Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // ------------------------------------------- 27 // ------------------------------------------------------------------- 28 // 28 // 29 // GEANT4 Class file 29 // GEANT4 Class file 30 // 30 // 31 // 31 // 32 // File name: G4EmCalculator 32 // File name: G4EmCalculator 33 // 33 // 34 // Author: Vladimir Ivanchenko 34 // Author: Vladimir Ivanchenko 35 // 35 // 36 // Creation date: 28.06.2004 36 // Creation date: 28.06.2004 37 // 37 // 38 // 38 // 39 // Class Description: V.Ivanchenko & M.Novak 39 // Class Description: V.Ivanchenko & M.Novak 40 // 40 // 41 // ------------------------------------------- 41 // ------------------------------------------------------------------- 42 // 42 // 43 //....oooOO0OOooo........oooOO0OOooo........oo 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 //....oooOO0OOooo........oooOO0OOooo........oo 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 45 46 #include "G4EmCalculator.hh" 46 #include "G4EmCalculator.hh" 47 #include "G4SystemOfUnits.hh" 47 #include "G4SystemOfUnits.hh" 48 #include "G4LossTableManager.hh" 48 #include "G4LossTableManager.hh" 49 #include "G4EmParameters.hh" 49 #include "G4EmParameters.hh" 50 #include "G4NistManager.hh" 50 #include "G4NistManager.hh" 51 #include "G4DynamicParticle.hh" 51 #include "G4DynamicParticle.hh" 52 #include "G4VEmProcess.hh" 52 #include "G4VEmProcess.hh" 53 #include "G4VEnergyLossProcess.hh" 53 #include "G4VEnergyLossProcess.hh" 54 #include "G4VMultipleScattering.hh" 54 #include "G4VMultipleScattering.hh" 55 #include "G4Material.hh" 55 #include "G4Material.hh" 56 #include "G4MaterialCutsCouple.hh" 56 #include "G4MaterialCutsCouple.hh" 57 #include "G4ParticleDefinition.hh" 57 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleTable.hh" 58 #include "G4ParticleTable.hh" 59 #include "G4IonTable.hh" 59 #include "G4IonTable.hh" 60 #include "G4PhysicsTable.hh" 60 #include "G4PhysicsTable.hh" 61 #include "G4ProductionCutsTable.hh" 61 #include "G4ProductionCutsTable.hh" 62 #include "G4ProcessManager.hh" 62 #include "G4ProcessManager.hh" 63 #include "G4ionEffectiveCharge.hh" 63 #include "G4ionEffectiveCharge.hh" 64 #include "G4RegionStore.hh" 64 #include "G4RegionStore.hh" 65 #include "G4Element.hh" 65 #include "G4Element.hh" 66 #include "G4EmCorrections.hh" 66 #include "G4EmCorrections.hh" 67 #include "G4GenericIon.hh" 67 #include "G4GenericIon.hh" 68 #include "G4ProcessVector.hh" 68 #include "G4ProcessVector.hh" 69 #include "G4Gamma.hh" 69 #include "G4Gamma.hh" 70 #include "G4Electron.hh" 70 #include "G4Electron.hh" 71 #include "G4Positron.hh" 71 #include "G4Positron.hh" 72 #include "G4EmUtility.hh" << 73 72 74 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 74 76 G4EmCalculator::G4EmCalculator() 75 G4EmCalculator::G4EmCalculator() 77 { 76 { 78 manager = G4LossTableManager::Instance(); 77 manager = G4LossTableManager::Instance(); 79 nist = G4NistManager::Instance(); 78 nist = G4NistManager::Instance(); 80 theParameters = G4EmParameters::Instance(); 79 theParameters = G4EmParameters::Instance(); 81 corr = manager->EmCorrections(); 80 corr = manager->EmCorrections(); 82 cutenergy[0] = cutenergy[1] = cutenergy[2] = 81 cutenergy[0] = cutenergy[1] = cutenergy[2] = DBL_MAX; 83 theGenericIon = G4GenericIon::GenericIon(); 82 theGenericIon = G4GenericIon::GenericIon(); 84 ionEffCharge = new G4ionEffectiveCharge(); 83 ionEffCharge = new G4ionEffectiveCharge(); 85 dynParticle = new G4DynamicParticle(); 84 dynParticle = new G4DynamicParticle(); 86 ionTable = G4ParticleTable::GetParticle 85 ionTable = G4ParticleTable::GetParticleTable()->GetIonTable(); 87 } 86 } 88 87 89 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 90 89 91 G4EmCalculator::~G4EmCalculator() 90 G4EmCalculator::~G4EmCalculator() 92 { 91 { 93 delete ionEffCharge; 92 delete ionEffCharge; 94 delete dynParticle; 93 delete dynParticle; 95 for (G4int i=0; i<nLocalMaterials; ++i) { 94 for (G4int i=0; i<nLocalMaterials; ++i) { 96 delete localCouples[i]; 95 delete localCouples[i]; 97 } 96 } 98 } 97 } 99 98 100 //....oooOO0OOooo........oooOO0OOooo........oo 99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 101 100 102 G4double G4EmCalculator::GetDEDX(G4double kinE 101 G4double G4EmCalculator::GetDEDX(G4double kinEnergy, 103 const G4Parti 102 const G4ParticleDefinition* p, 104 const G4Mater 103 const G4Material* mat, 105 const G4Regio 104 const G4Region* region) 106 { 105 { 107 G4double res = 0.0; 106 G4double res = 0.0; 108 const G4MaterialCutsCouple* couple = FindCou 107 const G4MaterialCutsCouple* couple = FindCouple(mat, region); 109 if(nullptr != couple && UpdateParticle(p, ki << 108 if(couple && UpdateParticle(p, kinEnergy) ) { 110 res = manager->GetDEDX(p, kinEnergy, coupl 109 res = manager->GetDEDX(p, kinEnergy, couple); 111 110 112 if(isIon) { 111 if(isIon) { 113 if(FindEmModel(p, currentProcessName, ki 112 if(FindEmModel(p, currentProcessName, kinEnergy)) { 114 G4double length = CLHEP::nm; 113 G4double length = CLHEP::nm; 115 G4double eloss = res*length; 114 G4double eloss = res*length; 116 //G4cout << "### GetDEDX: E= " << kinE 115 //G4cout << "### GetDEDX: E= " << kinEnergy << " dedx0= " << res 117 // << " de= " << eloss << G4endl 116 // << " de= " << eloss << G4endl;; 118 dynParticle->SetKineticEnergy(kinEnerg 117 dynParticle->SetKineticEnergy(kinEnergy); 119 currentModel->GetChargeSquareRatio(p, 118 currentModel->GetChargeSquareRatio(p, mat, kinEnergy); 120 currentModel->CorrectionsAlongStep(cou 119 currentModel->CorrectionsAlongStep(couple,dynParticle,length,eloss); 121 res = eloss/length; 120 res = eloss/length; 122 //G4cout << " de1= " << eloss << 121 //G4cout << " de1= " << eloss << " res1= " << res 123 // << " " << p->GetParticleName( 122 // << " " << p->GetParticleName() <<G4endl;; 124 } 123 } 125 } 124 } 126 125 127 if(verbose>0) { 126 if(verbose>0) { 128 G4cout << "G4EmCalculator::GetDEDX: E(Me 127 G4cout << "G4EmCalculator::GetDEDX: E(MeV)= " << kinEnergy/MeV 129 << " DEDX(MeV/mm)= " << res*mm/Me 128 << " DEDX(MeV/mm)= " << res*mm/MeV 130 << " DEDX(MeV*cm^2/g)= " << res*g 129 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) 131 << " " << p->GetParticleName() 130 << " " << p->GetParticleName() 132 << " in " << mat->GetName() 131 << " in " << mat->GetName() 133 << " isIon= " << isIon 132 << " isIon= " << isIon 134 << G4endl; 133 << G4endl; 135 } 134 } 136 } 135 } 137 return res; 136 return res; 138 } 137 } 139 138 140 //....oooOO0OOooo........oooOO0OOooo........oo 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 141 140 142 G4double G4EmCalculator::GetRangeFromRestricte 141 G4double G4EmCalculator::GetRangeFromRestricteDEDX(G4double kinEnergy, 143 142 const G4ParticleDefinition* p, 144 143 const G4Material* mat, 145 144 const G4Region* region) 146 { 145 { 147 G4double res = 0.0; 146 G4double res = 0.0; 148 const G4MaterialCutsCouple* couple = FindCou 147 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 149 if(couple && UpdateParticle(p, kinEnergy)) { 148 if(couple && UpdateParticle(p, kinEnergy)) { 150 res = manager->GetRangeFromRestricteDEDX(p 149 res = manager->GetRangeFromRestricteDEDX(p, kinEnergy, couple); 151 if(verbose>1) { 150 if(verbose>1) { 152 G4cout << " G4EmCalculator::GetRangeFrom 151 G4cout << " G4EmCalculator::GetRangeFromRestrictedDEDX: E(MeV)= " 153 << kinEnergy/MeV 152 << kinEnergy/MeV 154 << " range(mm)= " << res/mm 153 << " range(mm)= " << res/mm 155 << " " << p->GetParticleName() 154 << " " << p->GetParticleName() 156 << " in " << mat->GetName() 155 << " in " << mat->GetName() 157 << G4endl; 156 << G4endl; 158 } 157 } 159 } 158 } 160 return res; 159 return res; 161 } 160 } 162 161 163 //....oooOO0OOooo........oooOO0OOooo........oo 162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 164 163 165 G4double G4EmCalculator::GetCSDARange(G4double 164 G4double G4EmCalculator::GetCSDARange(G4double kinEnergy, 166 const G4 165 const G4ParticleDefinition* p, 167 const G4 166 const G4Material* mat, 168 const G4 167 const G4Region* region) 169 { 168 { 170 G4double res = 0.0; 169 G4double res = 0.0; 171 if(!theParameters->BuildCSDARange()) { 170 if(!theParameters->BuildCSDARange()) { 172 G4ExceptionDescription ed; 171 G4ExceptionDescription ed; 173 ed << "G4EmCalculator::GetCSDARange: CSDA 172 ed << "G4EmCalculator::GetCSDARange: CSDA table is not built; " 174 << " use UI command: /process/eLoss/CSD 173 << " use UI command: /process/eLoss/CSDARange true"; 175 G4Exception("G4EmCalculator::GetCSDARange" 174 G4Exception("G4EmCalculator::GetCSDARange", "em0077", 176 JustWarning, ed); 175 JustWarning, ed); 177 return res; 176 return res; 178 } 177 } 179 178 180 const G4MaterialCutsCouple* couple = FindCou 179 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 181 if(nullptr != couple && UpdateParticle(p, ki << 180 if(couple && UpdateParticle(p, kinEnergy)) { 182 res = manager->GetCSDARange(p, kinEnergy, 181 res = manager->GetCSDARange(p, kinEnergy, couple); 183 if(verbose>1) { 182 if(verbose>1) { 184 G4cout << " G4EmCalculator::GetCSDARange 183 G4cout << " G4EmCalculator::GetCSDARange: E(MeV)= " << kinEnergy/MeV 185 << " range(mm)= " << res/mm 184 << " range(mm)= " << res/mm 186 << " " << p->GetParticleName() 185 << " " << p->GetParticleName() 187 << " in " << mat->GetName() 186 << " in " << mat->GetName() 188 << G4endl; 187 << G4endl; 189 } 188 } 190 } 189 } 191 return res; 190 return res; 192 } 191 } 193 192 194 //....oooOO0OOooo........oooOO0OOooo........oo 193 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 195 194 196 G4double G4EmCalculator::GetRange(G4double kin 195 G4double G4EmCalculator::GetRange(G4double kinEnergy, 197 const G4Part 196 const G4ParticleDefinition* p, 198 const G4Mate 197 const G4Material* mat, 199 const G4Regi 198 const G4Region* region) 200 { 199 { 201 G4double res = 0.0; 200 G4double res = 0.0; 202 if(theParameters->BuildCSDARange()) { 201 if(theParameters->BuildCSDARange()) { 203 res = GetCSDARange(kinEnergy, p, mat, regi 202 res = GetCSDARange(kinEnergy, p, mat, region); 204 } else { 203 } else { 205 res = GetRangeFromRestricteDEDX(kinEnergy, 204 res = GetRangeFromRestricteDEDX(kinEnergy, p, mat, region); 206 } 205 } 207 return res; 206 return res; 208 } 207 } 209 208 210 //....oooOO0OOooo........oooOO0OOooo........oo 209 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 210 212 G4double G4EmCalculator::GetKinEnergy(G4double 211 G4double G4EmCalculator::GetKinEnergy(G4double range, 213 const G4 212 const G4ParticleDefinition* p, 214 const G4 213 const G4Material* mat, 215 const G4 214 const G4Region* region) 216 { 215 { 217 G4double res = 0.0; 216 G4double res = 0.0; 218 const G4MaterialCutsCouple* couple = FindCou 217 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 219 if(nullptr != couple && UpdateParticle(p, 1. << 218 if(couple && UpdateParticle(p, 1.0*GeV)) { 220 res = manager->GetEnergy(p, range, couple) 219 res = manager->GetEnergy(p, range, couple); 221 if(verbose>0) { 220 if(verbose>0) { 222 G4cout << "G4EmCalculator::GetKinEnergy: 221 G4cout << "G4EmCalculator::GetKinEnergy: Range(mm)= " << range/mm 223 << " KinE(MeV)= " << res/MeV 222 << " KinE(MeV)= " << res/MeV 224 << " " << p->GetParticleName() 223 << " " << p->GetParticleName() 225 << " in " << mat->GetName() 224 << " in " << mat->GetName() 226 << G4endl; 225 << G4endl; 227 } 226 } 228 } 227 } 229 return res; 228 return res; 230 } 229 } 231 230 232 //....oooOO0OOooo........oooOO0OOooo........oo 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 233 232 234 G4double G4EmCalculator::GetCrossSectionPerVol 233 G4double G4EmCalculator::GetCrossSectionPerVolume(G4double kinEnergy, 235 co 234 const G4ParticleDefinition* p, 236 co 235 const G4String& processName, 237 co 236 const G4Material* mat, 238 co 237 const G4Region* region) 239 { 238 { 240 G4double res = 0.0; 239 G4double res = 0.0; 241 const G4MaterialCutsCouple* couple = FindCou 240 const G4MaterialCutsCouple* couple = FindCouple(mat,region); 242 241 243 if(nullptr != couple && UpdateParticle(p, ki << 242 if(couple && UpdateParticle(p, kinEnergy)) { 244 if(FindEmModel(p, processName, kinEnergy)) 243 if(FindEmModel(p, processName, kinEnergy)) { 245 G4int idx = couple->GetIndex(); 244 G4int idx = couple->GetIndex(); 246 G4int procType = -1; 245 G4int procType = -1; 247 FindLambdaTable(p, processName, kinEnerg 246 FindLambdaTable(p, processName, kinEnergy, procType); 248 247 249 G4VEmProcess* emproc = FindDiscreteProce 248 G4VEmProcess* emproc = FindDiscreteProcess(p, processName); 250 if(nullptr != emproc) { << 249 if(emproc) { 251 res = emproc->GetCrossSection(kinEnergy, cou << 250 res = emproc->CrossSectionPerVolume(kinEnergy, couple); 252 } else if(currentLambda) { 251 } else if(currentLambda) { 253 // special tables are built for Msc mo << 252 // special tables are built for Msc models (procType is set in FindLambdaTable 254 // procType is set in FindLambdaTable << 255 if(procType==2) { 253 if(procType==2) { 256 auto mscM = static_cast<G4VMscModel* << 254 G4VMscModel* mscM = static_cast<G4VMscModel*>(currentModel); 257 mscM->SetCurrentCouple(couple); 255 mscM->SetCurrentCouple(couple); 258 G4double tr1Mfp = mscM->GetTransport << 256 G4double tr1Mfp = mscM->GetTransportMeanFreePath(p, kinEnergy); 259 if (tr1Mfp<DBL_MAX) { 257 if (tr1Mfp<DBL_MAX) { 260 res = 1./tr1Mfp; 258 res = 1./tr1Mfp; 261 } 259 } 262 } else { 260 } else { 263 G4double e = kinEnergy*massRatio; 261 G4double e = kinEnergy*massRatio; 264 res = (((*currentLambda)[idx])->Valu 262 res = (((*currentLambda)[idx])->Value(e))*chargeSquare; 265 } 263 } 266 } else { 264 } else { 267 res = ComputeCrossSectionPerVolume(kin 265 res = ComputeCrossSectionPerVolume(kinEnergy, p, processName, mat, kinEnergy); 268 } 266 } 269 if(verbose>0) { 267 if(verbose>0) { 270 G4cout << "G4EmCalculator::GetXSPerVol 268 G4cout << "G4EmCalculator::GetXSPerVolume: E(MeV)= " << kinEnergy/MeV 271 << " cross(cm-1)= " << res*cm 269 << " cross(cm-1)= " << res*cm 272 << " " << p->GetParticleName( 270 << " " << p->GetParticleName() 273 << " in " << mat->GetName(); 271 << " in " << mat->GetName(); 274 if(verbose>1) 272 if(verbose>1) 275 G4cout << " idx= " << idx << " Esc 273 G4cout << " idx= " << idx << " Escaled((MeV)= " 276 << kinEnergy*massRatio 274 << kinEnergy*massRatio 277 << " q2= " << chargeSquare; 275 << " q2= " << chargeSquare; 278 G4cout << G4endl; 276 G4cout << G4endl; 279 } 277 } 280 } 278 } 281 } 279 } 282 return res; 280 return res; 283 } 281 } 284 282 285 //....oooOO0OOooo........oooOO0OOooo........oo 283 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 286 284 287 G4double G4EmCalculator::GetShellIonisationCro 285 G4double G4EmCalculator::GetShellIonisationCrossSectionPerAtom( 288 const 286 const G4String& particle, 289 G4int 287 G4int Z, 290 G4Ato 288 G4AtomicShellEnumerator shell, 291 G4dou 289 G4double kinEnergy) 292 { 290 { 293 G4double res = 0.0; 291 G4double res = 0.0; 294 const G4ParticleDefinition* p = FindParticle 292 const G4ParticleDefinition* p = FindParticle(particle); 295 G4VAtomDeexcitation* ad = manager->AtomDeexc 293 G4VAtomDeexcitation* ad = manager->AtomDeexcitation(); 296 if(nullptr != p && nullptr != ad) { << 294 if(p && ad) { 297 res = ad->GetShellIonisationCrossSectionPe 295 res = ad->GetShellIonisationCrossSectionPerAtom(p, Z, shell, kinEnergy); 298 } 296 } 299 return res; 297 return res; 300 } 298 } 301 299 302 //....oooOO0OOooo........oooOO0OOooo........oo 300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 303 301 304 G4double G4EmCalculator::GetMeanFreePath(G4dou 302 G4double G4EmCalculator::GetMeanFreePath(G4double kinEnergy, 305 const 303 const G4ParticleDefinition* p, 306 const 304 const G4String& processName, 307 const 305 const G4Material* mat, 308 const 306 const G4Region* region) 309 { 307 { 310 G4double res = DBL_MAX; 308 G4double res = DBL_MAX; 311 G4double x = GetCrossSectionPerVolume(kinEne 309 G4double x = GetCrossSectionPerVolume(kinEnergy,p, processName, mat,region); 312 if(x > 0.0) { res = 1.0/x; } 310 if(x > 0.0) { res = 1.0/x; } 313 if(verbose>1) { 311 if(verbose>1) { 314 G4cout << "G4EmCalculator::GetMeanFreePath 312 G4cout << "G4EmCalculator::GetMeanFreePath: E(MeV)= " << kinEnergy/MeV 315 << " MFP(mm)= " << res/mm 313 << " MFP(mm)= " << res/mm 316 << " " << p->GetParticleName() 314 << " " << p->GetParticleName() 317 << " in " << mat->GetName() 315 << " in " << mat->GetName() 318 << G4endl; 316 << G4endl; 319 } 317 } 320 return res; 318 return res; 321 } 319 } 322 320 323 //....oooOO0OOooo........oooOO0OOooo........oo 321 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 324 322 325 void G4EmCalculator::PrintDEDXTable(const G4Pa 323 void G4EmCalculator::PrintDEDXTable(const G4ParticleDefinition* p) 326 { 324 { 327 const G4VEnergyLossProcess* elp = manager->G << 325 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 328 G4cout << "##### DEDX Table for " << p->GetP 326 G4cout << "##### DEDX Table for " << p->GetParticleName() << G4endl; 329 if(nullptr != elp) G4cout << *(elp->DEDXTabl << 327 if(elp) G4cout << *(elp->DEDXTable()) << G4endl; 330 } 328 } 331 329 332 //....oooOO0OOooo........oooOO0OOooo........oo 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 333 331 334 void G4EmCalculator::PrintRangeTable(const G4P 332 void G4EmCalculator::PrintRangeTable(const G4ParticleDefinition* p) 335 { 333 { 336 const G4VEnergyLossProcess* elp = manager->G << 334 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 337 G4cout << "##### Range Table for " << p->Get 335 G4cout << "##### Range Table for " << p->GetParticleName() << G4endl; 338 if(nullptr != elp) G4cout << *(elp->RangeTab << 336 if(elp) G4cout << *(elp->RangeTableForLoss()) << G4endl; 339 } 337 } 340 338 341 //....oooOO0OOooo........oooOO0OOooo........oo 339 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 342 340 343 void G4EmCalculator::PrintInverseRangeTable(co 341 void G4EmCalculator::PrintInverseRangeTable(const G4ParticleDefinition* p) 344 { 342 { 345 const G4VEnergyLossProcess* elp = manager->G << 343 const G4VEnergyLossProcess* elp = FindEnergyLossProcess(p); 346 G4cout << "### G4EmCalculator: Inverse Range 344 G4cout << "### G4EmCalculator: Inverse Range Table for " 347 << p->GetParticleName() << G4endl; 345 << p->GetParticleName() << G4endl; 348 if(nullptr != elp) G4cout << *(elp->InverseR << 346 if(elp) G4cout << *(elp->InverseRangeTable()) << G4endl; 349 } 347 } 350 348 351 //....oooOO0OOooo........oooOO0OOooo........oo 349 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 352 350 353 G4double G4EmCalculator::ComputeDEDX(G4double 351 G4double G4EmCalculator::ComputeDEDX(G4double kinEnergy, 354 const G4P 352 const G4ParticleDefinition* p, 355 const G4S 353 const G4String& processName, 356 const G4M 354 const G4Material* mat, 357 G4d 355 G4double cut) 358 { 356 { 359 SetupMaterial(mat); 357 SetupMaterial(mat); 360 G4double res = 0.0; 358 G4double res = 0.0; 361 if(verbose > 1) { 359 if(verbose > 1) { 362 G4cout << "### G4EmCalculator::ComputeDEDX 360 G4cout << "### G4EmCalculator::ComputeDEDX: " << p->GetParticleName() 363 << " in " << currentMaterialName 361 << " in " << currentMaterialName 364 << " e(MeV)= " << kinEnergy/MeV << 362 << " e(MeV)= " << kinEnergy/MeV << " cut(MeV)= " << cut/MeV 365 << G4endl; 363 << G4endl; 366 } 364 } 367 if(UpdateParticle(p, kinEnergy)) { 365 if(UpdateParticle(p, kinEnergy)) { 368 if(FindEmModel(p, processName, kinEnergy)) 366 if(FindEmModel(p, processName, kinEnergy)) { 369 G4double escaled = kinEnergy*massRatio; << 367 370 if(nullptr != baseParticle) { << 368 // Special case of ICRU'73 model 371 res = currentModel->ComputeDEDXPerVolume(mat << 369 const G4String& mname = currentModel->GetName(); 372 << 370 if(mname == "ParamICRU73" || mname == "LinhardSorensen" || mname == "Atima") { 373 if(verbose > 1) { << 371 res = currentModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cut); 374 G4cout << "Particle: " << p->GetParticleNa << 372 if(verbose > 1) { 375 << " E(MeV)=" << kinEnergy << 373 G4cout << mname << " ion E(MeV)= " << kinEnergy << " "; 376 << " Base particle: " << baseParticle->Ge << 374 G4cout << currentModel->GetName() << ": DEDX(MeV/mm)= " << res*mm/MeV 377 << " Escaled(MeV)= " << escaled << 375 << " DEDX(MeV*cm^2/g)= " 378 << " q2=" << chargeSquare << G4endl; << 376 << res*gram/(MeV*cm2*mat->GetDensity()) 379 } << 377 << G4endl; 380 } else { << 381 res = currentModel->ComputeDEDXPerVolume(mat << 382 if(verbose > 1) { << 383 G4cout << "Particle: " << p->GetParticleNa << 384 << " E(MeV)=" << kinEnergy << G4endl; << 385 } << 386 } << 387 if(verbose > 1) { << 388 G4cout << currentModel->GetName() << ": DEDX << 389 << " DEDX(MeV*cm^2/g)= " << 390 << res*gram/(MeV*cm2*mat->GetDensity( << 391 << G4endl; << 392 } << 393 // emulate smoothing procedure << 394 if(applySmoothing && nullptr != loweMode << 395 G4double eth = currentModel->LowEnergyLimit( << 396 G4double res0 = 0.0; << 397 G4double res1 = 0.0; << 398 if(nullptr != baseParticle) { << 399 res1 = chargeSquare* << 400 currentModel->ComputeDEDXPerVolume(mat, << 401 res0 = chargeSquare* << 402 loweModel->ComputeDEDXPerVolume(mat, bas << 403 } else { << 404 res1 = currentModel->ComputeDEDXPerVolume( << 405 res0 = loweModel->ComputeDEDXPerVolume(mat << 406 } << 407 if(res1 > 0.0 && escaled > 0.0) { << 408 res *= (1.0 + (res0/res1 - 1.0)*eth/escale << 409 } << 410 if(verbose > 1) { << 411 G4cout << "At boundary energy(MeV)= " << e << 412 << " DEDX(MeV/mm)= " << res0*mm/MeV << " << 413 << " after correction DEDX(MeV/mm)=" << r << 414 } 378 } 415 } << 379 } else { 416 // correction for ions << 380 417 if(isIon) { << 381 G4double escaled = kinEnergy*massRatio; 418 const G4double length = CLHEP::nm; << 382 if(baseParticle) { 419 if(UpdateCouple(mat, cut)) { << 383 res = currentModel->ComputeDEDXPerVolume( 420 G4double eloss = res*length; << 384 mat, baseParticle, escaled, cut) * chargeSquare; 421 dynParticle->SetKineticEnergy(kinEnergy); << 385 if(verbose > 1) { 422 currentModel->CorrectionsAlongStep(current << 386 G4cout << baseParticle->GetParticleName() 423 l << 387 << " Escaled(MeV)= " << escaled; 424 res = eloss/length; << 388 } >> 389 } else { >> 390 res = currentModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cut); >> 391 if(verbose > 1) { G4cout << " no basePart E(MeV)= " << kinEnergy << " "; } >> 392 } >> 393 if(verbose > 1) { >> 394 G4cout << currentModel->GetName() << ": DEDX(MeV/mm)= " << res*mm/MeV >> 395 << " DEDX(MeV*cm^2/g)= " >> 396 << res*gram/(MeV*cm2*mat->GetDensity()) >> 397 << G4endl; >> 398 } >> 399 >> 400 // emulate smoothing procedure >> 401 G4double eth = currentModel->LowEnergyLimit(); >> 402 // G4cout << "massRatio= " << massRatio << " eth= " << eth << G4endl; >> 403 if(loweModel) { >> 404 G4double res0 = 0.0; >> 405 G4double res1 = 0.0; >> 406 if(baseParticle) { >> 407 res1 = currentModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) >> 408 * chargeSquare; >> 409 res0 = loweModel->ComputeDEDXPerVolume(mat, baseParticle, eth, cut) >> 410 * chargeSquare; >> 411 } else { >> 412 res1 = currentModel->ComputeDEDXPerVolume(mat, p, eth, cut); >> 413 res0 = loweModel->ComputeDEDXPerVolume(mat, p, eth, cut); >> 414 } >> 415 if(verbose > 1) { >> 416 G4cout << "At boundary energy(MeV)= " << eth/MeV >> 417 << " DEDX(MeV/mm)= " << res1*mm/MeV >> 418 << G4endl; >> 419 } 425 420 426 if(verbose > 1) { << 421 //G4cout << "eth= " << eth << " escaled= " << escaled 427 G4cout << "After Corrections: DEDX(MeV/m << 422 // << " res0= " << res0 << " res1= " 428 << " DEDX(MeV*cm^2/g)= " << 423 // << res1 << " q2= " << chargeSquare << G4endl; 429 << res*gram/(MeV*cm2*mat->GetDensity()) << 424 430 } << 425 if(res1 > 0.0 && escaled > 0.0) { 431 } << 426 res *= (1.0 + (res0/res1 - 1.0)*eth/escaled); 432 } << 427 } 433 if(verbose > 0) { << 428 } 434 G4cout << "## E(MeV)= " << kinEnergy/MeV << 429 435 << " DEDX(MeV/mm)= " << res*mm/MeV << 430 // low energy correction for ions 436 << " DEDX(MeV*cm^2/g)= " << res*gram/ << 431 if(isIon) { 437 << " cut(MeV)= " << cut/MeV << 432 G4double length = CLHEP::nm; 438 << " " << p->GetParticleName() << 433 const G4Region* r = 0; 439 << " in " << currentMaterialName << 434 const G4MaterialCutsCouple* couple = FindCouple(mat, r); 440 << " Zi^2= " << chargeSquare << 435 G4double eloss = res*length; 441 << " isIon=" << isIon << 436 dynParticle->SetKineticEnergy(kinEnergy); 442 << G4endl; << 437 currentModel->GetChargeSquareRatio(p, mat, kinEnergy); >> 438 currentModel->CorrectionsAlongStep(couple,dynParticle,length,eloss); >> 439 res = eloss/length; >> 440 >> 441 if(verbose > 1) { >> 442 G4cout << "After Corrections: DEDX(MeV/mm)= " << res*mm/MeV >> 443 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) >> 444 << G4endl; >> 445 } >> 446 } 443 } 447 } 444 } 448 } >> 449 if(verbose > 0) { >> 450 G4cout << "Sum: E(MeV)= " << kinEnergy/MeV >> 451 << " DEDX(MeV/mm)= " << res*mm/MeV >> 452 << " DEDX(MeV*cm^2/g)= " << res*gram/(MeV*cm2*mat->GetDensity()) >> 453 << " cut(MeV)= " << cut/MeV >> 454 << " " << p->GetParticleName() >> 455 << " in " << currentMaterialName >> 456 << " Zi^2= " << chargeSquare >> 457 << " isIon=" << isIon >> 458 << G4endl; >> 459 } 445 } 460 } 446 return res; 461 return res; 447 } 462 } 448 463 449 //....oooOO0OOooo........oooOO0OOooo........oo 464 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 450 465 451 G4double G4EmCalculator::ComputeElectronicDEDX 466 G4double G4EmCalculator::ComputeElectronicDEDX(G4double kinEnergy, 452 467 const G4ParticleDefinition* part, 453 468 const G4Material* mat, 454 469 G4double cut) 455 { 470 { 456 SetupMaterial(mat); 471 SetupMaterial(mat); 457 G4double dedx = 0.0; 472 G4double dedx = 0.0; 458 if(UpdateParticle(part, kinEnergy)) { 473 if(UpdateParticle(part, kinEnergy)) { 459 474 460 G4LossTableManager* lManager = G4LossTable 475 G4LossTableManager* lManager = G4LossTableManager::Instance(); 461 const std::vector<G4VEnergyLossProcess*> v 476 const std::vector<G4VEnergyLossProcess*> vel = 462 lManager->GetEnergyLossProcessVector(); 477 lManager->GetEnergyLossProcessVector(); 463 std::size_t n = vel.size(); << 478 G4int n = vel.size(); 464 479 465 //G4cout << "ComputeElectronicDEDX for " < 480 //G4cout << "ComputeElectronicDEDX for " << part->GetParticleName() 466 // << " n= " << n << G4endl; 481 // << " n= " << n << G4endl; 467 482 468 for(std::size_t i=0; i<n; ++i) { << 483 for(G4int i=0; i<n; ++i) { 469 if(vel[i]) { 484 if(vel[i]) { 470 auto p = static_cast<G4VProcess*>(vel[ << 485 G4VProcess* p = reinterpret_cast<G4VProcess*>(vel[i]); 471 if(ActiveForParticle(part, p)) { 486 if(ActiveForParticle(part, p)) { 472 //G4cout << "idx= " << i << " " << ( 487 //G4cout << "idx= " << i << " " << (vel[i])->GetProcessName() 473 // << " " << (vel[i])->Particle()- << 488 // << " " << (vel[i])->Particle()->GetParticleName() << G4endl; 474 dedx += ComputeDEDX(kinEnergy,part,( 489 dedx += ComputeDEDX(kinEnergy,part,(vel[i])->GetProcessName(),mat,cut); 475 } 490 } 476 } 491 } 477 } 492 } 478 } 493 } 479 return dedx; 494 return dedx; 480 } 495 } 481 496 482 //....oooOO0OOooo........oooOO0OOooo........oo 497 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 483 498 484 G4double << 499 G4double G4EmCalculator::ComputeDEDXForCutInRange(G4double kinEnergy, 485 G4EmCalculator::ComputeDEDXForCutInRange(G4dou << 500 const G4ParticleDefinition* part, 486 const << 501 const G4Material* mat, 487 const << 502 G4double rangecut) 488 G4dou << 489 { 503 { 490 SetupMaterial(mat); 504 SetupMaterial(mat); 491 G4double dedx = 0.0; 505 G4double dedx = 0.0; 492 if(UpdateParticle(part, kinEnergy)) { 506 if(UpdateParticle(part, kinEnergy)) { 493 507 494 G4LossTableManager* lManager = G4LossTable 508 G4LossTableManager* lManager = G4LossTableManager::Instance(); 495 const std::vector<G4VEnergyLossProcess*> v 509 const std::vector<G4VEnergyLossProcess*> vel = 496 lManager->GetEnergyLossProcessVector(); 510 lManager->GetEnergyLossProcessVector(); 497 std::size_t n = vel.size(); << 511 G4int n = vel.size(); 498 512 499 if(mat != cutMaterial) { 513 if(mat != cutMaterial) { 500 cutMaterial = mat; 514 cutMaterial = mat; 501 cutenergy[0] = << 515 cutenergy[0] = ComputeEnergyCutFromRangeCut(rangecut, G4Gamma::Gamma(), mat); 502 ComputeEnergyCutFromRangeCut(rangecut, << 516 cutenergy[1] = ComputeEnergyCutFromRangeCut(rangecut, G4Electron::Electron(), mat); 503 cutenergy[1] = << 517 cutenergy[2] = ComputeEnergyCutFromRangeCut(rangecut, G4Positron::Positron(), mat); 504 ComputeEnergyCutFromRangeCut(rangecut, << 505 cutenergy[2] = << 506 ComputeEnergyCutFromRangeCut(rangecut, << 507 } 518 } 508 519 509 //G4cout << "ComputeElectronicDEDX for " < 520 //G4cout << "ComputeElectronicDEDX for " << part->GetParticleName() 510 // << " n= " << n << G4endl; 521 // << " n= " << n << G4endl; 511 522 512 for(std::size_t i=0; i<n; ++i) { << 523 for(G4int i=0; i<n; ++i) { 513 if(vel[i]) { 524 if(vel[i]) { 514 auto p = static_cast<G4VProcess*>(vel[ << 525 G4VProcess* p = reinterpret_cast<G4VProcess*>(vel[i]); 515 if(ActiveForParticle(part, p)) { 526 if(ActiveForParticle(part, p)) { 516 //G4cout << "idx= " << i << " " << ( 527 //G4cout << "idx= " << i << " " << (vel[i])->GetProcessName() 517 // << " " << (vel[i])->Particle()-> << 528 // << " " << (vel[i])->Particle()->GetParticleName() << G4endl; 518 const G4ParticleDefinition* sec = (v 529 const G4ParticleDefinition* sec = (vel[i])->SecondaryParticle(); 519 std::size_t idx = 0; << 530 G4int idx = 0; 520 if(sec == G4Electron::Electron()) { 531 if(sec == G4Electron::Electron()) { idx = 1; } 521 else if(sec == G4Positron::Positron( 532 else if(sec == G4Positron::Positron()) { idx = 2; } 522 533 523 dedx += ComputeDEDX(kinEnergy,part,( 534 dedx += ComputeDEDX(kinEnergy,part,(vel[i])->GetProcessName(), 524 mat,cutenergy[id 535 mat,cutenergy[idx]); 525 } 536 } 526 } 537 } 527 } 538 } 528 } 539 } 529 return dedx; 540 return dedx; 530 } 541 } 531 542 532 //....oooOO0OOooo........oooOO0OOooo........oo 543 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 533 544 534 G4double G4EmCalculator::ComputeTotalDEDX(G4do 545 G4double G4EmCalculator::ComputeTotalDEDX(G4double kinEnergy, 535 cons 546 const G4ParticleDefinition* part, 536 cons 547 const G4Material* mat, 537 G4do 548 G4double cut) 538 { 549 { 539 G4double dedx = ComputeElectronicDEDX(kinEne 550 G4double dedx = ComputeElectronicDEDX(kinEnergy,part,mat,cut); 540 if(mass > 700.*MeV) { dedx += ComputeNuclear 551 if(mass > 700.*MeV) { dedx += ComputeNuclearDEDX(kinEnergy,part,mat); } 541 return dedx; 552 return dedx; 542 } 553 } 543 554 544 //....oooOO0OOooo........oooOO0OOooo........oo 555 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 556 546 G4double G4EmCalculator::ComputeNuclearDEDX(G4 557 G4double G4EmCalculator::ComputeNuclearDEDX(G4double kinEnergy, 547 const G4 558 const G4ParticleDefinition* p, 548 const G4 559 const G4Material* mat) 549 { 560 { 550 G4double res = 0.0; 561 G4double res = 0.0; 551 G4VEmProcess* nucst = FindDiscreteProcess(p, 562 G4VEmProcess* nucst = FindDiscreteProcess(p, "nuclearStopping"); 552 if(nucst) { 563 if(nucst) { 553 G4VEmModel* mod = nucst->EmModel(); 564 G4VEmModel* mod = nucst->EmModel(); 554 if(mod) { 565 if(mod) { 555 mod->SetFluctuationFlag(false); 566 mod->SetFluctuationFlag(false); 556 res = mod->ComputeDEDXPerVolume(mat, p, 567 res = mod->ComputeDEDXPerVolume(mat, p, kinEnergy); 557 } 568 } 558 } 569 } 559 570 560 if(verbose > 1) { 571 if(verbose > 1) { 561 G4cout << p->GetParticleName() << " E(MeV 572 G4cout << p->GetParticleName() << " E(MeV)= " << kinEnergy/MeV 562 << " NuclearDEDX(MeV/mm)= " << res* 573 << " NuclearDEDX(MeV/mm)= " << res*mm/MeV 563 << " NuclearDEDX(MeV*cm^2/g)= " 574 << " NuclearDEDX(MeV*cm^2/g)= " 564 << res*gram/(MeV*cm2*mat->GetDensit 575 << res*gram/(MeV*cm2*mat->GetDensity()) 565 << G4endl; 576 << G4endl; 566 } 577 } 567 return res; 578 return res; 568 } 579 } 569 580 570 //....oooOO0OOooo........oooOO0OOooo........oo 581 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 571 582 572 G4double G4EmCalculator::ComputeCrossSectionPe 583 G4double G4EmCalculator::ComputeCrossSectionPerVolume( 573 584 G4double kinEnergy, 574 c 585 const G4ParticleDefinition* p, 575 c 586 const G4String& processName, 576 c 587 const G4Material* mat, 577 588 G4double cut) 578 { 589 { 579 SetupMaterial(mat); 590 SetupMaterial(mat); 580 G4double res = 0.0; 591 G4double res = 0.0; 581 if(UpdateParticle(p, kinEnergy)) { 592 if(UpdateParticle(p, kinEnergy)) { 582 if(FindEmModel(p, processName, kinEnergy)) 593 if(FindEmModel(p, processName, kinEnergy)) { 583 G4double e = kinEnergy; 594 G4double e = kinEnergy; 584 G4double aCut = std::max(cut, theParamet 595 G4double aCut = std::max(cut, theParameters->LowestElectronEnergy()); 585 if(baseParticle) { 596 if(baseParticle) { 586 e *= kinEnergy*massRatio; 597 e *= kinEnergy*massRatio; 587 res = currentModel->CrossSectionPerVol 598 res = currentModel->CrossSectionPerVolume( 588 mat, baseParticle, e, aCut, e) * 599 mat, baseParticle, e, aCut, e) * chargeSquare; 589 } else { 600 } else { 590 res = currentModel->CrossSectionPerVol 601 res = currentModel->CrossSectionPerVolume(mat, p, e, aCut, e); 591 } 602 } 592 if(verbose>0) { 603 if(verbose>0) { 593 G4cout << "G4EmCalculator::ComputeXSPe << 604 G4cout << "G4EmCalculator::ComputeXSPerVolume: E(MeV)= " << kinEnergy/MeV 594 << kinEnergy/MeV << 595 << " cross(cm-1)= " << res*cm 605 << " cross(cm-1)= " << res*cm 596 << " cut(keV)= " << aCut/keV 606 << " cut(keV)= " << aCut/keV 597 << " " << p->GetParticleName( 607 << " " << p->GetParticleName() 598 << " in " << mat->GetName() 608 << " in " << mat->GetName() 599 << G4endl; 609 << G4endl; 600 } 610 } 601 } 611 } 602 } 612 } 603 return res; 613 return res; 604 } 614 } 605 615 606 //....oooOO0OOooo........oooOO0OOooo........oo 616 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 607 617 608 G4double << 618 G4double G4EmCalculator::ComputeCrossSectionPerAtom( 609 G4EmCalculator::ComputeCrossSectionPerAtom(G4d << 619 G4double kinEnergy, 610 con << 620 const G4ParticleDefinition* p, 611 con << 621 const G4String& processName, 612 G4d << 622 G4double Z, G4double A, 613 G4d << 623 G4double cut) 614 { 624 { 615 G4double res = 0.0; 625 G4double res = 0.0; 616 if(UpdateParticle(p, kinEnergy)) { 626 if(UpdateParticle(p, kinEnergy)) { 617 G4int iz = G4lrint(Z); 627 G4int iz = G4lrint(Z); 618 CheckMaterial(iz); 628 CheckMaterial(iz); 619 if(FindEmModel(p, processName, kinEnergy)) 629 if(FindEmModel(p, processName, kinEnergy)) { 620 G4double e = kinEnergy; 630 G4double e = kinEnergy; 621 G4double aCut = std::max(cut, theParamet 631 G4double aCut = std::max(cut, theParameters->LowestElectronEnergy()); 622 if(baseParticle) { 632 if(baseParticle) { 623 e *= kinEnergy*massRatio; 633 e *= kinEnergy*massRatio; 624 currentModel->InitialiseForElement(bas 634 currentModel->InitialiseForElement(baseParticle, iz); 625 res = currentModel->ComputeCrossSectio 635 res = currentModel->ComputeCrossSectionPerAtom( 626 baseParticle, e, Z, A, aCut) * c 636 baseParticle, e, Z, A, aCut) * chargeSquare; 627 } else { 637 } else { 628 currentModel->InitialiseForElement(p, 638 currentModel->InitialiseForElement(p, iz); 629 res = currentModel->ComputeCrossSectio 639 res = currentModel->ComputeCrossSectionPerAtom(p, e, Z, A, aCut); 630 } 640 } 631 if(verbose>0) { 641 if(verbose>0) { 632 G4cout << "E(MeV)= " << kinEnergy/MeV 642 G4cout << "E(MeV)= " << kinEnergy/MeV 633 << " cross(barn)= " << res/barn 643 << " cross(barn)= " << res/barn 634 << " " << p->GetParticleName( 644 << " " << p->GetParticleName() 635 << " Z= " << Z << " A= " << A/ 645 << " Z= " << Z << " A= " << A/(g/mole) << " g/mole" 636 << " cut(keV)= " << aCut/keV 646 << " cut(keV)= " << aCut/keV 637 << G4endl; 647 << G4endl; 638 } 648 } 639 } 649 } 640 } 650 } 641 return res; 651 return res; 642 } 652 } 643 653 644 //....oooOO0OOooo........oooOO0OOooo........oo 654 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 645 655 646 G4double << 656 G4double G4EmCalculator::ComputeCrossSectionPerShell(G4double kinEnergy, 647 G4EmCalculator::ComputeCrossSectionPerShell(G4 << 657 const G4ParticleDefinition* p, 648 co << 658 const G4String& processName, 649 co << 659 G4int Z, G4int shellIdx, 650 G4 << 660 G4double cut) 651 G4 << 652 { 661 { 653 G4double res = 0.0; 662 G4double res = 0.0; 654 if(UpdateParticle(p, kinEnergy)) { 663 if(UpdateParticle(p, kinEnergy)) { 655 CheckMaterial(Z); 664 CheckMaterial(Z); 656 if(FindEmModel(p, processName, kinEnergy)) 665 if(FindEmModel(p, processName, kinEnergy)) { 657 G4double e = kinEnergy; 666 G4double e = kinEnergy; 658 G4double aCut = std::max(cut, theParamet 667 G4double aCut = std::max(cut, theParameters->LowestElectronEnergy()); 659 if(nullptr != baseParticle) { << 668 if(baseParticle) { 660 e *= kinEnergy*massRatio; 669 e *= kinEnergy*massRatio; 661 currentModel->InitialiseForElement(bas 670 currentModel->InitialiseForElement(baseParticle, Z); 662 res = << 671 res = currentModel->ComputeCrossSectionPerShell(baseParticle, Z, shellIdx, 663 currentModel->ComputeCrossSectionPer << 672 e, aCut) * chargeSquare; 664 << 665 } else { 673 } else { 666 currentModel->InitialiseForElement(p, 674 currentModel->InitialiseForElement(p, Z); 667 res = currentModel->ComputeCrossSectio 675 res = currentModel->ComputeCrossSectionPerAtom(p, Z, shellIdx, e, aCut); 668 } 676 } 669 if(verbose>0) { 677 if(verbose>0) { 670 G4cout << "E(MeV)= " << kinEnergy/MeV 678 G4cout << "E(MeV)= " << kinEnergy/MeV 671 << " cross(barn)= " << res/barn 679 << " cross(barn)= " << res/barn 672 << " " << p->GetParticleName( 680 << " " << p->GetParticleName() 673 << " Z= " << Z << " shellIdx= 681 << " Z= " << Z << " shellIdx= " << shellIdx 674 << " cut(keV)= " << aCut/keV 682 << " cut(keV)= " << aCut/keV 675 << G4endl; 683 << G4endl; 676 } 684 } 677 } 685 } 678 } 686 } 679 return res; 687 return res; 680 } 688 } 681 689 682 //....oooOO0OOooo........oooOO0OOooo........oo 690 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 683 691 684 G4double 692 G4double 685 G4EmCalculator::ComputeGammaAttenuationLength( 693 G4EmCalculator::ComputeGammaAttenuationLength(G4double kinEnergy, 686 694 const G4Material* mat) 687 { 695 { 688 G4double res = 0.0; 696 G4double res = 0.0; 689 const G4ParticleDefinition* gamma = G4Gamma: 697 const G4ParticleDefinition* gamma = G4Gamma::Gamma(); 690 res += ComputeCrossSectionPerVolume(kinEnerg 698 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "conv", mat, 0.0); 691 res += ComputeCrossSectionPerVolume(kinEnerg 699 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "compt", mat, 0.0); 692 res += ComputeCrossSectionPerVolume(kinEnerg 700 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "phot", mat, 0.0); 693 res += ComputeCrossSectionPerVolume(kinEnerg 701 res += ComputeCrossSectionPerVolume(kinEnergy, gamma, "Rayl", mat, 0.0); 694 if(res > 0.0) { res = 1.0/res; } 702 if(res > 0.0) { res = 1.0/res; } 695 return res; 703 return res; 696 } 704 } 697 705 698 //....oooOO0OOooo........oooOO0OOooo........oo 706 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 699 707 700 G4double G4EmCalculator::ComputeShellIonisatio 708 G4double G4EmCalculator::ComputeShellIonisationCrossSectionPerAtom( 701 const 709 const G4String& particle, 702 G4int 710 G4int Z, 703 G4Ato 711 G4AtomicShellEnumerator shell, 704 G4dou 712 G4double kinEnergy, 705 const 713 const G4Material* mat) 706 { 714 { 707 G4double res = 0.0; 715 G4double res = 0.0; 708 const G4ParticleDefinition* p = FindParticle 716 const G4ParticleDefinition* p = FindParticle(particle); 709 G4VAtomDeexcitation* ad = manager->AtomDeexc 717 G4VAtomDeexcitation* ad = manager->AtomDeexcitation(); 710 if(p && ad) { 718 if(p && ad) { 711 res = ad->ComputeShellIonisationCrossSecti 719 res = ad->ComputeShellIonisationCrossSectionPerAtom(p, Z, shell, 712 720 kinEnergy, mat); 713 } 721 } 714 return res; 722 return res; 715 } 723 } 716 724 717 //....oooOO0OOooo........oooOO0OOooo........oo 725 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 726 719 G4double G4EmCalculator::ComputeMeanFreePath(G 727 G4double G4EmCalculator::ComputeMeanFreePath(G4double kinEnergy, 720 c 728 const G4ParticleDefinition* p, 721 c 729 const G4String& processName, 722 c 730 const G4Material* mat, 723 G << 731 G4double cut) 724 { 732 { 725 G4double mfp = DBL_MAX; 733 G4double mfp = DBL_MAX; 726 G4double x = << 734 G4double x = ComputeCrossSectionPerVolume(kinEnergy, p, processName, mat, cut); 727 ComputeCrossSectionPerVolume(kinEnergy, p, << 728 if(x > 0.0) { mfp = 1.0/x; } 735 if(x > 0.0) { mfp = 1.0/x; } 729 if(verbose>1) { 736 if(verbose>1) { 730 G4cout << "E(MeV)= " << kinEnergy/MeV 737 G4cout << "E(MeV)= " << kinEnergy/MeV 731 << " MFP(mm)= " << mfp/mm 738 << " MFP(mm)= " << mfp/mm 732 << " " << p->GetParticleName() 739 << " " << p->GetParticleName() 733 << " in " << mat->GetName() 740 << " in " << mat->GetName() 734 << G4endl; 741 << G4endl; 735 } 742 } 736 return mfp; 743 return mfp; 737 } 744 } 738 745 739 //....oooOO0OOooo........oooOO0OOooo........oo 746 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 747 741 G4double G4EmCalculator::ComputeEnergyCutFromR 748 G4double G4EmCalculator::ComputeEnergyCutFromRangeCut( 742 G4double range, 749 G4double range, 743 const G4ParticleDefin 750 const G4ParticleDefinition* part, 744 const G4Material* mat 751 const G4Material* mat) 745 { 752 { 746 return G4ProductionCutsTable::GetProductionC 753 return G4ProductionCutsTable::GetProductionCutsTable()-> 747 ConvertRangeToEnergy(part, mat, range); 754 ConvertRangeToEnergy(part, mat, range); 748 } 755 } 749 756 750 //....oooOO0OOooo........oooOO0OOooo........oo 757 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 751 758 752 G4bool G4EmCalculator::UpdateParticle(const G4 759 G4bool G4EmCalculator::UpdateParticle(const G4ParticleDefinition* p, 753 G4double 760 G4double kinEnergy) 754 { 761 { 755 if(p != currentParticle) { 762 if(p != currentParticle) { 756 763 757 // new particle 764 // new particle 758 currentParticle = p; 765 currentParticle = p; 759 dynParticle->SetDefinition(const_cast<G4Pa 766 dynParticle->SetDefinition(const_cast<G4ParticleDefinition*>(p)); 760 dynParticle->SetKineticEnergy(kinEnergy); 767 dynParticle->SetKineticEnergy(kinEnergy); 761 baseParticle = nullptr; << 768 baseParticle = 0; 762 currentParticleName = p->GetParticleName() 769 currentParticleName = p->GetParticleName(); 763 massRatio = 1.0; 770 massRatio = 1.0; 764 mass = p->GetPDGMass(); 771 mass = p->GetPDGMass(); 765 chargeSquare = 1.0; 772 chargeSquare = 1.0; 766 currentProcess = manager->GetEnergyLossPr << 773 currentProcess = FindEnergyLossProcess(p); 767 currentProcessName = ""; 774 currentProcessName = ""; 768 isIon = false; 775 isIon = false; 769 776 770 // ionisation process exist 777 // ionisation process exist 771 if(nullptr != currentProcess) { << 778 if(currentProcess) { 772 currentProcessName = currentProcess->Get 779 currentProcessName = currentProcess->GetProcessName(); 773 baseParticle = currentProcess->BaseParti 780 baseParticle = currentProcess->BaseParticle(); 774 if(currentProcessName == "ionIoni" && p- << 775 baseParticle = theGenericIon; << 776 isIon = true; << 777 } << 778 781 779 // base particle is used 782 // base particle is used 780 if(nullptr != baseParticle) { << 783 if(baseParticle) { 781 massRatio = baseParticle->GetPDGMass() 784 massRatio = baseParticle->GetPDGMass()/p->GetPDGMass(); 782 G4double q = p->GetPDGCharge()/basePar 785 G4double q = p->GetPDGCharge()/baseParticle->GetPDGCharge(); 783 chargeSquare = q*q; 786 chargeSquare = q*q; 784 } 787 } >> 788 >> 789 if(p->GetParticleType() == "nucleus" >> 790 && currentParticleName != "deuteron" >> 791 && currentParticleName != "triton" >> 792 && currentParticleName != "alpha+" >> 793 && currentParticleName != "alpha" >> 794 ) { >> 795 isIon = true; >> 796 massRatio = theGenericIon->GetPDGMass()/p->GetPDGMass(); >> 797 baseParticle = theGenericIon; >> 798 if(verbose>1) { >> 799 G4cout << "\n G4EmCalculator::UpdateParticle: isIon 1 " >> 800 << p->GetParticleName() >> 801 << " in " << currentMaterial->GetName() >> 802 << " e= " << kinEnergy << G4endl; >> 803 } >> 804 } 785 } 805 } 786 } 806 } >> 807 787 // Effective charge for ions 808 // Effective charge for ions 788 if(isIon && nullptr != currentProcess) { << 809 if(isIon) { 789 chargeSquare = 810 chargeSquare = 790 corr->EffectiveChargeSquareRatio(p, curr << 811 corr->EffectiveChargeSquareRatio(p, currentMaterial, kinEnergy) 791 currentProcess->SetDynamicMassCharge(massR << 812 * corr->EffectiveChargeCorrection(p,currentMaterial,kinEnergy); 792 if(verbose>1) { << 813 if(currentProcess) { 793 G4cout <<"\n NewIon: massR= "<< massRati << 814 currentProcess->SetDynamicMassCharge(massRatio,chargeSquare); 794 << chargeSquare << " " << currentProce << 815 if(verbose>1) { >> 816 G4cout <<"\n NewIon: massR= "<< massRatio << " q2= " >> 817 << chargeSquare << " " << currentProcess << G4endl; >> 818 } 795 } 819 } 796 } 820 } 797 return true; 821 return true; 798 } 822 } 799 823 800 //....oooOO0OOooo........oooOO0OOooo........oo 824 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 801 825 802 const G4ParticleDefinition* G4EmCalculator::Fi 826 const G4ParticleDefinition* G4EmCalculator::FindParticle(const G4String& name) 803 { 827 { 804 const G4ParticleDefinition* p = nullptr; << 828 const G4ParticleDefinition* p = 0; 805 if(name != currentParticleName) { 829 if(name != currentParticleName) { 806 p = G4ParticleTable::GetParticleTable()->F 830 p = G4ParticleTable::GetParticleTable()->FindParticle(name); 807 if(nullptr == p) { << 831 if(!p) { 808 G4cout << "### WARNING: G4EmCalculator:: 832 G4cout << "### WARNING: G4EmCalculator::FindParticle fails to find " 809 << name << G4endl; 833 << name << G4endl; 810 } 834 } 811 } else { 835 } else { 812 p = currentParticle; 836 p = currentParticle; 813 } 837 } 814 return p; 838 return p; 815 } 839 } 816 840 817 //....oooOO0OOooo........oooOO0OOooo........oo 841 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 818 842 819 const G4ParticleDefinition* G4EmCalculator::Fi 843 const G4ParticleDefinition* G4EmCalculator::FindIon(G4int Z, G4int A) 820 { 844 { 821 const G4ParticleDefinition* p = ionTable->Ge 845 const G4ParticleDefinition* p = ionTable->GetIon(Z,A,0); 822 return p; 846 return p; 823 } 847 } 824 848 825 //....oooOO0OOooo........oooOO0OOooo........oo 849 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 826 850 827 const G4Material* G4EmCalculator::FindMaterial 851 const G4Material* G4EmCalculator::FindMaterial(const G4String& name) 828 { 852 { 829 if(name != currentMaterialName) { 853 if(name != currentMaterialName) { 830 SetupMaterial(G4Material::GetMaterial(name 854 SetupMaterial(G4Material::GetMaterial(name, false)); 831 if(nullptr == currentMaterial) { << 855 if(!currentMaterial) { 832 G4cout << "### WARNING: G4EmCalculator:: 856 G4cout << "### WARNING: G4EmCalculator::FindMaterial fails to find " 833 << name << G4endl; 857 << name << G4endl; 834 } 858 } 835 } 859 } 836 return currentMaterial; 860 return currentMaterial; 837 } 861 } 838 862 839 //....oooOO0OOooo........oooOO0OOooo........oo 863 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 840 864 841 const G4Region* G4EmCalculator::FindRegion(con 865 const G4Region* G4EmCalculator::FindRegion(const G4String& reg) 842 { 866 { 843 return G4EmUtility::FindRegion(reg); << 867 const G4Region* r = 0; >> 868 if(reg != "" && reg != "world") { >> 869 r = G4RegionStore::GetInstance()->GetRegion(reg); >> 870 } else { >> 871 r = G4RegionStore::GetInstance()->GetRegion("DefaultRegionForTheWorld"); >> 872 } >> 873 return r; 844 } 874 } 845 875 846 //....oooOO0OOooo........oooOO0OOooo........oo 876 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 847 877 848 const G4MaterialCutsCouple* G4EmCalculator::Fi 878 const G4MaterialCutsCouple* G4EmCalculator::FindCouple( 849 const G4Material* 879 const G4Material* material, 850 const G4Region* re 880 const G4Region* region) 851 { 881 { 852 const G4MaterialCutsCouple* couple = nullptr 882 const G4MaterialCutsCouple* couple = nullptr; 853 SetupMaterial(material); 883 SetupMaterial(material); 854 if(nullptr != currentMaterial) { << 884 if(currentMaterial) { 855 // Access to materials 885 // Access to materials 856 const G4ProductionCutsTable* theCoupleTabl 886 const G4ProductionCutsTable* theCoupleTable= 857 G4ProductionCutsTable::GetProductionCuts 887 G4ProductionCutsTable::GetProductionCutsTable(); 858 const G4Region* r = region; 888 const G4Region* r = region; 859 if(nullptr != r) { << 889 if(r) { 860 couple = theCoupleTable->GetMaterialCuts 890 couple = theCoupleTable->GetMaterialCutsCouple(material, 861 891 r->GetProductionCuts()); 862 } else { 892 } else { 863 G4RegionStore* store = G4RegionStore::Ge 893 G4RegionStore* store = G4RegionStore::GetInstance(); 864 std::size_t nr = store->size(); << 894 size_t nr = store->size(); 865 if(0 < nr) { 895 if(0 < nr) { 866 for(std::size_t i=0; i<nr; ++i) { << 896 for(size_t i=0; i<nr; ++i) { 867 couple = theCoupleTable->GetMaterial 897 couple = theCoupleTable->GetMaterialCutsCouple( 868 material, ((*store)[i])->GetProduc 898 material, ((*store)[i])->GetProductionCuts()); 869 if(nullptr != couple) { break; } << 899 if(couple) { break; } 870 } 900 } 871 } 901 } 872 } 902 } 873 } 903 } 874 if(nullptr == couple) { << 904 if(!couple) { 875 G4ExceptionDescription ed; 905 G4ExceptionDescription ed; 876 ed << "G4EmCalculator::FindCouple: fail fo 906 ed << "G4EmCalculator::FindCouple: fail for material <" 877 << currentMaterialName << ">"; 907 << currentMaterialName << ">"; 878 if(region) { ed << " and region " << regio 908 if(region) { ed << " and region " << region->GetName(); } 879 G4Exception("G4EmCalculator::FindCouple", 909 G4Exception("G4EmCalculator::FindCouple", "em0078", 880 FatalException, ed); 910 FatalException, ed); 881 } 911 } 882 return couple; 912 return couple; 883 } 913 } 884 914 885 //....oooOO0OOooo........oooOO0OOooo........oo 915 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 886 916 887 G4bool G4EmCalculator::UpdateCouple(const G4Ma 917 G4bool G4EmCalculator::UpdateCouple(const G4Material* material, G4double cut) 888 { 918 { 889 SetupMaterial(material); 919 SetupMaterial(material); 890 if(!currentMaterial) { return false; } 920 if(!currentMaterial) { return false; } 891 for (G4int i=0; i<nLocalMaterials; ++i) { 921 for (G4int i=0; i<nLocalMaterials; ++i) { 892 if(material == localMaterials[i] && cut == 922 if(material == localMaterials[i] && cut == localCuts[i]) { 893 currentCouple = localCouples[i]; 923 currentCouple = localCouples[i]; 894 currentCoupleIndex = currentCouple->GetI 924 currentCoupleIndex = currentCouple->GetIndex(); 895 currentCut = cut; 925 currentCut = cut; 896 return true; 926 return true; 897 } 927 } 898 } 928 } 899 const G4MaterialCutsCouple* cc = new G4Mater 929 const G4MaterialCutsCouple* cc = new G4MaterialCutsCouple(material); 900 localMaterials.push_back(material); 930 localMaterials.push_back(material); 901 localCouples.push_back(cc); 931 localCouples.push_back(cc); 902 localCuts.push_back(cut); 932 localCuts.push_back(cut); 903 ++nLocalMaterials; << 933 nLocalMaterials++; 904 currentCouple = cc; 934 currentCouple = cc; 905 currentCoupleIndex = currentCouple->GetIndex 935 currentCoupleIndex = currentCouple->GetIndex(); 906 currentCut = cut; 936 currentCut = cut; 907 return true; 937 return true; 908 } 938 } 909 939 910 //....oooOO0OOooo........oooOO0OOooo........oo 940 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 941 912 void G4EmCalculator::FindLambdaTable(const G4P 942 void G4EmCalculator::FindLambdaTable(const G4ParticleDefinition* p, 913 const G4S 943 const G4String& processName, 914 G4double 944 G4double kinEnergy, G4int& proctype) 915 { 945 { 916 // Search for the process 946 // Search for the process 917 if (!currentLambda || p != lambdaParticle || 947 if (!currentLambda || p != lambdaParticle || processName != lambdaName) { 918 lambdaName = processName; 948 lambdaName = processName; 919 currentLambda = nullptr; 949 currentLambda = nullptr; 920 lambdaParticle = p; 950 lambdaParticle = p; 921 isApplicable = false; << 922 951 923 const G4ParticleDefinition* part = (isIon) << 952 const G4ParticleDefinition* part = p; >> 953 if(isIon) { part = theGenericIon; } 924 954 925 // Search for energy loss process 955 // Search for energy loss process 926 currentName = processName; 956 currentName = processName; 927 currentModel = nullptr; 957 currentModel = nullptr; 928 loweModel = nullptr; 958 loweModel = nullptr; 929 959 930 G4VEnergyLossProcess* elproc = FindEnLossP 960 G4VEnergyLossProcess* elproc = FindEnLossProcess(part, processName); 931 if(nullptr != elproc) { << 961 if(elproc) { 932 currentLambda = elproc->LambdaTable(); 962 currentLambda = elproc->LambdaTable(); 933 proctype = 0; 963 proctype = 0; 934 if(nullptr != currentLambda) { << 964 if(currentLambda) { 935 isApplicable = true; 965 isApplicable = true; 936 if(verbose>1) { 966 if(verbose>1) { 937 G4cout << "G4VEnergyLossProcess is f 967 G4cout << "G4VEnergyLossProcess is found out: " << currentName 938 << G4endl; 968 << G4endl; 939 } 969 } 940 } 970 } 941 curProcess = elproc; 971 curProcess = elproc; 942 return; 972 return; 943 } 973 } 944 974 945 // Search for discrete process 975 // Search for discrete process 946 G4VEmProcess* proc = FindDiscreteProcess(p 976 G4VEmProcess* proc = FindDiscreteProcess(part, processName); 947 if(nullptr != proc) { << 977 if(proc) { 948 currentLambda = proc->LambdaTable(); 978 currentLambda = proc->LambdaTable(); 949 proctype = 1; 979 proctype = 1; 950 if(nullptr != currentLambda) { << 980 if(currentLambda) { 951 isApplicable = true; 981 isApplicable = true; 952 if(verbose>1) { 982 if(verbose>1) { 953 G4cout << "G4VEmProcess is found out 983 G4cout << "G4VEmProcess is found out: " << currentName << G4endl; 954 } 984 } 955 } 985 } 956 curProcess = proc; 986 curProcess = proc; 957 return; 987 return; 958 } 988 } 959 989 960 // Search for msc process 990 // Search for msc process 961 G4VMultipleScattering* msc = FindMscProces 991 G4VMultipleScattering* msc = FindMscProcess(part, processName); 962 if(nullptr != msc) { << 992 if(msc) { 963 currentModel = msc->SelectModel(kinEnerg 993 currentModel = msc->SelectModel(kinEnergy,0); 964 proctype = 2; 994 proctype = 2; 965 if(nullptr != currentModel) { << 995 if(currentModel) { 966 currentLambda = currentModel->GetCross 996 currentLambda = currentModel->GetCrossSectionTable(); 967 if(nullptr != currentLambda) { << 997 if(currentLambda) { 968 isApplicable = true; 998 isApplicable = true; 969 if(verbose>1) { 999 if(verbose>1) { 970 G4cout << "G4VMultipleScattering i 1000 G4cout << "G4VMultipleScattering is found out: " << currentName 971 << G4endl; 1001 << G4endl; 972 } 1002 } 973 } 1003 } 974 } 1004 } 975 curProcess = msc; 1005 curProcess = msc; 976 } 1006 } 977 } 1007 } 978 } 1008 } 979 1009 980 //....oooOO0OOooo........oooOO0OOooo........oo 1010 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1011 982 G4bool G4EmCalculator::FindEmModel(const G4Par 1012 G4bool G4EmCalculator::FindEmModel(const G4ParticleDefinition* p, 983 const G4Str 1013 const G4String& processName, 984 G4 1014 G4double kinEnergy) 985 { 1015 { 986 isApplicable = false; 1016 isApplicable = false; 987 if(nullptr == p || nullptr == currentMateria << 1017 if(!p || !currentMaterial) { 988 G4cout << "G4EmCalculator::FindEmModel WAR 1018 G4cout << "G4EmCalculator::FindEmModel WARNING: no particle" 989 << " or materail defined; particle: 1019 << " or materail defined; particle: " << p << G4endl; 990 return isApplicable; 1020 return isApplicable; 991 } 1021 } 992 G4String partname = p->GetParticleName(); 1022 G4String partname = p->GetParticleName(); >> 1023 const G4ParticleDefinition* part = p; 993 G4double scaledEnergy = kinEnergy*massRatio; 1024 G4double scaledEnergy = kinEnergy*massRatio; 994 const G4ParticleDefinition* part = (isIon) ? << 1025 if(isIon) { part = theGenericIon; } 995 1026 996 if(verbose > 1) { 1027 if(verbose > 1) { 997 G4cout << "## G4EmCalculator::FindEmModel 1028 G4cout << "## G4EmCalculator::FindEmModel for " << partname 998 << " (type= " << p->GetParticleType 1029 << " (type= " << p->GetParticleType() 999 << ") and " << processName << " at 1030 << ") and " << processName << " at E(MeV)= " << scaledEnergy 1000 << G4endl; 1031 << G4endl; 1001 if(p != part) { G4cout << " GenericIon i 1032 if(p != part) { G4cout << " GenericIon is the base particle" << G4endl; } 1002 } 1033 } 1003 1034 1004 // Search for energy loss process 1035 // Search for energy loss process 1005 currentName = processName; 1036 currentName = processName; 1006 currentModel = nullptr; 1037 currentModel = nullptr; 1007 loweModel = nullptr; 1038 loweModel = nullptr; 1008 std::size_t idx = 0; << 1039 size_t idx = 0; 1009 1040 1010 G4VEnergyLossProcess* elproc = FindEnLossPr 1041 G4VEnergyLossProcess* elproc = FindEnLossProcess(part, processName); 1011 if(nullptr != elproc) { << 1042 if(elproc) { 1012 currentModel = elproc->SelectModelForMate 1043 currentModel = elproc->SelectModelForMaterial(scaledEnergy, idx); 1013 currentModel->InitialiseForMaterial(part, 1044 currentModel->InitialiseForMaterial(part, currentMaterial); 1014 currentModel->SetupForMaterial(part, curr << 1045 currentModel->SetupForMaterial(part, currentMaterial, scaledEnergy); 1015 G4double eth = currentModel->LowEnergyLim 1046 G4double eth = currentModel->LowEnergyLimit(); 1016 if(eth > 0.0) { 1047 if(eth > 0.0) { 1017 loweModel = elproc->SelectModelForMater 1048 loweModel = elproc->SelectModelForMaterial(eth - CLHEP::eV, idx); 1018 if(loweModel == currentModel) { loweMod 1049 if(loweModel == currentModel) { loweModel = nullptr; } 1019 else { 1050 else { 1020 loweModel->InitialiseForMaterial(part 1051 loweModel->InitialiseForMaterial(part, currentMaterial); 1021 loweModel->SetupForMaterial(part, cur 1052 loweModel->SetupForMaterial(part, currentMaterial, eth - CLHEP::eV); 1022 } 1053 } 1023 } 1054 } 1024 } 1055 } 1025 1056 1026 // Search for discrete process 1057 // Search for discrete process 1027 if(nullptr == currentModel) { << 1058 if(!currentModel) { 1028 G4VEmProcess* proc = FindDiscreteProcess( 1059 G4VEmProcess* proc = FindDiscreteProcess(part, processName); 1029 if(nullptr != proc) { << 1060 if(proc) { 1030 currentModel = proc->SelectModelForMate 1061 currentModel = proc->SelectModelForMaterial(kinEnergy, idx); 1031 currentModel->InitialiseForMaterial(par 1062 currentModel->InitialiseForMaterial(part, currentMaterial); 1032 currentModel->SetupForMaterial(part, cu 1063 currentModel->SetupForMaterial(part, currentMaterial, kinEnergy); 1033 G4double eth = currentModel->LowEnergyL 1064 G4double eth = currentModel->LowEnergyLimit(); 1034 if(eth > 0.0) { 1065 if(eth > 0.0) { 1035 loweModel = proc->SelectModelForMater 1066 loweModel = proc->SelectModelForMaterial(eth - CLHEP::eV, idx); 1036 if(loweModel == currentModel) { loweM 1067 if(loweModel == currentModel) { loweModel = nullptr; } 1037 else { 1068 else { 1038 loweModel->InitialiseForMaterial(pa 1069 loweModel->InitialiseForMaterial(part, currentMaterial); 1039 loweModel->SetupForMaterial(part, c 1070 loweModel->SetupForMaterial(part, currentMaterial, eth - CLHEP::eV); 1040 } 1071 } 1041 } 1072 } 1042 } 1073 } 1043 } 1074 } 1044 1075 1045 // Search for msc process 1076 // Search for msc process 1046 if(nullptr == currentModel) { << 1077 if(!currentModel) { 1047 G4VMultipleScattering* proc = FindMscProc 1078 G4VMultipleScattering* proc = FindMscProcess(part, processName); 1048 if(nullptr != proc) { << 1079 if(proc) { 1049 currentModel = proc->SelectModel(kinEne 1080 currentModel = proc->SelectModel(kinEnergy, idx); 1050 loweModel = nullptr; 1081 loweModel = nullptr; 1051 } 1082 } 1052 } 1083 } 1053 if(nullptr != currentModel) { << 1084 if(currentModel) { 1054 if(loweModel == currentModel) { loweModel 1085 if(loweModel == currentModel) { loweModel = nullptr; } 1055 isApplicable = true; 1086 isApplicable = true; 1056 currentModel->InitialiseForMaterial(part, 1087 currentModel->InitialiseForMaterial(part, currentMaterial); 1057 if(loweModel) { 1088 if(loweModel) { 1058 loweModel->InitialiseForMaterial(part, 1089 loweModel->InitialiseForMaterial(part, currentMaterial); 1059 } 1090 } 1060 if(verbose > 1) { 1091 if(verbose > 1) { 1061 G4cout << " Model <" << currentModel- 1092 G4cout << " Model <" << currentModel->GetName() 1062 << "> Emin(MeV)= " << currentMod 1093 << "> Emin(MeV)= " << currentModel->LowEnergyLimit()/MeV 1063 << " for " << part->GetParticleN 1094 << " for " << part->GetParticleName(); 1064 if(nullptr != elproc) { << 1095 if(elproc) { 1065 G4cout << " and " << elproc->GetProce 1096 G4cout << " and " << elproc->GetProcessName() << " " << elproc 1066 << G4endl; 1097 << G4endl; 1067 } 1098 } 1068 if(nullptr != loweModel) { << 1099 if(loweModel) { 1069 G4cout << " LowEnergy model <" << low 1100 G4cout << " LowEnergy model <" << loweModel->GetName() << ">"; 1070 } 1101 } 1071 G4cout << G4endl; 1102 G4cout << G4endl; 1072 } 1103 } 1073 } 1104 } 1074 return isApplicable; 1105 return isApplicable; 1075 } 1106 } 1076 1107 1077 //....oooOO0OOooo........oooOO0OOooo........o 1108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1078 1109 >> 1110 G4VEnergyLossProcess* G4EmCalculator::FindEnergyLossProcess( >> 1111 const G4ParticleDefinition* p) >> 1112 { >> 1113 G4VEnergyLossProcess* elp = nullptr; >> 1114 G4String partname = p->GetParticleName(); >> 1115 const G4ParticleDefinition* part = p; >> 1116 >> 1117 if(p->GetParticleType() == "nucleus" >> 1118 && currentParticleName != "deuteron" >> 1119 && currentParticleName != "triton" >> 1120 && currentParticleName != "alpha" >> 1121 && currentParticleName != "alpha+" >> 1122 ) { part = theGenericIon; } >> 1123 >> 1124 elp = manager->GetEnergyLossProcess(part); >> 1125 /* >> 1126 G4cout << "\n G4EmCalculator::FindEnergyLossProcess: for " << p->GetParticleName() >> 1127 << " found " << elp->GetProcessName() << " of " >> 1128 << elp->Particle()->GetParticleName() << " " << elp << G4endl; >> 1129 */ >> 1130 return elp; >> 1131 } >> 1132 >> 1133 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1134 1079 G4VEnergyLossProcess* 1135 G4VEnergyLossProcess* 1080 G4EmCalculator::FindEnLossProcess(const G4Par 1136 G4EmCalculator::FindEnLossProcess(const G4ParticleDefinition* part, 1081 const G4Str 1137 const G4String& processName) 1082 { 1138 { 1083 G4VEnergyLossProcess* proc = nullptr; << 1139 G4VEnergyLossProcess* proc = 0; 1084 const std::vector<G4VEnergyLossProcess*> v 1140 const std::vector<G4VEnergyLossProcess*> v = 1085 manager->GetEnergyLossProcessVector(); 1141 manager->GetEnergyLossProcessVector(); 1086 std::size_t n = v.size(); << 1142 G4int n = v.size(); 1087 for(std::size_t i=0; i<n; ++i) { << 1143 for(G4int i=0; i<n; ++i) { 1088 if((v[i])->GetProcessName() == processNam 1144 if((v[i])->GetProcessName() == processName) { 1089 auto p = static_cast<G4VProcess*>(v[i]) << 1145 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1090 if(ActiveForParticle(part, p)) { 1146 if(ActiveForParticle(part, p)) { 1091 proc = v[i]; 1147 proc = v[i]; 1092 break; 1148 break; 1093 } 1149 } 1094 } 1150 } 1095 } 1151 } 1096 return proc; 1152 return proc; 1097 } 1153 } 1098 1154 1099 //....oooOO0OOooo........oooOO0OOooo........o 1155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1100 1156 1101 G4VEmProcess* 1157 G4VEmProcess* 1102 G4EmCalculator::FindDiscreteProcess(const G4P 1158 G4EmCalculator::FindDiscreteProcess(const G4ParticleDefinition* part, 1103 const G4S 1159 const G4String& processName) 1104 { 1160 { 1105 G4VEmProcess* proc = nullptr; 1161 G4VEmProcess* proc = nullptr; 1106 auto v = manager->GetEmProcessVector(); 1162 auto v = manager->GetEmProcessVector(); 1107 std::size_t n = v.size(); << 1163 G4int n = v.size(); 1108 for(std::size_t i=0; i<n; ++i) { << 1164 for(G4int i=0; i<n; ++i) { 1109 const G4String& pName = v[i]->GetProcessN << 1165 auto pName = v[i]->GetProcessName(); 1110 if(pName == "GammaGeneralProc") { 1166 if(pName == "GammaGeneralProc") { 1111 proc = v[i]->GetEmProcess(processName); 1167 proc = v[i]->GetEmProcess(processName); 1112 break; 1168 break; 1113 } else if(pName == processName) { 1169 } else if(pName == processName) { 1114 const auto p = static_cast<G4VProcess*> << 1170 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1115 if(ActiveForParticle(part, p)) { 1171 if(ActiveForParticle(part, p)) { 1116 proc = v[i]; 1172 proc = v[i]; 1117 break; 1173 break; 1118 } 1174 } 1119 } 1175 } 1120 } 1176 } 1121 return proc; 1177 return proc; 1122 } 1178 } 1123 1179 1124 //....oooOO0OOooo........oooOO0OOooo........o 1180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1125 1181 1126 G4VMultipleScattering* 1182 G4VMultipleScattering* 1127 G4EmCalculator::FindMscProcess(const G4Partic 1183 G4EmCalculator::FindMscProcess(const G4ParticleDefinition* part, 1128 const G4String 1184 const G4String& processName) 1129 { 1185 { 1130 G4VMultipleScattering* proc = nullptr; << 1186 G4VMultipleScattering* proc = 0; 1131 const std::vector<G4VMultipleScattering*> v 1187 const std::vector<G4VMultipleScattering*> v = 1132 manager->GetMultipleScatteringVector(); 1188 manager->GetMultipleScatteringVector(); 1133 std::size_t n = v.size(); << 1189 G4int n = v.size(); 1134 for(std::size_t i=0; i<n; ++i) { << 1190 for(G4int i=0; i<n; ++i) { 1135 if((v[i])->GetProcessName() == processNam 1191 if((v[i])->GetProcessName() == processName) { 1136 auto p = static_cast<G4VProcess*>(v[i]) << 1192 G4VProcess* p = reinterpret_cast<G4VProcess*>(v[i]); 1137 if(ActiveForParticle(part, p)) { 1193 if(ActiveForParticle(part, p)) { 1138 proc = v[i]; 1194 proc = v[i]; 1139 break; 1195 break; 1140 } 1196 } 1141 } 1197 } 1142 } 1198 } 1143 return proc; 1199 return proc; 1144 } 1200 } 1145 1201 1146 //....oooOO0OOooo........oooOO0OOooo........o 1202 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1147 1203 1148 G4VProcess* G4EmCalculator::FindProcess(const 1204 G4VProcess* G4EmCalculator::FindProcess(const G4ParticleDefinition* part, 1149 const 1205 const G4String& processName) 1150 { 1206 { 1151 G4VProcess* proc = nullptr; << 1207 G4VProcess* proc = 0; 1152 const G4ProcessManager* procman = part->Get 1208 const G4ProcessManager* procman = part->GetProcessManager(); 1153 G4ProcessVector* pv = procman->GetProcessLi 1209 G4ProcessVector* pv = procman->GetProcessList(); 1154 G4int nproc = (G4int)pv->size(); << 1210 G4int nproc = pv->size(); 1155 for(G4int i=0; i<nproc; ++i) { 1211 for(G4int i=0; i<nproc; ++i) { 1156 if(processName == (*pv)[i]->GetProcessNam 1212 if(processName == (*pv)[i]->GetProcessName()) { 1157 proc = (*pv)[i]; 1213 proc = (*pv)[i]; 1158 break; 1214 break; 1159 } 1215 } 1160 } 1216 } 1161 return proc; 1217 return proc; 1162 } 1218 } 1163 1219 1164 //....oooOO0OOooo........oooOO0OOooo........o 1220 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1165 1221 1166 G4bool G4EmCalculator::ActiveForParticle(cons 1222 G4bool G4EmCalculator::ActiveForParticle(const G4ParticleDefinition* part, 1167 G4VP 1223 G4VProcess* proc) 1168 { 1224 { 1169 G4ProcessManager* pm = part->GetProcessMana 1225 G4ProcessManager* pm = part->GetProcessManager(); 1170 G4ProcessVector* pv = pm->GetProcessList(); 1226 G4ProcessVector* pv = pm->GetProcessList(); 1171 G4int n = (G4int)pv->size(); << 1227 G4int n = pv->size(); 1172 G4bool res = false; 1228 G4bool res = false; 1173 for(G4int i=0; i<n; ++i) { 1229 for(G4int i=0; i<n; ++i) { 1174 if((*pv)[i] == proc) { 1230 if((*pv)[i] == proc) { 1175 if(pm->GetProcessActivation(i)) { res = 1231 if(pm->GetProcessActivation(i)) { res = true; } 1176 break; 1232 break; 1177 } 1233 } 1178 } 1234 } 1179 return res; 1235 return res; 1180 } 1236 } 1181 1237 1182 //....oooOO0OOooo........oooOO0OOooo........o 1238 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1183 1239 1184 void G4EmCalculator::SetupMaterial(const G4Ma 1240 void G4EmCalculator::SetupMaterial(const G4Material* mat) 1185 { 1241 { 1186 if(mat) { 1242 if(mat) { 1187 currentMaterial = mat; 1243 currentMaterial = mat; 1188 currentMaterialName = mat->GetName(); 1244 currentMaterialName = mat->GetName(); 1189 } else { 1245 } else { 1190 currentMaterial = nullptr; << 1246 currentMaterial = 0; 1191 currentMaterialName = ""; 1247 currentMaterialName = ""; 1192 } 1248 } 1193 } 1249 } 1194 1250 1195 //....oooOO0OOooo........oooOO0OOooo........o 1251 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1196 1252 1197 void G4EmCalculator::SetupMaterial(const G4St 1253 void G4EmCalculator::SetupMaterial(const G4String& mname) 1198 { 1254 { 1199 SetupMaterial(nist->FindOrBuildMaterial(mna 1255 SetupMaterial(nist->FindOrBuildMaterial(mname)); 1200 } 1256 } 1201 1257 1202 //....oooOO0OOooo........oooOO0OOooo........o 1258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1203 1259 1204 void G4EmCalculator::CheckMaterial(G4int Z) 1260 void G4EmCalculator::CheckMaterial(G4int Z) 1205 { 1261 { 1206 G4bool isFound = false; 1262 G4bool isFound = false; 1207 if(nullptr != currentMaterial) { << 1263 if(currentMaterial) { 1208 G4int nn = (G4int)currentMaterial->GetNum << 1264 size_t nn = currentMaterial->GetNumberOfElements(); 1209 for(G4int i=0; i<nn; ++i) { << 1265 for(size_t i=0; i<nn; ++i) { 1210 if(Z == currentMaterial->GetElement(i)- 1266 if(Z == currentMaterial->GetElement(i)->GetZasInt()) { 1211 isFound = true; 1267 isFound = true; 1212 break; 1268 break; 1213 } 1269 } 1214 } 1270 } 1215 } 1271 } 1216 if(!isFound) { 1272 if(!isFound) { 1217 SetupMaterial(nist->FindOrBuildSimpleMate 1273 SetupMaterial(nist->FindOrBuildSimpleMaterial(Z)); 1218 } 1274 } 1219 } 1275 } 1220 1276 1221 //....oooOO0OOooo........oooOO0OOooo........o 1277 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1222 1278 1223 void G4EmCalculator::SetVerbose(G4int verb) 1279 void G4EmCalculator::SetVerbose(G4int verb) 1224 { 1280 { 1225 verbose = verb; 1281 verbose = verb; 1226 } 1282 } 1227 1283 1228 //....oooOO0OOooo........oooOO0OOooo........o 1284 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1229 1285 1230 1286