << 67 G4int G4VAtomDeexcitation::pixeIDg = -1; 73 : name(modname) << 68 G4int G4VAtomDeexcitation::pixeIDe = -1; >> 69 >> 70 G4VAtomDeexcitation::G4VAtomDeexcitation(const G4String& modname, >> 71 const G4String& pname) >> 72 : lowestKinEnergy(keV), verbose(1), name(modname), namePIXE(pname), >> 73 nameElectronPIXE(""), isActive(false), flagAuger(false), >> 74 flagPIXE(false), ignoreCuts(false) 74 { 75 { 75 vdyn.reserve(5); 76 vdyn.reserve(5); 76 theCoupleTable = nullptr; << 77 theCoupleTable = 0; >> 78 G4String gg = "gammaPIXE"; >> 79 G4String ee = "e-PIXE"; >> 80 if(pixeIDg < 0) { pixeIDg = G4PhysicsModelCatalog::Register(gg); } >> 81 if(pixeIDe < 0) { pixeIDe = G4PhysicsModelCatalog::Register(ee); } 77 gamma = G4Gamma::Gamma(); 82 gamma = G4Gamma::Gamma(); >> 83 theParameters = G4EmParameters::Instance(); 78 } 84 } 79 85 80 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 87 82 G4VAtomDeexcitation::~G4VAtomDeexcitation() = << 88 G4VAtomDeexcitation::~G4VAtomDeexcitation() >> 89 {} 83 90 84 //....oooOO0OOooo........oooOO0OOooo........oo 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 92 86 void G4VAtomDeexcitation::InitialiseAtomicDeex 93 void G4VAtomDeexcitation::InitialiseAtomicDeexcitation() 87 { 94 { 88 G4EmParameters* theParameters = G4EmParamete << 89 theParameters->DefineRegParamForDeex(this); << 90 << 91 // Define list of couples 95 // Define list of couples 92 theCoupleTable = G4ProductionCutsTable::GetP 96 theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable(); 93 nCouples = (G4int)theCoupleTable->GetTableSi << 97 G4int numOfCouples = theCoupleTable->GetTableSize(); 94 98 95 // needed for unit tests 99 // needed for unit tests 96 std::size_t nn = std::max(nCouples, 1); << 100 G4int nn = std::max(numOfCouples, 1); 97 if(activeDeexcitationMedia.size() != nn) { << 101 activeDeexcitationMedia.resize(nn, false); 98 activeDeexcitationMedia.resize(nn, false); << 102 activeAugerMedia.resize(nn, false); 99 activeAugerMedia.resize(nn, false); << 103 activePIXEMedia.resize(nn, false); 100 activePIXEMedia.resize(nn, false); << 104 activeZ.resize(93, false); 101 } << 102 if(activeZ.size() != 93) { activeZ.resize(93 << 103 105 104 // initialisation of flags and options << 106 // check if deexcitation is active for the given run 105 // normally there is no locksed flags << 107 if( !isActive ) { return; } 106 if(!isActiveLocked) { isActive = theParamet << 107 if(!isAugerLocked) { flagAuger = theParamet << 108 if(!isPIXELocked) { flagPIXE = theParamet << 109 ignoreCuts = theParameters->DeexcitationIgno << 110 108 111 // Define list of regions 109 // Define list of regions 112 std::size_t nRegions = deRegions.size(); << 110 size_t nRegions = deRegions.size(); 113 // check if deexcitation is active for the g << 114 if(!isActive && 0 == nRegions) { return; } << 115 111 116 // if no active regions add a world << 117 if(0 == nRegions) { 112 if(0 == nRegions) { 118 SetDeexcitationActiveRegion("World",isActi 113 SetDeexcitationActiveRegion("World",isActive,flagAuger,flagPIXE); 119 nRegions = deRegions.size(); 114 nRegions = deRegions.size(); 120 } 115 } 121 116 122 if(0 < verbose) { 117 if(0 < verbose) { 123 G4cout << G4endl; 118 G4cout << G4endl; 124 G4cout << "### === Deexcitation model " < 119 G4cout << "### === Deexcitation model " << name 125 << " is activated for " << nRegions << 120 << " is activated for " << nRegions; 126 if(1 == nRegions) { G4cout << " region:" < 121 if(1 == nRegions) { G4cout << " region:" << G4endl; } 127 else { G4cout << " regions:" 122 else { G4cout << " regions:" << G4endl;} 128 } 123 } 129 124 130 // Identify active media 125 // Identify active media 131 const G4RegionStore* regionStore = G4RegionS << 126 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 132 for(std::size_t j=0; j<nRegions; ++j) { << 127 for(size_t j=0; j<nRegions; ++j) { 133 const G4Region* reg = regionStore->GetRegi 128 const G4Region* reg = regionStore->GetRegion(activeRegions[j], false); 134 if(nullptr != reg && 0 < nCouples) { << 129 if(reg && 0 < numOfCouples) { 135 const G4ProductionCuts* rpcuts = reg->Ge 130 const G4ProductionCuts* rpcuts = reg->GetProductionCuts(); 136 if(0 < verbose) { 131 if(0 < verbose) { 137 G4cout << " " << activeRegion << 132 G4cout << " " << activeRegions[j] << G4endl; 138 << " " << deRegions[j] << " << 139 << " " << PIXERegions[j] << G4 << 140 } 133 } 141 for(G4int i=0; i<nCouples; ++i) { << 134 for(G4int i=0; i<numOfCouples; ++i) { 142 const G4MaterialCutsCouple* couple = << 135 const G4MaterialCutsCouple* couple = 143 theCoupleTable->GetMaterialCutsCoupl << 136 theCoupleTable->GetMaterialCutsCouple(i); 144 if (couple->GetProductionCuts() == rpc << 137 if (couple->GetProductionCuts() == rpcuts) { 145 activeDeexcitationMedia[i] = deRegio << 138 activeDeexcitationMedia[i] = deRegions[j]; 146 activeAugerMedia[i] = AugerRegions[j << 139 activeAugerMedia[i] = AugerRegions[j]; 147 activePIXEMedia[i] = PIXERegions[j]; << 140 activePIXEMedia[i] = PIXERegions[j]; 148 } << 141 } 149 } 142 } 150 } 143 } 151 } 144 } 152 std::size_t nelm = G4Element::GetNumberOfEle << 145 G4int nelm = G4Element::GetNumberOfElements(); 153 //G4cout << nelm << G4endl; 146 //G4cout << nelm << G4endl; 154 for(std::size_t k=0; k<nelm; ++k) { << 147 for(G4int k=0; k<nelm; ++k) { 155 G4int Z = (*(G4Element::GetElementTable()) << 148 G4int Z = G4lrint((*(G4Element::GetElementTable()))[k]->GetZ()); 156 if(Z > 5 && Z < 93) { 149 if(Z > 5 && Z < 93) { 157 activeZ[Z] = true; 150 activeZ[Z] = true; 158 //G4cout << "!!! Active de-excitation Z= 151 //G4cout << "!!! Active de-excitation Z= " << Z << G4endl; 159 } 152 } 160 } 153 } 161 154 162 // Initialise derived class 155 // Initialise derived class 163 InitialiseForNewRun(); 156 InitialiseForNewRun(); 164 157 165 if(0 < verbose && flagAuger) { << 166 G4cout << "### === Auger flag: " << flagA << 167 << G4endl; << 168 } << 169 if(0 < verbose) { << 170 G4cout << "### === Ignore cuts flag: " << 171 << G4endl; << 172 } << 173 if(0 < verbose && flagPIXE) { 158 if(0 < verbose && flagPIXE) { 174 G4cout << "### === PIXE model for hadrons << 159 G4cout << "### === PIXE model for hadrons: " << namePIXE 175 << theParameters->PIXECrossSectionM << 160 << " " << IsPIXEActive() 176 << G4endl; << 161 << G4endl; 177 G4cout << "### === PIXE model for e+-: << 162 G4cout << "### === PIXE model for e+-: " << nameElectronPIXE 178 << theParameters->PIXEElectronCross << 163 << " " << IsPIXEActive() 179 << G4endl; << 164 << G4endl; 180 } 165 } 181 } 166 } 182 167 183 //....oooOO0OOooo........oooOO0OOooo........oo 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 184 169 185 void 170 void 186 G4VAtomDeexcitation::SetDeexcitationActiveRegi 171 G4VAtomDeexcitation::SetDeexcitationActiveRegion(const G4String& rname, 187 << 172 G4bool valDeexcitation, 188 << 173 G4bool valAuger, 189 << 174 G4bool valPIXE) 190 { 175 { 191 // no PIXE in parallel world 176 // no PIXE in parallel world 192 if(rname == "DefaultRegionForParallelWorld") 177 if(rname == "DefaultRegionForParallelWorld") { return; } 193 178 194 G4String ss = rname; 179 G4String ss = rname; 195 /* << 180 //G4cout << "### G4VAtomDeexcitation::SetDeexcitationActiveRegion " << ss 196 G4cout << "### G4VAtomDeexcitation::SetDeexc << 181 // << " " << valDeexcitation << " " << valAuger 197 << " " << valDeexcitation << " " << << 182 // << " " << valPIXE << G4endl; 198 << " " << valPIXE << G4endl; << 199 */ << 200 if(ss == "world" || ss == "World" || ss == " 183 if(ss == "world" || ss == "World" || ss == "WORLD") { 201 ss = "DefaultRegionForTheWorld"; 184 ss = "DefaultRegionForTheWorld"; 202 } 185 } 203 std::size_t n = deRegions.size(); << 186 size_t n = deRegions.size(); 204 for(std::size_t i=0; i<n; ++i) { << 187 if(n > 0) { >> 188 for(size_t i=0; i<n; ++i) { 205 189 206 // Region already exist << 190 // Region already exist 207 if(ss == activeRegions[i]) { << 191 if(ss == activeRegions[i]) { 208 deRegions[i] = valDeexcitation; << 192 deRegions[i] = valDeexcitation; 209 AugerRegions[i] = valAuger; << 193 AugerRegions[i] = valAuger; 210 PIXERegions[i] = valPIXE; << 194 PIXERegions[i] = valPIXE; 211 return; << 195 return; >> 196 } 212 } 197 } 213 } 198 } 214 // New region 199 // New region 215 activeRegions.push_back(ss); 200 activeRegions.push_back(ss); 216 deRegions.push_back(valDeexcitation); 201 deRegions.push_back(valDeexcitation); 217 AugerRegions.push_back(valAuger); 202 AugerRegions.push_back(valAuger); 218 PIXERegions.push_back(valPIXE); 203 PIXERegions.push_back(valPIXE); 219 204 220 // if de-excitation defined for the world vo << 205 // if de-excitation defined fo rthe world volume 221 // it should be active for all G4Regions << 206 // it should be active everywhere 222 if(ss == "DefaultRegionForTheWorld") { 207 if(ss == "DefaultRegionForTheWorld") { 223 G4RegionStore* regions = G4RegionStore::Ge 208 G4RegionStore* regions = G4RegionStore::GetInstance(); 224 std::size_t nn = regions->size(); << 209 G4int nn = regions->size(); 225 for(std::size_t i=0; i<nn; ++i) { << 210 for(G4int i=0; i<nn; ++i) { 226 if(ss == (*regions)[i]->GetName()) { con << 227 SetDeexcitationActiveRegion((*regions)[i 211 SetDeexcitationActiveRegion((*regions)[i]->GetName(), valDeexcitation, 228 valAuger, va 212 valAuger, valPIXE); 229 << 230 } << 231 } << 232 } << 233 << 234 void G4VAtomDeexcitation::GenerateParticles(st << 235 co << 236 G4 << 237 { << 238 G4double gCut = DBL_MAX; << 239 if(ignoreCuts) { << 240 gCut = 0.0; << 241 } else if (nullptr != theCoupleTable) { << 242 gCut = (*(theCoupleTable->GetEnergyCutsVec << 243 } << 244 if(gCut < as->BindingEnergy()) { << 245 G4double eCut = DBL_MAX; << 246 if(CheckAugerActiveRegion(idx)) { << 247 if(ignoreCuts) { << 248 eCut = 0.0; << 249 } else if (nullptr != theCoupleTable) { << 250 eCut = (*(theCoupleTable->GetEnergyCut << 251 } << 252 } 213 } 253 GenerateParticles(v, as, Z, gCut, eCut); << 254 } 214 } 255 } 215 } 256 216 257 //....oooOO0OOooo........oooOO0OOooo........oo 217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 258 218 259 void 219 void 260 G4VAtomDeexcitation::AlongStepDeexcitation(std 220 G4VAtomDeexcitation::AlongStepDeexcitation(std::vector<G4Track*>& tracks, 261 con << 221 const G4Step& step, 262 G4d << 222 G4double& eLossMax, 263 G4i 223 G4int coupleIndex) 264 { 224 { 265 G4double truelength = step.GetStepLength(); 225 G4double truelength = step.GetStepLength(); 266 if(!flagPIXE && !activePIXEMedia[coupleIndex 226 if(!flagPIXE && !activePIXEMedia[coupleIndex]) { return; } 267 if(eLossMax <= 0.0 || truelength <= 0.0) 227 if(eLossMax <= 0.0 || truelength <= 0.0) { return; } 268 228 269 // step parameters 229 // step parameters 270 const G4StepPoint* preStep = step.GetPreStep 230 const G4StepPoint* preStep = step.GetPreStepPoint(); 271 const G4ThreeVector prePos = preStep->GetPos << 231 G4ThreeVector prePos = preStep->GetPosition(); 272 const G4ThreeVector delta = step.GetPostStep << 232 G4ThreeVector delta = step.GetPostStepPoint()->GetPosition() - prePos; 273 const G4double preTime = preStep->GetGlobalT << 233 G4double preTime = preStep->GetGlobalTime(); 274 const G4double dt = step.GetPostStepPoint()- << 234 G4double dt = step.GetPostStepPoint()->GetGlobalTime() - preTime; 275 235 276 // particle parameters 236 // particle parameters 277 const G4Track* track = step.GetTrack(); 237 const G4Track* track = step.GetTrack(); 278 const G4ParticleDefinition* part = track->Ge 238 const G4ParticleDefinition* part = track->GetDefinition(); 279 G4double ekin = preStep->GetKineticEnergy(); 239 G4double ekin = preStep->GetKineticEnergy(); 280 240 281 // media parameters 241 // media parameters 282 G4double gCut = (*theCoupleTable->GetEnergyC 242 G4double gCut = (*theCoupleTable->GetEnergyCutsVector(0))[coupleIndex]; 283 if(ignoreCuts) { gCut = 0.0; } 243 if(ignoreCuts) { gCut = 0.0; } 284 G4double eCut = DBL_MAX; 244 G4double eCut = DBL_MAX; 285 if(CheckAugerActiveRegion(coupleIndex)) { 245 if(CheckAugerActiveRegion(coupleIndex)) { 286 eCut = (*theCoupleTable->GetEnergyCutsVect 246 eCut = (*theCoupleTable->GetEnergyCutsVector(1))[coupleIndex]; 287 if(ignoreCuts) { eCut = 0.0; } 247 if(ignoreCuts) { eCut = 0.0; } 288 } 248 } 289 249 290 //G4cout<<"!Sample PIXE gCut(MeV)= "<<gCut<< 250 //G4cout<<"!Sample PIXE gCut(MeV)= "<<gCut<<" eCut(MeV)= "<<eCut 291 // <<" Ekin(MeV)= " << ekin/MeV << G4 << 251 // <<" Ekin(MeV)= " << ekin/MeV << G4endl; 292 252 293 const G4Material* material = preStep->GetMat 253 const G4Material* material = preStep->GetMaterial(); 294 const G4ElementVector* theElementVector = ma 254 const G4ElementVector* theElementVector = material->GetElementVector(); 295 const G4double* theAtomNumDensityVector = 255 const G4double* theAtomNumDensityVector = 296 material->GetVecNbOfAtomsPerVolume(); 256 material->GetVecNbOfAtomsPerVolume(); 297 const std::size_t nelm = material->GetNumber << 257 G4int nelm = material->GetNumberOfElements(); 298 258 299 // loop over deexcitations 259 // loop over deexcitations 300 for(std::size_t i=0; i<nelm; ++i) { << 260 for(G4int i=0; i<nelm; ++i) { 301 G4int Z = (*theElementVector)[i]->GetZasIn << 261 G4int Z = G4lrint((*theElementVector)[i]->GetZ()); 302 if(activeZ[Z] && Z < 93) { 262 if(activeZ[Z] && Z < 93) { 303 G4int nshells = 263 G4int nshells = 304 std::min(9,(*theElementVector)[i]->Get << 264 std::min(9,(*theElementVector)[i]->GetNbOfAtomicShells()); 305 G4double rho = truelength*theAtomNumDens 265 G4double rho = truelength*theAtomNumDensityVector[i]; 306 //G4cout<<" Z "<< Z <<" is active x(m 266 //G4cout<<" Z "<< Z <<" is active x(mm)= " << truelength/mm << G4endl; 307 for(G4int ii=0; ii<nshells; ++ii) { 267 for(G4int ii=0; ii<nshells; ++ii) { 308 auto as = (G4AtomicShellEnumerator)(ii << 268 G4AtomicShellEnumerator as = G4AtomicShellEnumerator(ii); 309 const G4AtomicShell* shell = GetAtomic << 269 const G4AtomicShell* shell = GetAtomicShell(Z, as); 310 const G4double bindingEnergy = shell-> << 270 G4double bindingEnergy = shell->BindingEnergy(); 311 << 271 312 if(gCut > bindingEnergy) { break; } << 272 if(gCut > bindingEnergy) { break; } 313 << 273 314 if(eLossMax > bindingEnergy) { << 274 if(eLossMax > bindingEnergy) { 315 G4double sig = rho* << 275 G4double sig = rho* 316 GetShellIonisationCrossSectionPerA << 276 GetShellIonisationCrossSectionPerAtom(part, Z, as, ekin, material); 317 << 277 318 // mfp is mean free path in units of << 278 // mfp is mean free path in units of step size 319 if(sig > 0.0) { << 279 if(sig > 0.0) { 320 G4double mfp = 1.0/sig; << 280 G4double mfp = 1.0/sig; 321 G4double stot = 0.0; << 281 G4double stot = 0.0; 322 //G4cout << " Shell " << ii << " m << 282 //G4cout << " Shell " << ii << " mfp(mm)= " << mfp/mm << G4endl; 323 // sample ionisation points << 283 // sample ionisation points 324 do { << 284 do { 325 stot -= mfp*G4Log(G4UniformRand( << 285 stot -= mfp*std::log(G4UniformRand()); 326 if( stot > 1.0 || eLossMax < bin << 286 if( stot > 1.0 || eLossMax < bindingEnergy) { break; } 327 // sample deexcitation << 287 // sample deexcitation 328 vdyn.clear(); << 288 vdyn.clear(); 329 GenerateParticles(&vdyn, shell, << 289 GenerateParticles(&vdyn, shell, Z, gCut, eCut); 330 std::size_t nsec = vdyn.size(); << 290 G4int nsec = vdyn.size(); 331 if(nsec > 0) { << 291 if(nsec > 0) { 332 G4ThreeVector r = prePos + st << 292 G4ThreeVector r = prePos + stot*delta; 333 G4double time = preTime + st << 293 G4double time = preTime + stot*dt; 334 for(std::size_t j=0; j<nsec; + << 294 for(G4int j=0; j<nsec; ++j) { 335 G4DynamicParticle* dp = vdyn << 295 G4DynamicParticle* dp = vdyn[j]; 336 G4double e = dp->GetKineticE << 296 G4double e = dp->GetKineticEnergy(); 337 << 297 338 // save new secondary if the << 298 // save new secondary if there is enough energy 339 if(eLossMax >= e) { << 299 if(eLossMax >= e) { 340 eLossMax -= e; << 300 eLossMax -= e; 341 G4Track* t = new G4Track(d << 301 G4Track* t = new G4Track(dp, time, r); 342 302 343 // defined secondary type << 303 // defined secondary type 344 if(dp->GetDefinition() == 304 if(dp->GetDefinition() == gamma) { 345 t->SetCreatorModelID(_Ga << 305 t->SetCreatorModelIndex(pixeIDg); 346 } else { << 306 } else { 347 t->SetCreatorModelID(_eP << 307 t->SetCreatorModelIndex(pixeIDe); 348 } << 308 } 349 tracks.push_back(t); << 309 350 } else { << 310 tracks.push_back(t); 351 delete dp; << 311 } else { 352 } << 312 delete dp; 353 } << 313 } 354 } << 314 } 355 // Loop checking, 03-Aug-2015, V << 315 } 356 } while (stot < 1.0); << 316 } while (stot < 1.0); 357 } << 317 } 358 } << 318 } 359 } 319 } 360 } 320 } 361 } 321 } 362 return; 322 return; 363 } 323 } 364 324 365 //....oooOO0OOooo........oooOO0OOooo........oo 325 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 366 326