Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.hh,v 1.93 2010-10-14 16:27:35 vnivanch Exp $ >> 27 // GEANT4 tag $Name: 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 37 // 39 // 38 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 44 // 24-01-03 Make models region aware (V.Ivanchenko) >> 45 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 46 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 47 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 48 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 49 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 50 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 51 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 52 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 53 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 54 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 55 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 56 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 57 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) >> 58 // 03-08-04 Add DEDX table to all processes for control on integral range(VI) >> 59 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 60 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 61 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 62 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 63 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 64 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 65 // 10-01-05 Remove SetStepLimits (V.Ivanchenko) >> 66 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 67 // 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko) >> 68 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 69 // 26-01-06 Add public method GetCSDARange (V.Ivanchenko) >> 70 // 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko) >> 71 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 72 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 73 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 74 // 15-01-07 Add separate ionisation tables and reorganise get/set methods for >> 75 // dedx tables (V.Ivanchenko) >> 76 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 77 // 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko) >> 78 // 25-09-07 More accurate handling zero xsect in >> 79 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 80 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 81 // 15-07-08 Reorder class members for further multi-thread development (VI) 39 // 82 // 40 // Class Description: 83 // Class Description: 41 // 84 // 42 // It is the unified energy loss process it ca 85 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 86 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 87 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 88 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 89 // that information on fly. 47 90 48 // ------------------------------------------- 91 // ------------------------------------------------------------------- 49 // 92 // 50 93 51 #ifndef G4VEnergyLossProcess_h 94 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 95 #define G4VEnergyLossProcess_h 1 53 96 54 #include "G4VContinuousDiscreteProcess.hh" 97 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 98 #include "globals.hh" 56 #include "G4Material.hh" 99 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 100 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 101 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 102 #include "G4EmModelManager.hh" >> 103 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 104 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" 105 #include "G4EmTableType.hh" 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" 106 #include "G4PhysicsTable.hh" 64 #include "G4PhysicsVector.hh" 107 #include "G4PhysicsVector.hh" 65 108 66 class G4Step; 109 class G4Step; 67 class G4ParticleDefinition; 110 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 111 class G4VEmModel; 70 class G4VEmFluctuationModel; 112 class G4VEmFluctuationModel; 71 class G4DataVector; 113 class G4DataVector; 72 class G4Region; 114 class G4Region; 73 class G4SafetyHelper; 115 class G4SafetyHelper; 74 class G4VAtomDeexcitation; 116 class G4VAtomDeexcitation; 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 117 80 //....oooOO0OOooo........oooOO0OOooo........oo 118 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 119 82 class G4VEnergyLossProcess : public G4VContinu 120 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 121 { 84 public: 122 public: 85 123 86 G4VEnergyLossProcess(const G4String& name = 124 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 125 G4ProcessType type = fElectromagnetic); >> 126 >> 127 virtual ~G4VEnergyLossProcess(); 88 128 89 ~G4VEnergyLossProcess() override; << 129 private: >> 130 // clean vectors and arrays >> 131 void Clean(); 90 132 91 //------------------------------------------ 133 //------------------------------------------------------------------------ 92 // Virtual methods to be implemented in conc 134 // Virtual methods to be implemented in concrete processes 93 //------------------------------------------ 135 //------------------------------------------------------------------------ 94 136 95 protected: << 137 public: >> 138 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; >> 139 >> 140 virtual void PrintInfo() = 0; 96 141 97 // description of specific process parameter << 142 protected: 98 virtual void StreamProcessInfo(std::ostream& << 99 143 100 virtual void InitialiseEnergyLossProcess(con 144 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*, 101 con 145 const G4ParticleDefinition*) = 0; 102 146 103 public: << 147 //------------------------------------------------------------------------ >> 148 // Methods with standard implementation; may be overwritten if needed >> 149 //------------------------------------------------------------------------ 104 150 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa 151 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 107 const G4Ma << 152 const G4Material*, G4double cut); >> 153 >> 154 //------------------------------------------------------------------------ >> 155 // Virtual methods implementation common to all EM ContinuousDiscrete >> 156 // processes. Further inheritance is not assumed >> 157 //------------------------------------------------------------------------ 108 158 109 // print documentation in html format << 159 public: 110 void ProcessDescription(std::ostream& outFil << 111 160 112 // prepare all tables 161 // prepare all tables 113 void PreparePhysicsTable(const G4ParticleDef << 162 void PreparePhysicsTable(const G4ParticleDefinition&); 114 163 115 // build all tables 164 // build all tables 116 void BuildPhysicsTable(const G4ParticleDefin << 165 void BuildPhysicsTable(const G4ParticleDefinition&); 117 166 118 // build a table 167 // build a table 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType 168 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted); 120 169 121 // build a table 170 // build a table 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy 171 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted); 123 172 124 // Called before tracking of each new G4Trac << 173 // summary printout after initialisation 125 void StartTracking(G4Track*) override; << 174 void PrintInfoDefinition(); >> 175 >> 176 // Add subcutoff option for the region >> 177 void ActivateSubCutoff(G4bool val, const G4Region* region = 0); >> 178 >> 179 // Activate deexcitation code for region >> 180 void ActivateDeexcitation(G4bool, const G4Region* region = 0); 126 181 127 // Step limit from AlongStep 182 // Step limit from AlongStep 128 G4double AlongStepGetPhysicalInteractionLeng << 183 G4double AlongStepGetPhysicalInteractionLength(const G4Track&, 129 const G4Trac << 184 G4double previousStepSize, 130 G4double pr << 185 G4double currentMinimumStep, 131 G4double cu << 186 G4double& currentSafety, 132 G4double& cu << 187 G4GPILSelection* selection); 133 G4GPILSelect << 134 188 135 // Step limit from cross section 189 // Step limit from cross section 136 G4double PostStepGetPhysicalInteractionLengt << 190 G4double PostStepGetPhysicalInteractionLength(const G4Track& track, 137 const G4Trac << 191 G4double previousStepSize, 138 G4double pre << 192 G4ForceCondition* condition); 139 G4ForceCondi << 140 193 141 // AlongStep computations 194 // AlongStep computations 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 195 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); >> 196 >> 197 // Sampling of secondaries in vicinity of geometrical boundary >> 198 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, >> 199 G4VEmModel* model, G4int matIdx); 143 200 144 // PostStep sampling of secondaries 201 // PostStep sampling of secondaries 145 G4VParticleChange* PostStepDoIt(const G4Trac << 202 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 146 203 147 // Store all PhysicsTable in files. 204 // Store all PhysicsTable in files. 148 // Return false in case of any fatal failure 205 // Return false in case of any fatal failure at I/O 149 G4bool StorePhysicsTable(const G4ParticleDef 206 G4bool StorePhysicsTable(const G4ParticleDefinition*, 150 const G4String& dir 207 const G4String& directory, 151 G4bool ascii = fals << 208 G4bool ascii = false); 152 209 153 // Retrieve all Physics from a files. 210 // Retrieve all Physics from a files. 154 // Return true if all the Physics Table are 211 // Return true if all the Physics Table are built. 155 // Return false if any fatal failure. 212 // Return false if any fatal failure. 156 G4bool RetrievePhysicsTable(const G4Particle 213 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 157 const G4String& 214 const G4String& directory, 158 G4bool ascii) ov << 215 G4bool ascii); 159 216 160 private: 217 private: 161 << 218 // store a table 162 // summary printout after initialisation << 219 G4bool StoreTable(const G4ParticleDefinition* p, 163 void StreamInfo(std::ostream& out, const G4P << 220 G4PhysicsTable*, G4bool ascii, 164 G4bool rst=false) const; << 221 const G4String& directory, >> 222 const G4String& tname); >> 223 >> 224 // retrieve a table >> 225 G4bool RetrieveTable(const G4ParticleDefinition* p, >> 226 G4PhysicsTable*, G4bool ascii, >> 227 const G4String& directory, >> 228 const G4String& tname, >> 229 G4bool mandatory); 165 230 166 //------------------------------------------ 231 //------------------------------------------------------------------------ 167 // Public interface to cross section, mfp an 232 // Public interface to cross section, mfp and sampling of fluctuations 168 // These methods are not used in run time 233 // These methods are not used in run time 169 //------------------------------------------ 234 //------------------------------------------------------------------------ 170 235 171 public: 236 public: 172 << 173 // access to dispersion of restricted energy 237 // access to dispersion of restricted energy loss 174 G4double GetDEDXDispersion(const G4MaterialC 238 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 175 const G4DynamicPa << 239 const G4DynamicParticle* dp, 176 G4double length); << 240 G4double length); 177 241 178 // Access to cross section table 242 // Access to cross section table 179 G4double CrossSectionPerVolume(G4double kine 243 G4double CrossSectionPerVolume(G4double kineticEnergy, 180 const G4Mater << 244 const G4MaterialCutsCouple* couple); 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 245 185 // access to cross section 246 // access to cross section 186 G4double MeanFreePath(const G4Track& track); 247 G4double MeanFreePath(const G4Track& track); 187 248 188 // access to step limit 249 // access to step limit 189 G4double ContinuousStepLimit(const G4Track& 250 G4double ContinuousStepLimit(const G4Track& track, 190 G4double previo << 251 G4double previousStepSize, 191 G4double curren << 252 G4double currentMinimumStep, 192 G4double& curre << 253 G4double& currentSafety); 193 254 194 protected: 255 protected: 195 256 196 // implementation of the pure virtual method 257 // implementation of the pure virtual method 197 G4double GetMeanFreePath(const G4Track& trac 258 G4double GetMeanFreePath(const G4Track& track, 198 G4double previousSt << 259 G4double previousStepSize, 199 G4ForceCondition* c << 260 G4ForceCondition* condition); 200 261 201 // implementation of the pure virtual method 262 // implementation of the pure virtual method 202 G4double GetContinuousStepLimit(const G4Trac 263 G4double GetContinuousStepLimit(const G4Track& track, 203 G4double pre << 264 G4double previousStepSize, 204 G4double cur << 265 G4double currentMinimumStep, 205 G4double& cu << 266 G4double& currentSafety); >> 267 >> 268 //------------------------------------------------------------------------ >> 269 // Run time method which may be also used by derived processes >> 270 //------------------------------------------------------------------------ 206 271 207 // creation of an empty vector for cross sec << 272 // creeation of an empty vector for cross section 208 G4PhysicsVector* LambdaPhysicsVector(const G 273 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 209 G4doubl << 274 G4double cut); >> 275 >> 276 inline size_t CurrentMaterialCutsCoupleIndex() const; 210 277 211 inline std::size_t CurrentMaterialCutsCouple << 278 inline G4double GetCurrentRange() const; 212 279 213 //------------------------------------------ 280 //------------------------------------------------------------------------ 214 // Specific methods to set, access, modify m 281 // Specific methods to set, access, modify models 215 //------------------------------------------ 282 //------------------------------------------------------------------------ 216 283 217 // Select model in run time 284 // Select model in run time 218 inline void SelectModel(G4double kinEnergy); 285 inline void SelectModel(G4double kinEnergy); 219 286 220 public: 287 public: 221 // Select model by energy and couple index << 288 // Select model by energy and region index 222 // Not for run time processing << 223 inline G4VEmModel* SelectModelForMaterial(G4 289 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 224 st << 290 size_t& idx) const; 225 291 226 // Add EM model coupled with fluctuation mod 292 // Add EM model coupled with fluctuation model for region, smaller value 227 // of order defines which pair of models wil 293 // of order defines which pair of models will be selected for a given 228 // energy interval 294 // energy interval 229 void AddEmModel(G4int, G4VEmModel*, 295 void AddEmModel(G4int, G4VEmModel*, 230 G4VEmFluctuationModel* fluc << 296 G4VEmFluctuationModel* fluc = 0, 231 const G4Region* region = nul << 297 const G4Region* region = 0); 232 298 233 // Assign a model to a process local list, t << 299 // Define new energy range for the model identified by the name 234 // the derived process should execute AddEmM << 300 void UpdateEmModel(const G4String&, G4double, G4double); 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 301 237 // Access to models << 302 // Assign a model to a process 238 inline std::size_t NumberOfModels() const; << 303 void SetEmModel(G4VEmModel*, G4int index=1); 239 304 240 // Return a model from the local list << 305 // return the assigned model 241 inline G4VEmModel* EmModel(std::size_t index << 306 G4VEmModel* EmModel(G4int index=1); 242 307 243 // Access to models from G4EmModelManager li << 308 // Access to models 244 inline G4VEmModel* GetModelByIndex(std::size << 309 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false); >> 310 >> 311 G4int NumberOfModels(); 245 312 246 // Assign a fluctuation model to a process 313 // Assign a fluctuation model to a process 247 inline void SetFluctModel(G4VEmFluctuationMo << 314 void SetFluctModel(G4VEmFluctuationModel*); 248 315 249 // Return the assigned fluctuation model << 316 // return the assigned fluctuation model 250 inline G4VEmFluctuationModel* FluctModel() c << 317 inline G4VEmFluctuationModel* FluctModel(); 251 318 252 //------------------------------------------ 319 //------------------------------------------------------------------------ 253 // Define and access particle type 320 // Define and access particle type 254 //------------------------------------------ 321 //------------------------------------------------------------------------ 255 322 256 protected: 323 protected: 257 inline void SetParticle(const G4ParticleDefi 324 inline void SetParticle(const G4ParticleDefinition* p); 258 inline void SetSecondaryParticle(const G4Par 325 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 259 326 260 public: 327 public: 261 inline void SetBaseParticle(const G4Particle 328 inline void SetBaseParticle(const G4ParticleDefinition* p); 262 inline const G4ParticleDefinition* Particle( 329 inline const G4ParticleDefinition* Particle() const; 263 inline const G4ParticleDefinition* BaseParti 330 inline const G4ParticleDefinition* BaseParticle() const; 264 inline const G4ParticleDefinition* Secondary 331 inline const G4ParticleDefinition* SecondaryParticle() const; 265 332 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ 333 //------------------------------------------------------------------------ 271 // Get/set parameters to configure the proce 334 // Get/set parameters to configure the process at initialisation time 272 //------------------------------------------ 335 //------------------------------------------------------------------------ 273 336 274 // Add subcut processor for the region << 337 // Add subcutoff process (bremsstrahlung) to sample secondary 275 void ActivateSubCutoff(const G4Region* regio << 338 // particle production in vicinity of the geometry boundary 276 << 339 void AddCollaborativeProcess(G4VEnergyLossProcess*); 277 // Activate biasing << 278 void SetCrossSectionBiasingFactor(G4double f << 279 << 280 void ActivateForcedInteraction(G4double leng << 281 const G4Strin << 282 G4bool flag = << 283 << 284 void ActivateSecondaryBiasing(const G4String << 285 G4double energ << 286 340 287 inline void SetLossFluctuations(G4bool val); 341 inline void SetLossFluctuations(G4bool val); >> 342 inline void SetRandomStep(G4bool val); 288 343 289 inline void SetSpline(G4bool val); << 344 inline void SetIntegral(G4bool val); 290 inline void SetCrossSectionType(G4CrossSecti << 345 inline G4bool IsIntegral() const; 291 inline G4CrossSectionType CrossSectionType() << 292 346 293 // Set/Get flag "isIonisation" 347 // Set/Get flag "isIonisation" 294 void SetIonisation(G4bool val); << 348 inline void SetIonisation(G4bool val); 295 inline G4bool IsIonisationProcess() const; 349 inline G4bool IsIonisationProcess() const; 296 350 297 // Redefine parameteters for stepping contro 351 // Redefine parameteters for stepping control 298 void SetLinearLossLimit(G4double val); << 352 // 299 void SetStepFunction(G4double v1, G4double v << 353 inline void SetLinearLossLimit(G4double val); 300 void SetLowestEnergyLimit(G4double); << 354 inline void SetMinSubRange(G4double val); >> 355 inline void SetLambdaFactor(G4double val); >> 356 inline void SetStepFunction(G4double v1, G4double v2); >> 357 inline void SetLowestEnergyLimit(G4double); 301 358 302 inline G4int NumberOfSubCutoffRegions() cons 359 inline G4int NumberOfSubCutoffRegions() const; >> 360 inline G4int NumberOfDERegions() const; 303 361 304 //------------------------------------------ 362 //------------------------------------------------------------------------ 305 // Specific methods to path Physics Tables t 363 // Specific methods to path Physics Tables to the process 306 //------------------------------------------ 364 //------------------------------------------------------------------------ 307 365 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab 366 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType); 309 void SetCSDARangeTable(G4PhysicsTable* pRang 367 void SetCSDARangeTable(G4PhysicsTable* pRange); 310 void SetRangeTableForLoss(G4PhysicsTable* p) 368 void SetRangeTableForLoss(G4PhysicsTable* p); >> 369 void SetSecondaryRangeTable(G4PhysicsTable* p); 311 void SetInverseRangeTable(G4PhysicsTable* p) 370 void SetInverseRangeTable(G4PhysicsTable* p); 312 void SetLambdaTable(G4PhysicsTable* p); << 313 371 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 372 void SetLambdaTable(G4PhysicsTable* p); 315 void SetEnergyOfCrossSectionMax(std::vector< << 373 void SetSubLambdaTable(G4PhysicsTable* p); 316 374 317 //------------------------------------------ << 375 // Binning for dEdx, range, inverse range and labda tables 318 // Specific methods to define custom Physics << 376 inline void SetDEDXBinning(G4int nbins); 319 //------------------------------------------ << 377 inline void SetLambdaBinning(G4int nbins); 320 378 321 // Binning for dEdx, range, inverse range an << 379 // Binning for dEdx, range, and inverse range tables 322 void SetDEDXBinning(G4int nbins); << 380 inline void SetDEDXBinningForCSDARange(G4int nbins); 323 381 324 // Min kinetic energy for tables 382 // Min kinetic energy for tables 325 void SetMinKinEnergy(G4double e); << 383 inline void SetMinKinEnergy(G4double e); 326 inline G4double MinKinEnergy() const; 384 inline G4double MinKinEnergy() const; 327 385 328 // Max kinetic energy for tables 386 // Max kinetic energy for tables 329 void SetMaxKinEnergy(G4double e); << 387 inline void SetMaxKinEnergy(G4double e); 330 inline G4double MaxKinEnergy() const; 388 inline G4double MaxKinEnergy() const; 331 389 332 // Biasing parameters << 390 // Max kinetic energy for tables 333 inline G4double CrossSectionBiasingFactor() << 391 inline void SetMaxKinEnergyForCSDARange(G4double e); 334 392 335 // Return values for given G4MaterialCutsCou 393 // Return values for given G4MaterialCutsCouple 336 inline G4double GetDEDX(G4double kineticEner << 394 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*); 337 inline G4double GetCSDADEDX(G4double kinetic << 395 inline G4double GetDEDXForSubsec(G4double& kineticEnergy, 338 const G4Material << 396 const G4MaterialCutsCouple*); 339 inline G4double GetDEDX(G4double kineticEner << 397 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 340 G4double logKineticE << 398 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 341 inline G4double GetRange(G4double kineticEne << 399 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*); 342 inline G4double GetRange(G4double kineticEne << 400 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*); 343 G4double logKinetic << 401 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*); 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 402 352 inline G4bool TablesAreBuilt() const; 403 inline G4bool TablesAreBuilt() const; 353 404 354 // Access to specific tables 405 // Access to specific tables 355 inline G4PhysicsTable* DEDXTable() const; 406 inline G4PhysicsTable* DEDXTable() const; >> 407 inline G4PhysicsTable* DEDXTableForSubsec() const; 356 inline G4PhysicsTable* DEDXunRestrictedTable 408 inline G4PhysicsTable* DEDXunRestrictedTable() const; 357 inline G4PhysicsTable* IonisationTable() con 409 inline G4PhysicsTable* IonisationTable() const; >> 410 inline G4PhysicsTable* IonisationTableForSubsec() const; 358 inline G4PhysicsTable* CSDARangeTable() cons 411 inline G4PhysicsTable* CSDARangeTable() const; 359 inline G4PhysicsTable* RangeTableForLoss() c 412 inline G4PhysicsTable* RangeTableForLoss() const; 360 inline G4PhysicsTable* InverseRangeTable() c 413 inline G4PhysicsTable* InverseRangeTable() const; 361 inline G4PhysicsTable* LambdaTable() const; << 414 inline G4PhysicsTable* LambdaTable(); 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 415 inline G4PhysicsTable* SubLambdaTable(); 363 inline std::vector<G4double>* EnergyOfCrossS << 364 << 365 inline G4bool UseBaseMaterial() const; << 366 416 367 //------------------------------------------ 417 //------------------------------------------------------------------------ 368 // Run time method for simulation of ionisat 418 // Run time method for simulation of ionisation 369 //------------------------------------------ 419 //------------------------------------------------------------------------ 370 420 371 // access atom on which interaction happens 421 // access atom on which interaction happens 372 const G4Element* GetCurrentElement() const; 422 const G4Element* GetCurrentElement() const; 373 423 >> 424 // sample range at the end of a step >> 425 inline G4double SampleRange(); >> 426 374 // Set scaling parameters for ions is needed 427 // Set scaling parameters for ions is needed to G4EmCalculator 375 void SetDynamicMassCharge(G4double massratio << 428 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio); 376 429 377 private: 430 private: 378 431 379 void FillSecondariesAlongStep(G4double weigh << 380 << 381 void PrintWarning(const G4String&, G4double << 382 << 383 // define material and indexes 432 // define material and indexes 384 inline void DefineMaterial(const G4MaterialC 433 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 385 434 386 //------------------------------------------ 435 //------------------------------------------------------------------------ 387 // Compute values using scaling relation, ma 436 // Compute values using scaling relation, mass and charge of based particle 388 //------------------------------------------ 437 //------------------------------------------------------------------------ 389 inline G4double GetDEDXForScaledEnergy(G4dou << 390 inline G4double GetDEDXForScaledEnergy(G4dou << 391 G4dou << 392 inline G4double GetIonisationForScaledEnergy << 393 inline G4double GetScaledRangeForScaledEnerg << 394 inline G4double GetScaledRangeForScaledEnerg << 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 438 >> 439 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy); >> 440 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy); >> 441 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy); >> 442 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy); >> 443 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy); >> 444 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy); 401 inline G4double ScaledKinEnergyForLoss(G4dou 445 inline G4double ScaledKinEnergyForLoss(G4double range); 402 inline G4double GetLambdaForScaledEnergy(G4d << 446 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy); 403 inline G4double GetLambdaForScaledEnergy(G4d << 447 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy); 404 G4d << 405 448 406 inline G4double LogScaledEkin(const G4Track& << 449 // hide assignment operator 407 << 450 G4VEnergyLossProcess(G4VEnergyLossProcess &); 408 void ComputeLambdaForScaledEnergy(G4double s << 451 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 409 const G4Tr << 410 452 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 453 // ======== Parameters of the class fixed at construction ========= 412 454 413 protected: << 455 G4EmModelManager* modelManager; >> 456 G4SafetyHelper* safetyHelper; 414 457 415 G4ParticleChangeForLoss fParticleChange; << 458 const G4ParticleDefinition* secondaryParticle; 416 const G4Material* currentMaterial << 459 const G4ParticleDefinition* theElectron; 417 const G4MaterialCutsCouple* currentCouple = << 460 const G4ParticleDefinition* thePositron; >> 461 const G4ParticleDefinition* theGenericIon; >> 462 >> 463 G4PhysicsVector* vstrag; >> 464 >> 465 // ======== Parameters of the class fixed at initialisation ======= >> 466 >> 467 std::vector<G4VEmModel*> emModels; >> 468 G4VEmFluctuationModel* fluctModel; >> 469 G4VAtomDeexcitation* atomDeexcitation; >> 470 std::vector<const G4Region*> scoffRegions; >> 471 std::vector<const G4Region*> deRegions; >> 472 G4int nSCoffRegions; >> 473 G4int nDERegions; >> 474 G4bool* idxSCoffRegions; >> 475 G4bool* idxDERegions; >> 476 >> 477 std::vector<G4VEnergyLossProcess*> scProcesses; >> 478 G4int nProcesses; >> 479 >> 480 // tables and vectors >> 481 G4PhysicsTable* theDEDXTable; >> 482 G4PhysicsTable* theDEDXSubTable; >> 483 G4PhysicsTable* theDEDXunRestrictedTable; >> 484 G4PhysicsTable* theIonisationTable; >> 485 G4PhysicsTable* theIonisationSubTable; >> 486 G4PhysicsTable* theRangeTableForLoss; >> 487 G4PhysicsTable* theCSDARangeTable; >> 488 G4PhysicsTable* theSecondaryRangeTable; >> 489 G4PhysicsTable* theInverseRangeTable; >> 490 G4PhysicsTable* theLambdaTable; >> 491 G4PhysicsTable* theSubLambdaTable; >> 492 G4double* theDEDXAtMaxEnergy; >> 493 G4double* theRangeAtMaxEnergy; >> 494 G4double* theEnergyOfCrossSectionMax; >> 495 G4double* theCrossSectionMax; 418 496 419 private: << 497 const G4DataVector* theCuts; >> 498 const G4DataVector* theSubCuts; 420 499 421 G4LossTableManager* lManager; << 500 const G4ParticleDefinition* baseParticle; 422 G4EmModelManager* modelManager; << 423 G4VEmModel* currentModel = n << 424 G4EmBiasingManager* biasManager = nu << 425 G4SafetyHelper* safetyHelper; << 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 501 450 std::vector<G4double>* theEnergyOfCrossSecti << 502 G4int nBins; 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 503 G4int nBinsCSDA; 452 504 453 G4double lowestKinEnergy; 505 G4double lowestKinEnergy; 454 G4double minKinEnergy; 506 G4double minKinEnergy; 455 G4double maxKinEnergy; 507 G4double maxKinEnergy; 456 G4double maxKinEnergyCSDA; 508 G4double maxKinEnergyCSDA; 457 509 458 G4double linLossLimit = 0.01; << 510 G4double linLossLimit; 459 G4double dRoverRange = 0.2; << 511 G4double minSubRange; >> 512 G4double dRoverRange; 460 G4double finalRange; 513 G4double finalRange; 461 G4double lambdaFactor = 0.8; << 514 G4double lambdaFactor; 462 G4double invLambdaFactor; << 515 463 G4double biasFactor = 1.0; << 516 G4bool lossFluctuationFlag; 464 << 517 G4bool rndmStepFlag; 465 G4double massRatio = 1.0; << 518 G4bool tablesAreBuilt; 466 G4double logMassRatio = 0.0; << 519 G4bool integral; 467 G4double fFactor = 1.0; << 520 G4bool isIon; 468 G4double reduceFactor = 1.0; << 521 G4bool isIonisation; 469 G4double chargeSqRatio = 1.0; << 522 G4bool useSubCutoff; 470 G4double fRange = 0.0; << 523 G4bool useDeexcitation; 471 G4double fRangeEnergy = 0.0; << 472 524 473 protected: 525 protected: 474 526 475 G4double preStepLambda = 0.0; << 527 G4ParticleChangeForLoss fParticleChange; 476 G4double preStepKinEnergy = 0.0; << 477 G4double preStepScaledEnergy = 0.0; << 478 G4double mfpKinEnergy = 0.0; << 479 528 480 std::size_t currentCoupleIndex = 0; << 529 // ======== Cashed values - may be state dependent ================ 481 530 482 private: 531 private: 483 532 484 G4int nBins; << 533 std::vector<G4DynamicParticle*> secParticles; 485 G4int nBinsCSDA; << 534 std::vector<G4Track*> scTracks; 486 G4int numberOfModels = 0; << 535 487 G4int nSCoffRegions = 0; << 536 const G4ParticleDefinition* particle; 488 G4int secID = _DeltaElectron; << 537 489 G4int tripletID = _TripletElectron; << 538 G4VEmModel* currentModel; 490 G4int biasID = _DeltaEBelowCut; << 539 const G4Material* currentMaterial; 491 G4int epixeID = _ePIXE; << 540 const G4MaterialCutsCouple* currentCouple; 492 G4int gpixeID = _GammaPIXE; << 541 size_t currentMaterialIndex; 493 G4int mainSecondaries = 1; << 542 494 << 543 G4int nWarnings; 495 std::size_t basedCoupleIndex = 0; << 544 496 std::size_t coupleIdxRange = 0; << 545 G4double massRatio; 497 std::size_t idxDEDX = 0; << 546 G4double reduceFactor; 498 std::size_t idxDEDXunRestricted = 0; << 547 G4double chargeSqRatio; 499 std::size_t idxIonisation = 0; << 548 500 std::size_t idxRange = 0; << 549 G4double preStepLambda; 501 std::size_t idxCSDA = 0; << 550 G4double fRange; 502 std::size_t idxSecRange = 0; << 551 G4double preStepKinEnergy; 503 std::size_t idxInverseRange = 0; << 552 G4double preStepScaledEnergy; 504 std::size_t idxLambda = 0; << 553 G4double mfpKinEnergy; 505 << 554 506 G4GPILSelection aGPILSelection; << 555 G4GPILSelection aGPILSelection; 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 556 526 std::vector<G4DynamicParticle*> secParticles << 527 std::vector<G4Track*> scTracks; << 528 }; 557 }; 529 558 530 // ======== Run time inline methods ========== 559 // ======== Run time inline methods ================ 531 560 532 inline std::size_t G4VEnergyLossProcess::Curre << 561 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const >> 562 { >> 563 return currentMaterialIndex; >> 564 } >> 565 >> 566 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 567 >> 568 inline G4double G4VEnergyLossProcess::GetCurrentRange() const 533 { 569 { 534 return currentCoupleIndex; << 570 return fRange; 535 } 571 } 536 572 537 //....oooOO0OOooo........oooOO0OOooo........oo 573 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 574 539 inline void G4VEnergyLossProcess::SelectModel( 575 inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 540 { 576 { 541 currentModel = modelManager->SelectModel(kin << 577 currentModel = modelManager->SelectModel(kinEnergy, currentMaterialIndex); 542 currentModel->SetCurrentCouple(currentCouple 578 currentModel->SetCurrentCouple(currentCouple); 543 } 579 } 544 580 545 //....oooOO0OOooo........oooOO0OOooo........oo 581 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 546 582 547 inline G4VEmModel* G4VEnergyLossProcess::Selec 583 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( 548 G4double kinEnergy, std::si << 584 G4double kinEnergy, size_t& idx) const 549 { 585 { 550 return modelManager->SelectModel(kinEnergy, 586 return modelManager->SelectModel(kinEnergy, idx); 551 } 587 } 552 588 553 //....oooOO0OOooo........oooOO0OOooo........oo 589 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 554 590 555 inline void 591 inline void 556 G4VEnergyLossProcess::DefineMaterial(const G4M 592 G4VEnergyLossProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 557 { 593 { 558 if(couple != currentCouple) { 594 if(couple != currentCouple) { 559 currentCouple = couple; << 595 currentCouple = couple; 560 currentMaterial = couple->GetMaterial(); 596 currentMaterial = couple->GetMaterial(); 561 basedCoupleIndex = currentCoupleIndex = co << 597 currentMaterialIndex = couple->GetIndex(); 562 fFactor = chargeSqRatio*biasFactor; << 563 mfpKinEnergy = DBL_MAX; 598 mfpKinEnergy = DBL_MAX; 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } 599 } 571 } 600 } 572 601 573 //....oooOO0OOooo........oooOO0OOooo........oo 602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 603 >> 604 inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio, >> 605 G4double charge2ratio) >> 606 { >> 607 massRatio = massratio; >> 608 chargeSqRatio = charge2ratio; >> 609 reduceFactor = 1.0/(chargeSqRatio*massRatio); >> 610 } >> 611 >> 612 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 613 575 inline G4double G4VEnergyLossProcess::GetDEDXF 614 inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e) 576 { 615 { 577 /* << 616 G4double x = ((*theDEDXTable)[currentMaterialIndex]->Value(e))*chargeSqRatio; 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 579 << basedCoupleIndex << " E(MeV)= " << 580 << " Emin= " << minKinEnergy << " Fa << 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK 617 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 584 return x; 618 return x; 585 } 619 } 586 620 587 //....oooOO0OOooo........oooOO0OOooo........oo 621 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 588 622 589 inline << 623 inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e) 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { 624 { 592 /* << 625 G4double x = ((*theDEDXSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio; 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 594 << basedCoupleIndex << " E(MeV)= " << 595 << " Emin= " << minKinEnergy << " Fa << 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK 626 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 599 return x; 627 return x; 600 } 628 } 601 629 602 //....oooOO0OOooo........oooOO0OOooo........oo 630 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 603 631 604 inline G4double G4VEnergyLossProcess::GetIonis 632 inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e) 605 { 633 { 606 G4double x = << 634 //G4double x = 0.0; 607 fFactor*(*theIonisationTable)[basedCoupleI << 635 // if(theIonisationTable) { >> 636 G4double x = ((*theIonisationTable)[currentMaterialIndex]->Value(e))*chargeSqRatio; 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK 637 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } >> 638 //} 609 return x; 639 return x; 610 } 640 } 611 641 612 //....oooOO0OOooo........oooOO0OOooo........oo 642 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 613 643 614 inline G4double G4VEnergyLossProcess::GetScale << 644 inline >> 645 G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e) 615 { 646 { 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 647 // G4double x = 0.0; 617 // << basedCoupleIndex << " E(MeV)= << 648 //if(theIonisationSubTable) { 618 // << " lastIdx= " << lastIdx << " << 649 G4double x = ((*theIonisationSubTable)[currentMaterialIndex]->Value(e))*chargeSqRatio; 619 if(currentCoupleIndex != coupleIdxRange || f << 650 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 620 coupleIdxRange = currentCoupleIndex; << 651 //} 621 fRangeEnergy = e; << 652 return x; 622 fRange = reduceFactor*((*theRangeTableForL << 623 if (fRange < 0.0) { fRange = 0.0; } << 624 else if (e < minKinEnergy) { fRange *= std << 625 } << 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } << 631 << 632 inline G4double << 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 634 { << 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 636 // << basedCoupleIndex << " E(MeV)= << 637 // << " lastIdx= " << lastIdx << " << 638 if(currentCoupleIndex != coupleIdxRange || f << 639 coupleIdxRange = currentCoupleIndex; << 640 fRangeEnergy = e; << 641 fRange = reduceFactor*((*theRangeTableForL << 642 if (fRange < 0.0) { fRange = 0.0; } << 643 else if (e < minKinEnergy) { fRange *= std << 644 } << 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } 653 } 650 654 651 //....oooOO0OOooo........oooOO0OOooo........oo 655 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 652 656 653 inline G4double << 657 inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e) 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 655 { 658 { 656 G4double x = ((*theCSDARangeTable)[basedCoup << 659 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->Value(e); 657 if (x < 0.0) { x = 0.0; } << 660 if(e < minKinEnergy) { x *= std::sqrt(e/minKinEnergy); } 658 else if (e < minKinEnergy) { x *= std::sqrt( << 659 return x; 661 return x; 660 } 662 } 661 663 662 //....oooOO0OOooo........oooOO0OOooo........oo 664 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 663 665 664 inline G4double 666 inline G4double 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 667 G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy(G4double e) 666 << 667 { 668 { 668 G4double x = ((*theCSDARangeTable)[basedCoup << 669 G4double x; 669 if (x < 0.0) { x = 0.0; } << 670 670 else if (e < minKinEnergy) { x *= std::sqrt( << 671 if (e < maxKinEnergyCSDA) { >> 672 x = ((*theCSDARangeTable)[currentMaterialIndex])->Value(e); >> 673 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 674 } else { >> 675 x = theRangeAtMaxEnergy[currentMaterialIndex] + >> 676 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex]; >> 677 } 671 return x; 678 return x; 672 } 679 } 673 680 674 //....oooOO0OOooo........oooOO0OOooo........oo 681 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 682 676 inline G4double G4VEnergyLossProcess::ScaledKi 683 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 677 { 684 { 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 685 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex]; 679 // << basedCoupleIndex << " R(mm)= " << 680 // << theInverseRangeTable << G4endl << 681 G4PhysicsVector* v = (*theInverseRangeTable) << 682 G4double rmin = v->Energy(0); 686 G4double rmin = v->Energy(0); 683 G4double e = 0.0; 687 G4double e = 0.0; 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 688 if(r >= rmin) { e = v->Value(r); } 685 else if(r > 0.0) { 689 else if(r > 0.0) { 686 G4double x = r/rmin; 690 G4double x = r/rmin; 687 e = minKinEnergy*x*x; 691 e = minKinEnergy*x*x; 688 } 692 } 689 return e; 693 return e; 690 } 694 } 691 695 692 //....oooOO0OOooo........oooOO0OOooo........oo 696 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 693 697 694 inline G4double G4VEnergyLossProcess::GetLambd 698 inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e) 695 { 699 { 696 return fFactor*((*theLambdaTable)[basedCoupl << 700 return chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->Value(e)); 697 } 701 } 698 702 699 //....oooOO0OOooo........oooOO0OOooo........oo 703 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 700 704 701 inline G4double << 705 inline G4double 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 706 G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, 703 { << 707 const G4MaterialCutsCouple* couple) 704 return fFactor*((*theLambdaTable)[basedCoupl << 705 } << 706 << 707 //....oooOO0OOooo........oooOO0OOooo........oo << 708 << 709 inline G4double G4VEnergyLossProcess::LogScale << 710 { 708 { 711 return track.GetDynamicParticle()->GetLogKin << 709 DefineMaterial(couple); >> 710 return GetDEDXForScaledEnergy(kineticEnergy*massRatio); 712 } 711 } 713 712 714 //....oooOO0OOooo........oooOO0OOooo........oo 713 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 714 716 inline G4double 715 inline G4double 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 716 G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy, 718 const G4Material << 717 const G4MaterialCutsCouple* couple) 719 { 718 { 720 DefineMaterial(couple); 719 DefineMaterial(couple); 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 720 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio); 722 } 721 } 723 722 724 //....oooOO0OOooo........oooOO0OOooo........oo 723 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 724 726 inline G4double 725 inline G4double 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 726 G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, 728 const G4Material << 727 const G4MaterialCutsCouple* couple) 729 G4double logKinE << 730 { 728 { 731 DefineMaterial(couple); << 729 G4double x = fRange; 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 730 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { >> 731 DefineMaterial(couple); >> 732 if(theCSDARangeTable) >> 733 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 734 * reduceFactor; >> 735 else if(theRangeTableForLoss) >> 736 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 737 } >> 738 return x; 733 } 739 } 734 740 735 //....oooOO0OOooo........oooOO0OOooo........oo 741 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 742 737 inline G4double 743 inline G4double 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 744 G4VEnergyLossProcess::GetCSDARange(G4double& kineticEnergy, 739 const G4Materia << 745 const G4MaterialCutsCouple* couple) 740 { 746 { 741 DefineMaterial(couple); 747 DefineMaterial(couple); 742 return GetScaledRangeForScaledEnergy(kinEner << 748 G4double x = DBL_MAX; >> 749 if(theCSDARangeTable) >> 750 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 751 * reduceFactor; >> 752 return x; 743 } 753 } 744 754 745 //....oooOO0OOooo........oooOO0OOooo........oo 755 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 756 747 inline G4double 757 inline G4double 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 758 G4VEnergyLossProcess::GetRangeForLoss(G4double& kineticEnergy, 749 const G4Materia << 759 const G4MaterialCutsCouple* couple) 750 G4double logKin << 751 { 760 { 752 DefineMaterial(couple); 761 DefineMaterial(couple); 753 return GetScaledRangeForScaledEnergy(kinEner << 762 G4double x = DBL_MAX; >> 763 if(theRangeTableForLoss) >> 764 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 765 // G4cout << "Range from " << GetProcessName() >> 766 // << " e= " << kineticEnergy << " r= " << x << G4endl; >> 767 return x; 754 } 768 } 755 769 756 //....oooOO0OOooo........oooOO0OOooo........oo 770 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 771 758 inline G4double 772 inline G4double 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 773 G4VEnergyLossProcess::GetKineticEnergy(G4double& range, 760 const G4Mat << 774 const G4MaterialCutsCouple* couple) 761 { 775 { 762 DefineMaterial(couple); 776 DefineMaterial(couple); 763 return (nullptr == theCSDARangeTable) ? DBL_ << 777 G4double r = range/reduceFactor; 764 GetLimitScaledRangeForScaledEnergy(kinetic << 778 G4double e = ScaledKinEnergyForLoss(r)/massRatio; >> 779 return e; 765 } 780 } 766 781 767 //....oooOO0OOooo........oooOO0OOooo........oo 782 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 783 769 inline G4double 784 inline G4double 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 785 G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, 771 const G << 786 const G4MaterialCutsCouple* couple) 772 { 787 { 773 DefineMaterial(couple); 788 DefineMaterial(couple); 774 return ScaledKinEnergyForLoss(range/reduceFa << 789 G4double x = 0.0; >> 790 if(theLambdaTable) { x = GetLambdaForScaledEnergy(kineticEnergy*massRatio); } >> 791 return x; 775 } 792 } 776 793 777 //....oooOO0OOooo........oooOO0OOooo........oo 794 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 795 779 inline G4double << 796 inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e) 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 781 const G4Materi << 782 { 797 { 783 DefineMaterial(couple); << 798 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex]; 784 return (nullptr != theLambdaTable) ? << 799 if (e <= mfpKinEnergy) { 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 800 preStepLambda = GetLambdaForScaledEnergy(e); >> 801 >> 802 } else { >> 803 G4double e1 = e*lambdaFactor; >> 804 if(e1 > mfpKinEnergy) { >> 805 preStepLambda = GetLambdaForScaledEnergy(e); >> 806 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1); >> 807 if(preStepLambda1 > preStepLambda) { >> 808 mfpKinEnergy = e1; >> 809 preStepLambda = preStepLambda1; >> 810 } >> 811 } else { >> 812 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex]; >> 813 } >> 814 } 786 } 815 } 787 816 788 //....oooOO0OOooo........oooOO0OOooo........oo 817 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 818 790 inline G4double << 819 inline G4double G4VEnergyLossProcess::SampleRange() 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 792 const G4Materi << 793 G4double logKi << 794 { 820 { 795 DefineMaterial(couple); << 821 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass(); 796 return (nullptr != theLambdaTable) ? << 822 G4double s = fRange*std::pow(10.,vstrag->Value(e)); 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 823 G4double x = fRange + G4RandGauss::shoot(0.0,s); 798 : 0.0; << 824 if(x > 0.0) { fRange = x; } >> 825 return fRange; 799 } 826 } 800 827 801 // ======== Get/Set inline methods used at ini 828 // ======== Get/Set inline methods used at initialisation ================ 802 829 803 inline void G4VEnergyLossProcess::SetFluctMode 830 inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p) 804 { 831 { 805 fluctModel = p; 832 fluctModel = p; 806 } 833 } 807 834 808 //....oooOO0OOooo........oooOO0OOooo........oo 835 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 836 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 837 inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel() 811 { 838 { 812 return fluctModel; 839 return fluctModel; 813 } 840 } 814 841 815 //....oooOO0OOooo........oooOO0OOooo........oo 842 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 843 817 inline void G4VEnergyLossProcess::SetParticle( 844 inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) 818 { 845 { 819 particle = p; 846 particle = p; 820 } 847 } 821 848 822 //....oooOO0OOooo........oooOO0OOooo........oo 849 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 850 824 inline void << 851 inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { 852 { 827 secondaryParticle = p; 853 secondaryParticle = p; 828 } 854 } 829 855 830 //....oooOO0OOooo........oooOO0OOooo........oo 856 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 857 832 inline void << 858 inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 859 { 835 baseParticle = p; 860 baseParticle = p; 836 } 861 } 837 862 838 //....oooOO0OOooo........oooOO0OOooo........oo 863 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 864 840 inline const G4ParticleDefinition* G4VEnergyLo 865 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 841 { 866 { 842 return particle; 867 return particle; 843 } 868 } 844 869 845 //....oooOO0OOooo........oooOO0OOooo........oo 870 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 871 847 inline const G4ParticleDefinition* G4VEnergyLo 872 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 848 { 873 { 849 return baseParticle; 874 return baseParticle; 850 } 875 } 851 876 852 //....oooOO0OOooo........oooOO0OOooo........oo 877 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 878 854 inline const G4ParticleDefinition* << 879 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 855 G4VEnergyLossProcess::SecondaryParticle() cons << 856 { 880 { 857 return secondaryParticle; 881 return secondaryParticle; 858 } 882 } 859 883 860 //....oooOO0OOooo........oooOO0OOooo........oo 884 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 885 862 inline void G4VEnergyLossProcess::SetLossFluct 886 inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) 863 { 887 { 864 lossFluctuationFlag = val; 888 lossFluctuationFlag = val; 865 actLossFluc = true; << 866 } 889 } 867 890 868 //....oooOO0OOooo........oooOO0OOooo........oo 891 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 869 892 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 893 inline void G4VEnergyLossProcess::SetRandomStep(G4bool val) 871 { 894 { 872 spline = val; << 895 rndmStepFlag = val; 873 } 896 } 874 897 875 //....oooOO0OOooo........oooOO0OOooo........oo 898 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 876 899 877 inline void G4VEnergyLossProcess::SetCrossSect << 900 inline void G4VEnergyLossProcess::SetIntegral(G4bool val) 878 { 901 { 879 fXSType = val; << 902 integral = val; 880 } 903 } 881 904 882 //....oooOO0OOooo........oooOO0OOooo........oo 905 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 883 906 884 inline G4CrossSectionType G4VEnergyLossProcess << 907 inline G4bool G4VEnergyLossProcess::IsIntegral() const >> 908 { >> 909 return integral; >> 910 } >> 911 >> 912 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 913 >> 914 inline void G4VEnergyLossProcess::SetIonisation(G4bool val) 885 { 915 { 886 return fXSType; << 916 isIonisation = val; >> 917 if(val) { aGPILSelection = CandidateForSelection; } >> 918 else { aGPILSelection = NotCandidateForSelection; } 887 } 919 } 888 920 889 //....oooOO0OOooo........oooOO0OOooo........oo 921 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 922 891 inline G4bool G4VEnergyLossProcess::IsIonisati 923 inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const 892 { 924 { 893 return isIonisation; 925 return isIonisation; 894 } 926 } 895 927 896 //....oooOO0OOooo........oooOO0OOooo........oo 928 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 929 >> 930 inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) >> 931 { >> 932 linLossLimit = val; >> 933 } >> 934 >> 935 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 936 >> 937 inline void G4VEnergyLossProcess::SetMinSubRange(G4double val) >> 938 { >> 939 minSubRange = val; >> 940 } >> 941 >> 942 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 943 >> 944 inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val) >> 945 { >> 946 if(val > 0.0 && val <= 1.0) { lambdaFactor = val; } >> 947 } >> 948 >> 949 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 950 >> 951 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) >> 952 { >> 953 dRoverRange = v1; >> 954 finalRange = v2; >> 955 if (dRoverRange > 0.999) { dRoverRange = 1.0; } >> 956 currentCouple = 0; >> 957 mfpKinEnergy = DBL_MAX; >> 958 } >> 959 >> 960 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 961 >> 962 inline void G4VEnergyLossProcess::SetLowestEnergyLimit(G4double val) >> 963 { >> 964 lowestKinEnergy = val; >> 965 } >> 966 >> 967 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 968 898 inline G4int G4VEnergyLossProcess::NumberOfSub 969 inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 899 { 970 { 900 return nSCoffRegions; 971 return nSCoffRegions; 901 } 972 } 902 973 903 //....oooOO0OOooo........oooOO0OOooo........oo 974 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 975 905 inline G4double G4VEnergyLossProcess::MinKinEn << 976 inline G4int G4VEnergyLossProcess::NumberOfDERegions() const 906 { 977 { 907 return minKinEnergy; << 978 return nDERegions; 908 } 979 } 909 980 910 //....oooOO0OOooo........oooOO0OOooo........oo 981 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 982 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 983 inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 913 { 984 { 914 return maxKinEnergy; << 985 nBins = nbins; 915 } 986 } 916 987 917 //....oooOO0OOooo........oooOO0OOooo........oo 988 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 918 989 919 inline G4double G4VEnergyLossProcess::CrossSec << 990 inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 920 { 991 { 921 return biasFactor; << 992 nBins = nbins; 922 } 993 } 923 994 924 //....oooOO0OOooo........oooOO0OOooo........oo 995 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 996 926 inline G4bool G4VEnergyLossProcess::TablesAreB << 997 inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins) 927 { 998 { 928 return tablesAreBuilt; << 999 nBinsCSDA = nbins; 929 } 1000 } 930 1001 931 //....oooOO0OOooo........oooOO0OOooo........oo 1002 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 1003 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1004 inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 934 { 1005 { 935 return theDEDXTable; << 1006 minKinEnergy = e; 936 } 1007 } 937 1008 938 //....oooOO0OOooo........oooOO0OOooo........oo 1009 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 1010 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1011 inline G4double G4VEnergyLossProcess::MinKinEnergy() const 941 { 1012 { 942 return theDEDXunRestrictedTable; << 1013 return minKinEnergy; 943 } 1014 } 944 1015 945 //....oooOO0OOooo........oooOO0OOooo........oo 1016 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 1017 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1018 inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 948 { 1019 { 949 return theIonisationTable; << 1020 maxKinEnergy = e; >> 1021 if(e < maxKinEnergyCSDA) { maxKinEnergyCSDA = e; } 950 } 1022 } 951 1023 952 //....oooOO0OOooo........oooOO0OOooo........oo 1024 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 1025 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 1026 inline G4double G4VEnergyLossProcess::MaxKinEnergy() const 955 { 1027 { 956 return theCSDARangeTable; << 1028 return maxKinEnergy; 957 } 1029 } 958 1030 959 //....oooOO0OOooo........oooOO0OOooo........oo 1031 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 1032 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 1033 inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e) 962 { 1034 { 963 return theRangeTableForLoss; << 1035 maxKinEnergyCSDA = e; 964 } 1036 } 965 1037 >> 1038 966 //....oooOO0OOooo........oooOO0OOooo........oo 1039 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 1040 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1041 inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const 969 { 1042 { 970 return theInverseRangeTable; << 1043 return tablesAreBuilt; 971 } 1044 } 972 1045 973 //....oooOO0OOooo........oooOO0OOooo........oo 1046 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 1047 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 1048 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 976 { 1049 { 977 return theLambdaTable; << 1050 return theDEDXTable; 978 } 1051 } 979 1052 980 //....oooOO0OOooo........oooOO0OOooo........oo 1053 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1054 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 1055 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const 983 { 1056 { 984 return baseMat; << 1057 return theDEDXSubTable; 985 } 1058 } 986 1059 987 //....oooOO0OOooo........oooOO0OOooo........oo 1060 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 1061 989 inline std::vector<G4double>* << 1062 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 1063 { 992 return theEnergyOfCrossSectionMax; << 1064 return theDEDXunRestrictedTable; 993 } 1065 } 994 1066 995 //....oooOO0OOooo........oooOO0OOooo........oo 1067 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 1068 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 1069 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const >> 1070 { >> 1071 G4PhysicsTable* t = theDEDXTable; >> 1072 if(theIonisationTable) { t = theIonisationTable; } >> 1073 return t; >> 1074 } >> 1075 >> 1076 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1077 >> 1078 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const 998 { 1079 { 999 return fXSpeaks; << 1080 G4PhysicsTable* t = theDEDXSubTable; >> 1081 if(theIonisationSubTable) { t = theIonisationSubTable; } >> 1082 return t; 1000 } 1083 } 1001 1084 1002 //....oooOO0OOooo........oooOO0OOooo........o 1085 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 1086 1004 inline std::size_t G4VEnergyLossProcess::Numb << 1087 inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const 1005 { 1088 { 1006 return numberOfModels; << 1089 return theCSDARangeTable; 1007 } 1090 } 1008 1091 1009 //....oooOO0OOooo........oooOO0OOooo........o 1092 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 1093 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 1094 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 1012 { 1095 { 1013 return (index < emModels->size()) ? (*emMod << 1096 return theRangeTableForLoss; >> 1097 } >> 1098 >> 1099 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1100 >> 1101 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const >> 1102 { >> 1103 return theInverseRangeTable; >> 1104 } >> 1105 >> 1106 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1107 >> 1108 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() >> 1109 { >> 1110 return theLambdaTable; 1014 } 1111 } 1015 1112 1016 //....oooOO0OOooo........oooOO0OOooo........o 1113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 1114 1018 inline G4VEmModel* << 1115 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 1116 { 1021 return modelManager->GetModel((G4int)idx, v << 1117 return theSubLambdaTable; 1022 } 1118 } 1023 1119 1024 //....oooOO0OOooo........oooOO0OOooo........o 1120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 1121 1026 #endif 1122 #endif 1027 1123