Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id$ 26 // 27 // 27 // ------------------------------------------- 28 // ------------------------------------------------------------------- 28 // 29 // 29 // GEANT4 Class file 30 // GEANT4 Class file 30 // 31 // 31 // 32 // 32 // File name: G4EmCalculator 33 // File name: G4EmCalculator 33 // 34 // 34 // Author: Vladimir Ivanchenko 35 // Author: Vladimir Ivanchenko 35 // 36 // 36 // Creation date: 28.06.2004 37 // Creation date: 28.06.2004 37 // 38 // >> 39 // Modifications: >> 40 // 12.09.2004 Add verbosity (V.Ivanchenko) >> 41 // 17.11.2004 Change signature of methods, add new methods (V.Ivanchenko) >> 42 // 08.04.2005 Major optimisation of internal interfaces (V.Ivantchenko) >> 43 // 08.05.2005 Use updated interfaces (V.Ivantchenko) >> 44 // 23.10.2005 Fix computations for ions (V.Ivantchenko) >> 45 // 11.01.2006 Add GetCSDARange (V.Ivantchenko) >> 46 // 26.01.2006 Rename GetRange -> GetRangeFromRestricteDEDX (V.Ivanchenko) >> 47 // 14.03.2006 correction in GetCrossSectionPerVolume (mma) >> 48 // suppress GetCrossSectionPerAtom >> 49 // elm->GetA() in ComputeCrossSectionPerAtom >> 50 // 22.03.2006 Add ComputeElectronicDEDX and ComputeTotalDEDX (V.Ivanchenko) >> 51 // 13.05.2006 Add Corrections for ion stopping (V.Ivanchenko) >> 52 // 29.09.2006 Uncomment computation of smoothing factor (V.Ivanchenko) >> 53 // 27.10.2006 Change test energy to access lowEnergy model from >> 54 // 10 keV to 1 keV (V. Ivanchenko) >> 55 // 15.03.2007 Add ComputeEnergyCutFromRangeCut methods (V.Ivanchenko) >> 56 // 21.04.2008 Updated computations for ions (V.Ivanchenko) 38 // 57 // 39 // Class Description: V.Ivanchenko & M.Novak << 58 // Class Description: 40 // 59 // 41 // ------------------------------------------- 60 // ------------------------------------------------------------------- 42 // 61 // 43 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 64 46 #include "G4EmCalculator.hh" 65 #include "G4EmCalculator.hh" 47 #include "G4SystemOfUnits.hh" 66 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 67 #include "G4LossTableManager.hh" 49 #include "G4EmParameters.hh" << 50 #include "G4NistManager.hh" << 51 #include "G4DynamicParticle.hh" << 52 #include "G4VEmProcess.hh" 68 #include "G4VEmProcess.hh" 53 #include "G4VEnergyLossProcess.hh" 69 #include "G4VEnergyLossProcess.hh" 54 #include "G4VMultipleScattering.hh" 70 #include "G4VMultipleScattering.hh" 55 #include "G4Material.hh" 71 #include "G4Material.hh" 56 #include "G4MaterialCutsCouple.hh" 72 #include "G4MaterialCutsCouple.hh" 57 #include "G4ParticleDefinition.hh" 73 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleTable.hh" 74 #include "G4ParticleTable.hh" 59 #include "G4IonTable.hh" << 60 #include "G4PhysicsTable.hh" 75 #include "G4PhysicsTable.hh" 61 #include "G4ProductionCutsTable.hh" 76 #include "G4ProductionCutsTable.hh" 62 #include "G4ProcessManager.hh" 77 #include "G4ProcessManager.hh" 63 #include "G4ionEffectiveCharge.hh" 78 #include "G4ionEffectiveCharge.hh" 64 #include "G4RegionStore.hh" 79 #include "G4RegionStore.hh" 65 #include "G4Element.hh" 80 #include "G4Element.hh" 66 #include "G4EmCorrections.hh" 81 #include "G4EmCorrections.hh" 67 #include "G4GenericIon.hh" 82 #include "G4GenericIon.hh" 68 #include "G4ProcessVector.hh" 83 #include "G4ProcessVector.hh" 69 #include "G4Gamma.hh" 84 #include "G4Gamma.hh" 70 #include "G4Electron.hh" << 71 #include "G4Positron.hh" << 72 #include "G4EmUtility.hh" << 73 85 74 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 87 76 G4EmCalculator::G4EmCalculator() 88 G4EmCalculator::G4EmCalculator() 77 { 89 { 78 manager = G4LossTableManager::Instance(); 90 manager = G4LossTableManager::Instance(); 79 nist = G4NistManager::Instance(); << 80 theParameters = G4EmParameters::Instance(); << 81 corr = manager->EmCorrections(); 91 corr = manager->EmCorrections(); 82 cutenergy[0] = cutenergy[1] = cutenergy[2] = << 92 nLocalMaterials = 0; 83 theGenericIon = G4GenericIon::GenericIon(); << 93 verbose = 0; 84 ionEffCharge = new G4ionEffectiveCharge(); << 94 currentCoupleIndex = 0; 85 dynParticle = new G4DynamicParticle(); << 95 currentCouple = 0; 86 ionTable = G4ParticleTable::GetParticle << 96 currentMaterial = 0; >> 97 currentParticle = 0; >> 98 lambdaParticle = 0; >> 99 baseParticle = 0; >> 100 currentLambda = 0; >> 101 currentModel = 0; >> 102 currentProcess = 0; >> 103 loweModel = 0; >> 104 chargeSquare = 1.0; >> 105 massRatio = 1.0; >> 106 mass = 0.0; >> 107 currentCut = 0.0; >> 108 currentParticleName= ""; >> 109 currentMaterialName= ""; >> 110 currentName = ""; >> 111 lambdaName = ""; >> 112 theGenericIon = G4GenericIon::GenericIon(); >> 113 ionEffCharge = new G4ionEffectiveCharge(); >> 114 isIon = false; >> 115 isApplicable = false; 87 } 116 } 88 117 89 //....oooOO0OOooo........oooOO0OOooo........oo 118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 119 91 G4EmCalculator::~G4EmCalculator() 120 G4EmCalculator::~G4EmCalculator() 92 { 121 { 93 delete ionEffCharge; 122 delete ionEffCharge; 94 delete dynParticle; << 95 for (G4int i=0; i<nLocalMaterials; ++i) { 123 for (G4int i=0; i<nLocalMaterials; ++i) { 96 delete localCouples[i]; 124 delete localCouples[i]; 97 } 125 } 98 } 126 } 99 127 100 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 101 129 102 G4double G4EmCalculator::GetDEDX(G4double kinE << 130 G4double G4EmCalculator::GetDEDX(G4double kinEnergy, const G4ParticleDefinition* p, 103 const G4Parti << 131 const G4Material* mat, const G4Region* region) 104 const G4Mater << 105 const G4Regio << 106 { 132 { 107 G4double res = 0.0; 133 G4double res = 0.0; 108 const G4MaterialCutsCouple* couple = FindCou 134 const G4MaterialCutsCouple* couple = FindCouple(mat, region); 109 if(nullptr != couple && UpdateParticle(p, ki << 135 if(couple && UpdateParticle(p, kinEnergy) ) { 110 res = manager->GetDEDX(p, kinEnergy, coupl 136 res = manager->GetDEDX(p, kinEnergy, couple); 111 137 112 if(isIon) { 138 if(isIon) { 113 if(FindEmModel(p, currentProcessName, ki 139 if(FindEmModel(p, currentProcessName, kinEnergy)) { 114 G4double length = CLHEP::nm; << 140 G4double length = CLHEP::nm; 115 G4double eloss = res*length; << 141 G4double eloss = res*length; 116 //G4cout << "### GetDEDX: E= " << kinE << 142 //G4cout << "### GetDEDX: E= " << kinEnergy << " dedx0= " << res 117 // << " de= " << eloss << G4endl << 143 // << " de= " << eloss << G4endl;; 118 dynParticle->SetKineticEnergy(kinEnerg << 144 G4double niel = 0.0; >> 145 dynParticle.SetKineticEnergy(kinEnergy); 119 currentModel->GetChargeSquareRatio(p, 146 currentModel->GetChargeSquareRatio(p, mat, kinEnergy); 120 currentModel->CorrectionsAlongStep(cou << 147 currentModel->CorrectionsAlongStep(couple,&dynParticle,eloss,niel,length); 121 res = eloss/length; << 148 res = eloss/length; 122 //G4cout << " de1= " << eloss << << 149 //G4cout << " de1= " << eloss << " res1= " << res 123 // << " " << p->GetParticleName( << 150 // << " " << p->GetParticleName() <<G4endl;; 124 } 151 } 125 } 152 } 126 153 127 if(verbose>0) { 154 if(verbose>0) { 128 G4cout << "G4EmCalculator::GetDEDX: E(Me 155 G4cout << "G4EmCalculator::GetDEDX: E(MeV)= " << kinEnergy/MeV 129 << " DEDX(MeV/mm)= " << res*mm/Me << 156 << " DEDX(MeV/mm)= " << res*mm/MeV 130 << " DEDX(MeV*cm^2/g)= " << res*g << 157 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 131 << " " << p->GetParticleName() << 158 << " " << p->GetParticleName() 132 << " in " << mat->GetName() << 159 << " in " << mat->GetName() 133 << " isIon= " << isIon << 160 << " isIon= " << isIon 134 << G4endl; << 161 << G4endl; 135 } 162 } 136 } 163 } 137 return res; 164 return res; 138 } 165 } 139 166 140 //....oooOO0OOooo........oooOO0OOooo........oo 167 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 141 168 >> 169 G4double G4EmCalculator::GetDEDX(G4double kinEnergy, const G4String& particle, >> 170 const G4String& material, const G4String& reg) >> 171 { >> 172 return GetDEDX(kinEnergy,FindParticle(particle), >> 173 FindMaterial(material),FindRegion(reg)); >> 174 } >> 175 >> 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 177 142 G4double G4EmCalculator::GetRangeFromRestricte 178 G4double G4EmCalculator::GetRangeFromRestricteDEDX(G4double kinEnergy, 143 << 179 const G4ParticleDefinition* p, 144 << 180 const G4Material* mat, 145 << 181 const G4Region* region) 146 { 182 { 147 G4double res = 0.0; 183 G4double res = 0.0; 148 const G4MaterialCutsCouple* couple = FindCou 184 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 149 if(couple && UpdateParticle(p, kinEnergy)) { 185 if(couple && UpdateParticle(p, kinEnergy)) { 150 res = manager->GetRangeFromRestricteDEDX(p 186 res = manager->GetRangeFromRestricteDEDX(p, kinEnergy, couple); 151 if(verbose>1) { << 187 if(verbose>0) { 152 G4cout << " G4EmCalculator::GetRangeFrom << 188 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV 153 << kinEnergy/MeV << 189 << " range(mm)= " << res/mm 154 << " range(mm)= " << res/mm << 190 << " " << p->GetParticleName() 155 << " " << p->GetParticleName() << 191 << " in " << mat->GetName() 156 << " in " << mat->GetName() << 192 << G4endl; 157 << G4endl; << 158 } 193 } 159 } 194 } 160 return res; 195 return res; 161 } 196 } 162 197 163 //....oooOO0OOooo........oooOO0OOooo........oo 198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 164 199 165 G4double G4EmCalculator::GetCSDARange(G4double 200 G4double G4EmCalculator::GetCSDARange(G4double kinEnergy, 166 const G4 << 201 const G4ParticleDefinition* p, 167 const G4 << 202 const G4Material* mat, 168 const G4 << 203 const G4Region* region) 169 { 204 { 170 G4double res = 0.0; 205 G4double res = 0.0; 171 if(!theParameters->BuildCSDARange()) { << 172 G4ExceptionDescription ed; << 173 ed << "G4EmCalculator::GetCSDARange: CSDA << 174 << " use UI command: /process/eLoss/CSD << 175 G4Exception("G4EmCalculator::GetCSDARange" << 176 JustWarning, ed); << 177 return res; << 178 } << 179 << 180 const G4MaterialCutsCouple* couple = FindCou 206 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 181 if(nullptr != couple && UpdateParticle(p, ki << 207 if(couple && UpdateParticle(p, kinEnergy)) { 182 res = manager->GetCSDARange(p, kinEnergy, 208 res = manager->GetCSDARange(p, kinEnergy, couple); 183 if(verbose>1) { << 209 if(verbose>0) { 184 G4cout << " G4EmCalculator::GetCSDARange << 210 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV 185 << " range(mm)= " << res/mm << 211 << " range(mm)= " << res/mm 186 << " " << p->GetParticleName() << 212 << " " << p->GetParticleName() 187 << " in " << mat->GetName() << 213 << " in " << mat->GetName() 188 << G4endl; << 214 << G4endl; 189 } 215 } 190 } 216 } 191 return res; 217 return res; 192 } 218 } 193 219 194 //....oooOO0OOooo........oooOO0OOooo........oo 220 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 195 221 196 G4double G4EmCalculator::GetRange(G4double kin 222 G4double G4EmCalculator::GetRange(G4double kinEnergy, 197 const G4Part << 223 const G4ParticleDefinition* p, 198 const G4Mate << 224 const G4Material* mat, 199 const G4Regi << 225 const G4Region* region) 200 { 226 { 201 G4double res = 0.0; 227 G4double res = 0.0; 202 if(theParameters->BuildCSDARange()) { << 228 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 203 res = GetCSDARange(kinEnergy, p, mat, regi << 229 if(couple && UpdateParticle(p, kinEnergy)) { 204 } else { << 230 res = manager->GetRange(p, kinEnergy, couple); 205 res = GetRangeFromRestricteDEDX(kinEnergy, << 231 if(verbose>0) { >> 232 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV >> 233 << " range(mm)= " << res/mm >> 234 << " " << p->GetParticleName() >> 235 << " in " << mat->GetName() >> 236 << G4endl; >> 237 } 206 } 238 } 207 return res; 239 return res; 208 } 240 } 209 241 210 //....oooOO0OOooo........oooOO0OOooo........oo 242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 243 >> 244 G4double G4EmCalculator::GetRangeFromRestricteDEDX(G4double kinEnergy, >> 245 const G4String& particle, >> 246 const G4String& material, >> 247 const G4String& reg) >> 248 { >> 249 return GetRangeFromRestricteDEDX(kinEnergy,FindParticle(particle), >> 250 FindMaterial(material),FindRegion(reg)); >> 251 } >> 252 >> 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 254 >> 255 G4double G4EmCalculator::GetCSDARange(G4double kinEnergy, >> 256 const G4String& particle, >> 257 const G4String& material, >> 258 const G4String& reg) >> 259 { >> 260 return GetCSDARange(kinEnergy,FindParticle(particle), >> 261 FindMaterial(material),FindRegion(reg)); >> 262 } >> 263 >> 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 265 >> 266 G4double G4EmCalculator::GetRange(G4double kinEnergy, >> 267 const G4String& particle, >> 268 const G4String& material, >> 269 const G4String& reg) >> 270 { >> 271 return GetRange(kinEnergy,FindParticle(particle), >> 272 FindMaterial(material),FindRegion(reg)); >> 273 } >> 274 >> 275 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 276 212 G4double G4EmCalculator::GetKinEnergy(G4double 277 G4double G4EmCalculator::GetKinEnergy(G4double range, 213 const G4 << 278 const G4ParticleDefinition* p, 214 const G4 279 const G4Material* mat, 215 const G4 << 280 const G4Region* region) 216 { 281 { 217 G4double res = 0.0; 282 G4double res = 0.0; 218 const G4MaterialCutsCouple* couple = FindCou 283 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 219 if(nullptr != couple && UpdateParticle(p, 1. << 284 if(couple && UpdateParticle(p, 1.0*GeV)) { 220 res = manager->GetEnergy(p, range, couple) 285 res = manager->GetEnergy(p, range, couple); 221 if(verbose>0) { 286 if(verbose>0) { 222 G4cout << "G4EmCalculator::GetKinEnergy: 287 G4cout << "G4EmCalculator::GetKinEnergy: Range(mm)= " << range/mm 223 << " KinE(MeV)= " << res/MeV << 288 << " KinE(MeV)= " << res/MeV 224 << " " << p->GetParticleName() << 289 << " " << p->GetParticleName() 225 << " in " << mat->GetName() << 290 << " in " << mat->GetName() 226 << G4endl; << 291 << G4endl; 227 } 292 } 228 } 293 } 229 return res; 294 return res; 230 } 295 } 231 296 232 //....oooOO0OOooo........oooOO0OOooo........oo 297 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 233 298 >> 299 G4double G4EmCalculator::GetKinEnergy(G4double range, const G4String& particle, >> 300 const G4String& material, const G4String& reg) >> 301 { >> 302 return GetKinEnergy(range,FindParticle(particle), >> 303 FindMaterial(material),FindRegion(reg)); >> 304 } >> 305 >> 306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 307 234 G4double G4EmCalculator::GetCrossSectionPerVol 308 G4double G4EmCalculator::GetCrossSectionPerVolume(G4double kinEnergy, 235 co 309 const G4ParticleDefinition* p, 236 co 310 const G4String& processName, 237 co << 311 const G4Material* mat, 238 co << 312 const G4Region* region) 239 { 313 { 240 G4double res = 0.0; 314 G4double res = 0.0; 241 const G4MaterialCutsCouple* couple = FindCou 315 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 242 316 243 if(nullptr != couple && UpdateParticle(p, ki << 317 if(couple && UpdateParticle(p, kinEnergy)) { 244 if(FindEmModel(p, processName, kinEnergy)) << 318 G4int idx = couple->GetIndex(); 245 G4int idx = couple->GetIndex(); << 319 FindLambdaTable(p, processName, kinEnergy); 246 G4int procType = -1; << 320 247 FindLambdaTable(p, processName, kinEnerg << 321 if(currentLambda) { 248 << 322 G4double e = kinEnergy*massRatio; 249 G4VEmProcess* emproc = FindDiscreteProce << 323 res = (((*currentLambda)[idx])->Value(e))*chargeSquare; 250 if(nullptr != emproc) { << 324 } else { 251 res = emproc->GetCrossSection(kinEnergy, cou << 325 res = ComputeCrossSectionPerVolume(kinEnergy, p, processName, mat, 252 } else if(currentLambda) { << 326 kinEnergy); 253 // special tables are built for Msc mo << 254 // procType is set in FindLambdaTable << 255 if(procType==2) { << 256 auto mscM = static_cast<G4VMscModel* << 257 mscM->SetCurrentCouple(couple); << 258 G4double tr1Mfp = mscM->GetTransport << 259 if (tr1Mfp<DBL_MAX) { << 260 res = 1./tr1Mfp; << 261 } << 262 } else { << 263 G4double e = kinEnergy*massRatio; << 264 res = (((*currentLambda)[idx])->Valu << 265 } << 266 } else { << 267 res = ComputeCrossSectionPerVolume(kin << 268 } << 269 if(verbose>0) { << 270 G4cout << "G4EmCalculator::GetXSPerVol << 271 << " cross(cm-1)= " << res*cm << 272 << " " << p->GetParticleName( << 273 << " in " << mat->GetName(); << 274 if(verbose>1) << 275 G4cout << " idx= " << idx << " Esc << 276 << kinEnergy*massRatio << 277 << " q2= " << chargeSquare; << 278 G4cout << G4endl; << 279 } << 280 } 327 } >> 328 if(verbose>0) { >> 329 G4cout << "G4EmCalculator::GetXSPerVolume: E(MeV)= " << kinEnergy/MeV >> 330 << " cross(cm-1)= " << res*cm >> 331 << " " << p->GetParticleName() >> 332 << " in " << mat->GetName(); >> 333 if(verbose>1) >> 334 G4cout << " idx= " << idx << " Escaled((MeV)= " >> 335 << kinEnergy*massRatio >> 336 << " q2= " << chargeSquare; >> 337 G4cout << G4endl; >> 338 } 281 } 339 } 282 return res; 340 return res; 283 } 341 } 284 342 285 //....oooOO0OOooo........oooOO0OOooo........oo 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 286 344 >> 345 G4double G4EmCalculator::GetCrossSectionPerVolume(G4double kinEnergy, >> 346 const G4String& particle, >> 347 const G4String& processName, >> 348 const G4String& material, >> 349 const G4String& reg) >> 350 { >> 351 return GetCrossSectionPerVolume(kinEnergy,FindParticle(particle),processName, >> 352 FindMaterial(material),FindRegion(reg)); >> 353 } >> 354 >> 355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 356 287 G4double G4EmCalculator::GetShellIonisationCro 357 G4double G4EmCalculator::GetShellIonisationCrossSectionPerAtom( 288 const << 358 const G4String& particle, 289 G4int 359 G4int Z, 290 G4Ato << 360 G4AtomicShellEnumerator shell, 291 G4dou << 361 G4double kinEnergy) 292 { 362 { 293 G4double res = 0.0; 363 G4double res = 0.0; 294 const G4ParticleDefinition* p = FindParticle 364 const G4ParticleDefinition* p = FindParticle(particle); 295 G4VAtomDeexcitation* ad = manager->AtomDeexc 365 G4VAtomDeexcitation* ad = manager->AtomDeexcitation(); 296 if(nullptr != p && nullptr != ad) { << 366 if(p && ad) { 297 res = ad->GetShellIonisationCrossSectionPe 367 res = ad->GetShellIonisationCrossSectionPerAtom(p, Z, shell, kinEnergy); 298 } 368 } 299 return res; 369 return res; 300 } 370 } 301 371 302 //....oooOO0OOooo........oooOO0OOooo........oo 372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 303 373 304 G4double G4EmCalculator::GetMeanFreePath(G4dou 374 G4double G4EmCalculator::GetMeanFreePath(G4double kinEnergy, 305 const 375 const G4ParticleDefinition* p, 306 const 376 const G4String& processName, 307 const << 377 const G4Material* mat, 308 const 378 const G4Region* region) 309 { 379 { 310 G4double res = DBL_MAX; 380 G4double res = DBL_MAX; 311 G4double x = GetCrossSectionPerVolume(kinEne 381 G4double x = GetCrossSectionPerVolume(kinEnergy,p, processName, mat,region); 312 if(x > 0.0) { res = 1.0/x; } 382 if(x > 0.0) { res = 1.0/x; } 313 if(verbose>1) { 383 if(verbose>1) { 314 G4cout << "G4EmCalculator::GetMeanFreePath 384 G4cout << "G4EmCalculator::GetMeanFreePath: E(MeV)= " << kinEnergy/MeV 315 << " MFP(mm)= " << res/mm << 385 << " MFP(mm)= " << res/mm 316 << " " << p->GetParticleName() << 386 << " " << p->GetParticleName() 317 << " in " << mat->GetName() << 387 << " in " << mat->GetName() 318 << G4endl; << 388 << G4endl; 319 } 389 } 320 return res; 390 return res; 321 } 391 } 322 392 323 //....oooOO0OOooo........oooOO0OOooo........oo 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 324 394 >> 395 G4double G4EmCalculator::GetMeanFreePath(G4double kinEnergy, >> 396 const G4String& particle, >> 397 const G4String& processName, >> 398 const G4String& material, >> 399 const G4String& reg) >> 400 { >> 401 return GetMeanFreePath(kinEnergy,FindParticle(particle),processName, >> 402 FindMaterial(material),FindRegion(reg)); >> 403 } >> 404 >> 405 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 406 325 void G4EmCalculator::PrintDEDXTable(const G4Pa 407 void G4EmCalculator::PrintDEDXTable(const G4ParticleDefinition* p) 326 { 408 { 327 const G4VEnergyLossProcess* elp = manager->G << 409 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 328 G4cout << "##### DEDX Table for " << p->GetP 410 G4cout << "##### DEDX Table for " << p->GetParticleName() << G4endl; 329 if(nullptr != elp) G4cout << *(elp->DEDXTabl << 411 if(elp) G4cout << *(elp->DEDXTable()) << G4endl; 330 } 412 } 331 413 332 //....oooOO0OOooo........oooOO0OOooo........oo 414 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 333 415 334 void G4EmCalculator::PrintRangeTable(const G4P 416 void G4EmCalculator::PrintRangeTable(const G4ParticleDefinition* p) 335 { 417 { 336 const G4VEnergyLossProcess* elp = manager->G << 418 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 337 G4cout << "##### Range Table for " << p->Get 419 G4cout << "##### Range Table for " << p->GetParticleName() << G4endl; 338 if(nullptr != elp) G4cout << *(elp->RangeTab << 420 if(elp) G4cout << *(elp->RangeTableForLoss()) << G4endl; 339 } 421 } 340 422 341 //....oooOO0OOooo........oooOO0OOooo........oo 423 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 342 424 343 void G4EmCalculator::PrintInverseRangeTable(co 425 void G4EmCalculator::PrintInverseRangeTable(const G4ParticleDefinition* p) 344 { 426 { 345 const G4VEnergyLossProcess* elp = manager->G << 427 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 346 G4cout << "### G4EmCalculator: Inverse Range 428 G4cout << "### G4EmCalculator: Inverse Range Table for " 347 << p->GetParticleName() << G4endl; << 429 << p->GetParticleName() << G4endl; 348 if(nullptr != elp) G4cout << *(elp->InverseR << 430 if(elp) G4cout << *(elp->InverseRangeTable()) << G4endl; 349 } 431 } 350 432 351 //....oooOO0OOooo........oooOO0OOooo........oo 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 352 434 353 G4double G4EmCalculator::ComputeDEDX(G4double 435 G4double G4EmCalculator::ComputeDEDX(G4double kinEnergy, 354 const G4P 436 const G4ParticleDefinition* p, 355 const G4S 437 const G4String& processName, 356 const G4M << 438 const G4Material* mat, 357 G4d 439 G4double cut) 358 { 440 { 359 SetupMaterial(mat); << 441 currentMaterial = mat; >> 442 currentMaterialName = mat->GetName(); 360 G4double res = 0.0; 443 G4double res = 0.0; 361 if(verbose > 1) { 444 if(verbose > 1) { 362 G4cout << "### G4EmCalculator::ComputeDEDX 445 G4cout << "### G4EmCalculator::ComputeDEDX: " << p->GetParticleName() 363 << " in " << currentMaterialName 446 << " in " << currentMaterialName 364 << " e(MeV)= " << kinEnergy/MeV << 447 << " e(MeV)= " << kinEnergy/MeV << " cut(MeV)= " << cut/MeV 365 << G4endl; << 448 << G4endl; 366 } 449 } 367 if(UpdateParticle(p, kinEnergy)) { 450 if(UpdateParticle(p, kinEnergy)) { 368 if(FindEmModel(p, processName, kinEnergy)) 451 if(FindEmModel(p, processName, kinEnergy)) { 369 G4double escaled = kinEnergy*massRatio; 452 G4double escaled = kinEnergy*massRatio; 370 if(nullptr != baseParticle) { << 453 if(baseParticle) { 371 res = currentModel->ComputeDEDXPerVolume(mat << 454 res = currentModel->ComputeDEDXPerVolume( 372 << 455 mat, baseParticle, escaled, cut) * chargeSquare; 373 if(verbose > 1) { << 456 if(verbose > 1) { 374 G4cout << "Particle: " << p->GetParticleNa << 457 G4cout << baseParticle->GetParticleName() 375 << " E(MeV)=" << kinEnergy << 458 << " Escaled(MeV)= " << escaled; 376 << " Base particle: " << baseParticle->Ge << 377 << " Escaled(MeV)= " << escaled << 378 << " q2=" << chargeSquare << G4endl; << 379 } << 380 } else { << 381 res = currentModel->ComputeDEDXPerVolume(mat << 382 if(verbose > 1) { << 383 G4cout << "Particle: " << p->GetParticleNa << 384 << " E(MeV)=" << kinEnergy << G4endl; << 385 } 459 } >> 460 } else { >> 461 res = currentModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cut); >> 462 if(verbose > 1) { G4cout << " no basePart E(MeV)= " << kinEnergy << " "; } 386 } 463 } 387 if(verbose > 1) { 464 if(verbose > 1) { 388 G4cout << currentModel->GetName() << ": DEDX 465 G4cout << currentModel->GetName() << ": DEDX(MeV/mm)= " << res*mm/MeV 389 << " DEDX(MeV*cm^2/g)= " 466 << " DEDX(MeV*cm^2/g)= " 390 << res*gram/(MeV*cm2*mat->GetDensity( 467 << res*gram/(MeV*cm2*mat->GetDensity()) 391 << G4endl; 468 << G4endl; 392 } 469 } >> 470 393 // emulate smoothing procedure 471 // emulate smoothing procedure 394 if(applySmoothing && nullptr != loweMode << 472 G4double eth = currentModel->LowEnergyLimit(); 395 G4double eth = currentModel->LowEnergyLimit( << 473 // G4cout << "massRatio= " << massRatio << " eth= " << eth << G4endl; 396 G4double res0 = 0.0; << 474 if(loweModel) { 397 G4double res1 = 0.0; << 475 G4double res0 = 0.0; 398 if(nullptr != baseParticle) { << 476 G4double res1 = 0.0; 399 res1 = chargeSquare* << 477 if(baseParticle) { 400 currentModel->ComputeDEDXPerVolume(mat, << 478 res1 = currentModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) 401 res0 = chargeSquare* << 479 * chargeSquare; 402 loweModel->ComputeDEDXPerVolume(mat, bas << 480 res0 = loweModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) >> 481 * chargeSquare; 403 } else { 482 } else { 404 res1 = currentModel->ComputeDEDXPerVolume( 483 res1 = currentModel->ComputeDEDXPerVolume(mat, p, eth, cut); 405 res0 = loweModel->ComputeDEDXPerVolume(mat 484 res0 = loweModel->ComputeDEDXPerVolume(mat, p, eth, cut); 406 } 485 } 407 if(res1 > 0.0 && escaled > 0.0) { << 408 res *= (1.0 + (res0/res1 - 1.0)*eth/escale << 409 } << 410 if(verbose > 1) { 486 if(verbose > 1) { 411 G4cout << "At boundary energy(MeV)= " << e 487 G4cout << "At boundary energy(MeV)= " << eth/MeV 412 << " DEDX(MeV/mm)= " << res0*mm/MeV << " << 488 << " DEDX(MeV/mm)= " << res1*mm/MeV 413 << " after correction DEDX(MeV/mm)=" << r << 489 << G4endl; >> 490 } >> 491 >> 492 //G4cout << "eth= " << eth << " escaled= " << escaled >> 493 // << " res0= " << res0 << " res1= " >> 494 // << res1 << " q2= " << chargeSquare << G4endl; >> 495 >> 496 if(res1 > 0.0 && escaled > 0.0) { >> 497 res *= (1.0 + (res0/res1 - 1.0)*eth/escaled); 414 } 498 } 415 } 499 } 416 // correction for ions << 500 >> 501 // low energy correction for ions 417 if(isIon) { 502 if(isIon) { 418 const G4double length = CLHEP::nm; << 503 G4double length = CLHEP::nm; 419 if(UpdateCouple(mat, cut)) { << 504 const G4Region* r = 0; 420 G4double eloss = res*length; << 505 const G4MaterialCutsCouple* couple = FindCouple(mat, r); 421 dynParticle->SetKineticEnergy(kinEnergy); << 506 G4double eloss = res*length; 422 currentModel->CorrectionsAlongStep(current << 507 G4double niel = 0.0; 423 l << 508 dynParticle.SetKineticEnergy(kinEnergy); 424 res = eloss/length; << 509 currentModel->GetChargeSquareRatio(p, mat, kinEnergy); 425 << 510 currentModel->CorrectionsAlongStep(couple,&dynParticle,eloss,niel,length); 426 if(verbose > 1) { << 511 res = eloss/length; 427 G4cout << "After Corrections: DEDX(MeV/m << 512 428 << " DEDX(MeV*cm^2/g)= " << 513 if(verbose > 1) { 429 << res*gram/(MeV*cm2*mat->GetDensity()) << 514 G4cout << "After Corrections: DEDX(MeV/mm)= " << res*mm/MeV 430 } << 515 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) >> 516 << G4endl; 431 } 517 } 432 } 518 } 433 if(verbose > 0) { << 519 } 434 G4cout << "## E(MeV)= " << kinEnergy/MeV << 520 435 << " DEDX(MeV/mm)= " << res*mm/MeV << 521 if(verbose > 0) { 436 << " DEDX(MeV*cm^2/g)= " << res*gram/ << 522 G4cout << "Sum: E(MeV)= " << kinEnergy/MeV 437 << " cut(MeV)= " << cut/MeV << 523 << " DEDX(MeV/mm)= " << res*mm/MeV 438 << " " << p->GetParticleName() << 524 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 439 << " in " << currentMaterialName << 525 << " cut(MeV)= " << cut/MeV 440 << " Zi^2= " << chargeSquare << 526 << " " << p->GetParticleName() 441 << " isIon=" << isIon << 527 << " in " << currentMaterialName 442 << G4endl; << 528 << " Zi^2= " << chargeSquare 443 } << 529 << " isIon=" << isIon >> 530 << G4endl; 444 } 531 } 445 } 532 } 446 return res; 533 return res; 447 } 534 } 448 535 449 //....oooOO0OOooo........oooOO0OOooo........oo 536 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 450 537 451 G4double G4EmCalculator::ComputeElectronicDEDX 538 G4double G4EmCalculator::ComputeElectronicDEDX(G4double kinEnergy, 452 << 539 const G4ParticleDefinition* part, 453 << 540 const G4Material* mat, 454 << 541 G4double cut) 455 { 542 { 456 SetupMaterial(mat); << 543 currentMaterial = mat; >> 544 currentMaterialName = mat->GetName(); 457 G4double dedx = 0.0; 545 G4double dedx = 0.0; 458 if(UpdateParticle(part, kinEnergy)) { 546 if(UpdateParticle(part, kinEnergy)) { 459 547 460 G4LossTableManager* lManager = G4LossTable 548 G4LossTableManager* lManager = G4LossTableManager::Instance(); 461 const std::vector<G4VEnergyLossProcess*> v 549 const std::vector<G4VEnergyLossProcess*> vel = 462 lManager->GetEnergyLossProcessVector(); 550 lManager->GetEnergyLossProcessVector(); 463 std::size_t n = vel.size(); << 551 G4int n = vel.size(); 464 552 465 //G4cout << "ComputeElectronicDEDX for " < 553 //G4cout << "ComputeElectronicDEDX for " << part->GetParticleName() 466 // << " n= " << n << G4endl; << 554 // << " n= " << n << G4endl; 467 555 468 for(std::size_t i=0; i<n; ++i) { << 556 for(G4int i=0; i<n; ++i) { 469 if(vel[i]) { 557 if(vel[i]) { 470 auto p = static_cast<G4VProcess*>(vel[ << 558 G4VProcess* p = reinterpret_cast<G4VProcess*>(vel[i]); 471 if(ActiveForParticle(part, p)) { << 559 if(ActiveForParticle(part, p)) { 472 //G4cout << "idx= " << i << " " << ( << 560 //G4cout << "idx= " << i << " " << (vel[i])->GetProcessName() 473 // << " " << (vel[i])->Particle()- << 561 // << " " << (vel[i])->Particle()->GetParticleName() << G4endl; 474 dedx += ComputeDEDX(kinEnergy,part,( << 562 dedx += ComputeDEDX(kinEnergy,part,(vel[i])->GetProcessName(),mat,cut); 475 } << 563 } 476 } 564 } 477 } 565 } 478 } 566 } 479 return dedx; 567 return dedx; 480 } 568 } 481 569 482 //....oooOO0OOooo........oooOO0OOooo........oo 570 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 483 571 484 G4double << 572 G4double G4EmCalculator::ComputeElectronicDEDX(G4double kinEnergy, const G4String& part, 485 G4EmCalculator::ComputeDEDXForCutInRange(G4dou << 573 const G4String& mat, G4double cut) 486 const << 487 const << 488 G4dou << 489 { 574 { 490 SetupMaterial(mat); << 575 return ComputeElectronicDEDX(kinEnergy,FindParticle(part),FindMaterial(mat),cut); 491 G4double dedx = 0.0; << 492 if(UpdateParticle(part, kinEnergy)) { << 493 << 494 G4LossTableManager* lManager = G4LossTable << 495 const std::vector<G4VEnergyLossProcess*> v << 496 lManager->GetEnergyLossProcessVector(); << 497 std::size_t n = vel.size(); << 498 << 499 if(mat != cutMaterial) { << 500 cutMaterial = mat; << 501 cutenergy[0] = << 502 ComputeEnergyCutFromRangeCut(rangecut, << 503 cutenergy[1] = << 504 ComputeEnergyCutFromRangeCut(rangecut, << 505 cutenergy[2] = << 506 ComputeEnergyCutFromRangeCut(rangecut, << 507 } << 508 << 509 //G4cout << "ComputeElectronicDEDX for " < << 510 // << " n= " << n << G4endl; << 511 << 512 for(std::size_t i=0; i<n; ++i) { << 513 if(vel[i]) { << 514 auto p = static_cast<G4VProcess*>(vel[ << 515 if(ActiveForParticle(part, p)) { << 516 //G4cout << "idx= " << i << " " << ( << 517 // << " " << (vel[i])->Particle()-> << 518 const G4ParticleDefinition* sec = (v << 519 std::size_t idx = 0; << 520 if(sec == G4Electron::Electron()) { << 521 else if(sec == G4Positron::Positron( << 522 << 523 dedx += ComputeDEDX(kinEnergy,part,( << 524 mat,cutenergy[id << 525 } << 526 } << 527 } << 528 } << 529 return dedx; << 530 } 576 } 531 577 532 //....oooOO0OOooo........oooOO0OOooo........oo 578 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 533 579 534 G4double G4EmCalculator::ComputeTotalDEDX(G4do 580 G4double G4EmCalculator::ComputeTotalDEDX(G4double kinEnergy, 535 cons << 581 const G4ParticleDefinition* part, 536 cons << 582 const G4Material* mat, 537 G4do << 583 G4double cut) 538 { 584 { 539 G4double dedx = ComputeElectronicDEDX(kinEne 585 G4double dedx = ComputeElectronicDEDX(kinEnergy,part,mat,cut); 540 if(mass > 700.*MeV) { dedx += ComputeNuclear 586 if(mass > 700.*MeV) { dedx += ComputeNuclearDEDX(kinEnergy,part,mat); } 541 return dedx; 587 return dedx; 542 } 588 } 543 589 544 //....oooOO0OOooo........oooOO0OOooo........oo 590 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 591 >> 592 G4double G4EmCalculator::ComputeTotalDEDX(G4double kinEnergy, >> 593 const G4String& part, >> 594 const G4String& mat, >> 595 G4double cut) >> 596 { >> 597 return ComputeTotalDEDX(kinEnergy,FindParticle(part),FindMaterial(mat),cut); >> 598 } >> 599 >> 600 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 601 >> 602 G4double G4EmCalculator::ComputeDEDX(G4double kinEnergy, >> 603 const G4String& particle, >> 604 const G4String& processName, >> 605 const G4String& material, >> 606 G4double cut) >> 607 { >> 608 return ComputeDEDX(kinEnergy,FindParticle(particle),processName, >> 609 FindMaterial(material),cut); >> 610 } >> 611 >> 612 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 613 546 G4double G4EmCalculator::ComputeNuclearDEDX(G4 614 G4double G4EmCalculator::ComputeNuclearDEDX(G4double kinEnergy, 547 const G4 615 const G4ParticleDefinition* p, 548 const G4 << 616 const G4Material* mat) 549 { 617 { 550 G4double res = 0.0; << 618 551 G4VEmProcess* nucst = FindDiscreteProcess(p, << 619 G4double res = corr->NuclearDEDX(p, mat, kinEnergy, false); 552 if(nucst) { << 553 G4VEmModel* mod = nucst->EmModel(); << 554 if(mod) { << 555 mod->SetFluctuationFlag(false); << 556 res = mod->ComputeDEDXPerVolume(mat, p, << 557 } << 558 } << 559 620 560 if(verbose > 1) { 621 if(verbose > 1) { 561 G4cout << p->GetParticleName() << " E(MeV 622 G4cout << p->GetParticleName() << " E(MeV)= " << kinEnergy/MeV 562 << " NuclearDEDX(MeV/mm)= " << res* << 623 << " NuclearDEDX(MeV/mm)= " << res*mm/MeV 563 << " NuclearDEDX(MeV*cm^2/g)= " << 624 << " NuclearDEDX(MeV*cm^2/g)= " 564 << res*gram/(MeV*cm2*mat->GetDensit << 625 << res*gram/(MeV*cm2*mat->GetDensity()) 565 << G4endl; << 626 << G4endl; 566 } 627 } 567 return res; 628 return res; 568 } 629 } 569 630 570 //....oooOO0OOooo........oooOO0OOooo........oo 631 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 571 632 >> 633 G4double G4EmCalculator::ComputeNuclearDEDX(G4double kinEnergy, >> 634 const G4String& particle, >> 635 const G4String& material) >> 636 { >> 637 return ComputeNuclearDEDX(kinEnergy,FindParticle(particle), >> 638 FindMaterial(material)); >> 639 } >> 640 >> 641 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 642 572 G4double G4EmCalculator::ComputeCrossSectionPe 643 G4double G4EmCalculator::ComputeCrossSectionPerVolume( 573 644 G4double kinEnergy, 574 c 645 const G4ParticleDefinition* p, 575 c 646 const G4String& processName, 576 c << 647 const G4Material* mat, 577 648 G4double cut) 578 { 649 { 579 SetupMaterial(mat); << 650 currentMaterial = mat; >> 651 currentMaterialName = mat->GetName(); 580 G4double res = 0.0; 652 G4double res = 0.0; 581 if(UpdateParticle(p, kinEnergy)) { 653 if(UpdateParticle(p, kinEnergy)) { 582 if(FindEmModel(p, processName, kinEnergy)) 654 if(FindEmModel(p, processName, kinEnergy)) { 583 G4double e = kinEnergy; 655 G4double e = kinEnergy; 584 G4double aCut = std::max(cut, theParamet << 585 if(baseParticle) { 656 if(baseParticle) { 586 e *= kinEnergy*massRatio; << 657 e *= kinEnergy*massRatio; 587 res = currentModel->CrossSectionPerVol << 658 res = currentModel->CrossSectionPerVolume( 588 mat, baseParticle, e, aCut, e) * << 659 mat, baseParticle, e, cut, e) * chargeSquare; 589 } else { 660 } else { 590 res = currentModel->CrossSectionPerVol << 661 res = currentModel->CrossSectionPerVolume(mat, p, e, cut, e); 591 } 662 } 592 if(verbose>0) { 663 if(verbose>0) { 593 G4cout << "G4EmCalculator::ComputeXSPe << 664 G4cout << "G4EmCalculator::ComputeXSPerVolume: E(MeV)= " << kinEnergy/MeV 594 << kinEnergy/MeV << 665 << " cross(cm-1)= " << res*cm 595 << " cross(cm-1)= " << res*cm << 666 << " cut(keV)= " << cut/keV 596 << " cut(keV)= " << aCut/keV << 667 << " " << p->GetParticleName() 597 << " " << p->GetParticleName( << 668 << " in " << mat->GetName() 598 << " in " << mat->GetName() << 669 << G4endl; 599 << G4endl; << 600 } 670 } 601 } 671 } 602 } 672 } 603 return res; 673 return res; 604 } 674 } 605 675 606 //....oooOO0OOooo........oooOO0OOooo........oo 676 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 607 677 608 G4double << 678 G4double G4EmCalculator::ComputeCrossSectionPerVolume( 609 G4EmCalculator::ComputeCrossSectionPerAtom(G4d << 679 G4double kinEnergy, 610 con << 680 const G4String& particle, 611 con << 681 const G4String& processName, 612 G4d << 682 const G4String& material, 613 G4d << 683 G4double cut) 614 { 684 { 615 G4double res = 0.0; << 685 return ComputeCrossSectionPerVolume(kinEnergy,FindParticle(particle), 616 if(UpdateParticle(p, kinEnergy)) { << 686 processName, 617 G4int iz = G4lrint(Z); << 687 FindMaterial(material),cut); 618 CheckMaterial(iz); << 619 if(FindEmModel(p, processName, kinEnergy)) << 620 G4double e = kinEnergy; << 621 G4double aCut = std::max(cut, theParamet << 622 if(baseParticle) { << 623 e *= kinEnergy*massRatio; << 624 currentModel->InitialiseForElement(bas << 625 res = currentModel->ComputeCrossSectio << 626 baseParticle, e, Z, A, aCut) * c << 627 } else { << 628 currentModel->InitialiseForElement(p, << 629 res = currentModel->ComputeCrossSectio << 630 } << 631 if(verbose>0) { << 632 G4cout << "E(MeV)= " << kinEnergy/MeV << 633 << " cross(barn)= " << res/barn << 634 << " " << p->GetParticleName( << 635 << " Z= " << Z << " A= " << A/ << 636 << " cut(keV)= " << aCut/keV << 637 << G4endl; << 638 } << 639 } << 640 } << 641 return res; << 642 } 688 } 643 689 644 //....oooOO0OOooo........oooOO0OOooo........oo 690 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 645 691 646 G4double << 692 G4double G4EmCalculator::ComputeCrossSectionPerAtom( 647 G4EmCalculator::ComputeCrossSectionPerShell(G4 << 693 G4double kinEnergy, 648 co << 694 const G4ParticleDefinition* p, 649 co << 695 const G4String& processName, 650 G4 << 696 G4double Z, G4double A, 651 G4 << 697 G4double cut) 652 { 698 { 653 G4double res = 0.0; 699 G4double res = 0.0; 654 if(UpdateParticle(p, kinEnergy)) { 700 if(UpdateParticle(p, kinEnergy)) { 655 CheckMaterial(Z); << 656 if(FindEmModel(p, processName, kinEnergy)) 701 if(FindEmModel(p, processName, kinEnergy)) { 657 G4double e = kinEnergy; 702 G4double e = kinEnergy; 658 G4double aCut = std::max(cut, theParamet << 703 if(baseParticle) { 659 if(nullptr != baseParticle) { << 704 e *= kinEnergy*massRatio; 660 e *= kinEnergy*massRatio; << 705 res = currentModel->ComputeCrossSectionPerAtom( 661 currentModel->InitialiseForElement(bas << 706 baseParticle, e, Z, A, cut) * chargeSquare; 662 res = << 663 currentModel->ComputeCrossSectionPer << 664 << 665 } else { 707 } else { 666 currentModel->InitialiseForElement(p, << 708 res = currentModel->ComputeCrossSectionPerAtom(p, e, Z, A, cut); 667 res = currentModel->ComputeCrossSectio << 668 } 709 } 669 if(verbose>0) { 710 if(verbose>0) { 670 G4cout << "E(MeV)= " << kinEnergy/MeV << 711 G4cout << "E(MeV)= " << kinEnergy/MeV 671 << " cross(barn)= " << res/barn << 712 << " cross(barn)= " << res/barn 672 << " " << p->GetParticleName( << 713 << " " << p->GetParticleName() 673 << " Z= " << Z << " shellIdx= << 714 << " Z= " << Z << " A= " << A/(g/mole) << " g/mole" 674 << " cut(keV)= " << aCut/keV << 675 << G4endl; 715 << G4endl; 676 } 716 } 677 } 717 } 678 } 718 } 679 return res; 719 return res; 680 } 720 } 681 721 682 //....oooOO0OOooo........oooOO0OOooo........oo 722 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 723 >> 724 G4double G4EmCalculator::ComputeCrossSectionPerAtom(G4double kinEnergy, >> 725 const G4String& particle, >> 726 const G4String& processName, >> 727 const G4Element* elm, >> 728 G4double cut) >> 729 { >> 730 return ComputeCrossSectionPerAtom(kinEnergy,FindParticle(particle), >> 731 processName, >> 732 elm->GetZ(),elm->GetN(),cut); >> 733 } >> 734 >> 735 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 736 684 G4double 737 G4double 685 G4EmCalculator::ComputeGammaAttenuationLength( 738 G4EmCalculator::ComputeGammaAttenuationLength(G4double kinEnergy, 686 << 739 const G4Material* mat) 687 { 740 { 688 G4double res = 0.0; 741 G4double res = 0.0; 689 const G4ParticleDefinition* gamma = G4Gamma: 742 const G4ParticleDefinition* gamma = G4Gamma::Gamma(); 690 res += ComputeCrossSectionPerVolume(kinEnerg 743 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "conv", mat, 0.0); 691 res += ComputeCrossSectionPerVolume(kinEnerg 744 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "compt", mat, 0.0); 692 res += ComputeCrossSectionPerVolume(kinEnerg 745 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "phot", mat, 0.0); 693 res += ComputeCrossSectionPerVolume(kinEnerg 746 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "Rayl", mat, 0.0); 694 if(res > 0.0) { res = 1.0/res; } 747 if(res > 0.0) { res = 1.0/res; } 695 return res; 748 return res; 696 } 749 } 697 750 698 //....oooOO0OOooo........oooOO0OOooo........oo 751 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 699 752 700 G4double G4EmCalculator::ComputeShellIonisatio 753 G4double G4EmCalculator::ComputeShellIonisationCrossSectionPerAtom( 701 const << 754 const G4String& particle, 702 G4int 755 G4int Z, 703 G4Ato << 756 G4AtomicShellEnumerator shell, 704 G4dou << 757 G4double kinEnergy, 705 const << 758 const G4Material* mat) 706 { 759 { 707 G4double res = 0.0; 760 G4double res = 0.0; 708 const G4ParticleDefinition* p = FindParticle 761 const G4ParticleDefinition* p = FindParticle(particle); 709 G4VAtomDeexcitation* ad = manager->AtomDeexc 762 G4VAtomDeexcitation* ad = manager->AtomDeexcitation(); 710 if(p && ad) { 763 if(p && ad) { 711 res = ad->ComputeShellIonisationCrossSecti 764 res = ad->ComputeShellIonisationCrossSectionPerAtom(p, Z, shell, 712 << 765 kinEnergy, mat); 713 } 766 } 714 return res; 767 return res; 715 } 768 } 716 769 717 //....oooOO0OOooo........oooOO0OOooo........oo 770 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 771 719 G4double G4EmCalculator::ComputeMeanFreePath(G 772 G4double G4EmCalculator::ComputeMeanFreePath(G4double kinEnergy, 720 c 773 const G4ParticleDefinition* p, 721 c 774 const G4String& processName, 722 c << 775 const G4Material* mat, 723 G << 776 G4double cut) 724 { 777 { 725 G4double mfp = DBL_MAX; 778 G4double mfp = DBL_MAX; 726 G4double x = << 779 G4double x = ComputeCrossSectionPerVolume(kinEnergy, p, processName, mat, cut); 727 ComputeCrossSectionPerVolume(kinEnergy, p, << 728 if(x > 0.0) { mfp = 1.0/x; } 780 if(x > 0.0) { mfp = 1.0/x; } 729 if(verbose>1) { 781 if(verbose>1) { 730 G4cout << "E(MeV)= " << kinEnergy/MeV 782 G4cout << "E(MeV)= " << kinEnergy/MeV 731 << " MFP(mm)= " << mfp/mm << 783 << " MFP(mm)= " << mfp/mm 732 << " " << p->GetParticleName() << 784 << " " << p->GetParticleName() 733 << " in " << mat->GetName() << 785 << " in " << mat->GetName() 734 << G4endl; << 786 << G4endl; 735 } 787 } 736 return mfp; 788 return mfp; 737 } 789 } 738 790 739 //....oooOO0OOooo........oooOO0OOooo........oo 791 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 792 >> 793 G4double G4EmCalculator::ComputeMeanFreePath(G4double kinEnergy, >> 794 const G4String& particle, >> 795 const G4String& processName, >> 796 const G4String& material, >> 797 G4double cut) >> 798 { >> 799 return ComputeMeanFreePath(kinEnergy,FindParticle(particle),processName, >> 800 FindMaterial(material),cut); >> 801 } >> 802 >> 803 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 804 741 G4double G4EmCalculator::ComputeEnergyCutFromR 805 G4double G4EmCalculator::ComputeEnergyCutFromRangeCut( 742 G4double range, 806 G4double range, 743 const G4ParticleDefin << 807 const G4ParticleDefinition* part, 744 const G4Material* mat << 808 const G4Material* mat) 745 { 809 { 746 return G4ProductionCutsTable::GetProductionC 810 return G4ProductionCutsTable::GetProductionCutsTable()-> 747 ConvertRangeToEnergy(part, mat, range); 811 ConvertRangeToEnergy(part, mat, range); 748 } 812 } 749 813 750 //....oooOO0OOooo........oooOO0OOooo........oo 814 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 815 >> 816 G4double G4EmCalculator::ComputeEnergyCutFromRangeCut( >> 817 G4double range, >> 818 const G4String& particle, >> 819 const G4String& material) >> 820 { >> 821 return ComputeEnergyCutFromRangeCut(range,FindParticle(particle), >> 822 FindMaterial(material)); >> 823 } >> 824 >> 825 >> 826 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 827 752 G4bool G4EmCalculator::UpdateParticle(const G4 828 G4bool G4EmCalculator::UpdateParticle(const G4ParticleDefinition* p, 753 G4double << 829 G4double kinEnergy) 754 { 830 { 755 if(p != currentParticle) { 831 if(p != currentParticle) { 756 832 757 // new particle 833 // new particle 758 currentParticle = p; 834 currentParticle = p; 759 dynParticle->SetDefinition(const_cast<G4Pa << 835 dynParticle.SetDefinition(const_cast<G4ParticleDefinition*>(p)); 760 dynParticle->SetKineticEnergy(kinEnergy); << 836 dynParticle.SetKineticEnergy(kinEnergy); 761 baseParticle = nullptr; << 837 baseParticle = 0; 762 currentParticleName = p->GetParticleName() 838 currentParticleName = p->GetParticleName(); 763 massRatio = 1.0; 839 massRatio = 1.0; 764 mass = p->GetPDGMass(); 840 mass = p->GetPDGMass(); 765 chargeSquare = 1.0; 841 chargeSquare = 1.0; 766 currentProcess = manager->GetEnergyLossPr << 842 currentProcess = FindEnergyLossProcess(p); 767 currentProcessName = ""; 843 currentProcessName = ""; 768 isIon = false; 844 isIon = false; 769 845 770 // ionisation process exist 846 // ionisation process exist 771 if(nullptr != currentProcess) { << 847 if(currentProcess) { 772 currentProcessName = currentProcess->Get 848 currentProcessName = currentProcess->GetProcessName(); 773 baseParticle = currentProcess->BaseParti 849 baseParticle = currentProcess->BaseParticle(); 774 if(currentProcessName == "ionIoni" && p- << 775 baseParticle = theGenericIon; << 776 isIon = true; << 777 } << 778 850 779 // base particle is used 851 // base particle is used 780 if(nullptr != baseParticle) { << 852 if(baseParticle) { 781 massRatio = baseParticle->GetPDGMass() << 853 massRatio = baseParticle->GetPDGMass()/p->GetPDGMass(); 782 G4double q = p->GetPDGCharge()/basePar << 854 G4double q = p->GetPDGCharge()/baseParticle->GetPDGCharge(); 783 chargeSquare = q*q; << 855 chargeSquare = q*q; 784 } 856 } >> 857 >> 858 if(p->GetParticleType() == "nucleus" >> 859 && currentParticleName != "deuteron" >> 860 && currentParticleName != "triton" >> 861 && currentParticleName != "alpha+" >> 862 && currentParticleName != "helium" >> 863 && currentParticleName != "hydrogen" >> 864 ) { >> 865 isIon = true; >> 866 massRatio = theGenericIon->GetPDGMass()/p->GetPDGMass(); >> 867 baseParticle = theGenericIon; >> 868 // G4cout << p->GetParticleName() >> 869 // << " in " << currentMaterial->GetName() >> 870 // << " e= " << kinEnergy << G4endl; >> 871 } 785 } 872 } 786 } 873 } >> 874 787 // Effective charge for ions 875 // Effective charge for ions 788 if(isIon && nullptr != currentProcess) { << 876 if(isIon) { 789 chargeSquare = 877 chargeSquare = 790 corr->EffectiveChargeSquareRatio(p, curr << 878 corr->EffectiveChargeSquareRatio(p, currentMaterial, kinEnergy) 791 currentProcess->SetDynamicMassCharge(massR << 879 * corr->EffectiveChargeCorrection(p,currentMaterial,kinEnergy); 792 if(verbose>1) { << 880 if(currentProcess) { 793 G4cout <<"\n NewIon: massR= "<< massRati << 881 currentProcess->SetDynamicMassCharge(massRatio,chargeSquare); 794 << chargeSquare << " " << currentProce << 882 //G4cout << "NewP: massR= " << massRatio << " q2= " << chargeSquare << G4endl; 795 } 883 } 796 } 884 } 797 return true; 885 return true; 798 } 886 } 799 887 800 //....oooOO0OOooo........oooOO0OOooo........oo 888 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 801 889 802 const G4ParticleDefinition* G4EmCalculator::Fi 890 const G4ParticleDefinition* G4EmCalculator::FindParticle(const G4String& name) 803 { 891 { 804 const G4ParticleDefinition* p = nullptr; << 892 const G4ParticleDefinition* p = 0; 805 if(name != currentParticleName) { 893 if(name != currentParticleName) { 806 p = G4ParticleTable::GetParticleTable()->F 894 p = G4ParticleTable::GetParticleTable()->FindParticle(name); 807 if(nullptr == p) { << 895 if(!p) { 808 G4cout << "### WARNING: G4EmCalculator:: 896 G4cout << "### WARNING: G4EmCalculator::FindParticle fails to find " 809 << name << G4endl; << 897 << name << G4endl; 810 } 898 } 811 } else { 899 } else { 812 p = currentParticle; 900 p = currentParticle; 813 } 901 } 814 return p; 902 return p; 815 } 903 } 816 904 817 //....oooOO0OOooo........oooOO0OOooo........oo 905 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 818 906 819 const G4ParticleDefinition* G4EmCalculator::Fi 907 const G4ParticleDefinition* G4EmCalculator::FindIon(G4int Z, G4int A) 820 { 908 { 821 const G4ParticleDefinition* p = ionTable->Ge << 909 const G4ParticleDefinition* p = >> 910 G4ParticleTable::GetParticleTable()->FindIon(Z,A,0,Z); 822 return p; 911 return p; 823 } 912 } 824 913 825 //....oooOO0OOooo........oooOO0OOooo........oo 914 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 826 915 827 const G4Material* G4EmCalculator::FindMaterial 916 const G4Material* G4EmCalculator::FindMaterial(const G4String& name) 828 { 917 { 829 if(name != currentMaterialName) { 918 if(name != currentMaterialName) { 830 SetupMaterial(G4Material::GetMaterial(name << 919 currentMaterial = G4Material::GetMaterial(name); 831 if(nullptr == currentMaterial) { << 920 currentMaterialName = name; >> 921 if(!currentMaterial) 832 G4cout << "### WARNING: G4EmCalculator:: 922 G4cout << "### WARNING: G4EmCalculator::FindMaterial fails to find " 833 << name << G4endl; << 923 << name << G4endl; 834 } << 835 } 924 } 836 return currentMaterial; 925 return currentMaterial; 837 } 926 } 838 927 839 //....oooOO0OOooo........oooOO0OOooo........oo 928 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 840 929 841 const G4Region* G4EmCalculator::FindRegion(con 930 const G4Region* G4EmCalculator::FindRegion(const G4String& reg) 842 { 931 { 843 return G4EmUtility::FindRegion(reg); << 932 const G4Region* r = 0; >> 933 if(reg != "" && reg != "world") { >> 934 r = G4RegionStore::GetInstance()->GetRegion(reg); >> 935 } else { >> 936 r = G4RegionStore::GetInstance()->GetRegion("DefaultRegionForTheWorld"); >> 937 } >> 938 return r; 844 } 939 } 845 940 846 //....oooOO0OOooo........oooOO0OOooo........oo 941 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 847 942 848 const G4MaterialCutsCouple* G4EmCalculator::Fi 943 const G4MaterialCutsCouple* G4EmCalculator::FindCouple( 849 const G4Material* << 944 const G4Material* material, 850 const G4Region* re << 945 const G4Region* region) 851 { 946 { 852 const G4MaterialCutsCouple* couple = nullptr << 947 if(!material) return 0; 853 SetupMaterial(material); << 948 currentMaterial = material; 854 if(nullptr != currentMaterial) { << 949 currentMaterialName = material->GetName(); 855 // Access to materials << 950 // Access to materials 856 const G4ProductionCutsTable* theCoupleTabl << 951 const G4ProductionCutsTable* theCoupleTable= 857 G4ProductionCutsTable::GetProductionCuts << 952 G4ProductionCutsTable::GetProductionCutsTable(); 858 const G4Region* r = region; << 953 const G4Region* r = region; 859 if(nullptr != r) { << 954 if(!r) { 860 couple = theCoupleTable->GetMaterialCuts << 955 r = G4RegionStore::GetInstance()->GetRegion("DefaultRegionForTheWorld"); 861 << 862 } else { << 863 G4RegionStore* store = G4RegionStore::Ge << 864 std::size_t nr = store->size(); << 865 if(0 < nr) { << 866 for(std::size_t i=0; i<nr; ++i) { << 867 couple = theCoupleTable->GetMaterial << 868 material, ((*store)[i])->GetProduc << 869 if(nullptr != couple) { break; } << 870 } << 871 } << 872 } << 873 } 956 } 874 if(nullptr == couple) { << 957 return theCoupleTable->GetMaterialCutsCouple(material,r->GetProductionCuts()); 875 G4ExceptionDescription ed; << 958 876 ed << "G4EmCalculator::FindCouple: fail fo << 877 << currentMaterialName << ">"; << 878 if(region) { ed << " and region " << regio << 879 G4Exception("G4EmCalculator::FindCouple", << 880 FatalException, ed); << 881 } << 882 return couple; << 883 } 959 } 884 960 885 //....oooOO0OOooo........oooOO0OOooo........oo 961 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 886 962 887 G4bool G4EmCalculator::UpdateCouple(const G4Ma 963 G4bool G4EmCalculator::UpdateCouple(const G4Material* material, G4double cut) 888 { 964 { 889 SetupMaterial(material); << 965 if(!material) return false; 890 if(!currentMaterial) { return false; } << 966 currentMaterial = material; >> 967 currentMaterialName = material->GetName(); 891 for (G4int i=0; i<nLocalMaterials; ++i) { 968 for (G4int i=0; i<nLocalMaterials; ++i) { 892 if(material == localMaterials[i] && cut == 969 if(material == localMaterials[i] && cut == localCuts[i]) { 893 currentCouple = localCouples[i]; 970 currentCouple = localCouples[i]; 894 currentCoupleIndex = currentCouple->GetI 971 currentCoupleIndex = currentCouple->GetIndex(); 895 currentCut = cut; 972 currentCut = cut; 896 return true; 973 return true; 897 } 974 } 898 } 975 } 899 const G4MaterialCutsCouple* cc = new G4Mater 976 const G4MaterialCutsCouple* cc = new G4MaterialCutsCouple(material); 900 localMaterials.push_back(material); 977 localMaterials.push_back(material); 901 localCouples.push_back(cc); 978 localCouples.push_back(cc); 902 localCuts.push_back(cut); 979 localCuts.push_back(cut); 903 ++nLocalMaterials; << 980 nLocalMaterials++; 904 currentCouple = cc; 981 currentCouple = cc; 905 currentCoupleIndex = currentCouple->GetIndex 982 currentCoupleIndex = currentCouple->GetIndex(); 906 currentCut = cut; 983 currentCut = cut; 907 return true; 984 return true; 908 } 985 } 909 986 910 //....oooOO0OOooo........oooOO0OOooo........oo 987 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 988 912 void G4EmCalculator::FindLambdaTable(const G4P 989 void G4EmCalculator::FindLambdaTable(const G4ParticleDefinition* p, 913 const G4S 990 const G4String& processName, 914 G4double << 991 G4double kinEnergy) 915 { 992 { 916 // Search for the process 993 // Search for the process 917 if (!currentLambda || p != lambdaParticle || 994 if (!currentLambda || p != lambdaParticle || processName != lambdaName) { 918 lambdaName = processName; 995 lambdaName = processName; 919 currentLambda = nullptr; << 996 currentLambda = 0; 920 lambdaParticle = p; 997 lambdaParticle = p; 921 isApplicable = false; << 922 998 923 const G4ParticleDefinition* part = (isIon) << 999 const G4ParticleDefinition* part = p; >> 1000 if(isIon) { part = theGenericIon; } 924 1001 925 // Search for energy loss process 1002 // Search for energy loss process 926 currentName = processName; 1003 currentName = processName; 927 currentModel = nullptr; << 1004 currentModel = 0; 928 loweModel = nullptr; << 1005 loweModel = 0; 929 1006 930 G4VEnergyLossProcess* elproc = FindEnLossP 1007 G4VEnergyLossProcess* elproc = FindEnLossProcess(part, processName); 931 if(nullptr != elproc) { << 1008 if(elproc) { 932 currentLambda = elproc->LambdaTable(); 1009 currentLambda = elproc->LambdaTable(); 933 proctype = 0; << 1010 if(currentLambda) { 934 if(nullptr != currentLambda) { << 1011 isApplicable = true; 935 isApplicable = true; << 1012 if(verbose>1) { 936 if(verbose>1) { << 1013 G4cout << "G4VEnergyLossProcess is found out: " << currentName 937 G4cout << "G4VEnergyLossProcess is f << 1014 << G4endl; 938 << G4endl; << 1015 } 939 } << 940 } 1016 } 941 curProcess = elproc; << 942 return; 1017 return; 943 } 1018 } 944 1019 945 // Search for discrete process 1020 // Search for discrete process 946 G4VEmProcess* proc = FindDiscreteProcess(p 1021 G4VEmProcess* proc = FindDiscreteProcess(part, processName); 947 if(nullptr != proc) { << 1022 if(proc) { 948 currentLambda = proc->LambdaTable(); 1023 currentLambda = proc->LambdaTable(); 949 proctype = 1; << 1024 if(currentLambda) { 950 if(nullptr != currentLambda) { << 1025 isApplicable = true; 951 isApplicable = true; << 1026 if(verbose>1) { 952 if(verbose>1) { << 1027 G4cout << "G4VEmProcess is found out: " << currentName << G4endl; 953 G4cout << "G4VEmProcess is found out << 1028 } 954 } << 955 } 1029 } 956 curProcess = proc; << 957 return; 1030 return; 958 } 1031 } 959 1032 960 // Search for msc process 1033 // Search for msc process 961 G4VMultipleScattering* msc = FindMscProces 1034 G4VMultipleScattering* msc = FindMscProcess(part, processName); 962 if(nullptr != msc) { << 1035 if(msc) { 963 currentModel = msc->SelectModel(kinEnerg 1036 currentModel = msc->SelectModel(kinEnergy,0); 964 proctype = 2; << 1037 /* 965 if(nullptr != currentModel) { << 1038 if(currentModel) { 966 currentLambda = currentModel->GetCross << 1039 currentLambda = currentModel->GetCrossSectionTable(); 967 if(nullptr != currentLambda) { << 1040 if(currentLambda) { 968 isApplicable = true; << 1041 isApplicable = true; 969 if(verbose>1) { << 1042 if(verbose>1) { 970 G4cout << "G4VMultipleScattering i << 1043 G4cout << "G4VMultipleScattering is found out: " << currentName 971 << G4endl; << 1044 << G4endl; 972 } << 1045 } 973 } << 1046 } 974 } 1047 } 975 curProcess = msc; << 1048 */ 976 } 1049 } 977 } 1050 } 978 } 1051 } 979 1052 980 //....oooOO0OOooo........oooOO0OOooo........oo 1053 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1054 982 G4bool G4EmCalculator::FindEmModel(const G4Par 1055 G4bool G4EmCalculator::FindEmModel(const G4ParticleDefinition* p, 983 const G4Str 1056 const G4String& processName, 984 G4 << 1057 G4double kinEnergy) 985 { 1058 { 986 isApplicable = false; 1059 isApplicable = false; 987 if(nullptr == p || nullptr == currentMateria << 1060 if(!p) { 988 G4cout << "G4EmCalculator::FindEmModel WAR << 1061 G4cout << "G4EmCalculator::FindEmModel WARNING: no particle defined" 989 << " or materail defined; particle: << 1062 << G4endl; 990 return isApplicable; 1063 return isApplicable; 991 } 1064 } 992 G4String partname = p->GetParticleName(); 1065 G4String partname = p->GetParticleName(); >> 1066 const G4ParticleDefinition* part = p; 993 G4double scaledEnergy = kinEnergy*massRatio; 1067 G4double scaledEnergy = kinEnergy*massRatio; 994 const G4ParticleDefinition* part = (isIon) ? << 1068 if(isIon) { part = theGenericIon; } 995 1069 996 if(verbose > 1) { 1070 if(verbose > 1) { 997 G4cout << "## G4EmCalculator::FindEmModel 1071 G4cout << "## G4EmCalculator::FindEmModel for " << partname 998 << " (type= " << p->GetParticleType 1072 << " (type= " << p->GetParticleType() 999 << ") and " << processName << " at 1073 << ") and " << processName << " at E(MeV)= " << scaledEnergy 1000 << G4endl; << 1074 << G4endl; 1001 if(p != part) { G4cout << " GenericIon i 1075 if(p != part) { G4cout << " GenericIon is the base particle" << G4endl; } 1002 } 1076 } 1003 1077 1004 // Search for energy loss process 1078 // Search for energy loss process 1005 currentName = processName; 1079 currentName = processName; 1006 currentModel = nullptr; << 1080 currentModel = 0; 1007 loweModel = nullptr; << 1081 loweModel = 0; 1008 std::size_t idx = 0; << 1082 size_t idx = 0; 1009 1083 1010 G4VEnergyLossProcess* elproc = FindEnLossPr 1084 G4VEnergyLossProcess* elproc = FindEnLossProcess(part, processName); 1011 if(nullptr != elproc) { << 1085 if(elproc) { 1012 currentModel = elproc->SelectModelForMate 1086 currentModel = elproc->SelectModelForMaterial(scaledEnergy, idx); 1013 currentModel->InitialiseForMaterial(part, << 1014 currentModel->SetupForMaterial(part, curr << 1015 G4double eth = currentModel->LowEnergyLim 1087 G4double eth = currentModel->LowEnergyLimit(); 1016 if(eth > 0.0) { 1088 if(eth > 0.0) { 1017 loweModel = elproc->SelectModelForMater 1089 loweModel = elproc->SelectModelForMaterial(eth - CLHEP::eV, idx); 1018 if(loweModel == currentModel) { loweMod << 1090 if(loweModel == currentModel) { loweModel = 0; } 1019 else { << 1020 loweModel->InitialiseForMaterial(part << 1021 loweModel->SetupForMaterial(part, cur << 1022 } << 1023 } 1091 } 1024 } 1092 } 1025 1093 1026 // Search for discrete process 1094 // Search for discrete process 1027 if(nullptr == currentModel) { << 1095 if(!currentModel) { 1028 G4VEmProcess* proc = FindDiscreteProcess( 1096 G4VEmProcess* proc = FindDiscreteProcess(part, processName); 1029 if(nullptr != proc) { << 1097 if(proc) { 1030 currentModel = proc->SelectModelForMate 1098 currentModel = proc->SelectModelForMaterial(kinEnergy, idx); 1031 currentModel->InitialiseForMaterial(par << 1032 currentModel->SetupForMaterial(part, cu << 1033 G4double eth = currentModel->LowEnergyL 1099 G4double eth = currentModel->LowEnergyLimit(); 1034 if(eth > 0.0) { 1100 if(eth > 0.0) { 1035 loweModel = proc->SelectModelForMater << 1101 loweModel = proc->SelectModelForMaterial(eth - CLHEP::eV, idx); 1036 if(loweModel == currentModel) { loweM << 1102 if(loweModel == currentModel) { loweModel = 0; } 1037 else { << 1038 loweModel->InitialiseForMaterial(pa << 1039 loweModel->SetupForMaterial(part, c << 1040 } << 1041 } 1103 } 1042 } 1104 } 1043 } 1105 } 1044 1106 1045 // Search for msc process 1107 // Search for msc process 1046 if(nullptr == currentModel) { << 1108 if(!currentModel) { 1047 G4VMultipleScattering* proc = FindMscProc 1109 G4VMultipleScattering* proc = FindMscProcess(part, processName); 1048 if(nullptr != proc) { << 1110 if(proc) { 1049 currentModel = proc->SelectModel(kinEne 1111 currentModel = proc->SelectModel(kinEnergy, idx); 1050 loweModel = nullptr; << 1112 loweModel = 0; 1051 } 1113 } 1052 } 1114 } 1053 if(nullptr != currentModel) { << 1115 if(currentModel) { 1054 if(loweModel == currentModel) { loweModel << 1116 if(loweModel == currentModel) { loweModel = 0; } 1055 isApplicable = true; 1117 isApplicable = true; 1056 currentModel->InitialiseForMaterial(part, << 1057 if(loweModel) { << 1058 loweModel->InitialiseForMaterial(part, << 1059 } << 1060 if(verbose > 1) { 1118 if(verbose > 1) { 1061 G4cout << " Model <" << currentModel- 1119 G4cout << " Model <" << currentModel->GetName() 1062 << "> Emin(MeV)= " << currentMod << 1120 << "> Emin(MeV)= " << currentModel->LowEnergyLimit()/MeV 1063 << " for " << part->GetParticleN << 1121 << " for " << part->GetParticleName(); 1064 if(nullptr != elproc) { << 1122 if(elproc) { 1065 G4cout << " and " << elproc->GetProce << 1123 G4cout << " and " << elproc->GetProcessName() << " " << elproc 1066 << G4endl; << 1124 << G4endl; 1067 } 1125 } 1068 if(nullptr != loweModel) { << 1126 if(loweModel) { 1069 G4cout << " LowEnergy model <" << low << 1127 G4cout << " LowEnergy model <" << loweModel->GetName() << ">"; 1070 } 1128 } 1071 G4cout << G4endl; 1129 G4cout << G4endl; 1072 } 1130 } 1073 } 1131 } 1074 return isApplicable; 1132 return isApplicable; 1075 } 1133 } 1076 1134 1077 //....oooOO0OOooo........oooOO0OOooo........o 1135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1078 1136 >> 1137 G4VEnergyLossProcess* G4EmCalculator::FindEnergyLossProcess( >> 1138 const G4ParticleDefinition* p) >> 1139 { >> 1140 G4VEnergyLossProcess* elp = 0; >> 1141 G4String partname = p->GetParticleName(); >> 1142 const G4ParticleDefinition* part = p; >> 1143 >> 1144 if(p->GetParticleType() == "nucleus" >> 1145 && currentParticleName != "deuteron" >> 1146 && currentParticleName != "triton" >> 1147 && currentParticleName != "alpha+" >> 1148 && currentParticleName != "helium" >> 1149 && currentParticleName != "hydrogen" >> 1150 ) { part = theGenericIon; } >> 1151 >> 1152 elp = G4LossTableManager::Instance()->GetEnergyLossProcess(part); >> 1153 return elp; >> 1154 } >> 1155 >> 1156 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1157 1079 G4VEnergyLossProcess* 1158 G4VEnergyLossProcess* 1080 G4EmCalculator::FindEnLossProcess(const G4Par 1159 G4EmCalculator::FindEnLossProcess(const G4ParticleDefinition* part, 1081 const G4Str << 1160 const G4String& processName) 1082 { 1161 { 1083 G4VEnergyLossProcess* proc = nullptr; << 1162 G4VEnergyLossProcess* proc = 0; 1084 const std::vector<G4VEnergyLossProcess*> v 1163 const std::vector<G4VEnergyLossProcess*> v = 1085 manager->GetEnergyLossProcessVector(); << 1164 G4LossTableManager::Instance()->GetEnergyLossProcessVector(); 1086 std::size_t n = v.size(); << 1165 G4int n = v.size(); 1087 for(std::size_t i=0; i<n; ++i) { << 1166 for(G4int i=0; i<n; ++i) { 1088 if((v[i])->GetProcessName() == processNam 1167 if((v[i])->GetProcessName() == processName) { 1089 auto p = static_cast<G4VProcess*>(v[i]) << 1168 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1090 if(ActiveForParticle(part, p)) { 1169 if(ActiveForParticle(part, p)) { 1091 proc = v[i]; 1170 proc = v[i]; 1092 break; << 1171 break; 1093 } 1172 } 1094 } 1173 } 1095 } 1174 } 1096 return proc; 1175 return proc; 1097 } 1176 } 1098 1177 1099 //....oooOO0OOooo........oooOO0OOooo........o 1178 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1100 1179 1101 G4VEmProcess* 1180 G4VEmProcess* 1102 G4EmCalculator::FindDiscreteProcess(const G4P 1181 G4EmCalculator::FindDiscreteProcess(const G4ParticleDefinition* part, 1103 const G4S << 1182 const G4String& processName) 1104 { 1183 { 1105 G4VEmProcess* proc = nullptr; << 1184 G4VEmProcess* proc = 0; 1106 auto v = manager->GetEmProcessVector(); << 1185 const std::vector<G4VEmProcess*> v = 1107 std::size_t n = v.size(); << 1186 G4LossTableManager::Instance()->GetEmProcessVector(); 1108 for(std::size_t i=0; i<n; ++i) { << 1187 G4int n = v.size(); 1109 const G4String& pName = v[i]->GetProcessN << 1188 for(G4int i=0; i<n; ++i) { 1110 if(pName == "GammaGeneralProc") { << 1189 if((v[i])->GetProcessName() == processName) { 1111 proc = v[i]->GetEmProcess(processName); << 1190 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1112 break; << 1113 } else if(pName == processName) { << 1114 const auto p = static_cast<G4VProcess*> << 1115 if(ActiveForParticle(part, p)) { 1191 if(ActiveForParticle(part, p)) { 1116 proc = v[i]; 1192 proc = v[i]; 1117 break; << 1193 break; 1118 } 1194 } 1119 } 1195 } 1120 } 1196 } 1121 return proc; 1197 return proc; 1122 } 1198 } 1123 1199 1124 //....oooOO0OOooo........oooOO0OOooo........o 1200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1125 1201 1126 G4VMultipleScattering* 1202 G4VMultipleScattering* 1127 G4EmCalculator::FindMscProcess(const G4Partic 1203 G4EmCalculator::FindMscProcess(const G4ParticleDefinition* part, 1128 const G4String << 1204 const G4String& processName) 1129 { 1205 { 1130 G4VMultipleScattering* proc = nullptr; << 1206 G4VMultipleScattering* proc = 0; 1131 const std::vector<G4VMultipleScattering*> v 1207 const std::vector<G4VMultipleScattering*> v = 1132 manager->GetMultipleScatteringVector(); << 1208 G4LossTableManager::Instance()->GetMultipleScatteringVector(); 1133 std::size_t n = v.size(); << 1209 G4int n = v.size(); 1134 for(std::size_t i=0; i<n; ++i) { << 1210 for(G4int i=0; i<n; ++i) { 1135 if((v[i])->GetProcessName() == processNam 1211 if((v[i])->GetProcessName() == processName) { 1136 auto p = static_cast<G4VProcess*>(v[i]) << 1212 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1137 if(ActiveForParticle(part, p)) { 1213 if(ActiveForParticle(part, p)) { 1138 proc = v[i]; 1214 proc = v[i]; 1139 break; << 1215 break; 1140 } 1216 } 1141 } 1217 } 1142 } 1218 } 1143 return proc; 1219 return proc; 1144 } 1220 } 1145 1221 1146 //....oooOO0OOooo........oooOO0OOooo........o 1222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1147 1223 1148 G4VProcess* G4EmCalculator::FindProcess(const << 1149 const << 1150 { << 1151 G4VProcess* proc = nullptr; << 1152 const G4ProcessManager* procman = part->Get << 1153 G4ProcessVector* pv = procman->GetProcessLi << 1154 G4int nproc = (G4int)pv->size(); << 1155 for(G4int i=0; i<nproc; ++i) { << 1156 if(processName == (*pv)[i]->GetProcessNam << 1157 proc = (*pv)[i]; << 1158 break; << 1159 } << 1160 } << 1161 return proc; << 1162 } << 1163 << 1164 //....oooOO0OOooo........oooOO0OOooo........o << 1165 << 1166 G4bool G4EmCalculator::ActiveForParticle(cons 1224 G4bool G4EmCalculator::ActiveForParticle(const G4ParticleDefinition* part, 1167 G4VP << 1225 G4VProcess* proc) 1168 { 1226 { 1169 G4ProcessManager* pm = part->GetProcessMana 1227 G4ProcessManager* pm = part->GetProcessManager(); 1170 G4ProcessVector* pv = pm->GetProcessList(); 1228 G4ProcessVector* pv = pm->GetProcessList(); 1171 G4int n = (G4int)pv->size(); << 1229 G4int n = pv->size(); 1172 G4bool res = false; 1230 G4bool res = false; 1173 for(G4int i=0; i<n; ++i) { 1231 for(G4int i=0; i<n; ++i) { 1174 if((*pv)[i] == proc) { 1232 if((*pv)[i] == proc) { 1175 if(pm->GetProcessActivation(i)) { res = 1233 if(pm->GetProcessActivation(i)) { res = true; } 1176 break; 1234 break; 1177 } 1235 } 1178 } 1236 } 1179 return res; 1237 return res; 1180 } << 1181 << 1182 //....oooOO0OOooo........oooOO0OOooo........o << 1183 << 1184 void G4EmCalculator::SetupMaterial(const G4Ma << 1185 { << 1186 if(mat) { << 1187 currentMaterial = mat; << 1188 currentMaterialName = mat->GetName(); << 1189 } else { << 1190 currentMaterial = nullptr; << 1191 currentMaterialName = ""; << 1192 } << 1193 } << 1194 << 1195 //....oooOO0OOooo........oooOO0OOooo........o << 1196 << 1197 void G4EmCalculator::SetupMaterial(const G4St << 1198 { << 1199 SetupMaterial(nist->FindOrBuildMaterial(mna << 1200 } << 1201 << 1202 //....oooOO0OOooo........oooOO0OOooo........o << 1203 << 1204 void G4EmCalculator::CheckMaterial(G4int Z) << 1205 { << 1206 G4bool isFound = false; << 1207 if(nullptr != currentMaterial) { << 1208 G4int nn = (G4int)currentMaterial->GetNum << 1209 for(G4int i=0; i<nn; ++i) { << 1210 if(Z == currentMaterial->GetElement(i)- << 1211 isFound = true; << 1212 break; << 1213 } << 1214 } << 1215 } << 1216 if(!isFound) { << 1217 SetupMaterial(nist->FindOrBuildSimpleMate << 1218 } << 1219 } 1238 } 1220 1239 1221 //....oooOO0OOooo........oooOO0OOooo........o 1240 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1222 1241 1223 void G4EmCalculator::SetVerbose(G4int verb) 1242 void G4EmCalculator::SetVerbose(G4int verb) 1224 { 1243 { 1225 verbose = verb; 1244 verbose = verb; 1226 } 1245 } 1227 1246 1228 //....oooOO0OOooo........oooOO0OOooo........o 1247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1229 1248 1230 1249