Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.hh,v 1.93 2010-10-14 16:27:35 vnivanch Exp $ >> 27 // GEANT4 tag $Name: 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 37 // 39 // 38 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 44 // 24-01-03 Make models region aware (V.Ivanchenko) >> 45 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 46 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 47 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 48 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 49 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 50 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 51 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 52 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 53 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 54 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 55 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 56 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 57 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) >> 58 // 03-08-04 Add DEDX table to all processes for control on integral range(VI) >> 59 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 60 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 61 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 62 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 63 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 64 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 65 // 10-01-05 Remove SetStepLimits (V.Ivanchenko) >> 66 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 67 // 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko) >> 68 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 69 // 26-01-06 Add public method GetCSDARange (V.Ivanchenko) >> 70 // 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko) >> 71 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 72 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 73 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 74 // 15-01-07 Add separate ionisation tables and reorganise get/set methods for >> 75 // dedx tables (V.Ivanchenko) >> 76 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 77 // 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko) >> 78 // 25-09-07 More accurate handling zero xsect in >> 79 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 80 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 81 // 15-07-08 Reorder class members for further multi-thread development (VI) 39 // 82 // 40 // Class Description: 83 // Class Description: 41 // 84 // 42 // It is the unified energy loss process it ca 85 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 86 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 87 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 88 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 89 // that information on fly. 47 90 48 // ------------------------------------------- 91 // ------------------------------------------------------------------- 49 // 92 // 50 93 51 #ifndef G4VEnergyLossProcess_h 94 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 95 #define G4VEnergyLossProcess_h 1 53 96 54 #include "G4VContinuousDiscreteProcess.hh" 97 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 98 #include "globals.hh" 56 #include "G4Material.hh" 99 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 100 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 101 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 102 #include "G4EmModelManager.hh" >> 103 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 104 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" 105 #include "G4EmTableType.hh" 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" 106 #include "G4PhysicsTable.hh" 64 #include "G4PhysicsVector.hh" 107 #include "G4PhysicsVector.hh" 65 108 66 class G4Step; 109 class G4Step; 67 class G4ParticleDefinition; 110 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 111 class G4VEmModel; 70 class G4VEmFluctuationModel; 112 class G4VEmFluctuationModel; 71 class G4DataVector; 113 class G4DataVector; 72 class G4Region; 114 class G4Region; 73 class G4SafetyHelper; 115 class G4SafetyHelper; 74 class G4VAtomDeexcitation; 116 class G4VAtomDeexcitation; 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; 117 class G4EmBiasingManager; 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 118 80 //....oooOO0OOooo........oooOO0OOooo........oo 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 120 82 class G4VEnergyLossProcess : public G4VContinu 121 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 122 { 84 public: 123 public: 85 124 86 G4VEnergyLossProcess(const G4String& name = 125 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 126 G4ProcessType type = fElectromagnetic); >> 127 >> 128 virtual ~G4VEnergyLossProcess(); 88 129 89 ~G4VEnergyLossProcess() override; << 130 private: >> 131 // clean vectors and arrays >> 132 void Clean(); 90 133 91 //------------------------------------------ 134 //------------------------------------------------------------------------ 92 // Virtual methods to be implemented in conc 135 // Virtual methods to be implemented in concrete processes 93 //------------------------------------------ 136 //------------------------------------------------------------------------ 94 137 95 protected: << 138 public: >> 139 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; >> 140 >> 141 virtual void PrintInfo() = 0; 96 142 97 // description of specific process parameter << 143 protected: 98 virtual void StreamProcessInfo(std::ostream& << 99 144 100 virtual void InitialiseEnergyLossProcess(con 145 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*, 101 con 146 const G4ParticleDefinition*) = 0; 102 147 103 public: << 148 //------------------------------------------------------------------------ >> 149 // Methods with standard implementation; may be overwritten if needed >> 150 //------------------------------------------------------------------------ 104 151 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa 152 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 107 const G4Ma << 153 const G4Material*, G4double cut); >> 154 >> 155 //------------------------------------------------------------------------ >> 156 // Virtual methods implementation common to all EM ContinuousDiscrete >> 157 // processes. Further inheritance is not assumed >> 158 //------------------------------------------------------------------------ 108 159 109 // print documentation in html format << 160 public: 110 void ProcessDescription(std::ostream& outFil << 111 161 112 // prepare all tables 162 // prepare all tables 113 void PreparePhysicsTable(const G4ParticleDef << 163 void PreparePhysicsTable(const G4ParticleDefinition&); 114 164 115 // build all tables 165 // build all tables 116 void BuildPhysicsTable(const G4ParticleDefin << 166 void BuildPhysicsTable(const G4ParticleDefinition&); 117 167 118 // build a table 168 // build a table 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType 169 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted); 120 170 121 // build a table 171 // build a table 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy 172 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted); 123 173 124 // Called before tracking of each new G4Trac << 174 // summary printout after initialisation 125 void StartTracking(G4Track*) override; << 175 void PrintInfoDefinition(); 126 176 127 // Step limit from AlongStep 177 // Step limit from AlongStep 128 G4double AlongStepGetPhysicalInteractionLeng << 178 G4double AlongStepGetPhysicalInteractionLength(const G4Track&, 129 const G4Trac << 179 G4double previousStepSize, 130 G4double pr << 180 G4double currentMinimumStep, 131 G4double cu << 181 G4double& currentSafety, 132 G4double& cu << 182 G4GPILSelection* selection); 133 G4GPILSelect << 134 183 135 // Step limit from cross section 184 // Step limit from cross section 136 G4double PostStepGetPhysicalInteractionLengt << 185 G4double PostStepGetPhysicalInteractionLength(const G4Track& track, 137 const G4Trac << 186 G4double previousStepSize, 138 G4double pre << 187 G4ForceCondition* condition); 139 G4ForceCondi << 140 188 141 // AlongStep computations 189 // AlongStep computations 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 190 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); >> 191 >> 192 // Sampling of secondaries in vicinity of geometrical boundary >> 193 // Return sum of secodaries energy >> 194 G4double SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, >> 195 G4VEmModel* model, G4int matIdx); 143 196 144 // PostStep sampling of secondaries 197 // PostStep sampling of secondaries 145 G4VParticleChange* PostStepDoIt(const G4Trac << 198 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 146 199 147 // Store all PhysicsTable in files. 200 // Store all PhysicsTable in files. 148 // Return false in case of any fatal failure 201 // Return false in case of any fatal failure at I/O 149 G4bool StorePhysicsTable(const G4ParticleDef 202 G4bool StorePhysicsTable(const G4ParticleDefinition*, 150 const G4String& dir 203 const G4String& directory, 151 G4bool ascii = fals << 204 G4bool ascii = false); 152 205 153 // Retrieve all Physics from a files. 206 // Retrieve all Physics from a files. 154 // Return true if all the Physics Table are 207 // Return true if all the Physics Table are built. 155 // Return false if any fatal failure. 208 // Return false if any fatal failure. 156 G4bool RetrievePhysicsTable(const G4Particle 209 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 157 const G4String& 210 const G4String& directory, 158 G4bool ascii) ov << 211 G4bool ascii); 159 212 160 private: 213 private: 161 << 214 // store a table 162 // summary printout after initialisation << 215 G4bool StoreTable(const G4ParticleDefinition* p, 163 void StreamInfo(std::ostream& out, const G4P << 216 G4PhysicsTable*, G4bool ascii, 164 G4bool rst=false) const; << 217 const G4String& directory, >> 218 const G4String& tname); >> 219 >> 220 // retrieve a table >> 221 G4bool RetrieveTable(const G4ParticleDefinition* p, >> 222 G4PhysicsTable*, G4bool ascii, >> 223 const G4String& directory, >> 224 const G4String& tname, >> 225 G4bool mandatory); 165 226 166 //------------------------------------------ 227 //------------------------------------------------------------------------ 167 // Public interface to cross section, mfp an 228 // Public interface to cross section, mfp and sampling of fluctuations 168 // These methods are not used in run time 229 // These methods are not used in run time 169 //------------------------------------------ 230 //------------------------------------------------------------------------ 170 231 171 public: 232 public: 172 << 173 // access to dispersion of restricted energy 233 // access to dispersion of restricted energy loss 174 G4double GetDEDXDispersion(const G4MaterialC 234 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 175 const G4DynamicPa << 235 const G4DynamicParticle* dp, 176 G4double length); << 236 G4double length); 177 237 178 // Access to cross section table 238 // Access to cross section table 179 G4double CrossSectionPerVolume(G4double kine 239 G4double CrossSectionPerVolume(G4double kineticEnergy, 180 const G4Mater << 240 const G4MaterialCutsCouple* couple); 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 241 185 // access to cross section 242 // access to cross section 186 G4double MeanFreePath(const G4Track& track); 243 G4double MeanFreePath(const G4Track& track); 187 244 188 // access to step limit 245 // access to step limit 189 G4double ContinuousStepLimit(const G4Track& 246 G4double ContinuousStepLimit(const G4Track& track, 190 G4double previo << 247 G4double previousStepSize, 191 G4double curren << 248 G4double currentMinimumStep, 192 G4double& curre << 249 G4double& currentSafety); 193 250 194 protected: 251 protected: 195 252 196 // implementation of the pure virtual method 253 // implementation of the pure virtual method 197 G4double GetMeanFreePath(const G4Track& trac 254 G4double GetMeanFreePath(const G4Track& track, 198 G4double previousSt << 255 G4double previousStepSize, 199 G4ForceCondition* c << 256 G4ForceCondition* condition); 200 257 201 // implementation of the pure virtual method 258 // implementation of the pure virtual method 202 G4double GetContinuousStepLimit(const G4Trac 259 G4double GetContinuousStepLimit(const G4Track& track, 203 G4double pre << 260 G4double previousStepSize, 204 G4double cur << 261 G4double currentMinimumStep, 205 G4double& cu << 262 G4double& currentSafety); >> 263 >> 264 //------------------------------------------------------------------------ >> 265 // Run time method which may be also used by derived processes >> 266 //------------------------------------------------------------------------ 206 267 207 // creation of an empty vector for cross sec << 268 // creeation of an empty vector for cross section 208 G4PhysicsVector* LambdaPhysicsVector(const G 269 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 209 G4doubl << 270 G4double cut); >> 271 >> 272 inline size_t CurrentMaterialCutsCoupleIndex() const; 210 273 211 inline std::size_t CurrentMaterialCutsCouple << 274 inline G4double GetCurrentRange() const; 212 275 213 //------------------------------------------ 276 //------------------------------------------------------------------------ 214 // Specific methods to set, access, modify m 277 // Specific methods to set, access, modify models 215 //------------------------------------------ 278 //------------------------------------------------------------------------ 216 279 217 // Select model in run time 280 // Select model in run time 218 inline void SelectModel(G4double kinEnergy); 281 inline void SelectModel(G4double kinEnergy); 219 282 220 public: 283 public: 221 // Select model by energy and couple index << 284 // Select model by energy and region index 222 // Not for run time processing << 223 inline G4VEmModel* SelectModelForMaterial(G4 285 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 224 st << 286 size_t& idx) const; 225 287 226 // Add EM model coupled with fluctuation mod 288 // Add EM model coupled with fluctuation model for region, smaller value 227 // of order defines which pair of models wil 289 // of order defines which pair of models will be selected for a given 228 // energy interval 290 // energy interval 229 void AddEmModel(G4int, G4VEmModel*, 291 void AddEmModel(G4int, G4VEmModel*, 230 G4VEmFluctuationModel* fluc << 292 G4VEmFluctuationModel* fluc = 0, 231 const G4Region* region = nul << 293 const G4Region* region = 0); 232 294 233 // Assign a model to a process local list, t << 295 // Define new energy range for the model identified by the name 234 // the derived process should execute AddEmM << 296 void UpdateEmModel(const G4String&, G4double, G4double); 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 297 237 // Access to models << 298 // Assign a model to a process 238 inline std::size_t NumberOfModels() const; << 299 void SetEmModel(G4VEmModel*, G4int index=1); 239 300 240 // Return a model from the local list << 301 // return the assigned model 241 inline G4VEmModel* EmModel(std::size_t index << 302 G4VEmModel* EmModel(G4int index=1); 242 303 243 // Access to models from G4EmModelManager li << 304 // Access to models 244 inline G4VEmModel* GetModelByIndex(std::size << 305 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false); >> 306 >> 307 G4int NumberOfModels(); 245 308 246 // Assign a fluctuation model to a process 309 // Assign a fluctuation model to a process 247 inline void SetFluctModel(G4VEmFluctuationMo << 310 void SetFluctModel(G4VEmFluctuationModel*); 248 311 249 // Return the assigned fluctuation model << 312 // return the assigned fluctuation model 250 inline G4VEmFluctuationModel* FluctModel() c << 313 inline G4VEmFluctuationModel* FluctModel(); 251 314 252 //------------------------------------------ 315 //------------------------------------------------------------------------ 253 // Define and access particle type 316 // Define and access particle type 254 //------------------------------------------ 317 //------------------------------------------------------------------------ 255 318 256 protected: 319 protected: 257 inline void SetParticle(const G4ParticleDefi 320 inline void SetParticle(const G4ParticleDefinition* p); 258 inline void SetSecondaryParticle(const G4Par 321 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 259 322 260 public: 323 public: 261 inline void SetBaseParticle(const G4Particle 324 inline void SetBaseParticle(const G4ParticleDefinition* p); 262 inline const G4ParticleDefinition* Particle( 325 inline const G4ParticleDefinition* Particle() const; 263 inline const G4ParticleDefinition* BaseParti 326 inline const G4ParticleDefinition* BaseParticle() const; 264 inline const G4ParticleDefinition* Secondary 327 inline const G4ParticleDefinition* SecondaryParticle() const; 265 328 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ 329 //------------------------------------------------------------------------ 271 // Get/set parameters to configure the proce 330 // Get/set parameters to configure the process at initialisation time 272 //------------------------------------------ 331 //------------------------------------------------------------------------ 273 332 274 // Add subcut processor for the region << 333 // Add subcutoff option for the region 275 void ActivateSubCutoff(const G4Region* regio << 334 void ActivateSubCutoff(G4bool val, const G4Region* region = 0); 276 335 277 // Activate biasing 336 // Activate biasing 278 void SetCrossSectionBiasingFactor(G4double f 337 void SetCrossSectionBiasingFactor(G4double f, G4bool flag = true); 279 338 280 void ActivateForcedInteraction(G4double leng << 339 void ActivateForcedInteraction(G4double length = 0.0, 281 const G4Strin << 340 const G4String& region = "", 282 G4bool flag = << 341 G4bool flag = true); 283 342 284 void ActivateSecondaryBiasing(const G4String 343 void ActivateSecondaryBiasing(const G4String& region, G4double factor, 285 G4double energ << 344 G4double energyLimit); >> 345 >> 346 // Add subcutoff process (bremsstrahlung) to sample secondary >> 347 // particle production in vicinity of the geometry boundary >> 348 void AddCollaborativeProcess(G4VEnergyLossProcess*); 286 349 287 inline void SetLossFluctuations(G4bool val); 350 inline void SetLossFluctuations(G4bool val); >> 351 inline void SetRandomStep(G4bool val); 288 352 289 inline void SetSpline(G4bool val); << 353 inline void SetIntegral(G4bool val); 290 inline void SetCrossSectionType(G4CrossSecti << 354 inline G4bool IsIntegral() const; 291 inline G4CrossSectionType CrossSectionType() << 292 355 293 // Set/Get flag "isIonisation" 356 // Set/Get flag "isIonisation" 294 void SetIonisation(G4bool val); << 357 inline void SetIonisation(G4bool val); 295 inline G4bool IsIonisationProcess() const; 358 inline G4bool IsIonisationProcess() const; 296 359 297 // Redefine parameteters for stepping contro 360 // Redefine parameteters for stepping control 298 void SetLinearLossLimit(G4double val); << 361 inline void SetLinearLossLimit(G4double val); 299 void SetStepFunction(G4double v1, G4double v << 362 inline void SetMinSubRange(G4double val); 300 void SetLowestEnergyLimit(G4double); << 363 inline void SetLambdaFactor(G4double val); >> 364 inline void SetStepFunction(G4double v1, G4double v2); >> 365 inline void SetLowestEnergyLimit(G4double); 301 366 302 inline G4int NumberOfSubCutoffRegions() cons 367 inline G4int NumberOfSubCutoffRegions() const; 303 368 304 //------------------------------------------ 369 //------------------------------------------------------------------------ 305 // Specific methods to path Physics Tables t 370 // Specific methods to path Physics Tables to the process 306 //------------------------------------------ 371 //------------------------------------------------------------------------ 307 372 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab 373 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType); 309 void SetCSDARangeTable(G4PhysicsTable* pRang 374 void SetCSDARangeTable(G4PhysicsTable* pRange); 310 void SetRangeTableForLoss(G4PhysicsTable* p) 375 void SetRangeTableForLoss(G4PhysicsTable* p); >> 376 void SetSecondaryRangeTable(G4PhysicsTable* p); 311 void SetInverseRangeTable(G4PhysicsTable* p) 377 void SetInverseRangeTable(G4PhysicsTable* p); 312 void SetLambdaTable(G4PhysicsTable* p); << 313 378 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 379 void SetLambdaTable(G4PhysicsTable* p); 315 void SetEnergyOfCrossSectionMax(std::vector< << 380 void SetSubLambdaTable(G4PhysicsTable* p); 316 381 317 //------------------------------------------ << 382 // Binning for dEdx, range, inverse range and labda tables 318 // Specific methods to define custom Physics << 383 inline void SetDEDXBinning(G4int nbins); 319 //------------------------------------------ << 384 inline void SetLambdaBinning(G4int nbins); 320 385 321 // Binning for dEdx, range, inverse range an << 386 // Binning for dEdx, range, and inverse range tables 322 void SetDEDXBinning(G4int nbins); << 387 inline void SetDEDXBinningForCSDARange(G4int nbins); 323 388 324 // Min kinetic energy for tables 389 // Min kinetic energy for tables 325 void SetMinKinEnergy(G4double e); << 390 inline void SetMinKinEnergy(G4double e); 326 inline G4double MinKinEnergy() const; 391 inline G4double MinKinEnergy() const; 327 392 328 // Max kinetic energy for tables 393 // Max kinetic energy for tables 329 void SetMaxKinEnergy(G4double e); << 394 inline void SetMaxKinEnergy(G4double e); 330 inline G4double MaxKinEnergy() const; 395 inline G4double MaxKinEnergy() const; 331 396 >> 397 // Max kinetic energy for tables >> 398 inline void SetMaxKinEnergyForCSDARange(G4double e); >> 399 332 // Biasing parameters 400 // Biasing parameters 333 inline G4double CrossSectionBiasingFactor() 401 inline G4double CrossSectionBiasingFactor() const; 334 402 335 // Return values for given G4MaterialCutsCou 403 // Return values for given G4MaterialCutsCouple 336 inline G4double GetDEDX(G4double kineticEner << 404 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*); 337 inline G4double GetCSDADEDX(G4double kinetic << 405 inline G4double GetDEDXForSubsec(G4double& kineticEnergy, 338 const G4Material << 406 const G4MaterialCutsCouple*); 339 inline G4double GetDEDX(G4double kineticEner << 407 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 340 G4double logKineticE << 408 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 341 inline G4double GetRange(G4double kineticEne << 409 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*); 342 inline G4double GetRange(G4double kineticEne << 410 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*); 343 G4double logKinetic << 411 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*); 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 412 352 inline G4bool TablesAreBuilt() const; 413 inline G4bool TablesAreBuilt() const; 353 414 354 // Access to specific tables 415 // Access to specific tables 355 inline G4PhysicsTable* DEDXTable() const; 416 inline G4PhysicsTable* DEDXTable() const; >> 417 inline G4PhysicsTable* DEDXTableForSubsec() const; 356 inline G4PhysicsTable* DEDXunRestrictedTable 418 inline G4PhysicsTable* DEDXunRestrictedTable() const; 357 inline G4PhysicsTable* IonisationTable() con 419 inline G4PhysicsTable* IonisationTable() const; >> 420 inline G4PhysicsTable* IonisationTableForSubsec() const; 358 inline G4PhysicsTable* CSDARangeTable() cons 421 inline G4PhysicsTable* CSDARangeTable() const; 359 inline G4PhysicsTable* RangeTableForLoss() c 422 inline G4PhysicsTable* RangeTableForLoss() const; 360 inline G4PhysicsTable* InverseRangeTable() c 423 inline G4PhysicsTable* InverseRangeTable() const; 361 inline G4PhysicsTable* LambdaTable() const; << 424 inline G4PhysicsTable* LambdaTable(); 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 425 inline G4PhysicsTable* SubLambdaTable(); 363 inline std::vector<G4double>* EnergyOfCrossS << 364 << 365 inline G4bool UseBaseMaterial() const; << 366 426 367 //------------------------------------------ 427 //------------------------------------------------------------------------ 368 // Run time method for simulation of ionisat 428 // Run time method for simulation of ionisation 369 //------------------------------------------ 429 //------------------------------------------------------------------------ 370 430 371 // access atom on which interaction happens 431 // access atom on which interaction happens 372 const G4Element* GetCurrentElement() const; 432 const G4Element* GetCurrentElement() const; 373 433 >> 434 // sample range at the end of a step >> 435 // inline G4double SampleRange(); >> 436 374 // Set scaling parameters for ions is needed 437 // Set scaling parameters for ions is needed to G4EmCalculator 375 void SetDynamicMassCharge(G4double massratio << 438 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio); 376 439 377 private: 440 private: 378 441 379 void FillSecondariesAlongStep(G4double weigh << 442 void FillSecondariesAlongStep(G4double& eloss, G4double& weight); 380 << 381 void PrintWarning(const G4String&, G4double << 382 443 383 // define material and indexes 444 // define material and indexes 384 inline void DefineMaterial(const G4MaterialC 445 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 385 446 386 //------------------------------------------ 447 //------------------------------------------------------------------------ 387 // Compute values using scaling relation, ma 448 // Compute values using scaling relation, mass and charge of based particle 388 //------------------------------------------ 449 //------------------------------------------------------------------------ 389 inline G4double GetDEDXForScaledEnergy(G4dou << 390 inline G4double GetDEDXForScaledEnergy(G4dou << 391 G4dou << 392 inline G4double GetIonisationForScaledEnergy << 393 inline G4double GetScaledRangeForScaledEnerg << 394 inline G4double GetScaledRangeForScaledEnerg << 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 450 >> 451 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy); >> 452 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy); >> 453 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy); >> 454 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy); >> 455 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy); >> 456 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy); 401 inline G4double ScaledKinEnergyForLoss(G4dou 457 inline G4double ScaledKinEnergyForLoss(G4double range); 402 inline G4double GetLambdaForScaledEnergy(G4d << 458 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy); 403 inline G4double GetLambdaForScaledEnergy(G4d << 459 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy); 404 G4d << 405 460 406 inline G4double LogScaledEkin(const G4Track& << 461 // hide assignment operator 407 << 462 G4VEnergyLossProcess(G4VEnergyLossProcess &); 408 void ComputeLambdaForScaledEnergy(G4double s << 463 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 409 const G4Tr << 410 464 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 465 // ======== Parameters of the class fixed at construction ========= 412 466 413 protected: << 467 G4EmModelManager* modelManager; >> 468 G4EmBiasingManager* biasManager; >> 469 G4SafetyHelper* safetyHelper; 414 470 415 G4ParticleChangeForLoss fParticleChange; << 471 const G4ParticleDefinition* secondaryParticle; 416 const G4Material* currentMaterial << 472 const G4ParticleDefinition* theElectron; 417 const G4MaterialCutsCouple* currentCouple = << 473 const G4ParticleDefinition* thePositron; >> 474 const G4ParticleDefinition* theGamma; >> 475 const G4ParticleDefinition* theGenericIon; >> 476 >> 477 // G4PhysicsVector* vstrag; >> 478 >> 479 // ======== Parameters of the class fixed at initialisation ======= >> 480 >> 481 std::vector<G4VEmModel*> emModels; >> 482 G4VEmFluctuationModel* fluctModel; >> 483 G4VAtomDeexcitation* atomDeexcitation; >> 484 std::vector<const G4Region*> scoffRegions; >> 485 G4int nSCoffRegions; >> 486 G4bool* idxSCoffRegions; >> 487 >> 488 std::vector<G4VEnergyLossProcess*> scProcesses; >> 489 G4int nProcesses; >> 490 >> 491 // tables and vectors >> 492 G4PhysicsTable* theDEDXTable; >> 493 G4PhysicsTable* theDEDXSubTable; >> 494 G4PhysicsTable* theDEDXunRestrictedTable; >> 495 G4PhysicsTable* theIonisationTable; >> 496 G4PhysicsTable* theIonisationSubTable; >> 497 G4PhysicsTable* theRangeTableForLoss; >> 498 G4PhysicsTable* theCSDARangeTable; >> 499 G4PhysicsTable* theSecondaryRangeTable; >> 500 G4PhysicsTable* theInverseRangeTable; >> 501 G4PhysicsTable* theLambdaTable; >> 502 G4PhysicsTable* theSubLambdaTable; >> 503 >> 504 std::vector<G4double> theDEDXAtMaxEnergy; >> 505 std::vector<G4double> theRangeAtMaxEnergy; >> 506 std::vector<G4double> theEnergyOfCrossSectionMax; >> 507 std::vector<G4double> theCrossSectionMax; >> 508 >> 509 const std::vector<G4double>* theDensityFactor; >> 510 const std::vector<G4int>* theDensityIdx; 418 511 419 private: << 512 const G4DataVector* theCuts; >> 513 const G4DataVector* theSubCuts; 420 514 421 G4LossTableManager* lManager; << 515 const G4ParticleDefinition* baseParticle; 422 G4EmModelManager* modelManager; << 423 G4VEmModel* currentModel = n << 424 G4EmBiasingManager* biasManager = nu << 425 G4SafetyHelper* safetyHelper; << 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 516 450 std::vector<G4double>* theEnergyOfCrossSecti << 517 G4int nBins; 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 518 G4int nBinsCSDA; 452 519 453 G4double lowestKinEnergy; 520 G4double lowestKinEnergy; 454 G4double minKinEnergy; 521 G4double minKinEnergy; 455 G4double maxKinEnergy; 522 G4double maxKinEnergy; 456 G4double maxKinEnergyCSDA; 523 G4double maxKinEnergyCSDA; 457 524 458 G4double linLossLimit = 0.01; << 525 G4double linLossLimit; 459 G4double dRoverRange = 0.2; << 526 G4double minSubRange; >> 527 G4double dRoverRange; 460 G4double finalRange; 528 G4double finalRange; 461 G4double lambdaFactor = 0.8; << 529 G4double lambdaFactor; 462 G4double invLambdaFactor; << 530 G4double biasFactor; 463 G4double biasFactor = 1.0; << 531 464 << 532 G4bool lossFluctuationFlag; 465 G4double massRatio = 1.0; << 533 G4bool rndmStepFlag; 466 G4double logMassRatio = 0.0; << 534 G4bool tablesAreBuilt; 467 G4double fFactor = 1.0; << 535 G4bool integral; 468 G4double reduceFactor = 1.0; << 536 G4bool isIon; 469 G4double chargeSqRatio = 1.0; << 537 G4bool isIonisation; 470 G4double fRange = 0.0; << 538 G4bool useSubCutoff; 471 G4double fRangeEnergy = 0.0; << 539 G4bool useDeexcitation; >> 540 G4bool biasFlag; >> 541 G4bool weightFlag; 472 542 473 protected: 543 protected: 474 544 475 G4double preStepLambda = 0.0; << 545 G4ParticleChangeForLoss fParticleChange; 476 G4double preStepKinEnergy = 0.0; << 477 G4double preStepScaledEnergy = 0.0; << 478 G4double mfpKinEnergy = 0.0; << 479 546 480 std::size_t currentCoupleIndex = 0; << 547 // ======== Cashed values - may be state dependent ================ 481 548 482 private: 549 private: 483 550 484 G4int nBins; << 551 std::vector<G4DynamicParticle*> secParticles; 485 G4int nBinsCSDA; << 552 std::vector<G4Track*> scTracks; 486 G4int numberOfModels = 0; << 553 487 G4int nSCoffRegions = 0; << 554 const G4ParticleDefinition* particle; 488 G4int secID = _DeltaElectron; << 555 489 G4int tripletID = _TripletElectron; << 556 G4VEmModel* currentModel; 490 G4int biasID = _DeltaEBelowCut; << 557 const G4Material* currentMaterial; 491 G4int epixeID = _ePIXE; << 558 const G4MaterialCutsCouple* currentCouple; 492 G4int gpixeID = _GammaPIXE; << 559 size_t currentCoupleIndex; 493 G4int mainSecondaries = 1; << 560 size_t basedCoupleIndex; 494 << 561 495 std::size_t basedCoupleIndex = 0; << 562 G4int nWarnings; 496 std::size_t coupleIdxRange = 0; << 563 497 std::size_t idxDEDX = 0; << 564 G4double massRatio; 498 std::size_t idxDEDXunRestricted = 0; << 565 G4double fFactor; 499 std::size_t idxIonisation = 0; << 566 G4double reduceFactor; 500 std::size_t idxRange = 0; << 567 G4double chargeSqRatio; 501 std::size_t idxCSDA = 0; << 568 502 std::size_t idxSecRange = 0; << 569 G4double preStepLambda; 503 std::size_t idxInverseRange = 0; << 570 G4double fRange; 504 std::size_t idxLambda = 0; << 571 G4double preStepKinEnergy; 505 << 572 G4double preStepScaledEnergy; 506 G4GPILSelection aGPILSelection; << 573 G4double mfpKinEnergy; 507 G4CrossSectionType fXSType = fEmOnePeak; << 574 508 << 575 G4GPILSelection aGPILSelection; 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 576 526 std::vector<G4DynamicParticle*> secParticles << 527 std::vector<G4Track*> scTracks; << 528 }; 577 }; 529 578 530 // ======== Run time inline methods ========== 579 // ======== Run time inline methods ================ 531 580 532 inline std::size_t G4VEnergyLossProcess::Curre << 581 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 533 { 582 { 534 return currentCoupleIndex; 583 return currentCoupleIndex; 535 } 584 } 536 585 537 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 587 >> 588 inline G4double G4VEnergyLossProcess::GetCurrentRange() const >> 589 { >> 590 return fRange; >> 591 } >> 592 >> 593 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 594 539 inline void G4VEnergyLossProcess::SelectModel( 595 inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 540 { 596 { 541 currentModel = modelManager->SelectModel(kin 597 currentModel = modelManager->SelectModel(kinEnergy, currentCoupleIndex); 542 currentModel->SetCurrentCouple(currentCouple 598 currentModel->SetCurrentCouple(currentCouple); 543 } 599 } 544 600 545 //....oooOO0OOooo........oooOO0OOooo........oo 601 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 546 602 547 inline G4VEmModel* G4VEnergyLossProcess::Selec 603 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( 548 G4double kinEnergy, std::si << 604 G4double kinEnergy, size_t& idx) const 549 { 605 { 550 return modelManager->SelectModel(kinEnergy, 606 return modelManager->SelectModel(kinEnergy, idx); 551 } 607 } 552 608 553 //....oooOO0OOooo........oooOO0OOooo........oo 609 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 554 610 555 inline void 611 inline void 556 G4VEnergyLossProcess::DefineMaterial(const G4M 612 G4VEnergyLossProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 557 { 613 { 558 if(couple != currentCouple) { 614 if(couple != currentCouple) { 559 currentCouple = couple; << 615 currentCouple = couple; 560 currentMaterial = couple->GetMaterial(); 616 currentMaterial = couple->GetMaterial(); 561 basedCoupleIndex = currentCoupleIndex = co << 617 currentCoupleIndex = couple->GetIndex(); 562 fFactor = chargeSqRatio*biasFactor; << 618 basedCoupleIndex = (*theDensityIdx)[currentCoupleIndex]; 563 mfpKinEnergy = DBL_MAX; << 619 fFactor = chargeSqRatio*biasFactor*(*theDensityFactor)[currentCoupleIndex]; 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); 620 reduceFactor = 1.0/(fFactor*massRatio); >> 621 mfpKinEnergy = DBL_MAX; 570 } 622 } 571 } 623 } 572 624 573 //....oooOO0OOooo........oooOO0OOooo........oo 625 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 626 >> 627 inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio, >> 628 G4double charge2ratio) >> 629 { >> 630 massRatio = massratio; >> 631 fFactor *= charge2ratio/chargeSqRatio; >> 632 chargeSqRatio = charge2ratio; >> 633 reduceFactor = 1.0/(fFactor*massRatio); >> 634 } >> 635 >> 636 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 637 575 inline G4double G4VEnergyLossProcess::GetDEDXF 638 inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e) 576 { 639 { 577 /* << 640 G4double x = fFactor*(*theDEDXTable)[basedCoupleIndex]->Value(e); 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 579 << basedCoupleIndex << " E(MeV)= " << 580 << " Emin= " << minKinEnergy << " Fa << 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK 641 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 584 return x; 642 return x; 585 } 643 } 586 644 587 //....oooOO0OOooo........oooOO0OOooo........oo 645 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 588 646 589 inline << 647 inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e) 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { 648 { 592 /* << 649 G4double x = fFactor*(*theDEDXSubTable)[basedCoupleIndex]->Value(e); 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 594 << basedCoupleIndex << " E(MeV)= " << 595 << " Emin= " << minKinEnergy << " Fa << 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK 650 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 599 return x; 651 return x; 600 } 652 } 601 653 602 //....oooOO0OOooo........oooOO0OOooo........oo 654 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 603 655 604 inline G4double G4VEnergyLossProcess::GetIonis 656 inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e) 605 { 657 { 606 G4double x = << 658 G4double x = fFactor*(*theIonisationTable)[basedCoupleIndex]->Value(e); 607 fFactor*(*theIonisationTable)[basedCoupleI << 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK 659 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 609 return x; 660 return x; 610 } 661 } 611 662 612 //....oooOO0OOooo........oooOO0OOooo........oo 663 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 613 664 614 inline G4double G4VEnergyLossProcess::GetScale << 665 inline 615 { << 666 G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e) 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 617 // << basedCoupleIndex << " E(MeV)= << 618 // << " lastIdx= " << lastIdx << " << 619 if(currentCoupleIndex != coupleIdxRange || f << 620 coupleIdxRange = currentCoupleIndex; << 621 fRangeEnergy = e; << 622 fRange = reduceFactor*((*theRangeTableForL << 623 if (fRange < 0.0) { fRange = 0.0; } << 624 else if (e < minKinEnergy) { fRange *= std << 625 } << 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } << 631 << 632 inline G4double << 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 634 { 667 { 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 668 G4double x = fFactor*(*theIonisationSubTable)[basedCoupleIndex]->Value(e); 636 // << basedCoupleIndex << " E(MeV)= << 669 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 637 // << " lastIdx= " << lastIdx << " << 670 return x; 638 if(currentCoupleIndex != coupleIdxRange || f << 639 coupleIdxRange = currentCoupleIndex; << 640 fRangeEnergy = e; << 641 fRange = reduceFactor*((*theRangeTableForL << 642 if (fRange < 0.0) { fRange = 0.0; } << 643 else if (e < minKinEnergy) { fRange *= std << 644 } << 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } 671 } 650 672 651 //....oooOO0OOooo........oooOO0OOooo........oo 673 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 652 674 653 inline G4double << 675 inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e) 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 655 { 676 { 656 G4double x = ((*theCSDARangeTable)[basedCoup << 677 G4double x = ((*theRangeTableForLoss)[basedCoupleIndex])->Value(e); 657 if (x < 0.0) { x = 0.0; } << 678 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 658 else if (e < minKinEnergy) { x *= std::sqrt( << 659 return x; 679 return x; 660 } 680 } 661 681 662 //....oooOO0OOooo........oooOO0OOooo........oo 682 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 663 683 664 inline G4double 684 inline G4double 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 685 G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy(G4double e) 666 << 667 { 686 { 668 G4double x = ((*theCSDARangeTable)[basedCoup << 687 G4double x; 669 if (x < 0.0) { x = 0.0; } << 688 if (e < maxKinEnergyCSDA) { 670 else if (e < minKinEnergy) { x *= std::sqrt( << 689 x = ((*theCSDARangeTable)[basedCoupleIndex])->Value(e); >> 690 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } >> 691 } else { >> 692 x = theRangeAtMaxEnergy[basedCoupleIndex] + >> 693 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[basedCoupleIndex]; >> 694 } 671 return x; 695 return x; 672 } 696 } 673 697 674 //....oooOO0OOooo........oooOO0OOooo........oo 698 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 699 676 inline G4double G4VEnergyLossProcess::ScaledKi 700 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 677 { 701 { 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 679 // << basedCoupleIndex << " R(mm)= " << 680 // << theInverseRangeTable << G4endl << 681 G4PhysicsVector* v = (*theInverseRangeTable) 702 G4PhysicsVector* v = (*theInverseRangeTable)[basedCoupleIndex]; 682 G4double rmin = v->Energy(0); 703 G4double rmin = v->Energy(0); 683 G4double e = 0.0; 704 G4double e = 0.0; 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 705 if(r >= rmin) { e = v->Value(r); } 685 else if(r > 0.0) { 706 else if(r > 0.0) { 686 G4double x = r/rmin; 707 G4double x = r/rmin; 687 e = minKinEnergy*x*x; 708 e = minKinEnergy*x*x; 688 } 709 } 689 return e; 710 return e; 690 } 711 } 691 712 692 //....oooOO0OOooo........oooOO0OOooo........oo 713 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 693 714 694 inline G4double G4VEnergyLossProcess::GetLambd 715 inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e) 695 { 716 { 696 return fFactor*((*theLambdaTable)[basedCoupl << 717 return fFactor*((*theLambdaTable)[basedCoupleIndex])->Value(e); 697 } << 698 << 699 //....oooOO0OOooo........oooOO0OOooo........oo << 700 << 701 inline G4double << 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 703 { << 704 return fFactor*((*theLambdaTable)[basedCoupl << 705 } << 706 << 707 //....oooOO0OOooo........oooOO0OOooo........oo << 708 << 709 inline G4double G4VEnergyLossProcess::LogScale << 710 { << 711 return track.GetDynamicParticle()->GetLogKin << 712 } 718 } 713 719 714 //....oooOO0OOooo........oooOO0OOooo........oo 720 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 721 716 inline G4double 722 inline G4double 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 723 G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, 718 const G4Material << 724 const G4MaterialCutsCouple* couple) 719 { 725 { 720 DefineMaterial(couple); 726 DefineMaterial(couple); 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 727 return GetDEDXForScaledEnergy(kineticEnergy*massRatio); 722 } 728 } 723 729 724 //....oooOO0OOooo........oooOO0OOooo........oo 730 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 731 726 inline G4double 732 inline G4double 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 733 G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy, 728 const G4Material << 734 const G4MaterialCutsCouple* couple) 729 G4double logKinE << 730 { 735 { 731 DefineMaterial(couple); 736 DefineMaterial(couple); 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 737 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio); 733 } 738 } 734 739 735 //....oooOO0OOooo........oooOO0OOooo........oo 740 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 741 737 inline G4double 742 inline G4double 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 743 G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, 739 const G4Materia << 744 const G4MaterialCutsCouple* couple) 740 { 745 { 741 DefineMaterial(couple); << 746 G4double x = fRange; 742 return GetScaledRangeForScaledEnergy(kinEner << 747 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { >> 748 DefineMaterial(couple); >> 749 if(theCSDARangeTable) { >> 750 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 751 * reduceFactor; >> 752 } else if(theRangeTableForLoss) { >> 753 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 754 } >> 755 } >> 756 return x; 743 } 757 } 744 758 745 //....oooOO0OOooo........oooOO0OOooo........oo 759 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 760 747 inline G4double 761 inline G4double 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 762 G4VEnergyLossProcess::GetCSDARange(G4double& kineticEnergy, 749 const G4Materia << 763 const G4MaterialCutsCouple* couple) 750 G4double logKin << 751 { 764 { 752 DefineMaterial(couple); 765 DefineMaterial(couple); 753 return GetScaledRangeForScaledEnergy(kinEner << 766 G4double x = DBL_MAX; >> 767 if(theCSDARangeTable) { >> 768 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 769 } >> 770 return x; 754 } 771 } 755 772 756 //....oooOO0OOooo........oooOO0OOooo........oo 773 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 774 758 inline G4double 775 inline G4double 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 776 G4VEnergyLossProcess::GetRangeForLoss(G4double& kineticEnergy, 760 const G4Mat << 777 const G4MaterialCutsCouple* couple) 761 { 778 { 762 DefineMaterial(couple); 779 DefineMaterial(couple); 763 return (nullptr == theCSDARangeTable) ? DBL_ << 780 G4double x = DBL_MAX; 764 GetLimitScaledRangeForScaledEnergy(kinetic << 781 if(theRangeTableForLoss) { >> 782 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 783 } >> 784 // G4cout << "Range from " << GetProcessName() >> 785 // << " e= " << kineticEnergy << " r= " << x << G4endl; >> 786 return x; 765 } 787 } 766 788 767 //....oooOO0OOooo........oooOO0OOooo........oo 789 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 790 769 inline G4double 791 inline G4double 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 792 G4VEnergyLossProcess::GetKineticEnergy(G4double& range, 771 const G << 793 const G4MaterialCutsCouple* couple) 772 { 794 { 773 DefineMaterial(couple); 795 DefineMaterial(couple); 774 return ScaledKinEnergyForLoss(range/reduceFa << 796 G4double r = range/reduceFactor; >> 797 G4double e = ScaledKinEnergyForLoss(r)/massRatio; >> 798 return e; 775 } 799 } 776 800 777 //....oooOO0OOooo........oooOO0OOooo........oo 801 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 802 779 inline G4double 803 inline G4double 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 804 G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, 781 const G4Materi << 805 const G4MaterialCutsCouple* couple) 782 { 806 { 783 DefineMaterial(couple); 807 DefineMaterial(couple); 784 return (nullptr != theLambdaTable) ? << 808 G4double x = 0.0; 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 809 if(theLambdaTable) { x = GetLambdaForScaledEnergy(kineticEnergy*massRatio); } >> 810 return x; 786 } 811 } 787 812 788 //....oooOO0OOooo........oooOO0OOooo........oo 813 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 814 790 inline G4double << 815 inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e) 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 792 const G4Materi << 793 G4double logKi << 794 { 816 { 795 DefineMaterial(couple); << 817 mfpKinEnergy = theEnergyOfCrossSectionMax[currentCoupleIndex]; 796 return (nullptr != theLambdaTable) ? << 818 if (e <= mfpKinEnergy) { 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 819 preStepLambda = GetLambdaForScaledEnergy(e); 798 : 0.0; << 820 >> 821 } else { >> 822 G4double e1 = e*lambdaFactor; >> 823 if(e1 > mfpKinEnergy) { >> 824 preStepLambda = GetLambdaForScaledEnergy(e); >> 825 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1); >> 826 if(preStepLambda1 > preStepLambda) { >> 827 mfpKinEnergy = e1; >> 828 preStepLambda = preStepLambda1; >> 829 } >> 830 } else { >> 831 preStepLambda = fFactor*theCrossSectionMax[currentCoupleIndex]; >> 832 } >> 833 } 799 } 834 } 800 835 801 // ======== Get/Set inline methods used at ini 836 // ======== Get/Set inline methods used at initialisation ================ 802 837 803 inline void G4VEnergyLossProcess::SetFluctMode 838 inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p) 804 { 839 { 805 fluctModel = p; 840 fluctModel = p; 806 } 841 } 807 842 808 //....oooOO0OOooo........oooOO0OOooo........oo 843 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 844 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 845 inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel() 811 { 846 { 812 return fluctModel; 847 return fluctModel; 813 } 848 } 814 849 815 //....oooOO0OOooo........oooOO0OOooo........oo 850 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 851 817 inline void G4VEnergyLossProcess::SetParticle( 852 inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 818 { 853 { 819 particle = p; 854 particle = p; 820 } 855 } 821 856 822 //....oooOO0OOooo........oooOO0OOooo........oo 857 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 858 824 inline void << 859 inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { 860 { 827 secondaryParticle = p; 861 secondaryParticle = p; 828 } 862 } 829 863 830 //....oooOO0OOooo........oooOO0OOooo........oo 864 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 865 832 inline void << 866 inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 867 { 835 baseParticle = p; 868 baseParticle = p; 836 } 869 } 837 870 838 //....oooOO0OOooo........oooOO0OOooo........oo 871 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 872 840 inline const G4ParticleDefinition* G4VEnergyLo 873 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 841 { 874 { 842 return particle; 875 return particle; 843 } 876 } 844 877 845 //....oooOO0OOooo........oooOO0OOooo........oo 878 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 879 847 inline const G4ParticleDefinition* G4VEnergyLo 880 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 848 { 881 { 849 return baseParticle; 882 return baseParticle; 850 } 883 } 851 884 852 //....oooOO0OOooo........oooOO0OOooo........oo 885 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 886 854 inline const G4ParticleDefinition* << 887 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 855 G4VEnergyLossProcess::SecondaryParticle() cons << 856 { 888 { 857 return secondaryParticle; 889 return secondaryParticle; 858 } 890 } 859 891 860 //....oooOO0OOooo........oooOO0OOooo........oo 892 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 893 862 inline void G4VEnergyLossProcess::SetLossFluct 894 inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) 863 { 895 { 864 lossFluctuationFlag = val; 896 lossFluctuationFlag = val; 865 actLossFluc = true; << 866 } 897 } 867 898 868 //....oooOO0OOooo........oooOO0OOooo........oo 899 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 869 900 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 901 inline void G4VEnergyLossProcess::SetRandomStep(G4bool val) 871 { 902 { 872 spline = val; << 903 rndmStepFlag = val; 873 } 904 } 874 905 875 //....oooOO0OOooo........oooOO0OOooo........oo 906 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 876 907 877 inline void G4VEnergyLossProcess::SetCrossSect << 908 inline void G4VEnergyLossProcess::SetIntegral(G4bool val) 878 { 909 { 879 fXSType = val; << 910 integral = val; 880 } 911 } 881 912 882 //....oooOO0OOooo........oooOO0OOooo........oo 913 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 883 914 884 inline G4CrossSectionType G4VEnergyLossProcess << 915 inline G4bool G4VEnergyLossProcess::IsIntegral() const 885 { 916 { 886 return fXSType; << 917 return integral; >> 918 } >> 919 >> 920 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 921 >> 922 inline void G4VEnergyLossProcess::SetIonisation(G4bool val) >> 923 { >> 924 isIonisation = val; >> 925 if(val) { aGPILSelection = CandidateForSelection; } >> 926 else { aGPILSelection = NotCandidateForSelection; } 887 } 927 } 888 928 889 //....oooOO0OOooo........oooOO0OOooo........oo 929 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 930 891 inline G4bool G4VEnergyLossProcess::IsIonisati 931 inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const 892 { 932 { 893 return isIonisation; 933 return isIonisation; 894 } 934 } 895 935 896 //....oooOO0OOooo........oooOO0OOooo........oo 936 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 937 >> 938 inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) >> 939 { >> 940 linLossLimit = val; >> 941 } >> 942 >> 943 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 944 >> 945 inline void G4VEnergyLossProcess::SetMinSubRange(G4double val) >> 946 { >> 947 minSubRange = val; >> 948 } >> 949 >> 950 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 951 >> 952 inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val) >> 953 { >> 954 if(val > 0.0 && val <= 1.0) { lambdaFactor = val; } >> 955 } >> 956 >> 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 958 >> 959 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) >> 960 { >> 961 dRoverRange = v1; >> 962 finalRange = v2; >> 963 if (dRoverRange > 0.999) { dRoverRange = 1.0; } >> 964 currentCouple = 0; >> 965 mfpKinEnergy = DBL_MAX; >> 966 } >> 967 >> 968 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 969 >> 970 inline void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val) >> 971 { >> 972 lowestKinEnergy = val; >> 973 } >> 974 >> 975 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 976 898 inline G4int G4VEnergyLossProcess::NumberOfSub 977 inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 899 { 978 { 900 return nSCoffRegions; 979 return nSCoffRegions; 901 } 980 } 902 981 903 //....oooOO0OOooo........oooOO0OOooo........oo 982 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 983 905 inline G4double G4VEnergyLossProcess::MinKinEn << 984 inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 906 { 985 { 907 return minKinEnergy; << 986 nBins = nbins; 908 } 987 } 909 988 910 //....oooOO0OOooo........oooOO0OOooo........oo 989 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 990 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 991 inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 913 { 992 { 914 return maxKinEnergy; << 993 nBins = nbins; 915 } 994 } 916 995 917 //....oooOO0OOooo........oooOO0OOooo........oo 996 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 918 997 919 inline G4double G4VEnergyLossProcess::CrossSec << 998 inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins) 920 { 999 { 921 return biasFactor; << 1000 nBinsCSDA = nbins; 922 } 1001 } 923 1002 924 //....oooOO0OOooo........oooOO0OOooo........oo 1003 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 1004 926 inline G4bool G4VEnergyLossProcess::TablesAreB << 1005 inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 927 { 1006 { 928 return tablesAreBuilt; << 1007 minKinEnergy = e; 929 } 1008 } 930 1009 931 //....oooOO0OOooo........oooOO0OOooo........oo 1010 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 1011 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1012 inline G4double G4VEnergyLossProcess::MinKinEnergy() const 934 { 1013 { 935 return theDEDXTable; << 1014 return minKinEnergy; 936 } 1015 } 937 1016 938 //....oooOO0OOooo........oooOO0OOooo........oo 1017 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 1018 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1019 inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 941 { 1020 { 942 return theDEDXunRestrictedTable; << 1021 maxKinEnergy = e; >> 1022 if(e < maxKinEnergyCSDA) { maxKinEnergyCSDA = e; } 943 } 1023 } 944 1024 945 //....oooOO0OOooo........oooOO0OOooo........oo 1025 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 1026 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1027 inline G4double G4VEnergyLossProcess::MaxKinEnergy() const 948 { 1028 { 949 return theIonisationTable; << 1029 return maxKinEnergy; 950 } 1030 } 951 1031 952 //....oooOO0OOooo........oooOO0OOooo........oo 1032 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 1033 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 1034 inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e) 955 { 1035 { 956 return theCSDARangeTable; << 1036 maxKinEnergyCSDA = e; 957 } 1037 } 958 1038 959 //....oooOO0OOooo........oooOO0OOooo........oo 1039 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 1040 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 1041 inline G4double G4VEnergyLossProcess::CrossSectionBiasingFactor() const 962 { 1042 { 963 return theRangeTableForLoss; << 1043 return biasFactor; 964 } 1044 } 965 1045 966 //....oooOO0OOooo........oooOO0OOooo........oo 1046 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 1047 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1048 inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const 969 { 1049 { 970 return theInverseRangeTable; << 1050 return tablesAreBuilt; 971 } 1051 } 972 1052 973 //....oooOO0OOooo........oooOO0OOooo........oo 1053 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 1054 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 1055 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 976 { 1056 { 977 return theLambdaTable; << 1057 return theDEDXTable; 978 } 1058 } 979 1059 980 //....oooOO0OOooo........oooOO0OOooo........oo 1060 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1061 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 1062 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const 983 { 1063 { 984 return baseMat; << 1064 return theDEDXSubTable; 985 } 1065 } 986 1066 987 //....oooOO0OOooo........oooOO0OOooo........oo 1067 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 1068 989 inline std::vector<G4double>* << 1069 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 1070 { 992 return theEnergyOfCrossSectionMax; << 1071 return theDEDXunRestrictedTable; 993 } 1072 } 994 1073 995 //....oooOO0OOooo........oooOO0OOooo........oo 1074 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 1075 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 1076 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const >> 1077 { >> 1078 G4PhysicsTable* t = theDEDXTable; >> 1079 if(theIonisationTable) { t = theIonisationTable; } >> 1080 return t; >> 1081 } >> 1082 >> 1083 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1084 >> 1085 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const 998 { 1086 { 999 return fXSpeaks; << 1087 G4PhysicsTable* t = theDEDXSubTable; >> 1088 if(theIonisationSubTable) { t = theIonisationSubTable; } >> 1089 return t; 1000 } 1090 } 1001 1091 1002 //....oooOO0OOooo........oooOO0OOooo........o 1092 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 1093 1004 inline std::size_t G4VEnergyLossProcess::Numb << 1094 inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const 1005 { 1095 { 1006 return numberOfModels; << 1096 return theCSDARangeTable; 1007 } 1097 } 1008 1098 1009 //....oooOO0OOooo........oooOO0OOooo........o 1099 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 1100 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 1101 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 1012 { 1102 { 1013 return (index < emModels->size()) ? (*emMod << 1103 return theRangeTableForLoss; >> 1104 } >> 1105 >> 1106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1107 >> 1108 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const >> 1109 { >> 1110 return theInverseRangeTable; >> 1111 } >> 1112 >> 1113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1114 >> 1115 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() >> 1116 { >> 1117 return theLambdaTable; 1014 } 1118 } 1015 1119 1016 //....oooOO0OOooo........oooOO0OOooo........o 1120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 1121 1018 inline G4VEmModel* << 1122 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 1123 { 1021 return modelManager->GetModel((G4int)idx, v << 1124 return theSubLambdaTable; 1022 } 1125 } 1023 1126 1024 //....oooOO0OOooo........oooOO0OOooo........o 1127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 1128 1026 #endif 1129 #endif 1027 1130