Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEnergyLossProcess.hh,v 1.60 2007/01/15 17:27:40 vnivanch Exp $ >> 27 // GEANT4 tag $Name: 26 // 28 // 27 // ------------------------------------------- 29 // ------------------------------------------------------------------- 28 // 30 // 29 // GEANT4 Class header file 31 // GEANT4 Class header file 30 // 32 // 31 // 33 // 32 // File name: G4VEnergyLossProcess 34 // File name: G4VEnergyLossProcess 33 // 35 // 34 // Author: Vladimir Ivanchenko on base 36 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 37 // 36 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 37 // 39 // 38 // Modifications: Vladimir Ivanchenko << 40 // Modifications: >> 41 // >> 42 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 43 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 44 // 24-01-03 Make models region aware (V.Ivanchenko) >> 45 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 46 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 47 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 48 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 49 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 50 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 51 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 52 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 53 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 54 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 55 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 56 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 57 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) >> 58 // 03-08-04 Add DEDX table to all processes for control on integral range(VI) >> 59 // 06-08-04 Clear up names of member functions (V.Ivanchenko) >> 60 // 27-08-04 Add NeedBuildTables method (V.Ivanchneko) >> 61 // 09-09-04 Bug fix for the integral mode with 2 peaks (V.Ivanchneko) >> 62 // 08-11-04 Migration to new interface of Store/Retrieve tables (V.Ivanchenko) >> 63 // 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko) >> 64 // 11-04-05 Use MaxSecondaryEnergy from a model (V.Ivanchenko) >> 65 // 10-01-05 Remove SetStepLimits (V.Ivanchenko) >> 66 // 10-01-06 PreciseRange -> CSDARange (V.Ivantchenko) >> 67 // 13-01-06 Remove AddSubCutSecondaries and cleanup (V.Ivantchenko) >> 68 // 20-01-06 Introduce G4EmTableType and reducing number of methods (VI) >> 69 // 26-01-06 Add public method GetCSDARange (V.Ivanchenko) >> 70 // 22-03-06 Add SetDynamicMassCharge (V.Ivanchenko) >> 71 // 23-03-06 Use isIonisation flag (V.Ivanchenko) >> 72 // 13-05-06 Add method to access model by index (V.Ivanchenko) >> 73 // 14-01-07 add SetEmModel(index) and SetFluctModel() (mma) >> 74 // 15-01-07 Add separate ionisation tables and reorganise get/set methods for >> 75 // dedx tables (V.Ivanchenko) 39 // 76 // 40 // Class Description: 77 // Class Description: 41 // 78 // 42 // It is the unified energy loss process it ca 79 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 80 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 81 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 82 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 83 // that information on fly. 47 84 48 // ------------------------------------------- 85 // ------------------------------------------------------------------- 49 // 86 // 50 87 51 #ifndef G4VEnergyLossProcess_h 88 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 89 #define G4VEnergyLossProcess_h 1 53 90 54 #include "G4VContinuousDiscreteProcess.hh" 91 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 92 #include "globals.hh" 56 #include "G4Material.hh" 93 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 94 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 95 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 96 #include "G4EmModelManager.hh" >> 97 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 98 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" 99 #include "G4EmTableType.hh" 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" 100 #include "G4PhysicsTable.hh" 64 #include "G4PhysicsVector.hh" 101 #include "G4PhysicsVector.hh" 65 102 66 class G4Step; 103 class G4Step; 67 class G4ParticleDefinition; 104 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 105 class G4VEmModel; 70 class G4VEmFluctuationModel; 106 class G4VEmFluctuationModel; 71 class G4DataVector; 107 class G4DataVector; 72 class G4Region; 108 class G4Region; 73 class G4SafetyHelper; << 109 class G4Navigator; 74 class G4VAtomDeexcitation; << 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 110 80 //....oooOO0OOooo........oooOO0OOooo........oo 111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 112 82 class G4VEnergyLossProcess : public G4VContinu 113 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 114 { 84 public: 115 public: 85 116 86 G4VEnergyLossProcess(const G4String& name = 117 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 118 G4ProcessType type = fElectromagnetic); 88 119 89 ~G4VEnergyLossProcess() override; << 120 virtual ~G4VEnergyLossProcess(); 90 121 91 //------------------------------------------ 122 //------------------------------------------------------------------------ 92 // Virtual methods to be implemented in conc 123 // Virtual methods to be implemented in concrete processes 93 //------------------------------------------ 124 //------------------------------------------------------------------------ 94 125 >> 126 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; >> 127 >> 128 virtual void PrintInfo() = 0; >> 129 95 protected: 130 protected: 96 131 97 // description of specific process parameter << 132 virtual std::vector<G4DynamicParticle*>* SecondariesPostStep( 98 virtual void StreamProcessInfo(std::ostream& << 133 G4VEmModel*, >> 134 const G4MaterialCutsCouple*, >> 135 const G4DynamicParticle*, >> 136 G4double& tcut) = 0; 99 137 100 virtual void InitialiseEnergyLossProcess(con 138 virtual void InitialiseEnergyLossProcess(const G4ParticleDefinition*, 101 con 139 const G4ParticleDefinition*) = 0; 102 140 103 public: << 141 //------------------------------------------------------------------------ >> 142 // Methods with standard implementation; may be overwritten if needed >> 143 //------------------------------------------------------------------------ >> 144 protected: 104 145 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa 146 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 107 const G4Ma 147 const G4Material*, G4double cut); 108 148 109 // print documentation in html format << 149 virtual void CorrectionsAlongStep( 110 void ProcessDescription(std::ostream& outFil << 150 const G4MaterialCutsCouple*, >> 151 const G4DynamicParticle*, >> 152 G4double& eloss, >> 153 G4double& length); >> 154 >> 155 virtual G4double GetMeanFreePath(const G4Track& track, >> 156 G4double previousStepSize, >> 157 G4ForceCondition* condition); >> 158 >> 159 virtual G4double GetContinuousStepLimit(const G4Track& track, >> 160 G4double previousStepSize, >> 161 G4double currentMinimumStep, >> 162 G4double& currentSafety); >> 163 >> 164 //------------------------------------------------------------------------ >> 165 // Generic methods common to all processes >> 166 //------------------------------------------------------------------------ >> 167 public: >> 168 >> 169 void PrintInfoDefinition(); >> 170 >> 171 void PreparePhysicsTable(const G4ParticleDefinition&); >> 172 >> 173 void BuildPhysicsTable(const G4ParticleDefinition&); >> 174 >> 175 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); 111 176 112 // prepare all tables << 177 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 113 void PreparePhysicsTable(const G4ParticleDef << 114 178 115 // build all tables << 179 G4double SampleRange(); 116 void BuildPhysicsTable(const G4ParticleDefin << 117 180 118 // build a table << 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType 181 G4PhysicsTable* BuildDEDXTable(G4EmTableType tType = fRestricted); 120 182 121 // build a table << 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy 183 G4PhysicsTable* BuildLambdaTable(G4EmTableType tType = fRestricted); 123 184 124 // Called before tracking of each new G4Trac << 185 void SetBaseParticle(const G4ParticleDefinition* p); 125 void StartTracking(G4Track*) override; << 126 186 127 // Step limit from AlongStep << 187 const G4ParticleDefinition* Particle() const; 128 G4double AlongStepGetPhysicalInteractionLeng << 188 const G4ParticleDefinition* BaseParticle() const; 129 const G4Trac << 189 const G4ParticleDefinition* SecondaryParticle() const; 130 G4double pr << 131 G4double cu << 132 G4double& cu << 133 G4GPILSelect << 134 << 135 // Step limit from cross section << 136 G4double PostStepGetPhysicalInteractionLengt << 137 const G4Trac << 138 G4double pre << 139 G4ForceCondi << 140 190 141 // AlongStep computations << 191 // Binning for dEdx, range, and inverse range tables 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 192 void SetDEDXBinning(G4int nbins); >> 193 void SetLambdaBinning(G4int nbins); >> 194 >> 195 // Binning for dEdx, range, and inverse range tables >> 196 void SetDEDXBinningForCSDARange(G4int nbins); >> 197 >> 198 // Min kinetic energy for tables >> 199 void SetMinKinEnergy(G4double e); >> 200 G4double MinKinEnergy() const; >> 201 >> 202 // Max kinetic energy for tables >> 203 void SetMaxKinEnergy(G4double e); >> 204 G4double MaxKinEnergy() const; 143 205 144 // PostStep sampling of secondaries << 206 // Max kinetic energy for tables 145 G4VParticleChange* PostStepDoIt(const G4Trac << 207 void SetMaxKinEnergyForCSDARange(G4double e); 146 208 147 // Store all PhysicsTable in files. << 209 // Store PhysicsTable in a file. 148 // Return false in case of any fatal failure << 210 // Return false in case of failure at I/O 149 G4bool StorePhysicsTable(const G4ParticleDef 211 G4bool StorePhysicsTable(const G4ParticleDefinition*, 150 const G4String& dir 212 const G4String& directory, 151 G4bool ascii = fals << 213 G4bool ascii = false); 152 214 153 // Retrieve all Physics from a files. << 215 // Retrieve Physics from a file. 154 // Return true if all the Physics Table are << 216 // (return true if the Physics Table can be build by using file) 155 // Return false if any fatal failure. << 217 // (return false if the process has no functionality or in case of failure) >> 218 // File name should is constructed as processName+particleName and the >> 219 // should be placed under the directory specifed by the argument. 156 G4bool RetrievePhysicsTable(const G4Particle 220 G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 157 const G4String& 221 const G4String& directory, 158 G4bool ascii) ov << 222 G4bool ascii); 159 223 160 private: << 224 // Assign a model to a process >> 225 void SetEmModel(G4VEmModel*, G4int index=1); >> 226 >> 227 // return the assigned model >> 228 G4VEmModel* EmModel(G4int index=1); >> 229 >> 230 // Assign a fluctuation model to a process >> 231 void SetFluctModel(G4VEmFluctuationModel*); >> 232 >> 233 // return the assigned fluctuation model >> 234 G4VEmFluctuationModel* FluctModel(); >> 235 >> 236 // Add EM model coupled with fluctuation model for the region >> 237 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 238 const G4Region* region = 0); 161 239 162 // summary printout after initialisation << 240 // Define new energy range for the model identified by the name 163 void StreamInfo(std::ostream& out, const G4P << 241 void UpdateEmModel(const G4String&, G4double, G4double); 164 G4bool rst=false) const; << 165 242 166 //------------------------------------------ << 243 // Add subcutoff processor for the region 167 // Public interface to cross section, mfp an << 244 void ActivateSubCutoff(G4bool val, const G4Region* region = 0); 168 // These methods are not used in run time << 169 //------------------------------------------ << 170 245 171 public: << 246 // Activate deexcitation code >> 247 virtual void ActivateDeexcitation(G4bool, const G4Region* region = 0); 172 248 173 // access to dispersion of restricted energy << 249 void SetDEDXTable(G4PhysicsTable* p, G4EmTableType tType); 174 G4double GetDEDXDispersion(const G4MaterialC << 250 G4PhysicsTable* DEDXTable() const; 175 const G4DynamicPa << 251 G4PhysicsTable* DEDXTableForSubsec() const; 176 G4double length); << 252 G4PhysicsTable* DEDXunRestrictedTable() const; >> 253 G4PhysicsTable* IonisationTable() const; >> 254 G4PhysicsTable* IonisationTableForSubsec() const; 177 255 178 // Access to cross section table << 256 void SetCSDARangeTable(G4PhysicsTable* pRange); 179 G4double CrossSectionPerVolume(G4double kine << 257 G4PhysicsTable* CSDARangeTable() const; 180 const G4Mater << 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 258 185 // access to cross section << 259 void SetRangeTableForLoss(G4PhysicsTable* p); 186 G4double MeanFreePath(const G4Track& track); << 260 G4PhysicsTable* RangeTableForLoss() const; 187 261 188 // access to step limit << 262 void SetInverseRangeTable(G4PhysicsTable* p); 189 G4double ContinuousStepLimit(const G4Track& << 263 G4PhysicsTable* InverseRangeTable() const; 190 G4double previo << 191 G4double curren << 192 G4double& curre << 193 264 194 protected: << 265 void SetSecondaryRangeTable(G4PhysicsTable* p); 195 266 196 // implementation of the pure virtual method << 267 void SetLambdaTable(G4PhysicsTable* p); 197 G4double GetMeanFreePath(const G4Track& trac << 268 G4PhysicsTable* LambdaTable(); 198 G4double previousSt << 199 G4ForceCondition* c << 200 << 201 // implementation of the pure virtual method << 202 G4double GetContinuousStepLimit(const G4Trac << 203 G4double pre << 204 G4double cur << 205 G4double& cu << 206 269 207 // creation of an empty vector for cross sec << 270 void SetSubLambdaTable(G4PhysicsTable* p); 208 G4PhysicsVector* LambdaPhysicsVector(const G << 271 G4PhysicsTable* SubLambdaTable(); 209 G4doubl << 210 272 211 inline std::size_t CurrentMaterialCutsCouple << 273 // Return values for given G4MaterialCutsCouple >> 274 G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 275 G4double GetDEDXForSubsec(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 276 G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 277 G4double GetCSDARange(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 278 G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple*); >> 279 G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple*); >> 280 G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple*); 212 281 213 //------------------------------------------ << 282 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 214 // Specific methods to set, access, modify m << 283 const G4DynamicParticle* dp, 215 //------------------------------------------ << 284 G4double length); 216 285 217 // Select model in run time << 286 G4double MicroscopicCrossSection(G4double kineticEnergy, 218 inline void SelectModel(G4double kinEnergy); << 287 const G4MaterialCutsCouple* couple); 219 288 220 public: << 289 void SetLossFluctuations(G4bool val); 221 // Select model by energy and couple index << 222 // Not for run time processing << 223 inline G4VEmModel* SelectModelForMaterial(G4 << 224 st << 225 << 226 // Add EM model coupled with fluctuation mod << 227 // of order defines which pair of models wil << 228 // energy interval << 229 void AddEmModel(G4int, G4VEmModel*, << 230 G4VEmFluctuationModel* fluc << 231 const G4Region* region = nul << 232 << 233 // Assign a model to a process local list, t << 234 // the derived process should execute AddEmM << 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 290 237 // Access to models << 291 void SetRandomStep(G4bool val); 238 inline std::size_t NumberOfModels() const; << 239 << 240 // Return a model from the local list << 241 inline G4VEmModel* EmModel(std::size_t index << 242 << 243 // Access to models from G4EmModelManager li << 244 inline G4VEmModel* GetModelByIndex(std::size << 245 292 246 // Assign a fluctuation model to a process << 293 void SetIntegral(G4bool val); 247 inline void SetFluctModel(G4VEmFluctuationMo << 294 G4bool IsIntegral() const; 248 << 249 // Return the assigned fluctuation model << 250 inline G4VEmFluctuationModel* FluctModel() c << 251 << 252 //------------------------------------------ << 253 // Define and access particle type << 254 //------------------------------------------ << 255 295 256 protected: << 296 // Redefine parameteters for stepping control 257 inline void SetParticle(const G4ParticleDefi << 297 // 258 inline void SetSecondaryParticle(const G4Par << 298 void SetLinearLossLimit(G4double val); 259 << 299 void SetMinSubRange(G4double val); 260 public: << 300 void SetStepFunction(G4double v1, G4double v2); 261 inline void SetBaseParticle(const G4Particle << 301 void SetLambdaFactor(G4double val); 262 inline const G4ParticleDefinition* Particle( << 263 inline const G4ParticleDefinition* BaseParti << 264 inline const G4ParticleDefinition* Secondary << 265 << 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ << 271 // Get/set parameters to configure the proce << 272 //------------------------------------------ << 273 302 274 // Add subcut processor for the region << 303 G4bool TablesAreBuilt() const; 275 void ActivateSubCutoff(const G4Region* regio << 276 304 277 // Activate biasing << 305 G4int NumberOfSubCutoffRegions() const; 278 void SetCrossSectionBiasingFactor(G4double f << 279 306 280 void ActivateForcedInteraction(G4double leng << 307 // Helper functions 281 const G4Strin << 308 G4double MeanFreePath(const G4Track& track, 282 G4bool flag = << 309 G4double previousStepSize, >> 310 G4ForceCondition* condition); 283 311 284 void ActivateSecondaryBiasing(const G4String << 312 G4double ContinuousStepLimit(const G4Track& track, 285 G4double energ << 313 G4double previousStepSize, >> 314 G4double currentMinimumStep, >> 315 G4double& currentSafety); 286 316 287 inline void SetLossFluctuations(G4bool val); << 317 // reset NumberOfInteractionLengthLeft >> 318 void ResetNumberOfInteractionLengthLeft(); 288 319 289 inline void SetSpline(G4bool val); << 320 G4VEmModel* SelectModelForMaterial(G4double kinEnergy, size_t& idx) const; 290 inline void SetCrossSectionType(G4CrossSecti << 291 inline G4CrossSectionType CrossSectionType() << 292 321 293 // Set/Get flag "isIonisation" 322 // Set/Get flag "isIonisation" 294 void SetIonisation(G4bool val); 323 void SetIonisation(G4bool val); 295 inline G4bool IsIonisationProcess() const; << 324 G4bool IsIonisationProcess() const; 296 325 297 // Redefine parameteters for stepping contro << 326 void AddCollaborativeProcess(G4VEnergyLossProcess*); 298 void SetLinearLossLimit(G4double val); << 299 void SetStepFunction(G4double v1, G4double v << 300 void SetLowestEnergyLimit(G4double); << 301 327 302 inline G4int NumberOfSubCutoffRegions() cons << 328 void SampleSubCutSecondaries(std::vector<G4Track*>&, const G4Step&, >> 329 G4double& cut, G4VEmModel* model); 303 330 304 //------------------------------------------ << 331 // Set scaling parameters 305 // Specific methods to path Physics Tables t << 332 void SetDynamicMassCharge(G4double massratio, G4double charge2ratio); 306 //------------------------------------------ << 307 << 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab << 309 void SetCSDARangeTable(G4PhysicsTable* pRang << 310 void SetRangeTableForLoss(G4PhysicsTable* p) << 311 void SetInverseRangeTable(G4PhysicsTable* p) << 312 void SetLambdaTable(G4PhysicsTable* p); << 313 << 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 315 void SetEnergyOfCrossSectionMax(std::vector< << 316 333 317 //------------------------------------------ << 334 // Access to models 318 // Specific methods to define custom Physics << 335 G4VEmModel* GetModelByIndex(G4int idx = 0); 319 //------------------------------------------ << 320 336 321 // Binning for dEdx, range, inverse range an << 337 G4int NumberOfModels(); 322 void SetDEDXBinning(G4int nbins); << 323 338 324 // Min kinetic energy for tables << 339 protected: 325 void SetMinKinEnergy(G4double e); << 326 inline G4double MinKinEnergy() const; << 327 << 328 // Max kinetic energy for tables << 329 void SetMaxKinEnergy(G4double e); << 330 inline G4double MaxKinEnergy() const; << 331 340 332 // Biasing parameters << 341 void SetParticle(const G4ParticleDefinition* p); 333 inline G4double CrossSectionBiasingFactor() << 334 342 335 // Return values for given G4MaterialCutsCou << 343 void SetSecondaryParticle(const G4ParticleDefinition* p); 336 inline G4double GetDEDX(G4double kineticEner << 337 inline G4double GetCSDADEDX(G4double kinetic << 338 const G4Material << 339 inline G4double GetDEDX(G4double kineticEner << 340 G4double logKineticE << 341 inline G4double GetRange(G4double kineticEne << 342 inline G4double GetRange(G4double kineticEne << 343 G4double logKinetic << 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 << 352 inline G4bool TablesAreBuilt() const; << 353 << 354 // Access to specific tables << 355 inline G4PhysicsTable* DEDXTable() const; << 356 inline G4PhysicsTable* DEDXunRestrictedTable << 357 inline G4PhysicsTable* IonisationTable() con << 358 inline G4PhysicsTable* CSDARangeTable() cons << 359 inline G4PhysicsTable* RangeTableForLoss() c << 360 inline G4PhysicsTable* InverseRangeTable() c << 361 inline G4PhysicsTable* LambdaTable() const; << 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 363 inline std::vector<G4double>* EnergyOfCrossS << 364 344 365 inline G4bool UseBaseMaterial() const; << 345 G4VEmModel* SelectModel(G4double kinEnergy); 366 346 367 //------------------------------------------ << 347 size_t CurrentMaterialCutsCoupleIndex() const; 368 // Run time method for simulation of ionisat << 369 //------------------------------------------ << 370 348 371 // access atom on which interaction happens << 349 G4double GetCurrentRange() const; 372 const G4Element* GetCurrentElement() const; << 373 350 374 // Set scaling parameters for ions is needed << 351 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*, 375 void SetDynamicMassCharge(G4double massratio << 352 G4double cut); 376 353 377 private: 354 private: 378 355 379 void FillSecondariesAlongStep(G4double weigh << 356 // Clear tables >> 357 void Clear(); 380 358 381 void PrintWarning(const G4String&, G4double << 359 void DefineMaterial(const G4MaterialCutsCouple* couple); 382 360 383 // define material and indexes << 361 // Returnd values for scaled energy and base particles mass 384 inline void DefineMaterial(const G4MaterialC << 362 // >> 363 G4double GetDEDXForScaledEnergy(G4double scaledKinEnergy); >> 364 G4double GetSubDEDXForScaledEnergy(G4double scaledKinEnergy); >> 365 G4double GetIonisationForScaledEnergy(G4double scaledKinEnergy); >> 366 G4double GetSubIonisationForScaledEnergy(G4double scaledKinEnergy); >> 367 G4double GetScaledRangeForScaledEnergy(G4double scaledKinEnergy); >> 368 G4double GetLimitScaledRangeForScaledEnergy(G4double scaledKinEnergy); >> 369 G4double GetLambdaForScaledEnergy(G4double scaledKinEnergy); >> 370 G4double ScaledKinEnergyForLoss(G4double range); >> 371 void ComputeLambdaForScaledEnergy(G4double scaledKinEnergy); 385 372 386 //------------------------------------------ << 373 // hide assignment operator 387 // Compute values using scaling relation, ma << 388 //------------------------------------------ << 389 inline G4double GetDEDXForScaledEnergy(G4dou << 390 inline G4double GetDEDXForScaledEnergy(G4dou << 391 G4dou << 392 inline G4double GetIonisationForScaledEnergy << 393 inline G4double GetScaledRangeForScaledEnerg << 394 inline G4double GetScaledRangeForScaledEnerg << 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 << 401 inline G4double ScaledKinEnergyForLoss(G4dou << 402 inline G4double GetLambdaForScaledEnergy(G4d << 403 inline G4double GetLambdaForScaledEnergy(G4d << 404 G4d << 405 374 406 inline G4double LogScaledEkin(const G4Track& << 375 G4VEnergyLossProcess(G4VEnergyLossProcess &); 407 << 376 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 408 void ComputeLambdaForScaledEnergy(G4double s << 409 const G4Tr << 410 377 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 378 // ===================================================================== 412 379 413 protected: 380 protected: 414 381 415 G4ParticleChangeForLoss fParticleChange; << 382 G4ParticleChangeForLoss fParticleChange; 416 const G4Material* currentMaterial << 417 const G4MaterialCutsCouple* currentCouple = << 418 383 419 private: 384 private: 420 385 421 G4LossTableManager* lManager; << 386 G4EmModelManager* modelManager; 422 G4EmModelManager* modelManager; << 387 G4VEmModel* emModel[5]; 423 G4VEmModel* currentModel = n << 388 G4VEmFluctuationModel* fluctModel; 424 G4EmBiasingManager* biasManager = nu << 389 std::vector<const G4Region*> scoffRegions; 425 G4SafetyHelper* safetyHelper; << 390 G4int nSCoffRegions; 426 G4EmParameters* theParameters; << 391 G4int* idxSCoffRegions; 427 G4VEmFluctuationModel* fluctModel = nul << 392 std::vector<G4Track*> scTracks; 428 G4VAtomDeexcitation* atomDeexcitation << 393 std::vector<G4VEnergyLossProcess*> scProcesses; 429 G4VSubCutProducer* subcutProducer = << 394 G4int nProcesses; 430 << 395 431 const G4ParticleDefinition* particle = nullp << 396 // tables and vectors 432 const G4ParticleDefinition* baseParticle = n << 397 G4PhysicsTable* theDEDXTable; 433 const G4ParticleDefinition* secondaryParticl << 398 G4PhysicsTable* theDEDXSubTable; 434 G4EmDataHandler* theData = nullptr; << 399 G4PhysicsTable* theDEDXunRestrictedTable; 435 << 400 G4PhysicsTable* theIonisationTable; 436 G4PhysicsTable* theDEDXTable = nullptr; << 401 G4PhysicsTable* theIonisationSubTable; 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 402 G4PhysicsTable* theRangeTableForLoss; 438 G4PhysicsTable* theIonisationTable = nullptr << 403 G4PhysicsTable* theCSDARangeTable; 439 G4PhysicsTable* theRangeTableForLoss = nullp << 404 G4PhysicsTable* theSecondaryRangeTable; 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 405 G4PhysicsTable* theInverseRangeTable; 441 G4PhysicsTable* theInverseRangeTable = nullp << 406 G4PhysicsTable* theLambdaTable; 442 G4PhysicsTable* theLambdaTable = nullptr; << 407 G4PhysicsTable* theSubLambdaTable; 443 << 408 G4double* theDEDXAtMaxEnergy; 444 std::vector<const G4Region*>* scoffRegions = << 409 G4double* theRangeAtMaxEnergy; 445 std::vector<G4VEmModel*>* emModels = nul << 410 G4double* theEnergyOfCrossSectionMax; 446 const std::vector<G4int>* theDensityIdx << 411 G4double* theCrossSectionMax; 447 const std::vector<G4double>* theDensityFact << 412 448 const G4DataVector* theCuts = null << 413 const G4DataVector* theCuts; 449 << 414 const G4DataVector* theSubCuts; 450 std::vector<G4double>* theEnergyOfCrossSecti << 415 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 416 G4Navigator* navigator; >> 417 >> 418 const G4ParticleDefinition* particle; >> 419 const G4ParticleDefinition* baseParticle; >> 420 const G4ParticleDefinition* secondaryParticle; >> 421 const G4ParticleDefinition* thePositron; >> 422 >> 423 G4PhysicsVector* vstrag; >> 424 >> 425 // cash >> 426 const G4Material* currentMaterial; >> 427 const G4MaterialCutsCouple* currentCouple; >> 428 size_t currentMaterialIndex; >> 429 >> 430 G4int nBins; >> 431 G4int nBinsCSDA; >> 432 G4int nWarnings; 452 433 453 G4double lowestKinEnergy; 434 G4double lowestKinEnergy; 454 G4double minKinEnergy; 435 G4double minKinEnergy; 455 G4double maxKinEnergy; 436 G4double maxKinEnergy; 456 G4double maxKinEnergyCSDA; 437 G4double maxKinEnergyCSDA; 457 438 458 G4double linLossLimit = 0.01; << 439 G4double massRatio; 459 G4double dRoverRange = 0.2; << 440 G4double reduceFactor; >> 441 G4double chargeSquare; >> 442 G4double chargeSqRatio; >> 443 >> 444 G4double preStepLambda; >> 445 G4double preStepMFP; >> 446 G4double fRange; >> 447 G4double preStepKinEnergy; >> 448 G4double preStepScaledEnergy; >> 449 G4double linLossLimit; >> 450 G4double minSubRange; >> 451 G4double dRoverRange; 460 G4double finalRange; 452 G4double finalRange; 461 G4double lambdaFactor = 0.8; << 453 G4double lambdaFactor; 462 G4double invLambdaFactor; << 454 G4double mfpKinEnergy; 463 G4double biasFactor = 1.0; << 464 << 465 G4double massRatio = 1.0; << 466 G4double logMassRatio = 0.0; << 467 G4double fFactor = 1.0; << 468 G4double reduceFactor = 1.0; << 469 G4double chargeSqRatio = 1.0; << 470 G4double fRange = 0.0; << 471 G4double fRangeEnergy = 0.0; << 472 << 473 protected: << 474 << 475 G4double preStepLambda = 0.0; << 476 G4double preStepKinEnergy = 0.0; << 477 G4double preStepScaledEnergy = 0.0; << 478 G4double mfpKinEnergy = 0.0; << 479 << 480 std::size_t currentCoupleIndex = 0; << 481 << 482 private: << 483 455 484 G4int nBins; << 456 G4bool lossFluctuationFlag; 485 G4int nBinsCSDA; << 457 G4bool lossFluctuationArePossible; 486 G4int numberOfModels = 0; << 458 G4bool rndmStepFlag; 487 G4int nSCoffRegions = 0; << 459 G4bool tablesAreBuilt; 488 G4int secID = _DeltaElectron; << 460 G4bool integral; 489 G4int tripletID = _TripletElectron; << 461 G4bool meanFreePath; 490 G4int biasID = _DeltaEBelowCut; << 462 G4bool aboveCSmax; 491 G4int epixeID = _ePIXE; << 463 G4bool isIonisation; 492 G4int gpixeID = _GammaPIXE; << 464 G4bool useSubCutoff; 493 G4int mainSecondaries = 1; << 494 << 495 std::size_t basedCoupleIndex = 0; << 496 std::size_t coupleIdxRange = 0; << 497 std::size_t idxDEDX = 0; << 498 std::size_t idxDEDXunRestricted = 0; << 499 std::size_t idxIonisation = 0; << 500 std::size_t idxRange = 0; << 501 std::size_t idxCSDA = 0; << 502 std::size_t idxSecRange = 0; << 503 std::size_t idxInverseRange = 0; << 504 std::size_t idxLambda = 0; << 505 << 506 G4GPILSelection aGPILSelection; << 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 << 526 std::vector<G4DynamicParticle*> secParticles << 527 std::vector<G4Track*> scTracks; << 528 }; 465 }; 529 466 530 // ======== Run time inline methods ========== << 467 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 531 << 532 inline std::size_t G4VEnergyLossProcess::Curre << 533 { << 534 return currentCoupleIndex; << 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo 468 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 538 469 539 inline void G4VEnergyLossProcess::SelectModel( << 470 inline void G4VEnergyLossProcess::DefineMaterial( >> 471 const G4MaterialCutsCouple* couple) 540 { 472 { 541 currentModel = modelManager->SelectModel(kin << 473 if(couple != currentCouple) { 542 currentModel->SetCurrentCouple(currentCouple << 474 currentCouple = couple; >> 475 currentMaterial = couple->GetMaterial(); >> 476 currentMaterialIndex = couple->GetIndex(); >> 477 if(!meanFreePath) ResetNumberOfInteractionLengthLeft(); >> 478 } 543 } 479 } 544 480 545 //....oooOO0OOooo........oooOO0OOooo........oo 481 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 546 482 547 inline G4VEmModel* G4VEnergyLossProcess::Selec << 483 inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, 548 G4double kinEnergy, std::si << 484 const G4MaterialCutsCouple* couple) 549 { 485 { 550 return modelManager->SelectModel(kinEnergy, << 486 DefineMaterial(couple); >> 487 return GetDEDXForScaledEnergy(kineticEnergy*massRatio); 551 } 488 } 552 489 553 //....oooOO0OOooo........oooOO0OOooo........oo 490 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 554 491 555 inline void << 492 inline G4double G4VEnergyLossProcess::GetDEDXForSubsec(G4double& kineticEnergy, 556 G4VEnergyLossProcess::DefineMaterial(const G4M << 493 const G4MaterialCutsCouple* couple) 557 { 494 { 558 if(couple != currentCouple) { << 495 DefineMaterial(couple); 559 currentCouple = couple; << 496 return GetSubDEDXForScaledEnergy(kineticEnergy*massRatio); 560 currentMaterial = couple->GetMaterial(); << 561 basedCoupleIndex = currentCoupleIndex = co << 562 fFactor = chargeSqRatio*biasFactor; << 563 mfpKinEnergy = DBL_MAX; << 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } << 571 } 497 } 572 498 573 //....oooOO0OOooo........oooOO0OOooo........oo 499 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 574 500 575 inline G4double G4VEnergyLossProcess::GetDEDXF 501 inline G4double G4VEnergyLossProcess::GetDEDXForScaledEnergy(G4double e) 576 { 502 { 577 /* << 503 G4bool b; 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 504 G4double x = 579 << basedCoupleIndex << " E(MeV)= " << 505 ((*theDEDXTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 580 << " Emin= " << minKinEnergy << " Fa << 506 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 584 return x; 507 return x; 585 } 508 } 586 509 587 //....oooOO0OOooo........oooOO0OOooo........oo 510 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 588 511 589 inline << 512 inline G4double G4VEnergyLossProcess::GetSubDEDXForScaledEnergy(G4double e) 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { 513 { 592 /* << 514 G4bool b; 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 515 G4double x = 594 << basedCoupleIndex << " E(MeV)= " << 516 ((*theDEDXSubTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 595 << " Emin= " << minKinEnergy << " Fa << 517 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 599 return x; 518 return x; 600 } 519 } 601 520 602 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 603 522 604 inline G4double G4VEnergyLossProcess::GetIonis 523 inline G4double G4VEnergyLossProcess::GetIonisationForScaledEnergy(G4double e) 605 { 524 { 606 G4double x = << 525 G4bool b; 607 fFactor*(*theIonisationTable)[basedCoupleI << 526 G4double x = 0.0; 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 527 if(theIonisationTable) { >> 528 x = ((*theIonisationTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; >> 529 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 530 } 609 return x; 531 return x; 610 } 532 } 611 533 612 //....oooOO0OOooo........oooOO0OOooo........oo 534 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 613 535 614 inline G4double G4VEnergyLossProcess::GetScale << 536 inline G4double G4VEnergyLossProcess::GetSubIonisationForScaledEnergy(G4double e) 615 { 537 { 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 538 G4bool b; 617 // << basedCoupleIndex << " E(MeV)= << 539 G4double x = 0.0; 618 // << " lastIdx= " << lastIdx << " << 540 if(theIonisationSubTable) { 619 if(currentCoupleIndex != coupleIdxRange || f << 541 x = ((*theIonisationSubTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; 620 coupleIdxRange = currentCoupleIndex; << 542 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 621 fRangeEnergy = e; << 622 fRange = reduceFactor*((*theRangeTableForL << 623 if (fRange < 0.0) { fRange = 0.0; } << 624 else if (e < minKinEnergy) { fRange *= std << 625 } 543 } 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 544 return x; 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } << 631 << 632 inline G4double << 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 634 { << 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 636 // << basedCoupleIndex << " E(MeV)= << 637 // << " lastIdx= " << lastIdx << " << 638 if(currentCoupleIndex != coupleIdxRange || f << 639 coupleIdxRange = currentCoupleIndex; << 640 fRangeEnergy = e; << 641 fRange = reduceFactor*((*theRangeTableForL << 642 if (fRange < 0.0) { fRange = 0.0; } << 643 else if (e < minKinEnergy) { fRange *= std << 644 } << 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } 545 } 650 546 651 //....oooOO0OOooo........oooOO0OOooo........oo 547 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 652 548 653 inline G4double << 549 inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 550 const G4MaterialCutsCouple* couple) 655 { 551 { 656 G4double x = ((*theCSDARangeTable)[basedCoup << 552 G4double x = fRange; 657 if (x < 0.0) { x = 0.0; } << 553 if(kineticEnergy != preStepKinEnergy || couple != currentCouple) { 658 else if (e < minKinEnergy) { x *= std::sqrt( << 554 DefineMaterial(couple); >> 555 if(theCSDARangeTable) >> 556 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 557 * reduceFactor; >> 558 else if(theRangeTableForLoss) >> 559 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 560 } 659 return x; 561 return x; 660 } 562 } 661 563 662 //....oooOO0OOooo........oooOO0OOooo........oo 564 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 663 565 664 inline G4double << 566 inline G4double G4VEnergyLossProcess::GetCSDARange( 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 567 G4double& kineticEnergy, const G4MaterialCutsCouple* couple) 666 << 667 { 568 { 668 G4double x = ((*theCSDARangeTable)[basedCoup << 569 DefineMaterial(couple); 669 if (x < 0.0) { x = 0.0; } << 570 G4double x = DBL_MAX; 670 else if (e < minKinEnergy) { x *= std::sqrt( << 571 if(theCSDARangeTable) >> 572 x = GetLimitScaledRangeForScaledEnergy(kineticEnergy*massRatio) >> 573 * reduceFactor; 671 return x; 574 return x; 672 } 575 } 673 576 674 //....oooOO0OOooo........oooOO0OOooo........oo 577 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 675 578 676 inline G4double G4VEnergyLossProcess::ScaledKi << 579 inline G4double G4VEnergyLossProcess::GetLimitScaledRangeForScaledEnergy( >> 580 G4double e) 677 { 581 { 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 582 G4bool b; 679 // << basedCoupleIndex << " R(mm)= " << 583 G4double x; 680 // << theInverseRangeTable << G4endl << 584 681 G4PhysicsVector* v = (*theInverseRangeTable) << 585 if (e < maxKinEnergyCSDA) { 682 G4double rmin = v->Energy(0); << 586 x = ((*theCSDARangeTable)[currentMaterialIndex])->GetValue(e, b); 683 G4double e = 0.0; << 587 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 588 } else { 685 else if(r > 0.0) { << 589 x = theRangeAtMaxEnergy[currentMaterialIndex] + 686 G4double x = r/rmin; << 590 (e - maxKinEnergyCSDA)/theDEDXAtMaxEnergy[currentMaterialIndex]; 687 e = minKinEnergy*x*x; << 688 } 591 } 689 return e; << 592 return x; 690 } 593 } 691 594 692 //....oooOO0OOooo........oooOO0OOooo........oo 595 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 693 596 694 inline G4double G4VEnergyLossProcess::GetLambd << 597 inline G4double G4VEnergyLossProcess::GetRangeForLoss( >> 598 G4double& kineticEnergy, >> 599 const G4MaterialCutsCouple* couple) 695 { 600 { 696 return fFactor*((*theLambdaTable)[basedCoupl << 601 DefineMaterial(couple); >> 602 G4double x = DBL_MAX; >> 603 if(theRangeTableForLoss) >> 604 x = GetScaledRangeForScaledEnergy(kineticEnergy*massRatio)*reduceFactor; >> 605 // G4cout << "Range from " << GetProcessName() >> 606 // << " e= " << kineticEnergy << " r= " << x << G4endl; >> 607 return x; 697 } 608 } 698 609 699 //....oooOO0OOooo........oooOO0OOooo........oo 610 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 700 611 701 inline G4double << 612 inline G4double G4VEnergyLossProcess::GetScaledRangeForScaledEnergy(G4double e) 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 703 { 613 { 704 return fFactor*((*theLambdaTable)[basedCoupl << 614 G4bool b; >> 615 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b); >> 616 if(e < minKinEnergy) x *= std::sqrt(e/minKinEnergy); >> 617 return x; 705 } 618 } 706 619 707 //....oooOO0OOooo........oooOO0OOooo........oo 620 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 708 621 709 inline G4double G4VEnergyLossProcess::LogScale << 622 inline G4double G4VEnergyLossProcess::GetKineticEnergy( >> 623 G4double& range, >> 624 const G4MaterialCutsCouple* couple) 710 { 625 { 711 return track.GetDynamicParticle()->GetLogKin << 626 DefineMaterial(couple); >> 627 G4double r = range/reduceFactor; >> 628 G4double e = ScaledKinEnergyForLoss(r)/massRatio; >> 629 return e; 712 } 630 } 713 631 714 //....oooOO0OOooo........oooOO0OOooo........oo 632 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 633 716 inline G4double << 634 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 718 const G4Material << 719 { 635 { 720 DefineMaterial(couple); << 636 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex]; 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 637 G4double rmin = v->GetLowEdgeEnergy(0); >> 638 G4double e = minKinEnergy; >> 639 if(r <= rmin) { >> 640 r /= rmin; >> 641 e *= r*r; >> 642 } else { >> 643 G4bool b; >> 644 e = v->GetValue(r, b); >> 645 } >> 646 return e; 722 } 647 } 723 648 724 //....oooOO0OOooo........oooOO0OOooo........oo 649 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 650 726 inline G4double << 651 inline G4double G4VEnergyLossProcess::GetDEDXDispersion( 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 652 const G4MaterialCutsCouple *couple, 728 const G4Material << 653 const G4DynamicParticle* dp, 729 G4double logKinE << 654 G4double length) 730 { 655 { 731 DefineMaterial(couple); 656 DefineMaterial(couple); 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 657 G4double ekin = dp->GetKineticEnergy(); >> 658 G4VEmModel* currentModel = SelectModel(ekin*massRatio); >> 659 G4double tmax = currentModel->MaxSecondaryKinEnergy(dp); >> 660 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); >> 661 G4double d = 0.0; >> 662 G4VEmFluctuationModel* fm = currentModel->GetModelOfFluctuations(); >> 663 if(fm) d = fm->Dispersion(currentMaterial,dp,tmax,length); >> 664 return d; 733 } 665 } 734 666 735 //....oooOO0OOooo........oooOO0OOooo........oo 667 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 668 737 inline G4double << 669 inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 670 const G4MaterialCutsCouple* couple) 739 const G4Materia << 740 { 671 { 741 DefineMaterial(couple); 672 DefineMaterial(couple); 742 return GetScaledRangeForScaledEnergy(kinEner << 673 G4double x = 0.0; >> 674 if(theLambdaTable) x = GetLambdaForScaledEnergy(kineticEnergy*massRatio); >> 675 return x; 743 } 676 } 744 677 745 //....oooOO0OOooo........oooOO0OOooo........oo 678 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 679 747 inline G4double << 680 inline G4double G4VEnergyLossProcess::GetLambdaForScaledEnergy(G4double e) 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 749 const G4Materia << 750 G4double logKin << 751 { 681 { 752 DefineMaterial(couple); << 682 G4bool b; 753 return GetScaledRangeForScaledEnergy(kinEner << 683 return >> 684 chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); 754 } 685 } 755 686 756 //....oooOO0OOooo........oooOO0OOooo........oo 687 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 688 758 inline G4double << 689 inline void G4VEnergyLossProcess::ComputeLambdaForScaledEnergy(G4double e) 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 690 { 760 const G4Mat << 691 meanFreePath = false; 761 { << 692 aboveCSmax = false; 762 DefineMaterial(couple); << 693 mfpKinEnergy = theEnergyOfCrossSectionMax[currentMaterialIndex]; 763 return (nullptr == theCSDARangeTable) ? DBL_ << 694 if (e <= mfpKinEnergy) { 764 GetLimitScaledRangeForScaledEnergy(kinetic << 695 preStepLambda = GetLambdaForScaledEnergy(e); >> 696 } else { >> 697 aboveCSmax = true; >> 698 G4double e1 = e*lambdaFactor; >> 699 if(e1 > mfpKinEnergy) { >> 700 preStepLambda = GetLambdaForScaledEnergy(e); >> 701 G4double preStepLambda1 = GetLambdaForScaledEnergy(e1); >> 702 if(preStepLambda1 > preStepLambda) { >> 703 mfpKinEnergy = e1; >> 704 preStepLambda = preStepLambda1; >> 705 } >> 706 } else { >> 707 preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex]; >> 708 } >> 709 } 765 } 710 } 766 711 767 //....oooOO0OOooo........oooOO0OOooo........oo 712 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 713 769 inline G4double << 714 inline G4double G4VEnergyLossProcess::GetMeanFreePath( 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 715 const G4Track& track, G4double, G4ForceCondition* condition) 771 const G << 772 { 716 { 773 DefineMaterial(couple); << 717 *condition = NotForced; 774 return ScaledKinEnergyForLoss(range/reduceFa << 718 preStepKinEnergy = track.GetKineticEnergy(); >> 719 preStepScaledEnergy = preStepKinEnergy*massRatio; >> 720 if(aboveCSmax && preStepScaledEnergy < mfpKinEnergy) >> 721 ResetNumberOfInteractionLengthLeft(); >> 722 DefineMaterial(track.GetMaterialCutsCouple()); >> 723 if (meanFreePath) { >> 724 if (integral) ComputeLambdaForScaledEnergy(preStepScaledEnergy); >> 725 else preStepLambda = GetLambdaForScaledEnergy(preStepScaledEnergy); >> 726 if(0.0 < preStepLambda) preStepMFP = 1.0/preStepLambda; >> 727 else preStepMFP = DBL_MAX; >> 728 } >> 729 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy<< " eCSmax= " >> 730 //<<mfpKinEnergy<< " mfp= "<<preStepMFP<<G4endl; >> 731 return preStepMFP; 775 } 732 } 776 733 777 //....oooOO0OOooo........oooOO0OOooo........oo 734 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 735 779 inline G4double << 736 inline G4double G4VEnergyLossProcess::GetContinuousStepLimit(const G4Track&, 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 737 G4double, G4double currentMinStep, G4double&) 781 const G4Materi << 782 { 738 { 783 DefineMaterial(couple); << 739 G4double x = DBL_MAX; 784 return (nullptr != theLambdaTable) ? << 740 if(isIonisation) { 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 741 fRange = GetScaledRangeForScaledEnergy(preStepScaledEnergy)*reduceFactor; 786 } << 787 742 788 //....oooOO0OOooo........oooOO0OOooo........oo << 743 x = fRange; >> 744 G4double y = x*dRoverRange; 789 745 790 inline G4double << 746 if(x > finalRange && y < currentMinStep ) { 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 747 x = y + finalRange*(1.0 - dRoverRange)*(2.0 - finalRange/fRange); 792 const G4Materi << 748 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy 793 G4double logKi << 749 // <<" range= "<<fRange <<" cMinSt="<<currentMinStep<< G4endl; 794 { << 750 } else if (rndmStepFlag) x = SampleRange(); 795 DefineMaterial(couple); << 751 } 796 return (nullptr != theLambdaTable) ? << 752 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 753 // <<" stepLimit= "<<x<<G4endl; 798 : 0.0; << 754 return x; 799 } 755 } 800 756 801 // ======== Get/Set inline methods used at ini << 757 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 802 758 803 inline void G4VEnergyLossProcess::SetFluctMode << 759 inline G4double G4VEnergyLossProcess::SampleRange() 804 { 760 { 805 fluctModel = p; << 761 G4double e = amu_c2*preStepKinEnergy/particle->GetPDGMass(); >> 762 G4bool b; >> 763 G4double s = fRange*std::pow(10.,vstrag->GetValue(e,b)); >> 764 G4double x = fRange + G4RandGauss::shoot(0.0,s); >> 765 if(x > 0.0) fRange = x; >> 766 return fRange; 806 } 767 } 807 768 808 //....oooOO0OOooo........oooOO0OOooo........oo 769 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 770 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 771 inline void G4VEnergyLossProcess::ResetNumberOfInteractionLengthLeft() 811 { 772 { 812 return fluctModel; << 773 meanFreePath = true; >> 774 aboveCSmax = false; >> 775 G4VProcess::ResetNumberOfInteractionLengthLeft(); 813 } 776 } 814 777 815 //....oooOO0OOooo........oooOO0OOooo........oo 778 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 779 817 inline void G4VEnergyLossProcess::SetParticle( << 780 inline G4double G4VEnergyLossProcess::MinPrimaryEnergy( >> 781 const G4ParticleDefinition*, const G4Material*, G4double cut) 818 { 782 { 819 particle = p; << 783 return cut; 820 } 784 } 821 785 822 //....oooOO0OOooo........oooOO0OOooo........oo 786 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 787 824 inline void << 788 inline G4VEmModel* G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { 789 { 827 secondaryParticle = p; << 790 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 828 } 791 } 829 792 830 //....oooOO0OOooo........oooOO0OOooo........oo 793 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 794 832 inline void << 795 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 796 G4double kinEnergy, size_t& idx) const 834 { 797 { 835 baseParticle = p; << 798 return modelManager->SelectModel(kinEnergy, idx); 836 } 799 } 837 800 838 //....oooOO0OOooo........oooOO0OOooo........oo 801 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 802 840 inline const G4ParticleDefinition* G4VEnergyLo 803 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 841 { 804 { 842 return particle; 805 return particle; 843 } 806 } 844 807 845 //....oooOO0OOooo........oooOO0OOooo........oo 808 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 809 847 inline const G4ParticleDefinition* G4VEnergyLo 810 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 848 { 811 { 849 return baseParticle; 812 return baseParticle; 850 } 813 } 851 814 852 //....oooOO0OOooo........oooOO0OOooo........oo 815 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 816 854 inline const G4ParticleDefinition* 817 inline const G4ParticleDefinition* 855 G4VEnergyLossProcess::SecondaryParticle() cons << 818 G4VEnergyLossProcess::SecondaryParticle() const 856 { 819 { 857 return secondaryParticle; 820 return secondaryParticle; 858 } 821 } 859 822 860 //....oooOO0OOooo........oooOO0OOooo........oo 823 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 824 862 inline void G4VEnergyLossProcess::SetLossFluct << 825 inline void G4VEnergyLossProcess::CorrectionsAlongStep( 863 { << 826 const G4MaterialCutsCouple*, 864 lossFluctuationFlag = val; << 827 const G4DynamicParticle*, 865 actLossFluc = true; << 828 G4double&, 866 } << 829 G4double&) 867 << 830 {} 868 //....oooOO0OOooo........oooOO0OOooo........oo << 869 << 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 871 { << 872 spline = val; << 873 } << 874 << 875 //....oooOO0OOooo........oooOO0OOooo........oo << 876 << 877 inline void G4VEnergyLossProcess::SetCrossSect << 878 { << 879 fXSType = val; << 880 } << 881 << 882 //....oooOO0OOooo........oooOO0OOooo........oo << 883 << 884 inline G4CrossSectionType G4VEnergyLossProcess << 885 { << 886 return fXSType; << 887 } << 888 << 889 //....oooOO0OOooo........oooOO0OOooo........oo << 890 << 891 inline G4bool G4VEnergyLossProcess::IsIonisati << 892 { << 893 return isIonisation; << 894 } << 895 << 896 //....oooOO0OOooo........oooOO0OOooo........oo << 897 << 898 inline G4int G4VEnergyLossProcess::NumberOfSub << 899 { << 900 return nSCoffRegions; << 901 } << 902 831 903 //....oooOO0OOooo........oooOO0OOooo........oo 832 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 833 905 inline G4double G4VEnergyLossProcess::MinKinEn << 834 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 906 { << 907 return minKinEnergy; << 908 } << 909 << 910 //....oooOO0OOooo........oooOO0OOooo........oo << 911 << 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 913 { << 914 return maxKinEnergy; << 915 } << 916 << 917 //....oooOO0OOooo........oooOO0OOooo........oo << 918 << 919 inline G4double G4VEnergyLossProcess::CrossSec << 920 { 835 { 921 return biasFactor; << 836 return theDEDXTable; 922 } 837 } 923 838 924 //....oooOO0OOooo........oooOO0OOooo........oo 839 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 840 926 inline G4bool G4VEnergyLossProcess::TablesAreB << 841 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTableForSubsec() const 927 { 842 { 928 return tablesAreBuilt; << 843 return theDEDXSubTable; 929 } 844 } 930 845 931 //....oooOO0OOooo........oooOO0OOooo........oo 846 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 847 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 848 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXunRestrictedTable() const 934 { 849 { 935 return theDEDXTable; << 850 return theDEDXunRestrictedTable; 936 } 851 } 937 852 938 //....oooOO0OOooo........oooOO0OOooo........oo 853 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 854 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 855 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTable() const 941 { 856 { 942 return theDEDXunRestrictedTable; << 857 G4PhysicsTable* t = theDEDXTable; >> 858 if(theIonisationTable) t = theIonisationTable; >> 859 return t; 943 } 860 } 944 861 945 //....oooOO0OOooo........oooOO0OOooo........oo 862 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 863 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 864 inline G4PhysicsTable* G4VEnergyLossProcess::IonisationTableForSubsec() const 948 { 865 { 949 return theIonisationTable; << 866 G4PhysicsTable* t = theDEDXSubTable; >> 867 if(theIonisationSubTable) t = theIonisationSubTable; >> 868 return t; 950 } 869 } 951 870 952 //....oooOO0OOooo........oooOO0OOooo........oo 871 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 872 954 inline G4PhysicsTable* G4VEnergyLossProcess::C 873 inline G4PhysicsTable* G4VEnergyLossProcess::CSDARangeTable() const 955 { 874 { 956 return theCSDARangeTable; 875 return theCSDARangeTable; 957 } 876 } 958 877 959 //....oooOO0OOooo........oooOO0OOooo........oo 878 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 879 961 inline G4PhysicsTable* G4VEnergyLossProcess::R 880 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 962 { 881 { 963 return theRangeTableForLoss; 882 return theRangeTableForLoss; 964 } 883 } 965 884 966 //....oooOO0OOooo........oooOO0OOooo........oo 885 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 886 968 inline G4PhysicsTable* G4VEnergyLossProcess::I 887 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const 969 { 888 { 970 return theInverseRangeTable; 889 return theInverseRangeTable; 971 } 890 } 972 891 973 //....oooOO0OOooo........oooOO0OOooo........oo 892 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 893 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 894 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() 976 { 895 { 977 return theLambdaTable; 896 return theLambdaTable; 978 } 897 } 979 898 980 //....oooOO0OOooo........oooOO0OOooo........oo 899 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 900 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 901 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 983 { 902 { 984 return baseMat; << 903 return theSubLambdaTable; 985 } 904 } 986 905 987 //....oooOO0OOooo........oooOO0OOooo........oo 906 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 << 907 989 inline std::vector<G4double>* << 908 inline G4bool G4VEnergyLossProcess::IsIntegral() const 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 909 { 992 return theEnergyOfCrossSectionMax; << 910 return integral; 993 } 911 } 994 912 995 //....oooOO0OOooo........oooOO0OOooo........oo 913 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 914 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 915 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 998 { 916 { 999 return fXSpeaks; << 917 return currentMaterialIndex; 1000 } 918 } 1001 919 1002 //....oooOO0OOooo........oooOO0OOooo........o 920 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 921 1004 inline std::size_t G4VEnergyLossProcess::Numb << 922 inline void G4VEnergyLossProcess::SetDynamicMassCharge(G4double massratio, >> 923 G4double charge2ratio) 1005 { 924 { 1006 return numberOfModels; << 925 massRatio = massratio; >> 926 chargeSqRatio = charge2ratio; >> 927 chargeSquare = charge2ratio*eplus*eplus; >> 928 reduceFactor = 1.0/(chargeSqRatio*massRatio); >> 929 } >> 930 >> 931 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 932 >> 933 inline G4double G4VEnergyLossProcess::GetCurrentRange() const >> 934 { >> 935 return fRange; 1007 } 936 } 1008 937 1009 //....oooOO0OOooo........oooOO0OOooo........o 938 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 939 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 940 inline G4VEmModel* G4VEnergyLossProcess::GetModelByIndex(G4int idx) 1012 { 941 { 1013 return (index < emModels->size()) ? (*emMod << 942 return modelManager->GetModel(idx); 1014 } 943 } 1015 944 1016 //....oooOO0OOooo........oooOO0OOooo........o 945 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 946 1018 inline G4VEmModel* << 947 inline G4int G4VEnergyLossProcess::NumberOfModels() 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 948 { 1021 return modelManager->GetModel((G4int)idx, v << 949 return modelManager->NumberOfModels(); 1022 } 950 } 1023 951 1024 //....oooOO0OOooo........oooOO0OOooo........o 952 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 953 1026 #endif 954 #endif 1027 955