Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.hh,v 1.76 2007/11/07 18:38:49 vnivanch Exp $ >> 27 // GEANT4 tag $Name: 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 37 // 39 // 38 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 44 // 24-01-03 Make models region aware (V.Ivanchenko) >> 45 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 46 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 47 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 48 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 49 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 50 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 51 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 52 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 53 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 54 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 55 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 56 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 57 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) >> 58 // 03-08-04 Add DEDX table to all processes for control on integral range(VI) >> 59 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 60 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 61 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 62 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 63 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 64 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 65 // 10-01-05 Remove SetStepLimits (V.Ivanchenko) >> 66 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 67 // 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko) >> 68 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 69 // 26-01-06 Add public method GetCSDARange (V.Ivanchenko) >> 70 // 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko) >> 71 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 72 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 73 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 74 // 15-01-07 Add separate ionisation tables and reorganise get/set methods for >> 75 // dedx tables (V.Ivanchenko) >> 76 // 13-03-07 use SafetyHelper instead of navigator (V.Ivanchenko) >> 77 // 27-07-07 use stl vector for emModels instead of C-array (V.Ivanchenko) >> 78 // 25-09-07 More accurate handling zero xsect in >> 79 // PostStepGetPhysicalInteractionLength (V.Ivanchenko) >> 80 // 27-10-07 Virtual functions moved to source (V.Ivanchenko) 39 // 81 // 40 // Class Description: 82 // Class Description: 41 // 83 // 42 // It is the unified energy loss process it ca 84 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 85 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 86 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 87 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 88 // that information on fly. 47 89 48 // ------------------------------------------- 90 // ------------------------------------------------------------------- 49 // 91 // 50 92 51 #ifndef G4VEnergyLossProcess_h 93 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 94 #define G4VEnergyLossProcess_h 1 53 95 54 #include "G4VContinuousDiscreteProcess.hh" 96 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 97 #include "globals.hh" 56 #include "G4Material.hh" 98 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 99 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 100 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 101 #include "G4EmModelManager.hh" >> 102 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 103 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" 104 #include "G4EmTableType.hh" 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" 105 #include "G4PhysicsTable.hh" 64 #include "G4PhysicsVector.hh" 106 #include "G4PhysicsVector.hh" 65 107 66 class G4Step; 108 class G4Step; 67 class G4ParticleDefinition; 109 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 110 class G4VEmModel; 70 class G4VEmFluctuationModel; 111 class G4VEmFluctuationModel; 71 class G4DataVector; 112 class G4DataVector; 72 class G4Region; 113 class G4Region; 73 class G4SafetyHelper; 114 class G4SafetyHelper; 74 class G4VAtomDeexcitation; << 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 115 80 //....oooOO0OOooo........oooOO0OOooo........oo 116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 117 82 class G4VEnergyLossProcess : public G4VContinu 118 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 119 { 84 public: 120 public: 85 121 86 G4VEnergyLossProcess(const G4String& name = 122 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 123 G4ProcessType type = fElectromagnetic); 88 124 89 ~G4VEnergyLossProcess() override; << 125 virtual ~G4VEnergyLossProcess(); 90 126 91 //------------------------------------------ 127 //------------------------------------------------------------------------ 92 // Virtual methods to be implemented in conc 128 // Virtual methods to be implemented in concrete processes 93 //------------------------------------------ 129 //------------------------------------------------------------------------ 94 130 95 protected: << 131 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; >> 132 >> 133 virtual void PrintInfo() = 0; 96 134 97 // description of specific process parameter << 135 protected: 98 virtual void StreamProcessInfo(std::ostream& << 99 136 100 virtual void InitialiseEnergyLossProcess(con 137 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*, 101 con 138 const G4ParticleDefinition*) = 0; 102 139 103 public: << 140 //------------------------------------------------------------------------ >> 141 // Methods with standard implementation; may be overwritten if needed >> 142 //------------------------------------------------------------------------ >> 143 protected: 104 144 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa 145 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 107 const G4Ma << 146 const G4Material*, G4double cut); 108 << 109 // print documentation in html format << 110 void ProcessDescription(std::ostream& outFil << 111 147 112 // prepare all tables << 148 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 113 void PreparePhysicsTable(const G4ParticleDef << 149 const G4DynamicParticle*, >> 150 G4double& eloss, >> 151 G4double& length); 114 152 115 // build all tables << 153 //------------------------------------------------------------------------ 116 void BuildPhysicsTable(const G4ParticleDefin << 154 // Generic methods common to all ContinuousDiscrete processes 117 << 155 //------------------------------------------------------------------------ 118 // build a table << 156 public: 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType << 120 157 121 // build a table << 158 void PrintInfoDefinition(); 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy << 123 159 124 // Called before tracking of each new G4Trac << 160 void PreparePhysicsTable(const G4ParticleDefinition&); 125 void StartTracking(G4Track*) override; << 126 161 127 // Step limit from AlongStep << 162 void BuildPhysicsTable(const G4ParticleDefinition&); 128 G4double AlongStepGetPhysicalInteractionLeng << 129 const G4Trac << 130 G4double pr << 131 G4double cu << 132 G4double& cu << 133 G4GPILSelect << 134 << 135 // Step limit from cross section << 136 G4double PostStepGetPhysicalInteractionLengt << 137 const G4Trac << 138 G4double pre << 139 G4ForceCondi << 140 163 141 // AlongStep computations << 164 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 143 165 144 // PostStep sampling of secondaries << 166 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 145 G4VParticleChange* PostStepDoIt(const G4Trac << 146 167 147 // Store all PhysicsTable in files. << 168 // Store PhysicsTable in a file. 148 // Return false in case of any fatal failure << 169 // Return false in case of failure at I/O 149 G4bool StorePhysicsTable(const G4ParticleDef 170 G4bool StorePhysicsTable(const G4ParticleDefinition*, 150 const G4String& dir 171 const G4String& directory, 151 G4bool ascii = fals << 172 G4bool ascii = false); 152 173 153 // Retrieve all Physics from a files. << 174 // Retrieve Physics from a file. 154 // Return true if all the Physics Table are << 175 // (return true if the Physics Table can be build by using file) 155 // Return false if any fatal failure. << 176 // (return false if the process has no functionality or in case of failure) >> 177 // File name should is constructed as processName+particleName and the >> 178 // should be placed under the directory specifed by the argument. 156 G4bool RetrievePhysicsTable(const G4Particle 179 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 157 const G4String& 180 const G4String& directory, 158 G4bool ascii) ov << 181 G4bool ascii); 159 182 160 private: << 183 protected: 161 184 162 // summary printout after initialisation << 185 G4double GetMeanFreePath(const G4Track& track, 163 void StreamInfo(std::ostream& out, const G4P << 186 G4double previousStepSize, 164 G4bool rst=false) const; << 187 G4ForceCondition* condition); >> 188 >> 189 G4double GetContinuousStepLimit(const G4Track& track, >> 190 G4double previousStepSize, >> 191 G4double currentMinimumStep, >> 192 G4double& currentSafety); 165 193 166 //------------------------------------------ 194 //------------------------------------------------------------------------ 167 // Public interface to cross section, mfp an << 195 // Specific methods for along/post step EM processes 168 // These methods are not used in run time << 169 //------------------------------------------ 196 //------------------------------------------------------------------------ 170 197 171 public: 198 public: 172 199 173 // access to dispersion of restricted energy << 200 void AddCollaborativeProcess(G4VEnergyLossProcess*); >> 201 >> 202 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, >> 203 G4VEmModel* model, G4int matIdx, >> 204 G4double& extraEdep); >> 205 174 G4double GetDEDXDispersion(const G4MaterialC 206 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 175 const G4DynamicPa << 207 const G4DynamicParticle* dp, 176 G4double length); << 208 G4double length); 177 209 178 // Access to cross section table << 179 G4double CrossSectionPerVolume(G4double kine << 180 const G4Mater << 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 << 185 // access to cross section << 186 G4double MeanFreePath(const G4Track& track); << 187 << 188 // access to step limit << 189 G4double ContinuousStepLimit(const G4Track& << 190 G4double previo << 191 G4double curren << 192 G4double& curre << 193 210 194 protected: << 211 virtual G4double AlongStepGetPhysicalInteractionLength( >> 212 const G4Track&, >> 213 G4double previousStepSize, >> 214 G4double currentMinimumStep, >> 215 G4double& currentSafety, >> 216 G4GPILSelection* selection >> 217 ); >> 218 >> 219 virtual G4double PostStepGetPhysicalInteractionLength( >> 220 const G4Track& track, >> 221 G4double previousStepSize, >> 222 G4ForceCondition* condition >> 223 ); 195 224 196 // implementation of the pure virtual method << 225 //------------------------------------------------------------------------ 197 G4double GetMeanFreePath(const G4Track& trac << 226 // Specific methods to build and access Physics Tables 198 G4double previousSt << 227 //------------------------------------------------------------------------ 199 G4ForceCondition* c << 200 228 201 // implementation of the pure virtual method << 229 G4double MicroscopicCrossSection(G4double kineticEnergy, 202 G4double GetContinuousStepLimit(const G4Trac << 230 const G4MaterialCutsCouple* couple); 203 G4double pre << 204 G4double cur << 205 G4double& cu << 206 231 207 // creation of an empty vector for cross sec << 232 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted); 208 G4PhysicsVector* LambdaPhysicsVector(const G << 209 G4doubl << 210 233 211 inline std::size_t CurrentMaterialCutsCouple << 234 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted); 212 235 213 //------------------------------------------ << 236 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType); 214 // Specific methods to set, access, modify m << 237 void SetCSDARangeTable(G4PhysicsTable* pRange); 215 //------------------------------------------ << 238 void SetRangeTableForLoss(G4PhysicsTable* p); >> 239 void SetInverseRangeTable(G4PhysicsTable* p); >> 240 void SetSecondaryRangeTable(G4PhysicsTable* p); 216 241 217 // Select model in run time << 242 void SetLambdaTable(G4PhysicsTable* p); 218 inline void SelectModel(G4double kinEnergy); << 243 void SetSubLambdaTable(G4PhysicsTable* p); 219 244 220 public: << 245 // Binning for dEdx, range, inverse range and labda tables 221 // Select model by energy and couple index << 246 inline void SetDEDXBinning(G4int nbins); 222 // Not for run time processing << 247 inline void SetLambdaBinning(G4int nbins); 223 inline G4VEmModel* SelectModelForMaterial(G4 << 224 st << 225 << 226 // Add EM model coupled with fluctuation mod << 227 // of order defines which pair of models wil << 228 // energy interval << 229 void AddEmModel(G4int, G4VEmModel*, << 230 G4VEmFluctuationModel* fluc << 231 const G4Region* region = nul << 232 << 233 // Assign a model to a process local list, t << 234 // the derived process should execute AddEmM << 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 248 237 // Access to models << 249 // Binning for dEdx, range, and inverse range tables 238 inline std::size_t NumberOfModels() const; << 250 inline void SetDEDXBinningForCSDARange(G4int nbins); 239 << 251 240 // Return a model from the local list << 252 // Min kinetic energy for tables 241 inline G4VEmModel* EmModel(std::size_t index << 253 inline void SetMinKinEnergy(G4double e); 242 << 254 inline G4double MinKinEnergy() const; 243 // Access to models from G4EmModelManager li << 255 244 inline G4VEmModel* GetModelByIndex(std::size << 256 // Max kinetic energy for tables >> 257 inline void SetMaxKinEnergy(G4double e); >> 258 inline G4double MaxKinEnergy() const; >> 259 >> 260 // Max kinetic energy for tables >> 261 inline void SetMaxKinEnergyForCSDARange(G4double e); >> 262 >> 263 // Access to specific tables >> 264 inline G4PhysicsTable* DEDXTable() const; >> 265 inline G4PhysicsTable* DEDXTableForSubsec() const; >> 266 inline G4PhysicsTable* DEDXunRestrictedTable() const; >> 267 inline G4PhysicsTable* IonisationTable() const; >> 268 inline G4PhysicsTable* IonisationTableForSubsec() const; >> 269 inline G4PhysicsTable* CSDARangeTable() const; >> 270 inline G4PhysicsTable* RangeTableForLoss() const; >> 271 inline G4PhysicsTable* InverseRangeTable() const; >> 272 inline G4PhysicsTable* LambdaTable(); >> 273 inline G4PhysicsTable* SubLambdaTable(); >> 274 >> 275 // Return values for given G4MaterialCutsCouple >> 276 inline G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 277 inline G4double GetDEDXForSubsec(G4double& kineticEnergy, >> 278 const G4MaterialCutsCouple*); >> 279 inline G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 280 inline G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 281 inline G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 282 inline G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*); >> 283 inline G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 284 >> 285 inline G4bool TablesAreBuilt() const; 245 286 246 // Assign a fluctuation model to a process << 247 inline void SetFluctModel(G4VEmFluctuationMo << 248 << 249 // Return the assigned fluctuation model << 250 inline G4VEmFluctuationModel* FluctModel() c << 251 << 252 //------------------------------------------ 287 //------------------------------------------------------------------------ 253 // Define and access particle type 288 // Define and access particle type 254 //------------------------------------------ 289 //------------------------------------------------------------------------ 255 290 256 protected: << 257 inline void SetParticle(const G4ParticleDefi << 258 inline void SetSecondaryParticle(const G4Par << 259 << 260 public: << 261 inline void SetBaseParticle(const G4Particle 291 inline void SetBaseParticle(const G4ParticleDefinition* p); 262 inline const G4ParticleDefinition* Particle( 292 inline const G4ParticleDefinition* Particle() const; 263 inline const G4ParticleDefinition* BaseParti 293 inline const G4ParticleDefinition* BaseParticle() const; 264 inline const G4ParticleDefinition* Secondary 294 inline const G4ParticleDefinition* SecondaryParticle() const; 265 295 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ 296 //------------------------------------------------------------------------ 271 // Get/set parameters to configure the proce << 297 // Specific methods to set, access, modify models 272 //------------------------------------------ 298 //------------------------------------------------------------------------ 273 299 274 // Add subcut processor for the region << 300 // Add EM model coupled with fluctuation model for the region 275 void ActivateSubCutoff(const G4Region* regio << 301 inline void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 302 const G4Region* region = 0); 276 303 277 // Activate biasing << 304 // Assign a model to a process 278 void SetCrossSectionBiasingFactor(G4double f << 305 inline void SetEmModel(G4VEmModel*, G4int index=1); >> 306 >> 307 // return the assigned model >> 308 inline G4VEmModel* EmModel(G4int index=1); >> 309 >> 310 // Assign a fluctuation model to a process >> 311 inline void SetFluctModel(G4VEmFluctuationModel*); >> 312 >> 313 // return the assigned fluctuation model >> 314 inline G4VEmFluctuationModel* FluctModel(); >> 315 >> 316 // Define new energy range for the model identified by the name >> 317 inline void UpdateEmModel(const G4String&, G4double, G4double); >> 318 >> 319 // Access to models >> 320 inline G4VEmModel* GetModelByIndex(G4int idx = 0); 279 321 280 void ActivateForcedInteraction(G4double leng << 322 inline G4int NumberOfModels(); 281 const G4Strin << 282 G4bool flag = << 283 323 284 void ActivateSecondaryBiasing(const G4String << 324 //------------------------------------------------------------------------ 285 G4double energ << 325 // Get/set parameters used for simulation of energy loss >> 326 //------------------------------------------------------------------------ 286 327 287 inline void SetLossFluctuations(G4bool val); 328 inline void SetLossFluctuations(G4bool val); 288 << 329 inline void SetRandomStep(G4bool val); 289 inline void SetSpline(G4bool val); << 330 inline void SetIntegral(G4bool val); 290 inline void SetCrossSectionType(G4CrossSecti << 331 inline G4bool IsIntegral() const; 291 inline G4CrossSectionType CrossSectionType() << 292 332 293 // Set/Get flag "isIonisation" 333 // Set/Get flag "isIonisation" 294 void SetIonisation(G4bool val); << 334 inline void SetIonisation(G4bool val); 295 inline G4bool IsIonisationProcess() const; 335 inline G4bool IsIonisationProcess() const; 296 336 297 // Redefine parameteters for stepping contro 337 // Redefine parameteters for stepping control 298 void SetLinearLossLimit(G4double val); << 338 // 299 void SetStepFunction(G4double v1, G4double v << 339 inline void SetLinearLossLimit(G4double val); 300 void SetLowestEnergyLimit(G4double); << 340 inline void SetMinSubRange(G4double val); >> 341 inline void SetStepFunction(G4double v1, G4double v2); >> 342 inline void SetLambdaFactor(G4double val); >> 343 >> 344 >> 345 // Add subcutoff option for the region >> 346 void ActivateSubCutoff(G4bool val, const G4Region* region = 0); 301 347 302 inline G4int NumberOfSubCutoffRegions() cons 348 inline G4int NumberOfSubCutoffRegions() const; 303 349 >> 350 // Activate deexcitation code >> 351 virtual void ActivateDeexcitation(G4bool, const G4Region* region = 0); >> 352 304 //------------------------------------------ 353 //------------------------------------------------------------------------ 305 // Specific methods to path Physics Tables t << 354 // Run time method for simulation of ionisation 306 //------------------------------------------ 355 //------------------------------------------------------------------------ 307 356 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab << 357 inline G4double SampleRange(); 309 void SetCSDARangeTable(G4PhysicsTable* pRang << 310 void SetRangeTableForLoss(G4PhysicsTable* p) << 311 void SetInverseRangeTable(G4PhysicsTable* p) << 312 void SetLambdaTable(G4PhysicsTable* p); << 313 358 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 359 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, size_t& idx) const; 315 void SetEnergyOfCrossSectionMax(std::vector< << 316 360 317 //------------------------------------------ << 318 // Specific methods to define custom Physics << 319 //------------------------------------------ << 320 361 321 // Binning for dEdx, range, inverse range an << 362 // Set scaling parameters 322 void SetDEDXBinning(G4int nbins); << 363 inline void SetDynamicMassCharge(G4double massratio, G4double charge2ratio); 323 364 324 // Min kinetic energy for tables << 365 // Helper functions 325 void SetMinKinEnergy(G4double e); << 366 inline G4double MeanFreePath(const G4Track& track); 326 inline G4double MinKinEnergy() const; << 327 367 328 // Max kinetic energy for tables << 368 inline G4double ContinuousStepLimit(const G4Track& track, 329 void SetMaxKinEnergy(G4double e); << 369 G4double previousStepSize, 330 inline G4double MaxKinEnergy() const; << 370 G4double currentMinimumStep, >> 371 G4double& currentSafety); 331 372 332 // Biasing parameters << 373 protected: 333 inline G4double CrossSectionBiasingFactor() << 334 374 335 // Return values for given G4MaterialCutsCou << 375 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 336 inline G4double GetDEDX(G4double kineticEner << 376 G4double cut); 337 inline G4double GetCSDADEDX(G4double kinetic << 338 const G4Material << 339 inline G4double GetDEDX(G4double kineticEner << 340 G4double logKineticE << 341 inline G4double GetRange(G4double kineticEne << 342 inline G4double GetRange(G4double kineticEne << 343 G4double logKinetic << 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 377 352 inline G4bool TablesAreBuilt() const; << 378 inline virtual void InitialiseMassCharge(const G4Track&); 353 379 354 // Access to specific tables << 380 inline void SetParticle(const G4ParticleDefinition* p); 355 inline G4PhysicsTable* DEDXTable() const; << 356 inline G4PhysicsTable* DEDXunRestrictedTable << 357 inline G4PhysicsTable* IonisationTable() con << 358 inline G4PhysicsTable* CSDARangeTable() cons << 359 inline G4PhysicsTable* RangeTableForLoss() c << 360 inline G4PhysicsTable* InverseRangeTable() c << 361 inline G4PhysicsTable* LambdaTable() const; << 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 363 inline std::vector<G4double>* EnergyOfCrossS << 364 381 365 inline G4bool UseBaseMaterial() const; << 382 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 366 383 367 //------------------------------------------ << 384 inline G4VEmModel* SelectModel(G4double kinEnergy); 368 // Run time method for simulation of ionisat << 369 //------------------------------------------ << 370 385 371 // access atom on which interaction happens << 386 inline size_t CurrentMaterialCutsCoupleIndex() const; 372 const G4Element* GetCurrentElement() const; << 373 387 374 // Set scaling parameters for ions is needed << 388 inline G4double GetCurrentRange() const; 375 void SetDynamicMassCharge(G4double massratio << 376 389 377 private: 390 private: 378 391 379 void FillSecondariesAlongStep(G4double weigh << 392 // Clear tables >> 393 void Clear(); 380 394 381 void PrintWarning(const G4String&, G4double << 395 inline void InitialiseStep(const G4Track&); 382 396 383 // define material and indexes << 384 inline void DefineMaterial(const G4MaterialC 397 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 385 398 386 //------------------------------------------ << 399 // Returnd values for scaled energy and base particles mass 387 // Compute values using scaling relation, ma << 400 // 388 //------------------------------------------ << 401 inline G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy); 389 inline G4double GetDEDXForScaledEnergy(G4dou << 402 inline G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy); 390 inline G4double GetDEDXForScaledEnergy(G4dou << 403 inline G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy); 391 G4dou << 404 inline G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy); 392 inline G4double GetIonisationForScaledEnergy << 405 inline G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy); 393 inline G4double GetScaledRangeForScaledEnerg << 406 inline G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy); 394 inline G4double GetScaledRangeForScaledEnerg << 407 inline G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy); 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 << 401 inline G4double ScaledKinEnergyForLoss(G4dou 408 inline G4double ScaledKinEnergyForLoss(G4double range); 402 inline G4double GetLambdaForScaledEnergy(G4d << 409 inline void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy); 403 inline G4double GetLambdaForScaledEnergy(G4d << 404 G4d << 405 410 406 inline G4double LogScaledEkin(const G4Track& << 411 // hide assignment operator 407 << 412 408 void ComputeLambdaForScaledEnergy(G4double s << 413 G4VEnergyLossProcess(G4VEnergyLossProcess &); 409 const G4Tr << 414 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 410 415 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 416 // ===================================================================== 412 417 413 protected: 418 protected: 414 419 415 G4ParticleChangeForLoss fParticleChange; << 420 G4ParticleChangeForLoss fParticleChange; 416 const G4Material* currentMaterial << 417 const G4MaterialCutsCouple* currentCouple = << 418 421 419 private: 422 private: 420 423 421 G4LossTableManager* lManager; << 424 G4EmModelManager* modelManager; 422 G4EmModelManager* modelManager; << 425 std::vector<G4VEmModel*> emModels; 423 G4VEmModel* currentModel = n << 426 G4VEmFluctuationModel* fluctModel; 424 G4EmBiasingManager* biasManager = nu << 427 std::vector<const G4Region*> scoffRegions; >> 428 G4int nSCoffRegions; >> 429 G4int* idxSCoffRegions; >> 430 std::vector<G4DynamicParticle*> secParticles; >> 431 std::vector<G4Track*> scTracks; >> 432 std::vector<G4VEnergyLossProcess*> scProcesses; >> 433 G4int nProcesses; >> 434 >> 435 // tables and vectors >> 436 G4PhysicsTable* theDEDXTable; >> 437 G4PhysicsTable* theDEDXSubTable; >> 438 G4PhysicsTable* theDEDXunRestrictedTable; >> 439 G4PhysicsTable* theIonisationTable; >> 440 G4PhysicsTable* theIonisationSubTable; >> 441 G4PhysicsTable* theRangeTableForLoss; >> 442 G4PhysicsTable* theCSDARangeTable; >> 443 G4PhysicsTable* theSecondaryRangeTable; >> 444 G4PhysicsTable* theInverseRangeTable; >> 445 G4PhysicsTable* theLambdaTable; >> 446 G4PhysicsTable* theSubLambdaTable; >> 447 G4double* theDEDXAtMaxEnergy; >> 448 G4double* theRangeAtMaxEnergy; >> 449 G4double* theEnergyOfCrossSectionMax; >> 450 G4double* theCrossSectionMax; >> 451 >> 452 const G4DataVector* theCuts; >> 453 const G4DataVector* theSubCuts; >> 454 425 G4SafetyHelper* safetyHelper; 455 G4SafetyHelper* safetyHelper; 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 456 450 std::vector<G4double>* theEnergyOfCrossSecti << 457 const G4ParticleDefinition* particle; 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 458 const G4ParticleDefinition* baseParticle; >> 459 const G4ParticleDefinition* secondaryParticle; >> 460 const G4ParticleDefinition* theElectron; >> 461 const G4ParticleDefinition* thePositron; >> 462 >> 463 G4PhysicsVector* vstrag; >> 464 >> 465 // cash >> 466 const G4Material* currentMaterial; >> 467 const G4MaterialCutsCouple* currentCouple; >> 468 size_t currentMaterialIndex; >> 469 >> 470 G4int nBins; >> 471 G4int nBinsCSDA; >> 472 G4int nWarnings; 452 473 453 G4double lowestKinEnergy; 474 G4double lowestKinEnergy; 454 G4double minKinEnergy; 475 G4double minKinEnergy; 455 G4double maxKinEnergy; 476 G4double maxKinEnergy; 456 G4double maxKinEnergyCSDA; 477 G4double maxKinEnergyCSDA; 457 478 458 G4double linLossLimit = 0.01; << 479 G4double massRatio; 459 G4double dRoverRange = 0.2; << 480 G4double reduceFactor; >> 481 G4double chargeSquare; >> 482 G4double chargeSqRatio; >> 483 >> 484 G4double preStepLambda; >> 485 G4double fRange; >> 486 G4double preStepKinEnergy; >> 487 G4double preStepScaledEnergy; >> 488 G4double linLossLimit; >> 489 G4double minSubRange; >> 490 G4double dRoverRange; 460 G4double finalRange; 491 G4double finalRange; 461 G4double lambdaFactor = 0.8; << 492 G4double lambdaFactor; 462 G4double invLambdaFactor; << 493 G4double mfpKinEnergy; 463 G4double biasFactor = 1.0; << 464 << 465 G4double massRatio = 1.0; << 466 G4double logMassRatio = 0.0; << 467 G4double fFactor = 1.0; << 468 G4double reduceFactor = 1.0; << 469 G4double chargeSqRatio = 1.0; << 470 G4double fRange = 0.0; << 471 G4double fRangeEnergy = 0.0; << 472 494 473 protected: << 495 G4GPILSelection aGPILSelection; 474 << 475 G4double preStepLambda = 0.0; << 476 G4double preStepKinEnergy = 0.0; << 477 G4double preStepScaledEnergy = 0.0; << 478 G4double mfpKinEnergy = 0.0; << 479 << 480 std::size_t currentCoupleIndex = 0; << 481 << 482 private: << 483 496 484 G4int nBins; << 497 G4bool lossFluctuationFlag; 485 G4int nBinsCSDA; << 498 G4bool rndmStepFlag; 486 G4int numberOfModels = 0; << 499 G4bool tablesAreBuilt; 487 G4int nSCoffRegions = 0; << 500 G4bool integral; 488 G4int secID = _DeltaElectron; << 501 G4bool isIonisation; 489 G4int tripletID = _TripletElectron; << 502 G4bool useSubCutoff; 490 G4int biasID = _DeltaEBelowCut; << 491 G4int epixeID = _ePIXE; << 492 G4int gpixeID = _GammaPIXE; << 493 G4int mainSecondaries = 1; << 494 << 495 std::size_t basedCoupleIndex = 0; << 496 std::size_t coupleIdxRange = 0; << 497 std::size_t idxDEDX = 0; << 498 std::size_t idxDEDXunRestricted = 0; << 499 std::size_t idxIonisation = 0; << 500 std::size_t idxRange = 0; << 501 std::size_t idxCSDA = 0; << 502 std::size_t idxSecRange = 0; << 503 std::size_t idxInverseRange = 0; << 504 std::size_t idxLambda = 0; << 505 << 506 G4GPILSelection aGPILSelection; << 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 << 526 std::vector<G4DynamicParticle*> secParticles << 527 std::vector<G4Track*> scTracks; << 528 }; 503 }; 529 504 530 // ======== Run time inline methods ========== << 505 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 506 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 507 532 inline std::size_t G4VEnergyLossProcess::Curre << 508 inline void G4VEnergyLossProcess::DefineMaterial( >> 509 const G4MaterialCutsCouple* couple) 533 { 510 { 534 return currentCoupleIndex; << 511 if(couple != currentCouple) { >> 512 currentCouple = couple; >> 513 currentMaterial = couple->GetMaterial(); >> 514 currentMaterialIndex = couple->GetIndex(); >> 515 mfpKinEnergy = DBL_MAX; >> 516 } 535 } 517 } 536 518 537 //....oooOO0OOooo........oooOO0OOooo........oo 519 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 520 539 inline void G4VEnergyLossProcess::SelectModel( << 521 inline void G4VEnergyLossProcess::InitialiseStep(const G4Track& track) 540 { 522 { 541 currentModel = modelManager->SelectModel(kin << 523 InitialiseMassCharge(track); 542 currentModel->SetCurrentCouple(currentCouple << 524 preStepKinEnergy = track.GetKineticEnergy(); >> 525 preStepScaledEnergy = preStepKinEnergy*massRatio; >> 526 DefineMaterial(track.GetMaterialCutsCouple()); >> 527 if (theNumberOfInteractionLengthLeft < 0.0) mfpKinEnergy = DBL_MAX; 543 } 528 } 544 529 545 //....oooOO0OOooo........oooOO0OOooo........oo 530 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 546 531 547 inline G4VEmModel* G4VEnergyLossProcess::Selec << 532 inline void G4VEnergyLossProcess::InitialiseMassCharge(const G4Track&) 548 G4double kinEnergy, std::si << 533 {} >> 534 >> 535 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 536 >> 537 inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, >> 538 const G4MaterialCutsCouple* couple) 549 { 539 { 550 return modelManager->SelectModel(kinEnergy, << 540 DefineMaterial(couple); >> 541 return GetDEDXForScaledEnergy(kineticEnergy*massRatio); 551 } 542 } 552 543 553 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 554 545 555 inline void << 546 inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy, 556 G4VEnergyLossProcess::DefineMaterial(const G4M << 547 const G4MaterialCutsCouple* couple) 557 { 548 { 558 if(couple != currentCouple) { << 549 DefineMaterial(couple); 559 currentCouple = couple; << 550 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio); 560 currentMaterial = couple->GetMaterial(); << 561 basedCoupleIndex = currentCoupleIndex = co << 562 fFactor = chargeSqRatio*biasFactor; << 563 mfpKinEnergy = DBL_MAX; << 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } << 571 } 551 } 572 552 573 //....oooOO0OOooo........oooOO0OOooo........oo 553 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 554 575 inline G4double G4VEnergyLossProcess::GetDEDXF 555 inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e) 576 { 556 { 577 /* << 557 G4bool b; 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 558 G4double x = 579 << basedCoupleIndex << " E(MeV)= " << 559 ((*theDEDXTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 580 << " Emin= " << minKinEnergy << " Fa << 560 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 584 return x; 561 return x; 585 } 562 } 586 563 587 //....oooOO0OOooo........oooOO0OOooo........oo 564 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 588 565 589 inline << 566 inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e) 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { 567 { 592 /* << 568 G4bool b; 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 569 G4double x = 594 << basedCoupleIndex << " E(MeV)= " << 570 ((*theDEDXSubTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 595 << " Emin= " << minKinEnergy << " Fa << 571 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 599 return x; 572 return x; 600 } 573 } 601 574 602 //....oooOO0OOooo........oooOO0OOooo........oo 575 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 603 576 604 inline G4double G4VEnergyLossProcess::GetIonis 577 inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e) 605 { 578 { 606 G4double x = << 579 G4bool b; 607 fFactor*(*theIonisationTable)[basedCoupleI << 580 G4double x = 0.0; 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 581 // if(theIonisationTable) { >> 582 x = ((*theIonisationTable)[currentMaterialIndex]->GetValue(e, b)) >> 583 *chargeSqRatio; >> 584 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 585 //} 609 return x; 586 return x; 610 } 587 } 611 588 612 //....oooOO0OOooo........oooOO0OOooo........oo 589 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 613 590 614 inline G4double G4VEnergyLossProcess::GetScale << 591 inline >> 592 G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e) 615 { 593 { 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 594 G4bool b; 617 // << basedCoupleIndex << " E(MeV)= << 595 G4double x = 0.0; 618 // << " lastIdx= " << lastIdx << " << 596 //if(theIonisationSubTable) { 619 if(currentCoupleIndex != coupleIdxRange || f << 597 x = ((*theIonisationSubTable)[currentMaterialIndex]->GetValue(e, b)) 620 coupleIdxRange = currentCoupleIndex; << 598 *chargeSqRatio; 621 fRangeEnergy = e; << 599 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 622 fRange = reduceFactor*((*theRangeTableForL << 600 //} 623 if (fRange < 0.0) { fRange = 0.0; } << 601 return x; 624 else if (e < minKinEnergy) { fRange *= std << 602 } >> 603 >> 604 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 605 >> 606 inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, >> 607 const G4MaterialCutsCouple* couple) >> 608 { >> 609 G4double x = fRange; >> 610 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { >> 611 DefineMaterial(couple); >> 612 if(theCSDARangeTable) >> 613 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 614 * reduceFactor; >> 615 else if(theRangeTableForLoss) >> 616 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; 625 } 617 } 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 618 return x; 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } 619 } 631 620 632 inline G4double << 621 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 622 >> 623 inline G4double G4VEnergyLossProcess::GetCSDARange( >> 624 G4double& kineticEnergy, const G4MaterialCutsCouple* couple) >> 625 { >> 626 DefineMaterial(couple); >> 627 G4double x = DBL_MAX; >> 628 if(theCSDARangeTable) >> 629 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 630 * reduceFactor; >> 631 return x; >> 632 } >> 633 >> 634 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 635 >> 636 inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy( >> 637 G4double e) 634 { 638 { 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 639 G4bool b; 636 // << basedCoupleIndex << " E(MeV)= << 640 G4double x; 637 // << " lastIdx= " << lastIdx << " << 641 638 if(currentCoupleIndex != coupleIdxRange || f << 642 if (e < maxKinEnergyCSDA) { 639 coupleIdxRange = currentCoupleIndex; << 643 x = ((*theCSDARangeTable)[currentMaterialIndex])->GetValue(e, b); 640 fRangeEnergy = e; << 644 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 641 fRange = reduceFactor*((*theRangeTableForL << 645 } else { 642 if (fRange < 0.0) { fRange = 0.0; } << 646 x = theRangeAtMaxEnergy[currentMaterialIndex] + 643 else if (e < minKinEnergy) { fRange *= std << 647 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex]; 644 } 648 } 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 649 return x; 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } 650 } 650 651 651 //....oooOO0OOooo........oooOO0OOooo........oo 652 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 652 653 653 inline G4double << 654 inline G4double G4VEnergyLossProcess::GetRangeForLoss( 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 655 G4double& kineticEnergy, >> 656 const G4MaterialCutsCouple* couple) 655 { 657 { 656 G4double x = ((*theCSDARangeTable)[basedCoup << 658 DefineMaterial(couple); 657 if (x < 0.0) { x = 0.0; } << 659 G4double x = DBL_MAX; 658 else if (e < minKinEnergy) { x *= std::sqrt( << 660 if(theRangeTableForLoss) >> 661 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 662 // G4cout << "Range from " << GetProcessName() >> 663 // << " e= " << kineticEnergy << " r= " << x << G4endl; 659 return x; 664 return x; 660 } 665 } 661 666 662 //....oooOO0OOooo........oooOO0OOooo........oo 667 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 663 668 664 inline G4double << 669 inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e) 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 666 << 667 { 670 { 668 G4double x = ((*theCSDARangeTable)[basedCoup << 671 G4bool b; 669 if (x < 0.0) { x = 0.0; } << 672 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b); 670 else if (e < minKinEnergy) { x *= std::sqrt( << 673 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 671 return x; 674 return x; 672 } 675 } 673 676 674 //....oooOO0OOooo........oooOO0OOooo........oo 677 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 678 >> 679 inline G4double G4VEnergyLossProcess::GetKineticEnergy( >> 680 G4double& range, >> 681 const G4MaterialCutsCouple* couple) >> 682 { >> 683 DefineMaterial(couple); >> 684 G4double r = range/reduceFactor; >> 685 G4double e = ScaledKinEnergyForLoss(r)/massRatio; >> 686 return e; >> 687 } >> 688 >> 689 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 690 676 inline G4double G4VEnergyLossProcess::ScaledKi 691 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 677 { 692 { 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 693 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex]; 679 // << basedCoupleIndex << " R(mm)= " << 694 G4double rmin = v->GetLowEdgeEnergy(0); 680 // << theInverseRangeTable << G4endl << 681 G4PhysicsVector* v = (*theInverseRangeTable) << 682 G4double rmin = v->Energy(0); << 683 G4double e = 0.0; 695 G4double e = 0.0; 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 696 if(r >= rmin) { 685 else if(r > 0.0) { << 697 G4bool b; >> 698 e = v->GetValue(r, b); >> 699 } else if(r > 0.0) { 686 G4double x = r/rmin; 700 G4double x = r/rmin; 687 e = minKinEnergy*x*x; 701 e = minKinEnergy*x*x; 688 } 702 } 689 return e; 703 return e; 690 } 704 } 691 705 692 //....oooOO0OOooo........oooOO0OOooo........oo 706 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 693 707 694 inline G4double G4VEnergyLossProcess::GetLambd << 708 inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, >> 709 const G4MaterialCutsCouple* couple) 695 { 710 { 696 return fFactor*((*theLambdaTable)[basedCoupl << 711 DefineMaterial(couple); >> 712 G4double x = 0.0; >> 713 if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio); >> 714 return x; 697 } 715 } 698 716 699 //....oooOO0OOooo........oooOO0OOooo........oo 717 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 700 718 701 inline G4double << 719 inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e) 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 703 { 720 { 704 return fFactor*((*theLambdaTable)[basedCoupl << 721 G4bool b; >> 722 return >> 723 chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); 705 } 724 } 706 725 707 //....oooOO0OOooo........oooOO0OOooo........oo 726 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 708 727 709 inline G4double G4VEnergyLossProcess::LogScale << 728 inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e) >> 729 { >> 730 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex]; >> 731 if (e <= mfpKinEnergy) { >> 732 preStepLambda = GetLambdaForScaledEnergy(e); >> 733 >> 734 } else { >> 735 G4double e1 = e*lambdaFactor; >> 736 if(e1 > mfpKinEnergy) { >> 737 preStepLambda = GetLambdaForScaledEnergy(e); >> 738 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1); >> 739 if(preStepLambda1 > preStepLambda) { >> 740 mfpKinEnergy = e1; >> 741 preStepLambda = preStepLambda1; >> 742 } >> 743 } else { >> 744 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex]; >> 745 } >> 746 } >> 747 } >> 748 >> 749 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 750 >> 751 inline G4double G4VEnergyLossProcess::ContinuousStepLimit( >> 752 const G4Track& track, G4double x, G4double y, G4double& z) 710 { 753 { 711 return track.GetDynamicParticle()->GetLogKin << 754 G4GPILSelection sel; >> 755 return AlongStepGetPhysicalInteractionLength(track, x, y, z, &sel); 712 } 756 } 713 757 714 //....oooOO0OOooo........oooOO0OOooo........oo 758 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 759 716 inline G4double << 760 inline G4double G4VEnergyLossProcess::SampleRange() 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 718 const G4Material << 719 { 761 { 720 DefineMaterial(couple); << 762 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass(); 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 763 G4bool b; >> 764 G4double s = fRange*std::pow(10.,vstrag->GetValue(e,b)); >> 765 G4double x = fRange + G4RandGauss::shoot(0.0,s); >> 766 if(x > 0.0) fRange = x; >> 767 return fRange; 722 } 768 } 723 769 724 //....oooOO0OOooo........oooOO0OOooo........oo 770 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 771 726 inline G4double << 772 inline G4double G4VEnergyLossProcess::MeanFreePath(const G4Track& track) 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 728 const G4Material << 729 G4double logKinE << 730 { 773 { 731 DefineMaterial(couple); << 774 DefineMaterial(track.GetMaterialCutsCouple()); 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 775 preStepLambda = GetLambdaForScaledEnergy(track.GetKineticEnergy()*massRatio); >> 776 G4double x = DBL_MAX; >> 777 if(DBL_MIN < preStepLambda) x = 1.0/preStepLambda; >> 778 return x; 733 } 779 } 734 780 735 //....oooOO0OOooo........oooOO0OOooo........oo 781 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 782 737 inline G4double << 783 inline G4double G4VEnergyLossProcess::MinPrimaryEnergy( 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 784 const G4ParticleDefinition*, const G4Material*, G4double cut) 739 const G4Materia << 740 { 785 { 741 DefineMaterial(couple); << 786 return cut; 742 return GetScaledRangeForScaledEnergy(kinEner << 743 } 787 } 744 788 745 //....oooOO0OOooo........oooOO0OOooo........oo 789 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 790 747 inline G4double << 791 inline G4VEmModel* G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 749 const G4Materia << 750 G4double logKin << 751 { 792 { 752 DefineMaterial(couple); << 793 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 753 return GetScaledRangeForScaledEnergy(kinEner << 754 } 794 } 755 795 756 //....oooOO0OOooo........oooOO0OOooo........oo 796 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 797 758 inline G4double << 798 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 799 G4double kinEnergy, size_t& idx) const 760 const G4Mat << 761 { 800 { 762 DefineMaterial(couple); << 801 return modelManager->SelectModel(kinEnergy, idx); 763 return (nullptr == theCSDARangeTable) ? DBL_ << 764 GetLimitScaledRangeForScaledEnergy(kinetic << 765 } 802 } 766 803 767 //....oooOO0OOooo........oooOO0OOooo........oo 804 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 805 769 inline G4double << 806 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 771 const G << 772 { 807 { 773 DefineMaterial(couple); << 808 return particle; 774 return ScaledKinEnergyForLoss(range/reduceFa << 775 } 809 } 776 810 777 //....oooOO0OOooo........oooOO0OOooo........oo 811 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 812 779 inline G4double << 813 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 781 const G4Materi << 782 { 814 { 783 DefineMaterial(couple); << 815 return baseParticle; 784 return (nullptr != theLambdaTable) ? << 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 786 } 816 } 787 817 788 //....oooOO0OOooo........oooOO0OOooo........oo 818 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 819 790 inline G4double << 820 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 792 const G4Materi << 793 G4double logKi << 794 { 821 { 795 DefineMaterial(couple); << 822 return secondaryParticle; 796 return (nullptr != theLambdaTable) ? << 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 798 : 0.0; << 799 } 823 } 800 824 801 // ======== Get/Set inline methods used at ini << 825 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 826 >> 827 inline void G4VEnergyLossProcess::CorrectionsAlongStep( >> 828 const G4MaterialCutsCouple*, >> 829 const G4DynamicParticle*, >> 830 G4double&, >> 831 G4double&) >> 832 {} 802 833 803 inline void G4VEnergyLossProcess::SetFluctMode << 834 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 835 >> 836 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 804 { 837 { 805 fluctModel = p; << 838 return theDEDXTable; 806 } 839 } 807 840 808 //....oooOO0OOooo........oooOO0OOooo........oo 841 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 842 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 843 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const 811 { 844 { 812 return fluctModel; << 845 return theDEDXSubTable; 813 } 846 } 814 847 815 //....oooOO0OOooo........oooOO0OOooo........oo 848 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 849 817 inline void G4VEnergyLossProcess::SetParticle( << 850 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const 818 { 851 { 819 particle = p; << 852 return theDEDXunRestrictedTable; 820 } 853 } 821 854 822 //....oooOO0OOooo........oooOO0OOooo........oo 855 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 856 824 inline void << 857 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { 858 { 827 secondaryParticle = p; << 859 G4PhysicsTable* t = theDEDXTable; >> 860 if(theIonisationTable) t = theIonisationTable; >> 861 return t; 828 } 862 } 829 863 830 //....oooOO0OOooo........oooOO0OOooo........oo 864 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 865 832 inline void << 866 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 867 { 835 baseParticle = p; << 868 G4PhysicsTable* t = theDEDXSubTable; >> 869 if(theIonisationSubTable) t = theIonisationSubTable; >> 870 return t; 836 } 871 } 837 872 838 //....oooOO0OOooo........oooOO0OOooo........oo 873 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 874 840 inline const G4ParticleDefinition* G4VEnergyLo << 875 inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const 841 { 876 { 842 return particle; << 877 return theCSDARangeTable; 843 } 878 } 844 879 845 //....oooOO0OOooo........oooOO0OOooo........oo 880 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 881 847 inline const G4ParticleDefinition* G4VEnergyLo << 882 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 848 { 883 { 849 return baseParticle; << 884 return theRangeTableForLoss; 850 } 885 } 851 886 852 //....oooOO0OOooo........oooOO0OOooo........oo 887 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 888 854 inline const G4ParticleDefinition* << 889 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const 855 G4VEnergyLossProcess::SecondaryParticle() cons << 856 { 890 { 857 return secondaryParticle; << 891 return theInverseRangeTable; 858 } 892 } 859 893 860 //....oooOO0OOooo........oooOO0OOooo........oo 894 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 895 862 inline void G4VEnergyLossProcess::SetLossFluct << 896 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() 863 { 897 { 864 lossFluctuationFlag = val; << 898 return theLambdaTable; 865 actLossFluc = true; << 866 } 899 } 867 900 868 //....oooOO0OOooo........oooOO0OOooo........oo 901 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 869 902 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 903 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 871 { 904 { 872 spline = val; << 905 return theSubLambdaTable; 873 } 906 } 874 907 875 //....oooOO0OOooo........oooOO0OOooo........oo 908 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 909 >> 910 inline G4bool G4VEnergyLossProcess::IsIntegral() const >> 911 { >> 912 return integral; >> 913 } 876 914 877 inline void G4VEnergyLossProcess::SetCrossSect << 915 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 916 >> 917 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 878 { 918 { 879 fXSType = val; << 919 return currentMaterialIndex; 880 } 920 } 881 921 882 //....oooOO0OOooo........oooOO0OOooo........oo 922 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 923 >> 924 inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio, >> 925 G4double charge2ratio) >> 926 { >> 927 massRatio = massratio; >> 928 chargeSqRatio = charge2ratio; >> 929 chargeSquare = charge2ratio*eplus*eplus; >> 930 if(chargeSqRatio > 0.0) reduceFactor = 1.0/(chargeSqRatio*massRatio); >> 931 } 883 932 884 inline G4CrossSectionType G4VEnergyLossProcess << 933 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 934 >> 935 inline G4double G4VEnergyLossProcess::GetCurrentRange() const 885 { 936 { 886 return fXSType; << 937 return fRange; 887 } 938 } 888 939 889 //....oooOO0OOooo........oooOO0OOooo........oo 940 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 941 891 inline G4bool G4VEnergyLossProcess::IsIonisati << 942 void G4VEnergyLossProcess::AddEmModel(G4int order, G4VEmModel* p, >> 943 G4VEmFluctuationModel* fluc, >> 944 const G4Region* region) 892 { 945 { 893 return isIonisation; << 946 modelManager->AddEmModel(order, p, fluc, region); >> 947 if(p) p->SetParticleChange(pParticleChange, fluc); 894 } 948 } 895 949 896 //....oooOO0OOooo........oooOO0OOooo........oo 950 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 951 898 inline G4int G4VEnergyLossProcess::NumberOfSub << 952 inline G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx) 899 { 953 { 900 return nSCoffRegions; << 954 return modelManager->GetModel(idx); 901 } 955 } 902 956 903 //....oooOO0OOooo........oooOO0OOooo........oo 957 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 958 905 inline G4double G4VEnergyLossProcess::MinKinEn << 959 inline G4int G4VEnergyLossProcess::NumberOfModels() 906 { 960 { 907 return minKinEnergy; << 961 return modelManager->NumberOfModels(); 908 } 962 } 909 963 910 //....oooOO0OOooo........oooOO0OOooo........oo 964 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 965 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 966 inline void G4VEnergyLossProcess::SetEmModel(G4VEmModel* p, G4int index) 913 { 967 { 914 return maxKinEnergy; << 968 G4int n = emModels.size(); >> 969 if(index >= n) for(G4int i=n; i<index+1; i++) {emModels.push_back(0);} >> 970 emModels[index] = p; >> 971 } >> 972 >> 973 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 974 >> 975 inline G4VEmModel* G4VEnergyLossProcess::EmModel(G4int index) >> 976 { >> 977 G4VEmModel* p = 0; >> 978 if(index >= 0 && index < G4int(emModels.size())) p = emModels[index]; >> 979 return p; >> 980 } >> 981 >> 982 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 983 >> 984 inline void G4VEnergyLossProcess::SetFluctModel(G4VEmFluctuationModel* p) >> 985 { >> 986 fluctModel = p; 915 } 987 } 916 988 917 //....oooOO0OOooo........oooOO0OOooo........oo 989 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 918 990 919 inline G4double G4VEnergyLossProcess::CrossSec << 991 inline G4VEmFluctuationModel* G4VEnergyLossProcess::FluctModel() 920 { 992 { 921 return biasFactor; << 993 return fluctModel; >> 994 } >> 995 >> 996 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 997 >> 998 inline void G4VEnergyLossProcess::UpdateEmModel(const G4String& nam, >> 999 G4double emin, G4double emax) >> 1000 { >> 1001 modelManager->UpdateEmModel(nam, emin, emax); >> 1002 } >> 1003 >> 1004 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1005 >> 1006 inline void G4VEnergyLossProcess::SetIntegral(G4bool val) >> 1007 { >> 1008 integral = val; >> 1009 } >> 1010 >> 1011 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1012 >> 1013 inline void G4VEnergyLossProcess::SetParticle(const G4ParticleDefinition* p) >> 1014 { >> 1015 particle = p; >> 1016 } >> 1017 >> 1018 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1019 >> 1020 inline void G4VEnergyLossProcess::SetBaseParticle(const G4ParticleDefinition* p) >> 1021 { >> 1022 baseParticle = p; >> 1023 } >> 1024 >> 1025 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1026 >> 1027 inline void G4VEnergyLossProcess::SetSecondaryParticle(const G4ParticleDefinition* p) >> 1028 { >> 1029 secondaryParticle = p; >> 1030 } >> 1031 >> 1032 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1033 >> 1034 inline void G4VEnergyLossProcess::SetLinearLossLimit(G4double val) >> 1035 { >> 1036 linLossLimit = val; >> 1037 } >> 1038 >> 1039 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1040 >> 1041 inline void G4VEnergyLossProcess::SetLossFluctuations(G4bool val) >> 1042 { >> 1043 lossFluctuationFlag = val; >> 1044 } >> 1045 >> 1046 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1047 >> 1048 inline void G4VEnergyLossProcess::SetRandomStep(G4bool val) >> 1049 { >> 1050 rndmStepFlag = val; >> 1051 } >> 1052 >> 1053 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 1054 >> 1055 inline void G4VEnergyLossProcess::SetMinSubRange(G4double val) >> 1056 { >> 1057 minSubRange = val; 922 } 1058 } 923 1059 924 //....oooOO0OOooo........oooOO0OOooo........oo 1060 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 1061 926 inline G4bool G4VEnergyLossProcess::TablesAreB 1062 inline G4bool G4VEnergyLossProcess::TablesAreBuilt() const 927 { 1063 { 928 return tablesAreBuilt; << 1064 return tablesAreBuilt; 929 } 1065 } 930 1066 931 //....oooOO0OOooo........oooOO0OOooo........oo 1067 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 1068 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1069 inline G4int G4VEnergyLossProcess::NumberOfSubCutoffRegions() const 934 { 1070 { 935 return theDEDXTable; << 1071 return nSCoffRegions; 936 } 1072 } 937 1073 938 //....oooOO0OOooo........oooOO0OOooo........oo 1074 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 1075 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 1076 inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 941 { 1077 { 942 return theDEDXunRestrictedTable; << 1078 nBins = nbins; 943 } 1079 } 944 1080 945 //....oooOO0OOooo........oooOO0OOooo........oo 1081 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 1082 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1083 inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 948 { 1084 { 949 return theIonisationTable; << 1085 nBins = nbins; 950 } 1086 } 951 1087 952 //....oooOO0OOooo........oooOO0OOooo........oo 1088 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 1089 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 1090 inline void G4VEnergyLossProcess::SetDEDXBinningForCSDARange(G4int nbins) 955 { 1091 { 956 return theCSDARangeTable; << 1092 nBinsCSDA = nbins; 957 } 1093 } 958 1094 959 //....oooOO0OOooo........oooOO0OOooo........oo 1095 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 1096 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 1097 inline G4double G4VEnergyLossProcess::MinKinEnergy() const 962 { 1098 { 963 return theRangeTableForLoss; << 1099 return minKinEnergy; 964 } 1100 } 965 1101 966 //....oooOO0OOooo........oooOO0OOooo........oo 1102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 1103 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 1104 inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 969 { 1105 { 970 return theInverseRangeTable; << 1106 minKinEnergy = e; 971 } 1107 } 972 1108 973 //....oooOO0OOooo........oooOO0OOooo........oo 1109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 1110 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 1111 inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 976 { 1112 { 977 return theLambdaTable; << 1113 maxKinEnergy = e; >> 1114 if(e < maxKinEnergyCSDA) maxKinEnergyCSDA = e; 978 } 1115 } 979 1116 980 //....oooOO0OOooo........oooOO0OOooo........oo 1117 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 1118 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 1119 inline void G4VEnergyLossProcess::SetMaxKinEnergyForCSDARange(G4double e) 983 { 1120 { 984 return baseMat; << 1121 maxKinEnergyCSDA = e; 985 } 1122 } 986 1123 987 //....oooOO0OOooo........oooOO0OOooo........oo 1124 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 1125 989 inline std::vector<G4double>* << 1126 inline G4double G4VEnergyLossProcess::MaxKinEnergy() const 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 1127 { 992 return theEnergyOfCrossSectionMax; << 1128 return maxKinEnergy; 993 } 1129 } 994 1130 995 //....oooOO0OOooo........oooOO0OOooo........oo 1131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 1132 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 1133 inline void G4VEnergyLossProcess::SetLambdaFactor(G4double val) 998 { 1134 { 999 return fXSpeaks; << 1135 if(val > 0.0 && val <= 1.0) lambdaFactor = val; 1000 } 1136 } 1001 1137 1002 //....oooOO0OOooo........oooOO0OOooo........o 1138 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 1139 1004 inline std::size_t G4VEnergyLossProcess::Numb << 1140 inline void G4VEnergyLossProcess::SetIonisation(G4bool val) 1005 { 1141 { 1006 return numberOfModels; << 1142 isIonisation = val; >> 1143 if(val) aGPILSelection = CandidateForSelection; >> 1144 else aGPILSelection = NotCandidateForSelection; 1007 } 1145 } 1008 1146 1009 //....oooOO0OOooo........oooOO0OOooo........o 1147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 1148 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 1149 inline G4bool G4VEnergyLossProcess::IsIonisationProcess() const 1012 { 1150 { 1013 return (index < emModels->size()) ? (*emMod << 1151 return isIonisation; 1014 } 1152 } 1015 1153 1016 //....oooOO0OOooo........oooOO0OOooo........o 1154 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 1155 1018 inline G4VEmModel* << 1156 void G4VEnergyLossProcess::SetStepFunction(G4double v1, G4double v2) 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 1157 { 1021 return modelManager->GetModel((G4int)idx, v << 1158 dRoverRange = v1; >> 1159 finalRange = v2; >> 1160 if (dRoverRange > 0.999) dRoverRange = 1.0; >> 1161 currentCouple = 0; >> 1162 mfpKinEnergy = DBL_MAX; 1022 } 1163 } 1023 1164 1024 //....oooOO0OOooo........oooOO0OOooo........o 1165 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 1166 1026 #endif 1167 #endif 1027 1168