Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4EmCalculator.cc,v 1.44 2008/08/03 18:47:15 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-02-patch-03 $ 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class file 31 // GEANT4 Class file 30 // 32 // 31 // 33 // 32 // File name: G4EmCalculator 34 // File name: G4EmCalculator 33 // 35 // 34 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 35 // 37 // 36 // Creation date: 28.06.2004 38 // Creation date: 28.06.2004 37 // 39 // >> 40 // Modifications: >> 41 // 12.09.2004 Add verbosity (V.Ivanchenko) >> 42 // 17.11.2004 Change signature of methods, add new methods (V.Ivanchenko) >> 43 // 08.04.2005 Major optimisation of internal interfaces (V.Ivantchenko) >> 44 // 08.05.2005 Use updated interfaces (V.Ivantchenko) >> 45 // 23.10.2005 Fix computations for ions (V.Ivantchenko) >> 46 // 11.01.2006 Add GetCSDARange (V.Ivantchenko) >> 47 // 26.01.2006 Rename GetRange -> GetRangeFromRestricteDEDX (V.Ivanchenko) >> 48 // 14.03.2006 correction in GetCrossSectionPerVolume (mma) >> 49 // suppress GetCrossSectionPerAtom >> 50 // elm->GetA() in ComputeCrossSectionPerAtom >> 51 // 22.03.2006 Add ComputeElectronicDEDX and ComputeTotalDEDX (V.Ivanchenko) >> 52 // 13.05.2006 Add Corrections for ion stopping (V.Ivanchenko) >> 53 // 29.09.2006 Uncomment computation of smoothing factor (V.Ivanchenko) >> 54 // 27.10.2006 Change test energy to access lowEnergy model from >> 55 // 10 keV to 1 keV (V. Ivanchenko) >> 56 // 15.03.2007 Add ComputeEnergyCutFromRangeCut methods (V.Ivanchenko) >> 57 // 21.04.2008 Updated computations for ions (V.Ivanchenko) 38 // 58 // 39 // Class Description: V.Ivanchenko & M.Novak << 59 // Class Description: 40 // 60 // 41 // ------------------------------------------- 61 // ------------------------------------------------------------------- 42 // 62 // 43 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 65 46 #include "G4EmCalculator.hh" 66 #include "G4EmCalculator.hh" 47 #include "G4SystemOfUnits.hh" << 48 #include "G4LossTableManager.hh" 67 #include "G4LossTableManager.hh" 49 #include "G4EmParameters.hh" << 50 #include "G4NistManager.hh" << 51 #include "G4DynamicParticle.hh" << 52 #include "G4VEmProcess.hh" 68 #include "G4VEmProcess.hh" 53 #include "G4VEnergyLossProcess.hh" 69 #include "G4VEnergyLossProcess.hh" 54 #include "G4VMultipleScattering.hh" 70 #include "G4VMultipleScattering.hh" 55 #include "G4Material.hh" 71 #include "G4Material.hh" 56 #include "G4MaterialCutsCouple.hh" 72 #include "G4MaterialCutsCouple.hh" 57 #include "G4ParticleDefinition.hh" 73 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleTable.hh" 74 #include "G4ParticleTable.hh" 59 #include "G4IonTable.hh" << 60 #include "G4PhysicsTable.hh" 75 #include "G4PhysicsTable.hh" 61 #include "G4ProductionCutsTable.hh" 76 #include "G4ProductionCutsTable.hh" 62 #include "G4ProcessManager.hh" 77 #include "G4ProcessManager.hh" 63 #include "G4ionEffectiveCharge.hh" 78 #include "G4ionEffectiveCharge.hh" 64 #include "G4RegionStore.hh" 79 #include "G4RegionStore.hh" 65 #include "G4Element.hh" 80 #include "G4Element.hh" 66 #include "G4EmCorrections.hh" 81 #include "G4EmCorrections.hh" 67 #include "G4GenericIon.hh" 82 #include "G4GenericIon.hh" 68 #include "G4ProcessVector.hh" << 69 #include "G4Gamma.hh" << 70 #include "G4Electron.hh" << 71 #include "G4Positron.hh" << 72 #include "G4EmUtility.hh" << 73 83 74 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 85 76 G4EmCalculator::G4EmCalculator() 86 G4EmCalculator::G4EmCalculator() 77 { 87 { 78 manager = G4LossTableManager::Instance(); 88 manager = G4LossTableManager::Instance(); 79 nist = G4NistManager::Instance(); << 80 theParameters = G4EmParameters::Instance(); << 81 corr = manager->EmCorrections(); 89 corr = manager->EmCorrections(); 82 cutenergy[0] = cutenergy[1] = cutenergy[2] = << 90 nLocalMaterials = 0; 83 theGenericIon = G4GenericIon::GenericIon(); << 91 verbose = 0; 84 ionEffCharge = new G4ionEffectiveCharge(); << 92 currentCoupleIndex = 0; 85 dynParticle = new G4DynamicParticle(); << 93 currentCouple = 0; 86 ionTable = G4ParticleTable::GetParticle << 94 currentMaterial = 0; >> 95 currentParticle = 0; >> 96 baseParticle = 0; >> 97 currentLambda = 0; >> 98 currentModel = 0; >> 99 loweModel = 0; >> 100 chargeSquare = 1.0; >> 101 massRatio = 1.0; >> 102 currentParticleName= ""; >> 103 currentMaterialName= ""; >> 104 theGenericIon = G4GenericIon::GenericIon(); >> 105 ionEffCharge = new G4ionEffectiveCharge(); >> 106 isIon = false; >> 107 isApplicable = false; 87 } 108 } 88 109 89 //....oooOO0OOooo........oooOO0OOooo........oo 110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 111 91 G4EmCalculator::~G4EmCalculator() 112 G4EmCalculator::~G4EmCalculator() 92 { 113 { 93 delete ionEffCharge; 114 delete ionEffCharge; 94 delete dynParticle; << 115 for (G4int i=0; i<nLocalMaterials; i++) { 95 for (G4int i=0; i<nLocalMaterials; ++i) { << 96 delete localCouples[i]; 116 delete localCouples[i]; 97 } 117 } 98 } 118 } 99 119 100 //....oooOO0OOooo........oooOO0OOooo........oo 120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 101 121 102 G4double G4EmCalculator::GetDEDX(G4double kinE << 122 G4double G4EmCalculator::GetDEDX(G4double kinEnergy, const G4ParticleDefinition* p, 103 const G4Parti << 123 const G4Material* mat, const G4Region* region) 104 const G4Mater << 105 const G4Regio << 106 { 124 { 107 G4double res = 0.0; 125 G4double res = 0.0; 108 const G4MaterialCutsCouple* couple = FindCou 126 const G4MaterialCutsCouple* couple = FindCouple(mat, region); 109 if(nullptr != couple && UpdateParticle(p, ki << 127 if(couple && UpdateParticle(p, kinEnergy) ) { 110 res = manager->GetDEDX(p, kinEnergy, coupl 128 res = manager->GetDEDX(p, kinEnergy, couple); 111 << 112 if(isIon) { 129 if(isIon) { 113 if(FindEmModel(p, currentProcessName, ki << 130 G4double eth = 2.0*MeV/massRatio; 114 G4double length = CLHEP::nm; << 131 if(kinEnergy > eth) { 115 G4double eloss = res*length; << 132 G4double x1 = corr->ComputeIonCorrections(p,mat,kinEnergy); 116 //G4cout << "### GetDEDX: E= " << kinE << 133 G4double x2 = corr->ComputeIonCorrections(p,mat,eth); 117 // << " de= " << eloss << G4endl << 134 res += x1 - x2*eth/kinEnergy; 118 dynParticle->SetKineticEnergy(kinEnerg << 135 /* 119 currentModel->GetChargeSquareRatio(p, << 136 G4cout << "### GetDEDX: E= " << kinEnergy << " res= " << res 120 currentModel->CorrectionsAlongStep(cou << 137 << " x1= " << x1 << " x2= " << x2 121 res = eloss/length; << 138 << " del= " << x1 - x2*eth/kinEnergy << G4endl;; 122 //G4cout << " de1= " << eloss << << 139 */ 123 // << " " << p->GetParticleName( << 140 } 124 } << 141 } 125 } << 142 126 << 127 if(verbose>0) { 143 if(verbose>0) { 128 G4cout << "G4EmCalculator::GetDEDX: E(Me 144 G4cout << "G4EmCalculator::GetDEDX: E(MeV)= " << kinEnergy/MeV 129 << " DEDX(MeV/mm)= " << res*mm/Me << 145 << " DEDX(MeV/mm)= " << res*mm/MeV 130 << " DEDX(MeV*cm^2/g)= " << res*g << 146 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 131 << " " << p->GetParticleName() << 147 << " " << p->GetParticleName() 132 << " in " << mat->GetName() << 148 << " in " << mat->GetName() 133 << " isIon= " << isIon << 149 << G4endl; 134 << G4endl; << 135 } 150 } 136 } 151 } 137 return res; 152 return res; 138 } 153 } 139 154 140 //....oooOO0OOooo........oooOO0OOooo........oo 155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 141 156 >> 157 G4double G4EmCalculator::GetDEDX(G4double kinEnergy, const G4String& particle, >> 158 const G4String& material, const G4String& reg) >> 159 { >> 160 return GetDEDX(kinEnergy,FindParticle(particle), >> 161 FindMaterial(material),FindRegion(reg)); >> 162 } >> 163 >> 164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 165 142 G4double G4EmCalculator::GetRangeFromRestricte 166 G4double G4EmCalculator::GetRangeFromRestricteDEDX(G4double kinEnergy, 143 << 167 const G4ParticleDefinition* p, 144 << 168 const G4Material* mat, 145 << 169 const G4Region* region) 146 { 170 { 147 G4double res = 0.0; 171 G4double res = 0.0; 148 const G4MaterialCutsCouple* couple = FindCou 172 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 149 if(couple && UpdateParticle(p, kinEnergy)) { 173 if(couple && UpdateParticle(p, kinEnergy)) { 150 res = manager->GetRangeFromRestricteDEDX(p 174 res = manager->GetRangeFromRestricteDEDX(p, kinEnergy, couple); 151 if(verbose>1) { << 175 if(verbose>0) { 152 G4cout << " G4EmCalculator::GetRangeFrom << 176 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV 153 << kinEnergy/MeV << 177 << " range(mm)= " << res/mm 154 << " range(mm)= " << res/mm << 178 << " " << p->GetParticleName() 155 << " " << p->GetParticleName() << 179 << " in " << mat->GetName() 156 << " in " << mat->GetName() << 180 << G4endl; 157 << G4endl; << 158 } 181 } 159 } 182 } 160 return res; 183 return res; 161 } 184 } 162 185 163 //....oooOO0OOooo........oooOO0OOooo........oo 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 164 187 165 G4double G4EmCalculator::GetCSDARange(G4double 188 G4double G4EmCalculator::GetCSDARange(G4double kinEnergy, 166 const G4 << 189 const G4ParticleDefinition* p, 167 const G4 << 190 const G4Material* mat, 168 const G4 << 191 const G4Region* region) 169 { 192 { 170 G4double res = 0.0; 193 G4double res = 0.0; 171 if(!theParameters->BuildCSDARange()) { << 172 G4ExceptionDescription ed; << 173 ed << "G4EmCalculator::GetCSDARange: CSDA << 174 << " use UI command: /process/eLoss/CSD << 175 G4Exception("G4EmCalculator::GetCSDARange" << 176 JustWarning, ed); << 177 return res; << 178 } << 179 << 180 const G4MaterialCutsCouple* couple = FindCou 194 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 181 if(nullptr != couple && UpdateParticle(p, ki << 195 if(couple && UpdateParticle(p, kinEnergy)) { 182 res = manager->GetCSDARange(p, kinEnergy, 196 res = manager->GetCSDARange(p, kinEnergy, couple); 183 if(verbose>1) { << 197 if(verbose>0) { 184 G4cout << " G4EmCalculator::GetCSDARange << 198 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV 185 << " range(mm)= " << res/mm << 199 << " range(mm)= " << res/mm 186 << " " << p->GetParticleName() << 200 << " " << p->GetParticleName() 187 << " in " << mat->GetName() << 201 << " in " << mat->GetName() 188 << G4endl; << 202 << G4endl; 189 } 203 } 190 } 204 } 191 return res; 205 return res; 192 } 206 } 193 207 194 //....oooOO0OOooo........oooOO0OOooo........oo 208 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 195 209 196 G4double G4EmCalculator::GetRange(G4double kin 210 G4double G4EmCalculator::GetRange(G4double kinEnergy, 197 const G4Part << 211 const G4ParticleDefinition* p, 198 const G4Mate << 212 const G4Material* mat, 199 const G4Regi << 213 const G4Region* region) 200 { 214 { 201 G4double res = 0.0; 215 G4double res = 0.0; 202 if(theParameters->BuildCSDARange()) { << 216 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 203 res = GetCSDARange(kinEnergy, p, mat, regi << 217 if(couple && UpdateParticle(p, kinEnergy)) { 204 } else { << 218 res = manager->GetRange(p, kinEnergy, couple); 205 res = GetRangeFromRestricteDEDX(kinEnergy, << 219 if(verbose>0) { >> 220 G4cout << "G4EmCalculator::GetRange: E(MeV)= " << kinEnergy/MeV >> 221 << " range(mm)= " << res/mm >> 222 << " " << p->GetParticleName() >> 223 << " in " << mat->GetName() >> 224 << G4endl; >> 225 } 206 } 226 } 207 return res; 227 return res; 208 } 228 } 209 229 210 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 231 >> 232 G4double G4EmCalculator::GetRangeFromRestricteDEDX(G4double kinEnergy, >> 233 const G4String& particle, >> 234 const G4String& material, >> 235 const G4String& reg) >> 236 { >> 237 return GetRangeFromRestricteDEDX(kinEnergy,FindParticle(particle), >> 238 FindMaterial(material),FindRegion(reg)); >> 239 } >> 240 >> 241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 242 >> 243 G4double G4EmCalculator::GetCSDARange(G4double kinEnergy, >> 244 const G4String& particle, >> 245 const G4String& material, >> 246 const G4String& reg) >> 247 { >> 248 return GetCSDARange(kinEnergy,FindParticle(particle), >> 249 FindMaterial(material),FindRegion(reg)); >> 250 } >> 251 >> 252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 253 >> 254 G4double G4EmCalculator::GetRange(G4double kinEnergy, >> 255 const G4String& particle, >> 256 const G4String& material, >> 257 const G4String& reg) >> 258 { >> 259 return GetRange(kinEnergy,FindParticle(particle), >> 260 FindMaterial(material),FindRegion(reg)); >> 261 } >> 262 >> 263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 264 212 G4double G4EmCalculator::GetKinEnergy(G4double 265 G4double G4EmCalculator::GetKinEnergy(G4double range, 213 const G4 << 266 const G4ParticleDefinition* p, 214 const G4 267 const G4Material* mat, 215 const G4 << 268 const G4Region* region) 216 { 269 { 217 G4double res = 0.0; 270 G4double res = 0.0; 218 const G4MaterialCutsCouple* couple = FindCou 271 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 219 if(nullptr != couple && UpdateParticle(p, 1. << 272 if(couple && UpdateParticle(p, 1.0*GeV)) { 220 res = manager->GetEnergy(p, range, couple) 273 res = manager->GetEnergy(p, range, couple); 221 if(verbose>0) { 274 if(verbose>0) { 222 G4cout << "G4EmCalculator::GetKinEnergy: 275 G4cout << "G4EmCalculator::GetKinEnergy: Range(mm)= " << range/mm 223 << " KinE(MeV)= " << res/MeV << 276 << " KinE(MeV)= " << res/MeV 224 << " " << p->GetParticleName() << 277 << " " << p->GetParticleName() 225 << " in " << mat->GetName() << 278 << " in " << mat->GetName() 226 << G4endl; << 279 << G4endl; 227 } 280 } 228 } 281 } 229 return res; 282 return res; 230 } 283 } 231 284 232 //....oooOO0OOooo........oooOO0OOooo........oo 285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 233 286 >> 287 G4double G4EmCalculator::GetKinEnergy(G4double range, const G4String& particle, >> 288 const G4String& material, const G4String& reg) >> 289 { >> 290 return GetKinEnergy(range,FindParticle(particle), >> 291 FindMaterial(material),FindRegion(reg)); >> 292 } >> 293 >> 294 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 295 234 G4double G4EmCalculator::GetCrossSectionPerVol 296 G4double G4EmCalculator::GetCrossSectionPerVolume(G4double kinEnergy, 235 co 297 const G4ParticleDefinition* p, 236 co 298 const G4String& processName, 237 co << 299 const G4Material* mat, 238 co << 300 const G4Region* region) 239 { 301 { 240 G4double res = 0.0; 302 G4double res = 0.0; 241 const G4MaterialCutsCouple* couple = FindCou 303 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 242 304 243 if(nullptr != couple && UpdateParticle(p, ki << 305 if(couple && UpdateParticle(p, kinEnergy)) { 244 if(FindEmModel(p, processName, kinEnergy)) << 306 G4int idx = couple->GetIndex(); 245 G4int idx = couple->GetIndex(); << 307 FindLambdaTable(p, processName); 246 G4int procType = -1; << 308 if(currentLambda) { 247 FindLambdaTable(p, processName, kinEnerg << 309 G4bool b; 248 << 310 G4double e = kinEnergy*massRatio; 249 G4VEmProcess* emproc = FindDiscreteProce << 311 res = (((*currentLambda)[idx])->GetValue(e,b))*chargeSquare; 250 if(nullptr != emproc) { << 251 res = emproc->GetCrossSection(kinEnergy, cou << 252 } else if(currentLambda) { << 253 // special tables are built for Msc mo << 254 // procType is set in FindLambdaTable << 255 if(procType==2) { << 256 auto mscM = static_cast<G4VMscModel* << 257 mscM->SetCurrentCouple(couple); << 258 G4double tr1Mfp = mscM->GetTransport << 259 if (tr1Mfp<DBL_MAX) { << 260 res = 1./tr1Mfp; << 261 } << 262 } else { << 263 G4double e = kinEnergy*massRatio; << 264 res = (((*currentLambda)[idx])->Valu << 265 } << 266 } else { << 267 res = ComputeCrossSectionPerVolume(kin << 268 } << 269 if(verbose>0) { 312 if(verbose>0) { 270 G4cout << "G4EmCalculator::GetXSPerVol << 313 G4cout << "E(MeV)= " << kinEnergy/MeV 271 << " cross(cm-1)= " << res*cm << 314 << " cross(cm-1)= " << res*cm 272 << " " << p->GetParticleName( << 315 << " " << p->GetParticleName() 273 << " in " << mat->GetName(); << 316 << " in " << mat->GetName(); 274 if(verbose>1) << 317 if(verbose>1) 275 G4cout << " idx= " << idx << " Esc << 318 G4cout << " idx= " << idx << " e(MeV)= " << e 276 << kinEnergy*massRatio << 319 << " q2= " << chargeSquare; 277 << " q2= " << chargeSquare; << 320 G4cout << G4endl; 278 G4cout << G4endl; << 321 } 279 } << 280 } 322 } 281 } 323 } 282 return res; 324 return res; 283 } 325 } 284 326 285 //....oooOO0OOooo........oooOO0OOooo........oo 327 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 286 328 287 G4double G4EmCalculator::GetShellIonisationCro << 329 G4double G4EmCalculator::GetCrossSectionPerVolume(G4double kinEnergy, 288 const << 330 const G4String& particle, 289 G4int << 331 const G4String& processName, 290 G4Ato << 332 const G4String& material, 291 G4dou << 333 const G4String& reg) 292 { 334 { 293 G4double res = 0.0; << 335 return GetCrossSectionPerVolume(kinEnergy,FindParticle(particle),processName, 294 const G4ParticleDefinition* p = FindParticle << 336 FindMaterial(material),FindRegion(reg)); 295 G4VAtomDeexcitation* ad = manager->AtomDeexc << 296 if(nullptr != p && nullptr != ad) { << 297 res = ad->GetShellIonisationCrossSectionPe << 298 } << 299 return res; << 300 } 337 } 301 338 302 //....oooOO0OOooo........oooOO0OOooo........oo 339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 303 340 304 G4double G4EmCalculator::GetMeanFreePath(G4dou 341 G4double G4EmCalculator::GetMeanFreePath(G4double kinEnergy, 305 const 342 const G4ParticleDefinition* p, 306 const 343 const G4String& processName, 307 const << 344 const G4Material* mat, 308 const 345 const G4Region* region) 309 { 346 { 310 G4double res = DBL_MAX; 347 G4double res = DBL_MAX; 311 G4double x = GetCrossSectionPerVolume(kinEne 348 G4double x = GetCrossSectionPerVolume(kinEnergy,p, processName, mat,region); 312 if(x > 0.0) { res = 1.0/x; } << 349 if(x > 0.0) res = 1.0/x; 313 if(verbose>1) { 350 if(verbose>1) { 314 G4cout << "G4EmCalculator::GetMeanFreePath 351 G4cout << "G4EmCalculator::GetMeanFreePath: E(MeV)= " << kinEnergy/MeV 315 << " MFP(mm)= " << res/mm << 352 << " MFP(mm)= " << res/mm 316 << " " << p->GetParticleName() << 353 << " " << p->GetParticleName() 317 << " in " << mat->GetName() << 354 << " in " << mat->GetName() 318 << G4endl; << 355 << G4endl; 319 } 356 } 320 return res; 357 return res; 321 } 358 } 322 359 323 //....oooOO0OOooo........oooOO0OOooo........oo 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 324 361 >> 362 G4double G4EmCalculator::GetMeanFreePath(G4double kinEnergy, >> 363 const G4String& particle, >> 364 const G4String& processName, >> 365 const G4String& material, >> 366 const G4String& reg) >> 367 { >> 368 return GetMeanFreePath(kinEnergy,FindParticle(particle),processName, >> 369 FindMaterial(material),FindRegion(reg)); >> 370 } >> 371 >> 372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 373 325 void G4EmCalculator::PrintDEDXTable(const G4Pa 374 void G4EmCalculator::PrintDEDXTable(const G4ParticleDefinition* p) 326 { 375 { 327 const G4VEnergyLossProcess* elp = manager->G << 376 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 328 G4cout << "##### DEDX Table for " << p->GetP 377 G4cout << "##### DEDX Table for " << p->GetParticleName() << G4endl; 329 if(nullptr != elp) G4cout << *(elp->DEDXTabl << 378 if(elp) G4cout << *(elp->DEDXTable()) << G4endl; 330 } 379 } 331 380 332 //....oooOO0OOooo........oooOO0OOooo........oo 381 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 333 382 334 void G4EmCalculator::PrintRangeTable(const G4P 383 void G4EmCalculator::PrintRangeTable(const G4ParticleDefinition* p) 335 { 384 { 336 const G4VEnergyLossProcess* elp = manager->G << 385 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 337 G4cout << "##### Range Table for " << p->Get 386 G4cout << "##### Range Table for " << p->GetParticleName() << G4endl; 338 if(nullptr != elp) G4cout << *(elp->RangeTab << 387 if(elp) G4cout << *(elp->RangeTableForLoss()) << G4endl; 339 } 388 } 340 389 341 //....oooOO0OOooo........oooOO0OOooo........oo 390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 342 391 343 void G4EmCalculator::PrintInverseRangeTable(co 392 void G4EmCalculator::PrintInverseRangeTable(const G4ParticleDefinition* p) 344 { 393 { 345 const G4VEnergyLossProcess* elp = manager->G << 394 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 346 G4cout << "### G4EmCalculator: Inverse Range 395 G4cout << "### G4EmCalculator: Inverse Range Table for " 347 << p->GetParticleName() << G4endl; << 396 << p->GetParticleName() << G4endl; 348 if(nullptr != elp) G4cout << *(elp->InverseR << 397 if(elp) G4cout << *(elp->InverseRangeTable()) << G4endl; 349 } 398 } 350 399 351 //....oooOO0OOooo........oooOO0OOooo........oo 400 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 352 401 353 G4double G4EmCalculator::ComputeDEDX(G4double 402 G4double G4EmCalculator::ComputeDEDX(G4double kinEnergy, 354 const G4P 403 const G4ParticleDefinition* p, 355 const G4S 404 const G4String& processName, 356 const G4M << 405 const G4Material* mat, 357 G4d 406 G4double cut) 358 { 407 { 359 SetupMaterial(mat); << 408 currentMaterial = mat; >> 409 currentMaterialName = mat->GetName(); 360 G4double res = 0.0; 410 G4double res = 0.0; 361 if(verbose > 1) { 411 if(verbose > 1) { 362 G4cout << "### G4EmCalculator::ComputeDEDX 412 G4cout << "### G4EmCalculator::ComputeDEDX: " << p->GetParticleName() 363 << " in " << currentMaterialName 413 << " in " << currentMaterialName 364 << " e(MeV)= " << kinEnergy/MeV << 414 << " e(MeV)= " << kinEnergy/MeV << " cut(MeV)= " << cut/MeV 365 << G4endl; << 415 << G4endl; 366 } 416 } 367 if(UpdateParticle(p, kinEnergy)) { 417 if(UpdateParticle(p, kinEnergy)) { 368 if(FindEmModel(p, processName, kinEnergy)) 418 if(FindEmModel(p, processName, kinEnergy)) { 369 G4double escaled = kinEnergy*massRatio; 419 G4double escaled = kinEnergy*massRatio; 370 if(nullptr != baseParticle) { << 420 if(baseParticle) { 371 res = currentModel->ComputeDEDXPerVolume(mat << 421 res = currentModel->ComputeDEDXPerVolume( 372 << 422 mat, baseParticle, escaled, cut) * chargeSquare; 373 if(verbose > 1) { << 423 if(verbose > 1) { 374 G4cout << "Particle: " << p->GetParticleNa << 424 G4cout << baseParticle->GetParticleName() 375 << " E(MeV)=" << kinEnergy << 425 << " Escaled(MeV)= " << escaled; 376 << " Base particle: " << baseParticle->Ge << 377 << " Escaled(MeV)= " << escaled << 378 << " q2=" << chargeSquare << G4endl; << 379 } << 380 } else { << 381 res = currentModel->ComputeDEDXPerVolume(mat << 382 if(verbose > 1) { << 383 G4cout << "Particle: " << p->GetParticleNa << 384 << " E(MeV)=" << kinEnergy << G4endl; << 385 } 426 } >> 427 } else { >> 428 res = currentModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cut); >> 429 if(verbose > 1) G4cout << " no basePart E(MeV)= " << kinEnergy; 386 } 430 } 387 if(verbose > 1) { 431 if(verbose > 1) { 388 G4cout << currentModel->GetName() << ": DEDX << 432 G4cout << " DEDX(MeV/mm)= " << res*mm/MeV 389 << " DEDX(MeV*cm^2/g)= " 433 << " DEDX(MeV*cm^2/g)= " 390 << res*gram/(MeV*cm2*mat->GetDensity( 434 << res*gram/(MeV*cm2*mat->GetDensity()) 391 << G4endl; 435 << G4endl; 392 } 436 } 393 // emulate smoothing procedure << 437 394 if(applySmoothing && nullptr != loweMode << 438 // emulate boundary region for different parameterisations 395 G4double eth = currentModel->LowEnergyLimit( << 439 G4double eth = currentModel->LowEnergyLimit(); 396 G4double res0 = 0.0; << 440 // G4cout << "massRatio= " << massRatio << " eth= " << eth << G4endl; 397 G4double res1 = 0.0; << 441 if(eth > 0.05*MeV && eth < 10.*MeV && escaled > eth && 398 if(nullptr != baseParticle) { << 442 loweModel != currentModel && loweModel) { 399 res1 = chargeSquare* << 443 G4double res0 = 0.0; 400 currentModel->ComputeDEDXPerVolume(mat, << 444 G4double res1 = 0.0; 401 res0 = chargeSquare* << 445 if(baseParticle) { 402 loweModel->ComputeDEDXPerVolume(mat, bas << 446 res1 = currentModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) >> 447 * chargeSquare; >> 448 res0 = loweModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) >> 449 * chargeSquare; 403 } else { 450 } else { 404 res1 = currentModel->ComputeDEDXPerVolume( 451 res1 = currentModel->ComputeDEDXPerVolume(mat, p, eth, cut); 405 res0 = loweModel->ComputeDEDXPerVolume(mat 452 res0 = loweModel->ComputeDEDXPerVolume(mat, p, eth, cut); 406 } 453 } 407 if(res1 > 0.0 && escaled > 0.0) { << 408 res *= (1.0 + (res0/res1 - 1.0)*eth/escale << 409 } << 410 if(verbose > 1) { 454 if(verbose > 1) { 411 G4cout << "At boundary energy(MeV)= " << e 455 G4cout << "At boundary energy(MeV)= " << eth/MeV 412 << " DEDX(MeV/mm)= " << res0*mm/MeV << " << 456 << " DEDX(MeV/mm)= " << res1*mm/MeV 413 << " after correction DEDX(MeV/mm)=" << r << 457 << G4endl; 414 } 458 } 415 } << 459 /* 416 // correction for ions << 460 G4cout << "eth= " << eth << " escaled= " << escaled 417 if(isIon) { << 461 << " res0= " << res0 << " res1= " 418 const G4double length = CLHEP::nm; << 462 << res1 << " q2= " << chargeSquare << G4endl; 419 if(UpdateCouple(mat, cut)) { << 463 */ 420 G4double eloss = res*length; << 464 res *= (1.0 + (res0/res1 - 1.0)*eth/escaled); 421 dynParticle->SetKineticEnergy(kinEnergy); << 465 422 currentModel->CorrectionsAlongStep(current << 466 if(isIon) { 423 l << 467 G4double ethscaled = eth/massRatio; 424 res = eloss/length; << 468 if(kinEnergy > ethscaled) { 425 << 469 G4double x1 = corr->ComputeIonCorrections(p,mat,kinEnergy); >> 470 G4double x2 = corr->ComputeIonCorrections(p,mat,ethscaled); >> 471 res += x1 - x2*ethscaled/kinEnergy; >> 472 } >> 473 426 if(verbose > 1) { 474 if(verbose > 1) { 427 G4cout << "After Corrections: DEDX(MeV/m 475 G4cout << "After Corrections: DEDX(MeV/mm)= " << res*mm/MeV 428 << " DEDX(MeV*cm^2/g)= " << 476 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 429 << res*gram/(MeV*cm2*mat->GetDensity()) << 477 << G4endl; 430 } << 478 } 431 } 479 } 432 } 480 } >> 481 433 if(verbose > 0) { 482 if(verbose > 0) { 434 G4cout << "## E(MeV)= " << kinEnergy/MeV << 483 G4cout << "E(MeV)= " << kinEnergy/MeV 435 << " DEDX(MeV/mm)= " << res*mm/MeV << 484 << " DEDX(MeV/mm)= " << res*mm/MeV 436 << " DEDX(MeV*cm^2/g)= " << res*gram/ << 485 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 437 << " cut(MeV)= " << cut/MeV << 486 << " cut(MeV)= " << cut/MeV 438 << " " << p->GetParticleName() << 487 << " " << p->GetParticleName() 439 << " in " << currentMaterialName << 488 << " in " << currentMaterialName 440 << " Zi^2= " << chargeSquare << 489 << " Zi^2= " << chargeSquare 441 << " isIon=" << isIon << 490 << G4endl; 442 << G4endl; << 443 } 491 } 444 } 492 } 445 } 493 } 446 return res; 494 return res; 447 } 495 } 448 496 449 //....oooOO0OOooo........oooOO0OOooo........oo 497 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 450 498 451 G4double G4EmCalculator::ComputeElectronicDEDX 499 G4double G4EmCalculator::ComputeElectronicDEDX(G4double kinEnergy, 452 << 500 const G4ParticleDefinition* part, 453 << 501 const G4Material* mat, 454 << 502 G4double cut) 455 { 503 { 456 SetupMaterial(mat); << 504 currentMaterial = mat; >> 505 currentMaterialName = mat->GetName(); 457 G4double dedx = 0.0; 506 G4double dedx = 0.0; 458 if(UpdateParticle(part, kinEnergy)) { 507 if(UpdateParticle(part, kinEnergy)) { 459 << 460 G4LossTableManager* lManager = G4LossTable 508 G4LossTableManager* lManager = G4LossTableManager::Instance(); 461 const std::vector<G4VEnergyLossProcess*> v 509 const std::vector<G4VEnergyLossProcess*> vel = 462 lManager->GetEnergyLossProcessVector(); 510 lManager->GetEnergyLossProcessVector(); 463 std::size_t n = vel.size(); << 511 G4int n = vel.size(); 464 << 512 for(G4int i=0; i<n; i++) { 465 //G4cout << "ComputeElectronicDEDX for " < << 513 const G4ParticleDefinition* p = (vel[i])->Particle(); 466 // << " n= " << n << G4endl; << 514 if((!isIon && p == part) || (isIon && p == theGenericIon)) 467 << 515 dedx += ComputeDEDX(kinEnergy,part,(vel[i])->GetProcessName(),mat,cut); 468 for(std::size_t i=0; i<n; ++i) { << 469 if(vel[i]) { << 470 auto p = static_cast<G4VProcess*>(vel[ << 471 if(ActiveForParticle(part, p)) { << 472 //G4cout << "idx= " << i << " " << ( << 473 // << " " << (vel[i])->Particle()- << 474 dedx += ComputeDEDX(kinEnergy,part,( << 475 } << 476 } << 477 } 516 } 478 } 517 } 479 return dedx; 518 return dedx; 480 } 519 } 481 520 482 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 483 522 484 G4double << 523 G4double G4EmCalculator::ComputeElectronicDEDX(G4double kinEnergy, const G4String& part, 485 G4EmCalculator::ComputeDEDXForCutInRange(G4dou << 524 const G4String& mat, G4double cut) 486 const << 487 const << 488 G4dou << 489 { 525 { 490 SetupMaterial(mat); << 526 return ComputeElectronicDEDX(kinEnergy,FindParticle(part),FindMaterial(mat),cut); 491 G4double dedx = 0.0; << 527 } 492 if(UpdateParticle(part, kinEnergy)) { << 493 << 494 G4LossTableManager* lManager = G4LossTable << 495 const std::vector<G4VEnergyLossProcess*> v << 496 lManager->GetEnergyLossProcessVector(); << 497 std::size_t n = vel.size(); << 498 528 499 if(mat != cutMaterial) { << 529 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 500 cutMaterial = mat; << 501 cutenergy[0] = << 502 ComputeEnergyCutFromRangeCut(rangecut, << 503 cutenergy[1] = << 504 ComputeEnergyCutFromRangeCut(rangecut, << 505 cutenergy[2] = << 506 ComputeEnergyCutFromRangeCut(rangecut, << 507 } << 508 << 509 //G4cout << "ComputeElectronicDEDX for " < << 510 // << " n= " << n << G4endl; << 511 << 512 for(std::size_t i=0; i<n; ++i) { << 513 if(vel[i]) { << 514 auto p = static_cast<G4VProcess*>(vel[ << 515 if(ActiveForParticle(part, p)) { << 516 //G4cout << "idx= " << i << " " << ( << 517 // << " " << (vel[i])->Particle()-> << 518 const G4ParticleDefinition* sec = (v << 519 std::size_t idx = 0; << 520 if(sec == G4Electron::Electron()) { << 521 else if(sec == G4Positron::Positron( << 522 530 523 dedx += ComputeDEDX(kinEnergy,part,( << 531 G4double G4EmCalculator::ComputeTotalDEDX(G4double kinEnergy, 524 mat,cutenergy[id << 532 const G4ParticleDefinition* part, 525 } << 533 const G4Material* mat, 526 } << 534 G4double cut) 527 } << 535 { 528 } << 536 G4double dedx = ComputeElectronicDEDX(kinEnergy,part,mat,cut); >> 537 if(mass > 700.*MeV) dedx += ComputeNuclearDEDX(kinEnergy,part,mat); 529 return dedx; 538 return dedx; 530 } 539 } 531 540 532 //....oooOO0OOooo........oooOO0OOooo........oo 541 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 533 542 534 G4double G4EmCalculator::ComputeTotalDEDX(G4do 543 G4double G4EmCalculator::ComputeTotalDEDX(G4double kinEnergy, 535 cons << 544 const G4String& part, 536 cons << 545 const G4String& mat, 537 G4do << 546 G4double cut) 538 { 547 { 539 G4double dedx = ComputeElectronicDEDX(kinEne << 548 return ComputeTotalDEDX(kinEnergy,FindParticle(part),FindMaterial(mat),cut); 540 if(mass > 700.*MeV) { dedx += ComputeNuclear << 549 } 541 return dedx; << 550 >> 551 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 552 >> 553 G4double G4EmCalculator::ComputeDEDX(G4double kinEnergy, >> 554 const G4String& particle, >> 555 const G4String& processName, >> 556 const G4String& material, >> 557 G4double cut) >> 558 { >> 559 return ComputeDEDX(kinEnergy,FindParticle(particle),processName, >> 560 FindMaterial(material),cut); 542 } 561 } 543 562 544 //....oooOO0OOooo........oooOO0OOooo........oo 563 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 564 546 G4double G4EmCalculator::ComputeNuclearDEDX(G4 565 G4double G4EmCalculator::ComputeNuclearDEDX(G4double kinEnergy, 547 const G4 566 const G4ParticleDefinition* p, 548 const G4 << 567 const G4Material* mat) 549 { 568 { 550 G4double res = 0.0; << 569 551 G4VEmProcess* nucst = FindDiscreteProcess(p, << 570 G4double res = corr->NuclearDEDX(p, mat, kinEnergy, false); 552 if(nucst) { << 553 G4VEmModel* mod = nucst->EmModel(); << 554 if(mod) { << 555 mod->SetFluctuationFlag(false); << 556 res = mod->ComputeDEDXPerVolume(mat, p, << 557 } << 558 } << 559 571 560 if(verbose > 1) { 572 if(verbose > 1) { 561 G4cout << p->GetParticleName() << " E(MeV 573 G4cout << p->GetParticleName() << " E(MeV)= " << kinEnergy/MeV 562 << " NuclearDEDX(MeV/mm)= " << res* << 574 << " NuclearDEDX(MeV/mm)= " << res*mm/MeV 563 << " NuclearDEDX(MeV*cm^2/g)= " << 575 << " NuclearDEDX(MeV*cm^2/g)= " 564 << res*gram/(MeV*cm2*mat->GetDensit << 576 << res*gram/(MeV*cm2*mat->GetDensity()) 565 << G4endl; << 577 << G4endl; 566 } 578 } 567 return res; 579 return res; 568 } 580 } 569 581 570 //....oooOO0OOooo........oooOO0OOooo........oo 582 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 571 583 >> 584 G4double G4EmCalculator::ComputeNuclearDEDX(G4double kinEnergy, >> 585 const G4String& particle, >> 586 const G4String& material) >> 587 { >> 588 return ComputeNuclearDEDX(kinEnergy,FindParticle(particle), >> 589 FindMaterial(material)); >> 590 } >> 591 >> 592 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 593 572 G4double G4EmCalculator::ComputeCrossSectionPe 594 G4double G4EmCalculator::ComputeCrossSectionPerVolume( 573 595 G4double kinEnergy, 574 c 596 const G4ParticleDefinition* p, 575 c 597 const G4String& processName, 576 c << 598 const G4Material* mat, 577 599 G4double cut) 578 { 600 { 579 SetupMaterial(mat); << 601 currentMaterial = mat; >> 602 currentMaterialName = mat->GetName(); 580 G4double res = 0.0; 603 G4double res = 0.0; 581 if(UpdateParticle(p, kinEnergy)) { 604 if(UpdateParticle(p, kinEnergy)) { 582 if(FindEmModel(p, processName, kinEnergy)) 605 if(FindEmModel(p, processName, kinEnergy)) { 583 G4double e = kinEnergy; 606 G4double e = kinEnergy; 584 G4double aCut = std::max(cut, theParamet << 585 if(baseParticle) { 607 if(baseParticle) { 586 e *= kinEnergy*massRatio; << 608 e *= kinEnergy*massRatio; 587 res = currentModel->CrossSectionPerVol << 609 res = currentModel->CrossSectionPerVolume( 588 mat, baseParticle, e, aCut, e) * << 610 mat, baseParticle, e, cut, e) * chargeSquare; 589 } else { 611 } else { 590 res = currentModel->CrossSectionPerVol << 612 res = currentModel->CrossSectionPerVolume(mat, p, e, cut, e); 591 } 613 } 592 if(verbose>0) { 614 if(verbose>0) { 593 G4cout << "G4EmCalculator::ComputeXSPe << 615 G4cout << "E(MeV)= " << kinEnergy/MeV 594 << kinEnergy/MeV << 616 << " cross(cm-1)= " << res*cm 595 << " cross(cm-1)= " << res*cm << 617 << " " << p->GetParticleName() 596 << " cut(keV)= " << aCut/keV << 618 << " in " << mat->GetName() 597 << " " << p->GetParticleName( << 619 << G4endl; 598 << " in " << mat->GetName() << 599 << G4endl; << 600 } 620 } 601 } 621 } 602 } 622 } 603 return res; 623 return res; 604 } 624 } 605 625 606 //....oooOO0OOooo........oooOO0OOooo........oo 626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 607 627 608 G4double << 628 G4double G4EmCalculator::ComputeCrossSectionPerVolume( 609 G4EmCalculator::ComputeCrossSectionPerAtom(G4d << 629 G4double kinEnergy, 610 con << 630 const G4String& particle, 611 con << 631 const G4String& processName, 612 G4d << 632 const G4String& material, 613 G4d << 633 G4double cut) 614 { 634 { 615 G4double res = 0.0; << 635 return ComputeCrossSectionPerVolume(kinEnergy,FindParticle(particle), 616 if(UpdateParticle(p, kinEnergy)) { << 636 processName, 617 G4int iz = G4lrint(Z); << 637 FindMaterial(material),cut); 618 CheckMaterial(iz); << 619 if(FindEmModel(p, processName, kinEnergy)) << 620 G4double e = kinEnergy; << 621 G4double aCut = std::max(cut, theParamet << 622 if(baseParticle) { << 623 e *= kinEnergy*massRatio; << 624 currentModel->InitialiseForElement(bas << 625 res = currentModel->ComputeCrossSectio << 626 baseParticle, e, Z, A, aCut) * c << 627 } else { << 628 currentModel->InitialiseForElement(p, << 629 res = currentModel->ComputeCrossSectio << 630 } << 631 if(verbose>0) { << 632 G4cout << "E(MeV)= " << kinEnergy/MeV << 633 << " cross(barn)= " << res/barn << 634 << " " << p->GetParticleName( << 635 << " Z= " << Z << " A= " << A/ << 636 << " cut(keV)= " << aCut/keV << 637 << G4endl; << 638 } << 639 } << 640 } << 641 return res; << 642 } 638 } 643 639 644 //....oooOO0OOooo........oooOO0OOooo........oo 640 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 645 641 646 G4double << 642 G4double G4EmCalculator::ComputeCrossSectionPerAtom( 647 G4EmCalculator::ComputeCrossSectionPerShell(G4 << 643 G4double kinEnergy, 648 co << 644 const G4ParticleDefinition* p, 649 co << 645 const G4String& processName, 650 G4 << 646 G4double Z, G4double A, 651 G4 << 647 G4double cut) 652 { 648 { 653 G4double res = 0.0; 649 G4double res = 0.0; 654 if(UpdateParticle(p, kinEnergy)) { 650 if(UpdateParticle(p, kinEnergy)) { 655 CheckMaterial(Z); << 656 if(FindEmModel(p, processName, kinEnergy)) 651 if(FindEmModel(p, processName, kinEnergy)) { 657 G4double e = kinEnergy; 652 G4double e = kinEnergy; 658 G4double aCut = std::max(cut, theParamet << 653 if(baseParticle) { 659 if(nullptr != baseParticle) { << 654 e *= kinEnergy*massRatio; 660 e *= kinEnergy*massRatio; << 655 res = currentModel->ComputeCrossSectionPerAtom( 661 currentModel->InitialiseForElement(bas << 656 baseParticle, e, Z, A, cut) * chargeSquare; 662 res = << 663 currentModel->ComputeCrossSectionPer << 664 << 665 } else { 657 } else { 666 currentModel->InitialiseForElement(p, << 658 res = currentModel->ComputeCrossSectionPerAtom(p, e, Z, A, cut); 667 res = currentModel->ComputeCrossSectio << 668 } 659 } 669 if(verbose>0) { 660 if(verbose>0) { 670 G4cout << "E(MeV)= " << kinEnergy/MeV << 661 G4cout << "E(MeV)= " << kinEnergy/MeV 671 << " cross(barn)= " << res/barn << 662 << " cross(barn)= " << res/barn 672 << " " << p->GetParticleName( << 663 << " " << p->GetParticleName() 673 << " Z= " << Z << " shellIdx= << 664 << " Z= " << Z << " A= " << A/(g/mole) << " g/mole" 674 << " cut(keV)= " << aCut/keV << 675 << G4endl; 665 << G4endl; 676 } 666 } 677 } 667 } 678 } 668 } 679 return res; 669 return res; 680 } 670 } 681 671 682 //....oooOO0OOooo........oooOO0OOooo........oo 672 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 673 684 G4double << 674 G4double G4EmCalculator::ComputeCrossSectionPerAtom(G4double kinEnergy, 685 G4EmCalculator::ComputeGammaAttenuationLength( << 675 const G4String& particle, 686 << 676 const G4String& processName, 687 { << 677 const G4Element* elm, 688 G4double res = 0.0; << 678 G4double cut) 689 const G4ParticleDefinition* gamma = G4Gamma: << 679 { 690 res += ComputeCrossSectionPerVolume(kinEnerg << 680 return ComputeCrossSectionPerAtom(kinEnergy,FindParticle(particle), 691 res += ComputeCrossSectionPerVolume(kinEnerg << 681 processName, 692 res += ComputeCrossSectionPerVolume(kinEnerg << 682 elm->GetZ(),elm->GetA(),cut); 693 res += ComputeCrossSectionPerVolume(kinEnerg << 694 if(res > 0.0) { res = 1.0/res; } << 695 return res; << 696 } << 697 << 698 //....oooOO0OOooo........oooOO0OOooo........oo << 699 << 700 G4double G4EmCalculator::ComputeShellIonisatio << 701 const << 702 G4int << 703 G4Ato << 704 G4dou << 705 const << 706 { << 707 G4double res = 0.0; << 708 const G4ParticleDefinition* p = FindParticle << 709 G4VAtomDeexcitation* ad = manager->AtomDeexc << 710 if(p && ad) { << 711 res = ad->ComputeShellIonisationCrossSecti << 712 << 713 } << 714 return res; << 715 } 683 } 716 684 717 //....oooOO0OOooo........oooOO0OOooo........oo 685 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 686 719 G4double G4EmCalculator::ComputeMeanFreePath(G 687 G4double G4EmCalculator::ComputeMeanFreePath(G4double kinEnergy, 720 c 688 const G4ParticleDefinition* p, 721 c 689 const G4String& processName, 722 c << 690 const G4Material* mat, 723 G << 691 G4double cut) 724 { 692 { 725 G4double mfp = DBL_MAX; 693 G4double mfp = DBL_MAX; 726 G4double x = << 694 G4double x = ComputeCrossSectionPerVolume(kinEnergy, p, processName, mat, cut); 727 ComputeCrossSectionPerVolume(kinEnergy, p, << 695 if(x > 0.0) mfp = 1.0/x; 728 if(x > 0.0) { mfp = 1.0/x; } << 729 if(verbose>1) { 696 if(verbose>1) { 730 G4cout << "E(MeV)= " << kinEnergy/MeV 697 G4cout << "E(MeV)= " << kinEnergy/MeV 731 << " MFP(mm)= " << mfp/mm << 698 << " MFP(mm)= " << mfp/mm 732 << " " << p->GetParticleName() << 699 << " " << p->GetParticleName() 733 << " in " << mat->GetName() << 700 << " in " << mat->GetName() 734 << G4endl; << 701 << G4endl; 735 } 702 } 736 return mfp; 703 return mfp; 737 } 704 } 738 705 739 //....oooOO0OOooo........oooOO0OOooo........oo 706 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 707 >> 708 G4double G4EmCalculator::ComputeMeanFreePath(G4double kinEnergy, >> 709 const G4String& particle, >> 710 const G4String& processName, >> 711 const G4String& material, >> 712 G4double cut) >> 713 { >> 714 return ComputeMeanFreePath(kinEnergy,FindParticle(particle),processName, >> 715 FindMaterial(material),cut); >> 716 } >> 717 >> 718 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 719 741 G4double G4EmCalculator::ComputeEnergyCutFromR 720 G4double G4EmCalculator::ComputeEnergyCutFromRangeCut( 742 G4double range, 721 G4double range, 743 const G4ParticleDefin << 722 const G4ParticleDefinition* part, 744 const G4Material* mat << 723 const G4Material* mat) 745 { 724 { 746 return G4ProductionCutsTable::GetProductionC 725 return G4ProductionCutsTable::GetProductionCutsTable()-> 747 ConvertRangeToEnergy(part, mat, range); 726 ConvertRangeToEnergy(part, mat, range); 748 } 727 } 749 728 750 //....oooOO0OOooo........oooOO0OOooo........oo 729 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 730 >> 731 G4double G4EmCalculator::ComputeEnergyCutFromRangeCut( >> 732 G4double range, >> 733 const G4String& particle, >> 734 const G4String& material) >> 735 { >> 736 return ComputeEnergyCutFromRangeCut(range,FindParticle(particle), >> 737 FindMaterial(material)); >> 738 } >> 739 >> 740 >> 741 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 742 752 G4bool G4EmCalculator::UpdateParticle(const G4 743 G4bool G4EmCalculator::UpdateParticle(const G4ParticleDefinition* p, 753 G4double << 744 G4double kinEnergy) 754 { 745 { 755 if(p != currentParticle) { 746 if(p != currentParticle) { 756 << 757 // new particle << 758 currentParticle = p; 747 currentParticle = p; 759 dynParticle->SetDefinition(const_cast<G4Pa << 748 baseParticle = 0; 760 dynParticle->SetKineticEnergy(kinEnergy); << 761 baseParticle = nullptr; << 762 currentParticleName = p->GetParticleName() 749 currentParticleName = p->GetParticleName(); 763 massRatio = 1.0; 750 massRatio = 1.0; 764 mass = p->GetPDGMass(); 751 mass = p->GetPDGMass(); 765 chargeSquare = 1.0; 752 chargeSquare = 1.0; 766 currentProcess = manager->GetEnergyLossPr << 753 currentProcess = FindEnergyLossProcess(p); 767 currentProcessName = ""; 754 currentProcessName = ""; 768 isIon = false; << 755 if(currentProcess) currentProcessName = currentProcess->GetProcessName(); 769 756 770 // ionisation process exist << 757 if(p->GetParticleType() == "nucleus" && 771 if(nullptr != currentProcess) { << 758 currentParticleName != "deuteron" && currentParticleName != "triton") { 772 currentProcessName = currentProcess->Get << 759 baseParticle = theGenericIon; 773 baseParticle = currentProcess->BaseParti << 760 massRatio = baseParticle->GetPDGMass()/p->GetPDGMass(); 774 if(currentProcessName == "ionIoni" && p- << 761 isIon = true; 775 baseParticle = theGenericIon; << 762 // G4cout << p->GetParticleName() 776 isIon = true; << 763 // << " in " << currentMaterial->GetName() >> 764 // << " e= " << kinEnergy << G4endl; >> 765 chargeSquare = >> 766 ionEffCharge->EffectiveChargeSquareRatio(p, currentMaterial, kinEnergy); >> 767 //G4cout << "q2= " << chargeSquare << G4endl; >> 768 } else { >> 769 isIon = false; >> 770 if(currentProcess) { >> 771 baseParticle = currentProcess->BaseParticle(); >> 772 >> 773 if(baseParticle) { >> 774 massRatio = baseParticle->GetPDGMass()/p->GetPDGMass(); >> 775 G4double q = baseParticle->GetPDGCharge()/eplus; >> 776 chargeSquare /= (q*q); >> 777 } 777 } 778 } 778 << 779 // base particle is used << 780 if(nullptr != baseParticle) { << 781 massRatio = baseParticle->GetPDGMass() << 782 G4double q = p->GetPDGCharge()/basePar << 783 chargeSquare = q*q; << 784 } << 785 } 779 } 786 } 780 } 787 // Effective charge for ions << 781 if(isIon) { 788 if(isIon && nullptr != currentProcess) { << 789 chargeSquare = 782 chargeSquare = 790 corr->EffectiveChargeSquareRatio(p, curr << 783 ionEffCharge->EffectiveChargeSquareRatio(p, currentMaterial, kinEnergy) 791 currentProcess->SetDynamicMassCharge(massR << 784 * corr->EffectiveChargeCorrection(p,currentMaterial,kinEnergy); 792 if(verbose>1) { << 785 if(currentProcess) { 793 G4cout <<"\n NewIon: massR= "<< massRati << 786 currentProcess->SetDynamicMassCharge(massRatio,chargeSquare); 794 << chargeSquare << " " << currentProce << 787 //G4cout << "NewP: massR= " << massRatio << " q2= " << chargeSquare << G4endl; 795 } 788 } 796 } 789 } 797 return true; 790 return true; 798 } 791 } 799 792 800 //....oooOO0OOooo........oooOO0OOooo........oo 793 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 801 794 802 const G4ParticleDefinition* G4EmCalculator::Fi 795 const G4ParticleDefinition* G4EmCalculator::FindParticle(const G4String& name) 803 { 796 { 804 const G4ParticleDefinition* p = nullptr; << 797 const G4ParticleDefinition* p = 0; 805 if(name != currentParticleName) { 798 if(name != currentParticleName) { 806 p = G4ParticleTable::GetParticleTable()->F 799 p = G4ParticleTable::GetParticleTable()->FindParticle(name); 807 if(nullptr == p) { << 800 if(!p) { 808 G4cout << "### WARNING: G4EmCalculator:: 801 G4cout << "### WARNING: G4EmCalculator::FindParticle fails to find " 809 << name << G4endl; << 802 << name << G4endl; 810 } 803 } 811 } else { 804 } else { 812 p = currentParticle; 805 p = currentParticle; 813 } 806 } 814 return p; 807 return p; 815 } 808 } 816 809 817 //....oooOO0OOooo........oooOO0OOooo........oo 810 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 818 811 819 const G4ParticleDefinition* G4EmCalculator::Fi << 820 { << 821 const G4ParticleDefinition* p = ionTable->Ge << 822 return p; << 823 } << 824 << 825 //....oooOO0OOooo........oooOO0OOooo........oo << 826 << 827 const G4Material* G4EmCalculator::FindMaterial 812 const G4Material* G4EmCalculator::FindMaterial(const G4String& name) 828 { 813 { 829 if(name != currentMaterialName) { 814 if(name != currentMaterialName) { 830 SetupMaterial(G4Material::GetMaterial(name << 815 currentMaterial = G4Material::GetMaterial(name); 831 if(nullptr == currentMaterial) { << 816 currentMaterialName = name; >> 817 if(!currentMaterial) 832 G4cout << "### WARNING: G4EmCalculator:: 818 G4cout << "### WARNING: G4EmCalculator::FindMaterial fails to find " 833 << name << G4endl; << 819 << name << G4endl; 834 } << 835 } 820 } 836 return currentMaterial; 821 return currentMaterial; 837 } 822 } 838 823 839 //....oooOO0OOooo........oooOO0OOooo........oo 824 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 840 825 841 const G4Region* G4EmCalculator::FindRegion(con 826 const G4Region* G4EmCalculator::FindRegion(const G4String& reg) 842 { 827 { 843 return G4EmUtility::FindRegion(reg); << 828 const G4Region* r = 0; >> 829 if(reg != "" || reg != "world") >> 830 r = G4RegionStore::GetInstance()->GetRegion(reg); >> 831 else >> 832 r = G4RegionStore::GetInstance()->GetRegion("DefaultRegionForTheWorld"); >> 833 return r; 844 } 834 } 845 835 846 //....oooOO0OOooo........oooOO0OOooo........oo 836 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 847 837 848 const G4MaterialCutsCouple* G4EmCalculator::Fi 838 const G4MaterialCutsCouple* G4EmCalculator::FindCouple( 849 const G4Material* << 839 const G4Material* material, 850 const G4Region* re << 840 const G4Region* region) 851 { 841 { 852 const G4MaterialCutsCouple* couple = nullptr << 842 if(!material) return 0; 853 SetupMaterial(material); << 843 currentMaterial = material; 854 if(nullptr != currentMaterial) { << 844 currentMaterialName = material->GetName(); 855 // Access to materials << 845 // Access to materials 856 const G4ProductionCutsTable* theCoupleTabl << 846 const G4ProductionCutsTable* theCoupleTable= 857 G4ProductionCutsTable::GetProductionCuts << 847 G4ProductionCutsTable::GetProductionCutsTable(); 858 const G4Region* r = region; << 848 const G4Region* r = region; 859 if(nullptr != r) { << 849 if(!r) 860 couple = theCoupleTable->GetMaterialCuts << 850 r = G4RegionStore::GetInstance()->GetRegion("DefaultRegionForTheWorld"); 861 << 851 862 } else { << 852 return theCoupleTable->GetMaterialCutsCouple(material,r->GetProductionCuts()); 863 G4RegionStore* store = G4RegionStore::Ge << 853 864 std::size_t nr = store->size(); << 865 if(0 < nr) { << 866 for(std::size_t i=0; i<nr; ++i) { << 867 couple = theCoupleTable->GetMaterial << 868 material, ((*store)[i])->GetProduc << 869 if(nullptr != couple) { break; } << 870 } << 871 } << 872 } << 873 } << 874 if(nullptr == couple) { << 875 G4ExceptionDescription ed; << 876 ed << "G4EmCalculator::FindCouple: fail fo << 877 << currentMaterialName << ">"; << 878 if(region) { ed << " and region " << regio << 879 G4Exception("G4EmCalculator::FindCouple", << 880 FatalException, ed); << 881 } << 882 return couple; << 883 } 854 } 884 855 885 //....oooOO0OOooo........oooOO0OOooo........oo 856 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 886 857 887 G4bool G4EmCalculator::UpdateCouple(const G4Ma 858 G4bool G4EmCalculator::UpdateCouple(const G4Material* material, G4double cut) 888 { 859 { 889 SetupMaterial(material); << 860 if(!material) return false; 890 if(!currentMaterial) { return false; } << 861 currentMaterial = material; 891 for (G4int i=0; i<nLocalMaterials; ++i) { << 862 currentMaterialName = material->GetName(); >> 863 for (G4int i=0; i<nLocalMaterials; i++) { 892 if(material == localMaterials[i] && cut == 864 if(material == localMaterials[i] && cut == localCuts[i]) { 893 currentCouple = localCouples[i]; 865 currentCouple = localCouples[i]; 894 currentCoupleIndex = currentCouple->GetI 866 currentCoupleIndex = currentCouple->GetIndex(); 895 currentCut = cut; 867 currentCut = cut; 896 return true; 868 return true; 897 } 869 } 898 } 870 } 899 const G4MaterialCutsCouple* cc = new G4Mater 871 const G4MaterialCutsCouple* cc = new G4MaterialCutsCouple(material); 900 localMaterials.push_back(material); 872 localMaterials.push_back(material); 901 localCouples.push_back(cc); 873 localCouples.push_back(cc); 902 localCuts.push_back(cut); 874 localCuts.push_back(cut); 903 ++nLocalMaterials; << 875 nLocalMaterials++; 904 currentCouple = cc; 876 currentCouple = cc; 905 currentCoupleIndex = currentCouple->GetIndex 877 currentCoupleIndex = currentCouple->GetIndex(); 906 currentCut = cut; 878 currentCut = cut; 907 return true; 879 return true; 908 } 880 } 909 881 910 //....oooOO0OOooo........oooOO0OOooo........oo 882 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 883 912 void G4EmCalculator::FindLambdaTable(const G4P 884 void G4EmCalculator::FindLambdaTable(const G4ParticleDefinition* p, 913 const G4S << 885 const G4String& processName) 914 G4double << 915 { 886 { 916 // Search for the process 887 // Search for the process 917 if (!currentLambda || p != lambdaParticle || << 888 if (p != currentParticle || processName != currentName) { 918 lambdaName = processName; << 889 currentName = processName; 919 currentLambda = nullptr; << 890 currentLambda = 0; 920 lambdaParticle = p; << 891 921 isApplicable = false; << 892 G4String partname = p->GetParticleName(); 922 << 893 const G4ParticleDefinition* part = p; 923 const G4ParticleDefinition* part = (isIon) << 894 if(isIon) part = theGenericIon; 924 << 925 // Search for energy loss process << 926 currentName = processName; << 927 currentModel = nullptr; << 928 loweModel = nullptr; << 929 << 930 G4VEnergyLossProcess* elproc = FindEnLossP << 931 if(nullptr != elproc) { << 932 currentLambda = elproc->LambdaTable(); << 933 proctype = 0; << 934 if(nullptr != currentLambda) { << 935 isApplicable = true; << 936 if(verbose>1) { << 937 G4cout << "G4VEnergyLossProcess is f << 938 << G4endl; << 939 } << 940 } << 941 curProcess = elproc; << 942 return; << 943 } << 944 895 945 // Search for discrete process << 896 G4LossTableManager* lManager = G4LossTableManager::Instance(); 946 G4VEmProcess* proc = FindDiscreteProcess(p << 897 const std::vector<G4VEnergyLossProcess*> vel = 947 if(nullptr != proc) { << 898 lManager->GetEnergyLossProcessVector(); 948 currentLambda = proc->LambdaTable(); << 899 G4int n = vel.size(); 949 proctype = 1; << 900 for(G4int i=0; i<n; i++) { 950 if(nullptr != currentLambda) { << 901 if((vel[i])->GetProcessName() == currentName && 951 isApplicable = true; << 902 (vel[i])->Particle() == part) 952 if(verbose>1) { << 903 { 953 G4cout << "G4VEmProcess is found out << 904 currentLambda = (vel[i])->LambdaTable(); >> 905 isApplicable = true; >> 906 break; >> 907 } >> 908 } >> 909 if(!currentLambda) { >> 910 const std::vector<G4VEmProcess*> vem = lManager->GetEmProcessVector(); >> 911 G4int n = vem.size(); >> 912 for(G4int i=0; i<n; i++) { >> 913 if((vem[i])->GetProcessName() == currentName && >> 914 (vem[i])->Particle() == part) >> 915 { >> 916 currentLambda = (vem[i])->LambdaTable(); >> 917 isApplicable = true; >> 918 break; 954 } 919 } 955 } 920 } 956 curProcess = proc; << 957 return; << 958 } 921 } 959 << 922 if(!currentLambda) { 960 // Search for msc process << 923 const std::vector<G4VMultipleScattering*> vmsc = 961 G4VMultipleScattering* msc = FindMscProces << 924 lManager->GetMultipleScatteringVector(); 962 if(nullptr != msc) { << 925 G4int n = vmsc.size(); 963 currentModel = msc->SelectModel(kinEnerg << 926 for(G4int i=0; i<n; i++) { 964 proctype = 2; << 927 if((vmsc[i])->GetProcessName() == currentName && 965 if(nullptr != currentModel) { << 928 (vmsc[i])->Particle() == part) 966 currentLambda = currentModel->GetCross << 929 { 967 if(nullptr != currentLambda) { << 930 currentLambda = (vmsc[i])->LambdaTable(); 968 isApplicable = true; << 931 isApplicable = true; 969 if(verbose>1) { << 932 break; 970 G4cout << "G4VMultipleScattering i << 971 << G4endl; << 972 } << 973 } 933 } 974 } 934 } 975 curProcess = msc; << 976 } 935 } 977 } 936 } 978 } 937 } 979 938 980 //....oooOO0OOooo........oooOO0OOooo........oo 939 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 940 982 G4bool G4EmCalculator::FindEmModel(const G4Par 941 G4bool G4EmCalculator::FindEmModel(const G4ParticleDefinition* p, 983 const G4Str 942 const G4String& processName, 984 G4 << 943 G4double kinEnergy) 985 { 944 { 986 isApplicable = false; << 945 G4bool res = false; 987 if(nullptr == p || nullptr == currentMateria << 946 if(!p) { 988 G4cout << "G4EmCalculator::FindEmModel WAR << 947 G4cout << "G4EmCalculator::FindEmModel WARNING: no particle defined" 989 << " or materail defined; particle: << 948 << G4endl; 990 return isApplicable; << 949 return res; 991 } 950 } 992 G4String partname = p->GetParticleName(); 951 G4String partname = p->GetParticleName(); >> 952 const G4ParticleDefinition* part = p; 993 G4double scaledEnergy = kinEnergy*massRatio; 953 G4double scaledEnergy = kinEnergy*massRatio; 994 const G4ParticleDefinition* part = (isIon) ? << 954 if(isIon) part = theGenericIon; 995 955 996 if(verbose > 1) { 956 if(verbose > 1) { 997 G4cout << "## G4EmCalculator::FindEmModel << 957 G4cout << "G4EmCalculator::FindEmModel for " << partname 998 << " (type= " << p->GetParticleType 958 << " (type= " << p->GetParticleType() 999 << ") and " << processName << " at << 959 << ") and " << processName << " at e(MeV)= " << scaledEnergy; 1000 << G4endl; << 960 if(p != part) G4cout << " GenericIon is the base particle"; 1001 if(p != part) { G4cout << " GenericIon i << 961 G4cout << G4endl; 1002 } 962 } 1003 963 1004 // Search for energy loss process << 964 // Search for the process 1005 currentName = processName; 965 currentName = processName; 1006 currentModel = nullptr; << 966 currentModel = 0; 1007 loweModel = nullptr; << 967 loweModel = 0; 1008 std::size_t idx = 0; << 968 size_t idx = 0; 1009 << 969 G4LossTableManager* lManager = G4LossTableManager::Instance(); 1010 G4VEnergyLossProcess* elproc = FindEnLossPr << 970 const std::vector<G4VEnergyLossProcess*> vel = 1011 if(nullptr != elproc) { << 971 lManager->GetEnergyLossProcessVector(); 1012 currentModel = elproc->SelectModelForMate << 972 G4int n = vel.size(); 1013 currentModel->InitialiseForMaterial(part, << 973 for(G4int i=0; i<n; i++) { 1014 currentModel->SetupForMaterial(part, curr << 974 // G4cout << "i= " << i << " part= " 1015 G4double eth = currentModel->LowEnergyLim << 975 // << (vel[i])->Particle()->GetParticleName() 1016 if(eth > 0.0) { << 976 // << " proc= " << (vel[i])->GetProcessName() << G4endl; 1017 loweModel = elproc->SelectModelForMater << 977 if((vel[i])->GetProcessName() == currentName && 1018 if(loweModel == currentModel) { loweMod << 978 (vel[i])->Particle() == part) 1019 else { << 979 { 1020 loweModel->InitialiseForMaterial(part << 980 const G4ParticleDefinition* bp = (vel[i])->BaseParticle(); 1021 loweModel->SetupForMaterial(part, cur << 981 // G4cout << "i= " << i << " bp= " << bp << G4endl; 1022 } << 982 if(!bp) { 1023 } << 983 currentModel = (vel[i])->SelectModelForMaterial(scaledEnergy, idx); 1024 } << 984 loweModel = (vel[i])->SelectModelForMaterial(keV, idx); 1025 << 985 isApplicable = true; 1026 // Search for discrete process << 1027 if(nullptr == currentModel) { << 1028 G4VEmProcess* proc = FindDiscreteProcess( << 1029 if(nullptr != proc) { << 1030 currentModel = proc->SelectModelForMate << 1031 currentModel->InitialiseForMaterial(par << 1032 currentModel->SetupForMaterial(part, cu << 1033 G4double eth = currentModel->LowEnergyL << 1034 if(eth > 0.0) { << 1035 loweModel = proc->SelectModelForMater << 1036 if(loweModel == currentModel) { loweM << 1037 else { << 1038 loweModel->InitialiseForMaterial(pa << 1039 loweModel->SetupForMaterial(part, c << 1040 } << 1041 } << 1042 } << 1043 } << 1044 << 1045 // Search for msc process << 1046 if(nullptr == currentModel) { << 1047 G4VMultipleScattering* proc = FindMscProc << 1048 if(nullptr != proc) { << 1049 currentModel = proc->SelectModel(kinEne << 1050 loweModel = nullptr; << 1051 } << 1052 } << 1053 if(nullptr != currentModel) { << 1054 if(loweModel == currentModel) { loweModel << 1055 isApplicable = true; << 1056 currentModel->InitialiseForMaterial(part, << 1057 if(loweModel) { << 1058 loweModel->InitialiseForMaterial(part, << 1059 } << 1060 if(verbose > 1) { << 1061 G4cout << " Model <" << currentModel- << 1062 << "> Emin(MeV)= " << currentMod << 1063 << " for " << part->GetParticleN << 1064 if(nullptr != elproc) { << 1065 G4cout << " and " << elproc->GetProce << 1066 << G4endl; << 1067 } << 1068 if(nullptr != loweModel) { << 1069 G4cout << " LowEnergy model <" << low << 1070 } << 1071 G4cout << G4endl; << 1072 } << 1073 } << 1074 return isApplicable; << 1075 } << 1076 << 1077 //....oooOO0OOooo........oooOO0OOooo........o << 1078 << 1079 G4VEnergyLossProcess* << 1080 G4EmCalculator::FindEnLossProcess(const G4Par << 1081 const G4Str << 1082 { << 1083 G4VEnergyLossProcess* proc = nullptr; << 1084 const std::vector<G4VEnergyLossProcess*> v << 1085 manager->GetEnergyLossProcessVector(); << 1086 std::size_t n = v.size(); << 1087 for(std::size_t i=0; i<n; ++i) { << 1088 if((v[i])->GetProcessName() == processNam << 1089 auto p = static_cast<G4VProcess*>(v[i]) << 1090 if(ActiveForParticle(part, p)) { << 1091 proc = v[i]; << 1092 break; 986 break; >> 987 } else { >> 988 for(G4int j=0; j<n; j++) { >> 989 if((vel[j])->Particle() == bp) { >> 990 currentModel = (vel[j])->SelectModelForMaterial(scaledEnergy, idx); >> 991 loweModel = (vel[j])->SelectModelForMaterial(keV, idx); >> 992 isApplicable = true; >> 993 break; >> 994 } >> 995 } 1093 } 996 } 1094 } 997 } 1095 } 998 } 1096 return proc; << 999 if(!currentModel) { 1097 } << 1000 const std::vector<G4VEmProcess*> vem = lManager->GetEmProcessVector(); 1098 << 1001 G4int n = vem.size(); 1099 //....oooOO0OOooo........oooOO0OOooo........o << 1002 for(G4int i=0; i<n; i++) { 1100 << 1003 if((vem[i])->GetProcessName() == currentName && 1101 G4VEmProcess* << 1004 (vem[i])->Particle() == part) 1102 G4EmCalculator::FindDiscreteProcess(const G4P << 1005 { 1103 const G4S << 1006 currentModel = (vem[i])->SelectModelForMaterial(kinEnergy, idx); 1104 { << 1007 loweModel = (vem[i])->SelectModelForMaterial(keV, idx); 1105 G4VEmProcess* proc = nullptr; << 1008 isApplicable = true; 1106 auto v = manager->GetEmProcessVector(); << 1107 std::size_t n = v.size(); << 1108 for(std::size_t i=0; i<n; ++i) { << 1109 const G4String& pName = v[i]->GetProcessN << 1110 if(pName == "GammaGeneralProc") { << 1111 proc = v[i]->GetEmProcess(processName); << 1112 break; << 1113 } else if(pName == processName) { << 1114 const auto p = static_cast<G4VProcess*> << 1115 if(ActiveForParticle(part, p)) { << 1116 proc = v[i]; << 1117 break; 1009 break; 1118 } 1010 } 1119 } 1011 } 1120 } 1012 } 1121 return proc; << 1013 if(!currentModel) { 1122 } << 1014 const std::vector<G4VMultipleScattering*> vmsc = 1123 << 1015 lManager->GetMultipleScatteringVector(); 1124 //....oooOO0OOooo........oooOO0OOooo........o << 1016 G4int n = vmsc.size(); 1125 << 1017 for(G4int i=0; i<n; i++) { 1126 G4VMultipleScattering* << 1018 if((vmsc[i])->GetProcessName() == currentName && 1127 G4EmCalculator::FindMscProcess(const G4Partic << 1019 (vmsc[i])->Particle() == part) 1128 const G4String << 1020 { 1129 { << 1021 currentModel = (vmsc[i])->SelectModelForMaterial(kinEnergy, idx); 1130 G4VMultipleScattering* proc = nullptr; << 1022 loweModel = (vmsc[i])->SelectModelForMaterial(keV, idx); 1131 const std::vector<G4VMultipleScattering*> v << 1023 isApplicable = true; 1132 manager->GetMultipleScatteringVector(); << 1133 std::size_t n = v.size(); << 1134 for(std::size_t i=0; i<n; ++i) { << 1135 if((v[i])->GetProcessName() == processNam << 1136 auto p = static_cast<G4VProcess*>(v[i]) << 1137 if(ActiveForParticle(part, p)) { << 1138 proc = v[i]; << 1139 break; 1024 break; 1140 } 1025 } 1141 } 1026 } 1142 } 1027 } 1143 return proc; << 1028 if(currentModel) res = true; 1144 } << 1145 << 1146 //....oooOO0OOooo........oooOO0OOooo........o << 1147 << 1148 G4VProcess* G4EmCalculator::FindProcess(const << 1149 const << 1150 { << 1151 G4VProcess* proc = nullptr; << 1152 const G4ProcessManager* procman = part->Get << 1153 G4ProcessVector* pv = procman->GetProcessLi << 1154 G4int nproc = (G4int)pv->size(); << 1155 for(G4int i=0; i<nproc; ++i) { << 1156 if(processName == (*pv)[i]->GetProcessNam << 1157 proc = (*pv)[i]; << 1158 break; << 1159 } << 1160 } << 1161 return proc; << 1162 } << 1163 << 1164 //....oooOO0OOooo........oooOO0OOooo........o << 1165 << 1166 G4bool G4EmCalculator::ActiveForParticle(cons << 1167 G4VP << 1168 { << 1169 G4ProcessManager* pm = part->GetProcessMana << 1170 G4ProcessVector* pv = pm->GetProcessList(); << 1171 G4int n = (G4int)pv->size(); << 1172 G4bool res = false; << 1173 for(G4int i=0; i<n; ++i) { << 1174 if((*pv)[i] == proc) { << 1175 if(pm->GetProcessActivation(i)) { res = << 1176 break; << 1177 } << 1178 } << 1179 return res; 1029 return res; 1180 } 1030 } 1181 1031 1182 //....oooOO0OOooo........oooOO0OOooo........o 1032 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1183 1033 1184 void G4EmCalculator::SetupMaterial(const G4Ma << 1034 G4VEnergyLossProcess* G4EmCalculator::FindEnergyLossProcess( >> 1035 const G4ParticleDefinition* p) 1185 { 1036 { 1186 if(mat) { << 1037 G4VEnergyLossProcess* elp = 0; 1187 currentMaterial = mat; << 1038 G4String partname = p->GetParticleName(); 1188 currentMaterialName = mat->GetName(); << 1039 const G4ParticleDefinition* part = p; 1189 } else { << 1040 if(p->GetParticleType() == "nucleus" && 1190 currentMaterial = nullptr; << 1041 partname != "deuteron" && 1191 currentMaterialName = ""; << 1042 partname != "triton") part = G4GenericIon::GenericIon(); 1192 } << 1043 1193 } << 1044 G4LossTableManager* lManager = G4LossTableManager::Instance(); 1194 << 1045 const std::vector<G4VEnergyLossProcess*> vel = 1195 //....oooOO0OOooo........oooOO0OOooo........o << 1046 lManager->GetEnergyLossProcessVector(); 1196 << 1047 G4int n = vel.size(); 1197 void G4EmCalculator::SetupMaterial(const G4St << 1048 for(G4int i=0; i<n; i++) { 1198 { << 1049 if((vel[i])->Particle() == part) { 1199 SetupMaterial(nist->FindOrBuildMaterial(mna << 1050 elp = vel[i]; 1200 } << 1051 break; 1201 << 1202 //....oooOO0OOooo........oooOO0OOooo........o << 1203 << 1204 void G4EmCalculator::CheckMaterial(G4int Z) << 1205 { << 1206 G4bool isFound = false; << 1207 if(nullptr != currentMaterial) { << 1208 G4int nn = (G4int)currentMaterial->GetNum << 1209 for(G4int i=0; i<nn; ++i) { << 1210 if(Z == currentMaterial->GetElement(i)- << 1211 isFound = true; << 1212 break; << 1213 } << 1214 } 1052 } 1215 } 1053 } 1216 if(!isFound) { << 1054 return elp; 1217 SetupMaterial(nist->FindOrBuildSimpleMate << 1218 } << 1219 } 1055 } 1220 1056 1221 //....oooOO0OOooo........oooOO0OOooo........o 1057 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1222 1058 1223 void G4EmCalculator::SetVerbose(G4int verb) 1059 void G4EmCalculator::SetVerbose(G4int verb) 1224 { 1060 { 1225 verbose = verb; 1061 verbose = verb; 1226 } 1062 } 1227 1063 1228 //....oooOO0OOooo........oooOO0OOooo........o 1064 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1229 1065 1230 1066