Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.hh,v 1.83 2008/09/12 16:19:01 vnivanch Exp $ >> 27 // GEANT4 tag $Name: 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 37 // 39 // 38 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 44 // 24-01-03 Make models region aware (V.Ivanchenko) >> 45 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 46 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 47 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 48 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 49 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 50 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 51 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 52 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 53 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 54 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 55 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 56 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 57 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) >> 58 // 03-08-04 Add DEDX table to all processes for control on integral range(VI) >> 59 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 60 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 61 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 62 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 63 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 64 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 65 // 10-01-05 Remove SetStepLimits (V.Ivanchenko) >> 66 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 67 // 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko) >> 68 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 69 // 26-01-06 Add public method GetCSDARange (V.Ivanchenko) >> 70 // 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko) >> 71 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 72 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 73 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 74 // 15-01-07 Add separate ionisation tables and reorganise get/set methods for >> 75 // dedx tables (V.Ivanchenko) >> 76 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 77 // 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko) >> 78 // 25-09-07 More accurate handling zero xsect in >> 79 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 80 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) >> 81 // 15-07-08 Reorder class members for further multi-thread development (VI) 39 // 82 // 40 // Class Description: 83 // Class Description: 41 // 84 // 42 // It is the unified energy loss process it ca 85 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 86 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 87 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 88 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 89 // that information on fly. 47 90 48 // ------------------------------------------- 91 // ------------------------------------------------------------------- 49 // 92 // 50 93 51 #ifndef G4VEnergyLossProcess_h 94 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 95 #define G4VEnergyLossProcess_h 1 53 96 54 #include "G4VContinuousDiscreteProcess.hh" 97 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 98 #include "globals.hh" 56 #include "G4Material.hh" 99 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 100 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 101 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 102 #include "G4EmModelManager.hh" >> 103 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 104 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" 105 #include "G4EmTableType.hh" 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" 106 #include "G4PhysicsTable.hh" 64 #include "G4PhysicsVector.hh" 107 #include "G4PhysicsVector.hh" 65 108 66 class G4Step; 109 class G4Step; 67 class G4ParticleDefinition; 110 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 111 class G4VEmModel; 70 class G4VEmFluctuationModel; 112 class G4VEmFluctuationModel; 71 class G4DataVector; 113 class G4DataVector; 72 class G4Region; 114 class G4Region; 73 class G4SafetyHelper; 115 class G4SafetyHelper; 74 class G4VAtomDeexcitation; << 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 116 80 //....oooOO0OOooo........oooOO0OOooo........oo 117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 118 82 class G4VEnergyLossProcess : public G4VContinu 119 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 120 { 84 public: 121 public: 85 122 86 G4VEnergyLossProcess(const G4String& name = 123 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 124 G4ProcessType type = fElectromagnetic); 88 125 89 ~G4VEnergyLossProcess() override; << 126 virtual ~G4VEnergyLossProcess(); 90 127 91 //------------------------------------------ 128 //------------------------------------------------------------------------ 92 // Virtual methods to be implemented in conc 129 // Virtual methods to be implemented in concrete processes 93 //------------------------------------------ 130 //------------------------------------------------------------------------ 94 131 95 protected: << 132 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; >> 133 >> 134 virtual void PrintInfo() = 0; 96 135 97 // description of specific process parameter << 136 protected: 98 virtual void StreamProcessInfo(std::ostream& << 99 137 100 virtual void InitialiseEnergyLossProcess(con 138 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*, 101 con 139 const G4ParticleDefinition*) = 0; 102 140 103 public: << 141 //------------------------------------------------------------------------ >> 142 // Methods with standard implementation; may be overwritten if needed >> 143 //------------------------------------------------------------------------ >> 144 >> 145 protected: 104 146 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa 147 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 107 const G4Ma << 148 const G4Material*, G4double cut); 108 149 109 // print documentation in html format << 150 //------------------------------------------------------------------------ 110 void ProcessDescription(std::ostream& outFil << 151 // Virtual methods common to all EM ContinuousDiscrete processes >> 152 // Further inheritance is not assumed >> 153 //------------------------------------------------------------------------ 111 154 112 // prepare all tables << 155 public: 113 void PreparePhysicsTable(const G4ParticleDef << 114 156 115 // build all tables << 157 void PrintInfoDefinition(); 116 void BuildPhysicsTable(const G4ParticleDefin << 117 158 118 // build a table << 159 void PreparePhysicsTable(const G4ParticleDefinition&); 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType << 120 160 121 // build a table << 161 void BuildPhysicsTable(const G4ParticleDefinition&); 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy << 123 162 124 // Called before tracking of each new G4Trac << 163 G4double AlongStepGetPhysicalInteractionLength(const G4Track&, 125 void StartTracking(G4Track*) override; << 164 G4double previousStepSize, >> 165 G4double currentMinimumStep, >> 166 G4double& currentSafety, >> 167 G4GPILSelection* selection); 126 168 127 // Step limit from AlongStep << 169 G4double PostStepGetPhysicalInteractionLength(const G4Track& track, 128 G4double AlongStepGetPhysicalInteractionLeng << 170 G4double previousStepSize, 129 const G4Trac << 171 G4ForceCondition* condition); 130 G4double pr << 131 G4double cu << 132 G4double& cu << 133 G4GPILSelect << 134 << 135 // Step limit from cross section << 136 G4double PostStepGetPhysicalInteractionLengt << 137 const G4Trac << 138 G4double pre << 139 G4ForceCondi << 140 172 141 // AlongStep computations << 173 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 143 174 144 // PostStep sampling of secondaries << 175 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 145 G4VParticleChange* PostStepDoIt(const G4Trac << 146 176 147 // Store all PhysicsTable in files. << 177 // Store PhysicsTable in a file. 148 // Return false in case of any fatal failure << 178 // Return false in case of failure at I/O 149 G4bool StorePhysicsTable(const G4ParticleDef 179 G4bool StorePhysicsTable(const G4ParticleDefinition*, 150 const G4String& dir 180 const G4String& directory, 151 G4bool ascii = fals << 181 G4bool ascii = false); 152 182 153 // Retrieve all Physics from a files. << 183 // Retrieve Physics from a file. 154 // Return true if all the Physics Table are << 184 // (return true if the Physics Table can be build by using file) 155 // Return false if any fatal failure. << 185 // (return false if the process has no functionality or in case of failure) >> 186 // File name should is constructed as processName+particleName and the >> 187 // should be placed under the directory specifed by the argument. 156 G4bool RetrievePhysicsTable(const G4Particle 188 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 157 const G4String& 189 const G4String& directory, 158 G4bool ascii) ov << 190 G4bool ascii); 159 191 160 private: << 192 protected: 161 193 162 // summary printout after initialisation << 194 G4double GetMeanFreePath(const G4Track& track, 163 void StreamInfo(std::ostream& out, const G4P << 195 G4double previousStepSize, 164 G4bool rst=false) const; << 196 G4ForceCondition* condition); >> 197 >> 198 G4double GetContinuousStepLimit(const G4Track& track, >> 199 G4double previousStepSize, >> 200 G4double currentMinimumStep, >> 201 G4double& currentSafety); 165 202 166 //------------------------------------------ 203 //------------------------------------------------------------------------ 167 // Public interface to cross section, mfp an << 204 // Specific methods for along/post step EM processes 168 // These methods are not used in run time << 169 //------------------------------------------ 205 //------------------------------------------------------------------------ 170 206 171 public: 207 public: 172 208 173 // access to dispersion of restricted energy << 209 void AddCollaborativeProcess(G4VEnergyLossProcess*); >> 210 >> 211 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, >> 212 G4VEmModel* model, G4int matIdx, >> 213 G4double& extraEdep); >> 214 174 G4double GetDEDXDispersion(const G4MaterialC 215 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 175 const G4DynamicPa << 216 const G4DynamicParticle* dp, 176 G4double length); << 217 G4double length); 177 218 178 // Access to cross section table << 219 //------------------------------------------------------------------------ 179 G4double CrossSectionPerVolume(G4double kine << 220 // Specific methods to build and access Physics Tables 180 const G4Mater << 221 //------------------------------------------------------------------------ 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 222 185 // access to cross section << 223 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted); 186 G4double MeanFreePath(const G4Track& track); << 187 224 188 // access to step limit << 225 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted); 189 G4double ContinuousStepLimit(const G4Track& << 190 G4double previo << 191 G4double curren << 192 G4double& curre << 193 226 194 protected: << 227 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType); >> 228 void SetCSDARangeTable(G4PhysicsTable* pRange); >> 229 void SetRangeTableForLoss(G4PhysicsTable* p); >> 230 void SetInverseRangeTable(G4PhysicsTable* p); >> 231 void SetSecondaryRangeTable(G4PhysicsTable* p); 195 232 196 // implementation of the pure virtual method << 233 void SetLambdaTable(G4PhysicsTable* p); 197 G4double GetMeanFreePath(const G4Track& trac << 234 void SetSubLambdaTable(G4PhysicsTable* p); 198 G4double previousSt << 199 G4ForceCondition* c << 200 235 201 // implementation of the pure virtual method << 236 // Binning for dEdx, range, inverse range and labda tables 202 G4double GetContinuousStepLimit(const G4Trac << 237 inline void SetDEDXBinning(G4int nbins); 203 G4double pre << 238 inline void SetLambdaBinning(G4int nbins); 204 G4double cur << 205 G4double& cu << 206 239 207 // creation of an empty vector for cross sec << 240 // Binning for dEdx, range, and inverse range tables 208 G4PhysicsVector* LambdaPhysicsVector(const G << 241 inline void SetDEDXBinningForCSDARange(G4int nbins); 209 G4doubl << 210 242 211 inline std::size_t CurrentMaterialCutsCouple << 243 // Min kinetic energy for tables >> 244 inline void SetMinKinEnergy(G4double e); >> 245 inline G4double MinKinEnergy() const; 212 246 213 //------------------------------------------ << 247 // Max kinetic energy for tables 214 // Specific methods to set, access, modify m << 248 inline void SetMaxKinEnergy(G4double e); 215 //------------------------------------------ << 249 inline G4double MaxKinEnergy() const; 216 250 217 // Select model in run time << 251 // Max kinetic energy for tables 218 inline void SelectModel(G4double kinEnergy); << 252 inline void SetMaxKinEnergyForCSDARange(G4double e); 219 253 220 public: << 254 // Access to specific tables 221 // Select model by energy and couple index << 255 inline G4PhysicsTable* DEDXTable() const; 222 // Not for run time processing << 256 inline G4PhysicsTable* DEDXTableForSubsec() const; 223 inline G4VEmModel* SelectModelForMaterial(G4 << 257 inline G4PhysicsTable* DEDXunRestrictedTable() const; 224 st << 258 inline G4PhysicsTable* IonisationTable() const; 225 << 259 inline G4PhysicsTable* IonisationTableForSubsec() const; 226 // Add EM model coupled with fluctuation mod << 260 inline G4PhysicsTable* CSDARangeTable() const; 227 // of order defines which pair of models wil << 261 inline G4PhysicsTable* RangeTableForLoss() const; 228 // energy interval << 262 inline G4PhysicsTable* InverseRangeTable() const; 229 void AddEmModel(G4int, G4VEmModel*, << 263 inline G4PhysicsTable* LambdaTable(); 230 G4VEmFluctuationModel* fluc << 264 inline G4PhysicsTable* SubLambdaTable(); 231 const G4Region* region = nul << 232 << 233 // Assign a model to a process local list, t << 234 // the derived process should execute AddEmM << 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 265 237 // Access to models << 266 // Return values for given G4MaterialCutsCouple 238 inline std::size_t NumberOfModels() const; << 267 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*); 239 << 268 inline G4double GetDEDXForSubsec(G4double& kineticEnergy, 240 // Return a model from the local list << 269 const G4MaterialCutsCouple*); 241 inline G4VEmModel* EmModel(std::size_t index << 270 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 242 << 271 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*); 243 // Access to models from G4EmModelManager li << 272 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*); 244 inline G4VEmModel* GetModelByIndex(std::size << 273 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*); >> 274 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 275 >> 276 inline G4bool TablesAreBuilt() const; 245 277 246 // Assign a fluctuation model to a process << 247 inline void SetFluctModel(G4VEmFluctuationMo << 248 << 249 // Return the assigned fluctuation model << 250 inline G4VEmFluctuationModel* FluctModel() c << 251 << 252 //------------------------------------------ 278 //------------------------------------------------------------------------ 253 // Define and access particle type 279 // Define and access particle type 254 //------------------------------------------ 280 //------------------------------------------------------------------------ 255 281 256 protected: << 257 inline void SetParticle(const G4ParticleDefi << 258 inline void SetSecondaryParticle(const G4Par << 259 << 260 public: << 261 inline void SetBaseParticle(const G4Particle 282 inline void SetBaseParticle(const G4ParticleDefinition* p); 262 inline const G4ParticleDefinition* Particle( 283 inline const G4ParticleDefinition* Particle() const; 263 inline const G4ParticleDefinition* BaseParti 284 inline const G4ParticleDefinition* BaseParticle() const; 264 inline const G4ParticleDefinition* Secondary 285 inline const G4ParticleDefinition* SecondaryParticle() const; 265 286 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ 287 //------------------------------------------------------------------------ 271 // Get/set parameters to configure the proce << 288 // Specific methods to set, access, modify models 272 //------------------------------------------ 289 //------------------------------------------------------------------------ 273 290 274 // Add subcut processor for the region << 291 // Add EM model coupled with fluctuation model for the region 275 void ActivateSubCutoff(const G4Region* regio << 292 inline void AddEmModel(G4int, G4VEmModel*, >> 293 G4VEmFluctuationModel* fluc = 0, >> 294 const G4Region* region = 0); >> 295 >> 296 // Assign a model to a process >> 297 inline void SetEmModel(G4VEmModel*, G4int index=1); >> 298 >> 299 // return the assigned model >> 300 inline G4VEmModel* EmModel(G4int index=1); >> 301 >> 302 // Assign a fluctuation model to a process >> 303 inline void SetFluctModel(G4VEmFluctuationModel*); >> 304 >> 305 // return the assigned fluctuation model >> 306 inline G4VEmFluctuationModel* FluctModel(); >> 307 >> 308 // Define new energy range for the model identified by the name >> 309 inline void UpdateEmModel(const G4String&, G4double, G4double); 276 310 277 // Activate biasing << 311 // Access to models 278 void SetCrossSectionBiasingFactor(G4double f << 312 inline G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false); 279 313 280 void ActivateForcedInteraction(G4double leng << 314 inline G4int NumberOfModels(); 281 const G4Strin << 282 G4bool flag = << 283 315 284 void ActivateSecondaryBiasing(const G4String << 316 //------------------------------------------------------------------------ 285 G4double energ << 317 // Get/set parameters used for simulation of energy loss >> 318 //------------------------------------------------------------------------ 286 319 287 inline void SetLossFluctuations(G4bool val); 320 inline void SetLossFluctuations(G4bool val); 288 << 321 inline void SetRandomStep(G4bool val); 289 inline void SetSpline(G4bool val); << 322 inline void SetIntegral(G4bool val); 290 inline void SetCrossSectionType(G4CrossSecti << 323 inline G4bool IsIntegral() const; 291 inline G4CrossSectionType CrossSectionType() << 292 324 293 // Set/Get flag "isIonisation" 325 // Set/Get flag "isIonisation" 294 void SetIonisation(G4bool val); << 326 inline void SetIonisation(G4bool val); 295 inline G4bool IsIonisationProcess() const; 327 inline G4bool IsIonisationProcess() const; 296 328 297 // Redefine parameteters for stepping contro 329 // Redefine parameteters for stepping control 298 void SetLinearLossLimit(G4double val); << 330 // 299 void SetStepFunction(G4double v1, G4double v << 331 inline void SetLinearLossLimit(G4double val); 300 void SetLowestEnergyLimit(G4double); << 332 inline void SetMinSubRange(G4double val); >> 333 inline void SetStepFunction(G4double v1, G4double v2); >> 334 inline void SetLambdaFactor(G4double val); >> 335 >> 336 >> 337 // Add subcutoff option for the region >> 338 void ActivateSubCutoff(G4bool val, const G4Region* region = 0); 301 339 302 inline G4int NumberOfSubCutoffRegions() cons 340 inline G4int NumberOfSubCutoffRegions() const; 303 341 >> 342 // Activate deexcitation code >> 343 virtual void ActivateDeexcitation(G4bool, const G4Region* region = 0); >> 344 304 //------------------------------------------ 345 //------------------------------------------------------------------------ 305 // Specific methods to path Physics Tables t << 346 // Public interface to helper functions 306 //------------------------------------------ 347 //------------------------------------------------------------------------ 307 348 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab << 349 inline 309 void SetCSDARangeTable(G4PhysicsTable* pRang << 350 G4VEmModel* SelectModelForMaterial(G4double kinEnergy, size_t& idx) const; 310 void SetRangeTableForLoss(G4PhysicsTable* p) << 311 void SetInverseRangeTable(G4PhysicsTable* p) << 312 void SetLambdaTable(G4PhysicsTable* p); << 313 351 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 352 inline G4double MeanFreePath(const G4Track& track); 315 void SetEnergyOfCrossSectionMax(std::vector< << 353 >> 354 inline G4double ContinuousStepLimit(const G4Track& track, >> 355 G4double previousStepSize, >> 356 G4double currentMinimumStep, >> 357 G4double& currentSafety); 316 358 317 //------------------------------------------ 359 //------------------------------------------------------------------------ 318 // Specific methods to define custom Physics << 360 // Run time method for simulation of ionisation 319 //------------------------------------------ 361 //------------------------------------------------------------------------ 320 362 321 // Binning for dEdx, range, inverse range an << 363 // sample range at the end of a step 322 void SetDEDXBinning(G4int nbins); << 364 inline G4double SampleRange(); 323 365 324 // Min kinetic energy for tables << 366 // Set scaling parameters for ions is needed to G4EmCalculator 325 void SetMinKinEnergy(G4double e); << 367 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio); 326 inline G4double MinKinEnergy() const; << 327 368 328 // Max kinetic energy for tables << 369 // Access to cross section table 329 void SetMaxKinEnergy(G4double e); << 370 G4double CrossSectionPerVolume(G4double kineticEnergy, 330 inline G4double MaxKinEnergy() const; << 371 const G4MaterialCutsCouple* couple); 331 372 332 // Biasing parameters << 373 protected: 333 inline G4double CrossSectionBiasingFactor() << 334 374 335 // Return values for given G4MaterialCutsCou << 375 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 336 inline G4double GetDEDX(G4double kineticEner << 376 G4double cut); 337 inline G4double GetCSDADEDX(G4double kinetic << 338 const G4Material << 339 inline G4double GetDEDX(G4double kineticEner << 340 G4double logKineticE << 341 inline G4double GetRange(G4double kineticEne << 342 inline G4double GetRange(G4double kineticEne << 343 G4double logKinetic << 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 377 352 inline G4bool TablesAreBuilt() const; << 378 inline G4ParticleChangeForLoss* GetParticleChange(); 353 379 354 // Access to specific tables << 380 inline void SetParticle(const G4ParticleDefinition* p); 355 inline G4PhysicsTable* DEDXTable() const; << 356 inline G4PhysicsTable* DEDXunRestrictedTable << 357 inline G4PhysicsTable* IonisationTable() con << 358 inline G4PhysicsTable* CSDARangeTable() cons << 359 inline G4PhysicsTable* RangeTableForLoss() c << 360 inline G4PhysicsTable* InverseRangeTable() c << 361 inline G4PhysicsTable* LambdaTable() const; << 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 363 inline std::vector<G4double>* EnergyOfCrossS << 364 381 365 inline G4bool UseBaseMaterial() const; << 382 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 366 383 367 //------------------------------------------ << 384 inline void SelectModel(G4double kinEnergy); 368 // Run time method for simulation of ionisat << 369 //------------------------------------------ << 370 385 371 // access atom on which interaction happens << 386 inline size_t CurrentMaterialCutsCoupleIndex() const; 372 const G4Element* GetCurrentElement() const; << 373 387 374 // Set scaling parameters for ions is needed << 388 inline G4double GetCurrentRange() const; 375 void SetDynamicMassCharge(G4double massratio << 376 389 377 private: 390 private: 378 391 379 void FillSecondariesAlongStep(G4double weigh << 392 //------------------------------------------------------------------------ >> 393 // Management of tables >> 394 //------------------------------------------------------------------------ >> 395 >> 396 void Clear(); 380 397 381 void PrintWarning(const G4String&, G4double << 398 G4bool StoreTable(const G4ParticleDefinition* p, >> 399 G4PhysicsTable*, G4bool ascii, >> 400 const G4String& directory, >> 401 const G4String& tname); >> 402 >> 403 G4bool RetrieveTable(const G4ParticleDefinition* p, >> 404 G4PhysicsTable*, G4bool ascii, >> 405 const G4String& directory, >> 406 const G4String& tname, >> 407 G4bool mandatory); 382 408 383 // define material and indexes 409 // define material and indexes 384 inline void DefineMaterial(const G4MaterialC 410 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 385 411 386 //------------------------------------------ << 412 // Returnd values for scaled energy using mass of the base particle 387 // Compute values using scaling relation, ma << 413 // 388 //------------------------------------------ << 414 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy); 389 inline G4double GetDEDXForScaledEnergy(G4dou << 415 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy); 390 inline G4double GetDEDXForScaledEnergy(G4dou << 416 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy); 391 G4dou << 417 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy); 392 inline G4double GetIonisationForScaledEnergy << 418 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy); 393 inline G4double GetScaledRangeForScaledEnerg << 419 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy); 394 inline G4double GetScaledRangeForScaledEnerg << 420 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy); 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 << 401 inline G4double ScaledKinEnergyForLoss(G4dou 421 inline G4double ScaledKinEnergyForLoss(G4double range); 402 inline G4double GetLambdaForScaledEnergy(G4d << 422 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy); 403 inline G4double GetLambdaForScaledEnergy(G4d << 404 G4d << 405 << 406 inline G4double LogScaledEkin(const G4Track& << 407 << 408 void ComputeLambdaForScaledEnergy(G4double s << 409 const G4Tr << 410 << 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 412 423 413 protected: << 424 // hide assignment operator 414 425 415 G4ParticleChangeForLoss fParticleChange; << 426 G4VEnergyLossProcess(G4VEnergyLossProcess &); 416 const G4Material* currentMaterial << 427 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 417 const G4MaterialCutsCouple* currentCouple = << 418 428 419 private: << 429 // ======== Parameters of the class fixed at construction ========= 420 430 421 G4LossTableManager* lManager; << 422 G4EmModelManager* modelManager; 431 G4EmModelManager* modelManager; 423 G4VEmModel* currentModel = n << 424 G4EmBiasingManager* biasManager = nu << 425 G4SafetyHelper* safetyHelper; 432 G4SafetyHelper* safetyHelper; 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 433 450 std::vector<G4double>* theEnergyOfCrossSecti << 434 const G4ParticleDefinition* secondaryParticle; 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 435 const G4ParticleDefinition* theElectron; >> 436 const G4ParticleDefinition* thePositron; >> 437 const G4ParticleDefinition* theGenericIon; >> 438 >> 439 G4PhysicsVector* vstrag; >> 440 >> 441 // ======== Parameters of the class fixed at initialisation ======= >> 442 >> 443 std::vector<G4VEmModel*> emModels; >> 444 G4VEmFluctuationModel* fluctModel; >> 445 std::vector<const G4Region*> scoffRegions; >> 446 G4int nSCoffRegions; >> 447 G4int* idxSCoffRegions; >> 448 >> 449 std::vector<G4VEnergyLossProcess*> scProcesses; >> 450 G4int nProcesses; >> 451 >> 452 // tables and vectors >> 453 G4PhysicsTable* theDEDXTable; >> 454 G4PhysicsTable* theDEDXSubTable; >> 455 G4PhysicsTable* theDEDXunRestrictedTable; >> 456 G4PhysicsTable* theIonisationTable; >> 457 G4PhysicsTable* theIonisationSubTable; >> 458 G4PhysicsTable* theRangeTableForLoss; >> 459 G4PhysicsTable* theCSDARangeTable; >> 460 G4PhysicsTable* theSecondaryRangeTable; >> 461 G4PhysicsTable* theInverseRangeTable; >> 462 G4PhysicsTable* theLambdaTable; >> 463 G4PhysicsTable* theSubLambdaTable; >> 464 G4double* theDEDXAtMaxEnergy; >> 465 G4double* theRangeAtMaxEnergy; >> 466 G4double* theEnergyOfCrossSectionMax; >> 467 G4double* theCrossSectionMax; >> 468 >> 469 const G4DataVector* theCuts; >> 470 const G4DataVector* theSubCuts; >> 471 >> 472 const G4ParticleDefinition* baseParticle; >> 473 >> 474 G4int nBins; >> 475 G4int nBinsCSDA; 452 476 453 G4double lowestKinEnergy; 477 G4double lowestKinEnergy; 454 G4double minKinEnergy; 478 G4double minKinEnergy; 455 G4double maxKinEnergy; 479 G4double maxKinEnergy; 456 G4double maxKinEnergyCSDA; 480 G4double maxKinEnergyCSDA; 457 481 458 G4double linLossLimit = 0.01; << 482 G4double linLossLimit; 459 G4double dRoverRange = 0.2; << 483 G4double minSubRange; >> 484 G4double dRoverRange; 460 G4double finalRange; 485 G4double finalRange; 461 G4double lambdaFactor = 0.8; << 486 G4double lambdaFactor; 462 G4double invLambdaFactor; << 487 463 G4double biasFactor = 1.0; << 488 G4bool lossFluctuationFlag; 464 << 489 G4bool rndmStepFlag; 465 G4double massRatio = 1.0; << 490 G4bool tablesAreBuilt; 466 G4double logMassRatio = 0.0; << 491 G4bool integral; 467 G4double fFactor = 1.0; << 492 G4bool isIon; 468 G4double reduceFactor = 1.0; << 493 G4bool isIonisation; 469 G4double chargeSqRatio = 1.0; << 494 G4bool useSubCutoff; 470 G4double fRange = 0.0; << 471 G4double fRangeEnergy = 0.0; << 472 495 473 protected: 496 protected: 474 497 475 G4double preStepLambda = 0.0; << 498 G4ParticleChangeForLoss fParticleChange; 476 G4double preStepKinEnergy = 0.0; << 477 G4double preStepScaledEnergy = 0.0; << 478 G4double mfpKinEnergy = 0.0; << 479 499 480 std::size_t currentCoupleIndex = 0; << 500 // ======== Cashed values - may be state dependent ================ 481 501 482 private: 502 private: 483 503 484 G4int nBins; << 504 std::vector<G4DynamicParticle*> secParticles; 485 G4int nBinsCSDA; << 505 std::vector<G4Track*> scTracks; 486 G4int numberOfModels = 0; << 506 487 G4int nSCoffRegions = 0; << 507 const G4ParticleDefinition* particle; 488 G4int secID = _DeltaElectron; << 508 489 G4int tripletID = _TripletElectron; << 509 G4VEmModel* currentModel; 490 G4int biasID = _DeltaEBelowCut; << 510 const G4Material* currentMaterial; 491 G4int epixeID = _ePIXE; << 511 const G4MaterialCutsCouple* currentCouple; 492 G4int gpixeID = _GammaPIXE; << 512 size_t currentMaterialIndex; 493 G4int mainSecondaries = 1; << 513 494 << 514 G4int nWarnings; 495 std::size_t basedCoupleIndex = 0; << 515 496 std::size_t coupleIdxRange = 0; << 516 G4double massRatio; 497 std::size_t idxDEDX = 0; << 517 G4double reduceFactor; 498 std::size_t idxDEDXunRestricted = 0; << 518 G4double chargeSqRatio; 499 std::size_t idxIonisation = 0; << 519 500 std::size_t idxRange = 0; << 520 G4double preStepLambda; 501 std::size_t idxCSDA = 0; << 521 G4double fRange; 502 std::size_t idxSecRange = 0; << 522 G4double preStepKinEnergy; 503 std::size_t idxInverseRange = 0; << 523 G4double preStepScaledEnergy; 504 std::size_t idxLambda = 0; << 524 G4double mfpKinEnergy; 505 << 525 506 G4GPILSelection aGPILSelection; << 526 G4GPILSelection aGPILSelection; 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 527 526 std::vector<G4DynamicParticle*> secParticles << 527 std::vector<G4Track*> scTracks; << 528 }; 528 }; 529 529 530 // ======== Run time inline methods ========== << 530 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 531 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 532 532 inline std::size_t G4VEnergyLossProcess::Curre << 533 inline void G4VEnergyLossProcess::DefineMaterial( >> 534 const G4MaterialCutsCouple* couple) 533 { 535 { 534 return currentCoupleIndex; << 536 if(couple != currentCouple) { >> 537 currentCouple = couple; >> 538 currentMaterial = couple->GetMaterial(); >> 539 currentMaterialIndex = couple->GetIndex(); >> 540 mfpKinEnergy = DBL_MAX; >> 541 } 535 } 542 } 536 543 537 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 545 539 inline void G4VEnergyLossProcess::SelectModel( << 546 inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, >> 547 const G4MaterialCutsCouple* couple) 540 { 548 { 541 currentModel = modelManager->SelectModel(kin << 549 DefineMaterial(couple); 542 currentModel->SetCurrentCouple(currentCouple << 550 return GetDEDXForScaledEnergy(kineticEnergy*massRatio); 543 } 551 } 544 552 545 //....oooOO0OOooo........oooOO0OOooo........oo 553 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 546 554 547 inline G4VEmModel* G4VEnergyLossProcess::Selec << 555 inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy, 548 G4double kinEnergy, std::si << 556 const G4MaterialCutsCouple* couple) 549 { 557 { 550 return modelManager->SelectModel(kinEnergy, << 558 DefineMaterial(couple); >> 559 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio); 551 } 560 } 552 561 553 //....oooOO0OOooo........oooOO0OOooo........oo 562 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 554 563 555 inline void << 564 inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e) 556 G4VEnergyLossProcess::DefineMaterial(const G4M << 557 { 565 { 558 if(couple != currentCouple) { << 566 G4bool b; 559 currentCouple = couple; << 567 G4double x = 560 currentMaterial = couple->GetMaterial(); << 568 ((*theDEDXTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 561 basedCoupleIndex = currentCoupleIndex = co << 569 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 562 fFactor = chargeSqRatio*biasFactor; << 570 return x; 563 mfpKinEnergy = DBL_MAX; << 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } << 571 } 571 } 572 572 573 //....oooOO0OOooo........oooOO0OOooo........oo 573 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 574 575 inline G4double G4VEnergyLossProcess::GetDEDXF << 575 inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e) 576 { 576 { 577 /* << 577 G4bool b; 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 578 G4double x = 579 << basedCoupleIndex << " E(MeV)= " << 579 ((*theDEDXSubTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 580 << " Emin= " << minKinEnergy << " Fa << 580 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 584 return x; 581 return x; 585 } 582 } 586 583 587 //....oooOO0OOooo........oooOO0OOooo........oo 584 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 588 585 589 inline << 586 inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e) 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { 587 { 592 /* << 588 G4bool b; 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 589 G4double x = 0.0; 594 << basedCoupleIndex << " E(MeV)= " << 590 // if(theIonisationTable) { 595 << " Emin= " << minKinEnergy << " Fa << 591 x = ((*theIonisationTable)[currentMaterialIndex]->GetValue(e, b)) 596 << " " << theDEDXTable << G4endl; */ << 592 *chargeSqRatio; 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 593 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 594 //} 599 return x; 595 return x; 600 } 596 } 601 597 602 //....oooOO0OOooo........oooOO0OOooo........oo 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 603 599 604 inline G4double G4VEnergyLossProcess::GetIonis << 600 inline >> 601 G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e) 605 { 602 { 606 G4double x = << 603 G4bool b; 607 fFactor*(*theIonisationTable)[basedCoupleI << 604 G4double x = 0.0; 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 605 //if(theIonisationSubTable) { >> 606 x = ((*theIonisationSubTable)[currentMaterialIndex]->GetValue(e, b)) >> 607 *chargeSqRatio; >> 608 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 609 //} 609 return x; 610 return x; 610 } 611 } 611 612 612 //....oooOO0OOooo........oooOO0OOooo........oo 613 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 613 614 614 inline G4double G4VEnergyLossProcess::GetScale << 615 inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, >> 616 const G4MaterialCutsCouple* couple) 615 { 617 { 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 618 G4double x = fRange; 617 // << basedCoupleIndex << " E(MeV)= << 619 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { 618 // << " lastIdx= " << lastIdx << " << 620 DefineMaterial(couple); 619 if(currentCoupleIndex != coupleIdxRange || f << 621 if(theCSDARangeTable) 620 coupleIdxRange = currentCoupleIndex; << 622 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) 621 fRangeEnergy = e; << 623 * reduceFactor; 622 fRange = reduceFactor*((*theRangeTableForL << 624 else if(theRangeTableForLoss) 623 if (fRange < 0.0) { fRange = 0.0; } << 625 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; 624 else if (e < minKinEnergy) { fRange *= std << 625 } 626 } 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 627 return x; 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } 628 } 631 629 632 inline G4double << 630 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 631 >> 632 inline G4double G4VEnergyLossProcess::GetCSDARange( >> 633 G4double& kineticEnergy, const G4MaterialCutsCouple* couple) 634 { 634 { 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 635 DefineMaterial(couple); 636 // << basedCoupleIndex << " E(MeV)= << 636 G4double x = DBL_MAX; 637 // << " lastIdx= " << lastIdx << " << 637 if(theCSDARangeTable) 638 if(currentCoupleIndex != coupleIdxRange || f << 638 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) 639 coupleIdxRange = currentCoupleIndex; << 639 * reduceFactor; 640 fRangeEnergy = e; << 640 return x; 641 fRange = reduceFactor*((*theRangeTableForL << 641 } 642 if (fRange < 0.0) { fRange = 0.0; } << 642 643 else if (e < minKinEnergy) { fRange *= std << 643 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 644 >> 645 inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy( >> 646 G4double e) >> 647 { >> 648 G4bool b; >> 649 G4double x; >> 650 >> 651 if (e < maxKinEnergyCSDA) { >> 652 x = ((*theCSDARangeTable)[currentMaterialIndex])->GetValue(e, b); >> 653 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 654 } else { >> 655 x = theRangeAtMaxEnergy[currentMaterialIndex] + >> 656 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex]; 644 } 657 } 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 658 return x; 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } 659 } 650 660 651 //....oooOO0OOooo........oooOO0OOooo........oo 661 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 652 662 653 inline G4double << 663 inline G4double G4VEnergyLossProcess::GetRangeForLoss( 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 664 G4double& kineticEnergy, >> 665 const G4MaterialCutsCouple* couple) 655 { 666 { 656 G4double x = ((*theCSDARangeTable)[basedCoup << 667 DefineMaterial(couple); 657 if (x < 0.0) { x = 0.0; } << 668 G4double x = DBL_MAX; 658 else if (e < minKinEnergy) { x *= std::sqrt( << 669 if(theRangeTableForLoss) >> 670 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 671 // G4cout << "Range from " << GetProcessName() >> 672 // << " e= " << kineticEnergy << " r= " << x << G4endl; 659 return x; 673 return x; 660 } 674 } 661 675 662 //....oooOO0OOooo........oooOO0OOooo........oo 676 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 663 677 664 inline G4double << 678 inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e) 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 666 << 667 { 679 { 668 G4double x = ((*theCSDARangeTable)[basedCoup << 680 G4bool b; 669 if (x < 0.0) { x = 0.0; } << 681 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b); 670 else if (e < minKinEnergy) { x *= std::sqrt( << 682 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 671 return x; 683 return x; 672 } 684 } 673 685 674 //....oooOO0OOooo........oooOO0OOooo........oo 686 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 687 >> 688 inline G4double G4VEnergyLossProcess::GetKineticEnergy( >> 689 G4double& range, >> 690 const G4MaterialCutsCouple* couple) >> 691 { >> 692 DefineMaterial(couple); >> 693 G4double r = range/reduceFactor; >> 694 G4double e = ScaledKinEnergyForLoss(r)/massRatio; >> 695 return e; >> 696 } >> 697 >> 698 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 699 676 inline G4double G4VEnergyLossProcess::ScaledKi 700 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 677 { 701 { 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 702 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex]; 679 // << basedCoupleIndex << " R(mm)= " << 703 G4double rmin = v->GetLowEdgeEnergy(0); 680 // << theInverseRangeTable << G4endl << 681 G4PhysicsVector* v = (*theInverseRangeTable) << 682 G4double rmin = v->Energy(0); << 683 G4double e = 0.0; 704 G4double e = 0.0; 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 705 if(r >= rmin) { 685 else if(r > 0.0) { << 706 G4bool b; >> 707 e = v->GetValue(r, b); >> 708 } else if(r > 0.0) { 686 G4double x = r/rmin; 709 G4double x = r/rmin; 687 e = minKinEnergy*x*x; 710 e = minKinEnergy*x*x; 688 } 711 } 689 return e; 712 return e; 690 } 713 } 691 714 692 //....oooOO0OOooo........oooOO0OOooo........oo 715 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 693 716 >> 717 inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, >> 718 const G4MaterialCutsCouple* couple) >> 719 { >> 720 DefineMaterial(couple); >> 721 G4double x = 0.0; >> 722 if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio); >> 723 return x; >> 724 } >> 725 >> 726 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 727 694 inline G4double G4VEnergyLossProcess::GetLambd 728 inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e) 695 { 729 { 696 return fFactor*((*theLambdaTable)[basedCoupl << 730 G4bool b; >> 731 return >> 732 chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); >> 733 } >> 734 >> 735 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 736 >> 737 inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e) >> 738 { >> 739 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex]; >> 740 if (e <= mfpKinEnergy) { >> 741 preStepLambda = GetLambdaForScaledEnergy(e); >> 742 >> 743 } else { >> 744 G4double e1 = e*lambdaFactor; >> 745 if(e1 > mfpKinEnergy) { >> 746 preStepLambda = GetLambdaForScaledEnergy(e); >> 747 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1); >> 748 if(preStepLambda1 > preStepLambda) { >> 749 mfpKinEnergy = e1; >> 750 preStepLambda = preStepLambda1; >> 751 } >> 752 } else { >> 753 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex]; >> 754 } >> 755 } 697 } 756 } 698 757 699 //....oooOO0OOooo........oooOO0OOooo........oo 758 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 700 759 701 inline G4double << 760 inline G4double G4VEnergyLossProcess::ContinuousStepLimit( 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 761 const G4Track& track, G4double x, G4double y, G4double& z) 703 { 762 { 704 return fFactor*((*theLambdaTable)[basedCoupl << 763 G4GPILSelection sel; >> 764 return AlongStepGetPhysicalInteractionLength(track, x, y, z, &sel); 705 } 765 } 706 766 707 //....oooOO0OOooo........oooOO0OOooo........oo 767 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 708 768 709 inline G4double G4VEnergyLossProcess::LogScale << 769 inline G4double G4VEnergyLossProcess::SampleRange() 710 { 770 { 711 return track.GetDynamicParticle()->GetLogKin << 771 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass(); >> 772 G4bool b; >> 773 G4double s = fRange*std::pow(10.,vstrag->GetValue(e,b)); >> 774 G4double x = fRange + G4RandGauss::shoot(0.0,s); >> 775 if(x > 0.0) fRange = x; >> 776 return fRange; 712 } 777 } 713 778 714 //....oooOO0OOooo........oooOO0OOooo........oo 779 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 780 716 inline G4double << 781 inline G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track) 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 718 const G4Material << 719 { 782 { 720 DefineMaterial(couple); << 783 DefineMaterial(track.GetMaterialCutsCouple()); 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 784 preStepLambda = GetLambdaForScaledEnergy(track.GetKineticEnergy()*massRatio); >> 785 G4double x = DBL_MAX; >> 786 if(DBL_MIN < preStepLambda) x = 1.0/preStepLambda; >> 787 return x; 722 } 788 } 723 789 724 //....oooOO0OOooo........oooOO0OOooo........oo 790 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 791 726 inline G4double << 792 inline G4double G4VEnergyLossProcess::MinPrimaryEnergy( 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 793 const G4ParticleDefinition*, const G4Material*, G4double cut) 728 const G4Material << 729 G4double logKinE << 730 { 794 { 731 DefineMaterial(couple); << 795 return cut; 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 733 } 796 } 734 797 735 //....oooOO0OOooo........oooOO0OOooo........oo 798 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 799 737 inline G4double << 800 inline void G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 739 const G4Materia << 740 { 801 { 741 DefineMaterial(couple); << 802 currentModel = modelManager->SelectModel(kinEnergy, currentMaterialIndex); 742 return GetScaledRangeForScaledEnergy(kinEner << 743 } 803 } 744 804 745 //....oooOO0OOooo........oooOO0OOooo........oo 805 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 806 747 inline G4double << 807 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 808 G4double kinEnergy, size_t& idx) const 749 const G4Materia << 750 G4double logKin << 751 { 809 { 752 DefineMaterial(couple); << 810 return modelManager->SelectModel(kinEnergy, idx); 753 return GetScaledRangeForScaledEnergy(kinEner << 754 } 811 } 755 812 756 //....oooOO0OOooo........oooOO0OOooo........oo 813 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 814 758 inline G4double << 815 inline G4ParticleChangeForLoss* G4VEnergyLossProcess::GetParticleChange() 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 760 const G4Mat << 761 { 816 { 762 DefineMaterial(couple); << 817 return &fParticleChange; 763 return (nullptr == theCSDARangeTable) ? DBL_ << 764 GetLimitScaledRangeForScaledEnergy(kinetic << 765 } 818 } 766 819 767 //....oooOO0OOooo........oooOO0OOooo........oo 820 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 821 769 inline G4double << 822 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 771 const G << 772 { 823 { 773 DefineMaterial(couple); << 824 return particle; 774 return ScaledKinEnergyForLoss(range/reduceFa << 775 } 825 } 776 826 777 //....oooOO0OOooo........oooOO0OOooo........oo 827 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 828 779 inline G4double << 829 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 781 const G4Materi << 782 { 830 { 783 DefineMaterial(couple); << 831 return baseParticle; 784 return (nullptr != theLambdaTable) ? << 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 786 } 832 } 787 833 788 //....oooOO0OOooo........oooOO0OOooo........oo 834 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 835 790 inline G4double << 836 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 792 const G4Materi << 793 G4double logKi << 794 { 837 { 795 DefineMaterial(couple); << 838 return secondaryParticle; 796 return (nullptr != theLambdaTable) ? << 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 798 : 0.0; << 799 } 839 } 800 840 801 // ======== Get/Set inline methods used at ini << 841 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 802 842 803 inline void G4VEnergyLossProcess::SetFluctMode << 843 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 804 { 844 { 805 fluctModel = p; << 845 return theDEDXTable; 806 } 846 } 807 847 808 //....oooOO0OOooo........oooOO0OOooo........oo 848 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 849 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 850 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const 811 { 851 { 812 return fluctModel; << 852 return theDEDXSubTable; 813 } 853 } 814 854 815 //....oooOO0OOooo........oooOO0OOooo........oo 855 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 856 817 inline void G4VEnergyLossProcess::SetParticle( << 857 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const 818 { 858 { 819 particle = p; << 859 return theDEDXunRestrictedTable; 820 } 860 } 821 861 822 //....oooOO0OOooo........oooOO0OOooo........oo 862 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 863 824 inline void << 864 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { 865 { 827 secondaryParticle = p; << 866 G4PhysicsTable* t = theDEDXTable; >> 867 if(theIonisationTable) t = theIonisationTable; >> 868 return t; 828 } 869 } 829 870 830 //....oooOO0OOooo........oooOO0OOooo........oo 871 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 872 832 inline void << 873 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 874 { 835 baseParticle = p; << 875 G4PhysicsTable* t = theDEDXSubTable; >> 876 if(theIonisationSubTable) t = theIonisationSubTable; >> 877 return t; 836 } 878 } 837 879 838 //....oooOO0OOooo........oooOO0OOooo........oo 880 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 881 840 inline const G4ParticleDefinition* G4VEnergyLo << 882 inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const 841 { 883 { 842 return particle; << 884 return theCSDARangeTable; 843 } 885 } 844 886 845 //....oooOO0OOooo........oooOO0OOooo........oo 887 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 888 847 inline const G4ParticleDefinition* G4VEnergyLo << 889 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 848 { 890 { 849 return baseParticle; << 891 return theRangeTableForLoss; >> 892 } >> 893 >> 894 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 895 >> 896 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const >> 897 { >> 898 return theInverseRangeTable; 850 } 899 } 851 900 852 //....oooOO0OOooo........oooOO0OOooo........oo 901 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 902 854 inline const G4ParticleDefinition* << 903 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() 855 G4VEnergyLossProcess::SecondaryParticle() cons << 856 { 904 { 857 return secondaryParticle; << 905 return theLambdaTable; 858 } 906 } 859 907 860 //....oooOO0OOooo........oooOO0OOooo........oo 908 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 909 862 inline void G4VEnergyLossProcess::SetLossFluct << 910 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 863 { 911 { 864 lossFluctuationFlag = val; << 912 return theSubLambdaTable; 865 actLossFluc = true; << 913 } >> 914 >> 915 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 916 >> 917 inline G4bool G4VEnergyLossProcess::IsIntegral() const >> 918 { >> 919 return integral; 866 } 920 } 867 921 868 //....oooOO0OOooo........oooOO0OOooo........oo 922 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 869 923 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 924 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 871 { 925 { 872 spline = val; << 926 return currentMaterialIndex; 873 } 927 } 874 928 875 //....oooOO0OOooo........oooOO0OOooo........oo 929 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 876 930 877 inline void G4VEnergyLossProcess::SetCrossSect << 931 inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio, >> 932 G4double charge2ratio) 878 { 933 { 879 fXSType = val; << 934 massRatio = massratio; >> 935 chargeSqRatio = charge2ratio; >> 936 reduceFactor = 1.0/(chargeSqRatio*massRatio); 880 } 937 } 881 938 882 //....oooOO0OOooo........oooOO0OOooo........oo 939 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 883 940 884 inline G4CrossSectionType G4VEnergyLossProcess << 941 inline G4double G4VEnergyLossProcess::GetCurrentRange() const 885 { 942 { 886 return fXSType; << 943 return fRange; 887 } 944 } 888 945 889 //....oooOO0OOooo........oooOO0OOooo........oo 946 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 947 891 inline G4bool G4VEnergyLossProcess::IsIonisati << 948 inline >> 949 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, >> 950 G4VEmFluctuationModel* fluc, >> 951 const G4Region* region) 892 { 952 { 893 return isIonisation; << 953 modelManager->AddEmModel(order, p, fluc, region); >> 954 if(p) p->SetParticleChange(pParticleChange, fluc); 894 } 955 } 895 956 896 //....oooOO0OOooo........oooOO0OOooo........oo 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 958 898 inline G4int G4VEnergyLossProcess::NumberOfSub << 959 inline >> 960 G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx, G4bool ver) 899 { 961 { 900 return nSCoffRegions; << 962 return modelManager->GetModel(idx, ver); 901 } 963 } 902 964 903 //....oooOO0OOooo........oooOO0OOooo........oo 965 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 966 905 inline G4double G4VEnergyLossProcess::MinKinEn << 967 inline G4int G4VEnergyLossProcess::NumberOfModels() 906 { 968 { 907 return minKinEnergy; << 969 return modelManager->NumberOfModels(); 908 } 970 } 909 971 910 //....oooOO0OOooo........oooOO0OOooo........oo 972 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 973 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 974 inline void G4VEnergyLossProcess::SetEmModel(G4VEmModel* p, G4int index) 913 { 975 { 914 return maxKinEnergy; << 976 G4int n = emModels.size(); >> 977 if(index >= n) for(G4int i=n; i<index+1; i++) {emModels.push_back(0);} >> 978 emModels[index] = p; >> 979 } >> 980 >> 981 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 982 >> 983 inline G4VEmModel* G4VEnergyLossProcess::EmModel(G4int index) >> 984 { >> 985 G4VEmModel* p = 0; >> 986 if(index >= 0 && index < G4int(emModels.size())) p = emModels[index]; >> 987 return p; >> 988 } >> 989 >> 990 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 991 >> 992 inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p) >> 993 { >> 994 fluctModel = p; >> 995 } >> 996 >> 997 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 998 >> 999 inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel() >> 1000 { >> 1001 return fluctModel; >> 1002 } >> 1003 >> 1004 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1005 >> 1006 inline void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 1007 G4double emin, G4double emax) >> 1008 { >> 1009 modelManager->UpdateEmModel(nam, emin, emax); >> 1010 } >> 1011 >> 1012 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1013 >> 1014 inline void G4VEnergyLossProcess::SetIntegral(G4bool val) >> 1015 { >> 1016 integral = val; >> 1017 } >> 1018 >> 1019 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1020 >> 1021 inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) >> 1022 { >> 1023 particle = p; 915 } 1024 } 916 1025 917 //....oooOO0OOooo........oooOO0OOooo........oo 1026 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 918 1027 919 inline G4double G4VEnergyLossProcess::CrossSec << 1028 inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) 920 { 1029 { 921 return biasFactor; << 1030 baseParticle = p; >> 1031 } >> 1032 >> 1033 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1034 >> 1035 inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) >> 1036 { >> 1037 secondaryParticle = p; >> 1038 } >> 1039 >> 1040 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1041 >> 1042 inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) >> 1043 { >> 1044 linLossLimit = val; >> 1045 } >> 1046 >> 1047 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1048 >> 1049 inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) >> 1050 { >> 1051 lossFluctuationFlag = val; >> 1052 } >> 1053 >> 1054 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1055 >> 1056 inline void G4VEnergyLossProcess::SetRandomStep(G4bool val) >> 1057 { >> 1058 rndmStepFlag = val; >> 1059 } >> 1060 >> 1061 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1062 >> 1063 inline void G4VEnergyLossProcess::SetMinSubRange(G4double val) >> 1064 { >> 1065 minSubRange = val; 922 } 1066 } 923 1067 924 //....oooOO0OOooo........oooOO0OOooo........oo 1068 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 1069 926 inline G4bool G4VEnergyLossProcess::TablesAreB 1070 inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const 927 { 1071 { 928 return tablesAreBuilt; << 1072 return tablesAreBuilt; 929 } 1073 } 930 1074 931 //....oooOO0OOooo........oooOO0OOooo........oo 1075 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 1076 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1077 inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 934 { 1078 { 935 return theDEDXTable; << 1079 return nSCoffRegions; 936 } 1080 } 937 1081 938 //....oooOO0OOooo........oooOO0OOooo........oo 1082 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 1083 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1084 inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 941 { 1085 { 942 return theDEDXunRestrictedTable; << 1086 nBins = nbins; 943 } 1087 } 944 1088 945 //....oooOO0OOooo........oooOO0OOooo........oo 1089 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 1090 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1091 inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 948 { 1092 { 949 return theIonisationTable; << 1093 nBins = nbins; 950 } 1094 } 951 1095 952 //....oooOO0OOooo........oooOO0OOooo........oo 1096 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 1097 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 1098 inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins) 955 { 1099 { 956 return theCSDARangeTable; << 1100 nBinsCSDA = nbins; 957 } 1101 } 958 1102 959 //....oooOO0OOooo........oooOO0OOooo........oo 1103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 1104 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 1105 inline G4double G4VEnergyLossProcess::MinKinEnergy() const 962 { 1106 { 963 return theRangeTableForLoss; << 1107 return minKinEnergy; 964 } 1108 } 965 1109 966 //....oooOO0OOooo........oooOO0OOooo........oo 1110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 1111 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1112 inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 969 { 1113 { 970 return theInverseRangeTable; << 1114 minKinEnergy = e; 971 } 1115 } 972 1116 973 //....oooOO0OOooo........oooOO0OOooo........oo 1117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 1118 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 1119 inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 976 { 1120 { 977 return theLambdaTable; << 1121 maxKinEnergy = e; >> 1122 if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e; 978 } 1123 } 979 1124 980 //....oooOO0OOooo........oooOO0OOooo........oo 1125 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1126 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 1127 inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e) 983 { 1128 { 984 return baseMat; << 1129 maxKinEnergyCSDA = e; 985 } 1130 } 986 1131 987 //....oooOO0OOooo........oooOO0OOooo........oo 1132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 1133 989 inline std::vector<G4double>* << 1134 inline G4double G4VEnergyLossProcess::MaxKinEnergy() const 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 1135 { 992 return theEnergyOfCrossSectionMax; << 1136 return maxKinEnergy; 993 } 1137 } 994 1138 995 //....oooOO0OOooo........oooOO0OOooo........oo 1139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 1140 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 1141 inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val) 998 { 1142 { 999 return fXSpeaks; << 1143 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 1000 } 1144 } 1001 1145 1002 //....oooOO0OOooo........oooOO0OOooo........o 1146 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 1147 1004 inline std::size_t G4VEnergyLossProcess::Numb << 1148 inline void G4VEnergyLossProcess::SetIonisation(G4bool val) 1005 { 1149 { 1006 return numberOfModels; << 1150 isIonisation = val; >> 1151 if(val) aGPILSelection = CandidateForSelection; >> 1152 else aGPILSelection = NotCandidateForSelection; 1007 } 1153 } 1008 1154 1009 //....oooOO0OOooo........oooOO0OOooo........o 1155 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 1156 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 1157 inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const 1012 { 1158 { 1013 return (index < emModels->size()) ? (*emMod << 1159 return isIonisation; 1014 } 1160 } 1015 1161 1016 //....oooOO0OOooo........oooOO0OOooo........o 1162 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 1163 1018 inline G4VEmModel* << 1164 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 1165 { 1021 return modelManager->GetModel((G4int)idx, v << 1166 dRoverRange = v1; >> 1167 finalRange = v2; >> 1168 if (dRoverRange > 0.999) dRoverRange = 1.0; >> 1169 currentCouple = 0; >> 1170 mfpKinEnergy = DBL_MAX; 1022 } 1171 } 1023 1172 1024 //....oooOO0OOooo........oooOO0OOooo........o 1173 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 1174 1026 #endif 1175 #endif 1027 1176