Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEnergyLossProcess.hh,v 1.24 2004/07/05 13:36:11 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-02-patch-01 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class header file 28 // GEANT4 Class header file 30 // 29 // 31 // 30 // 32 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 37 // 36 // 38 // Modifications: Vladimir Ivanchenko << 37 // Modifications: >> 38 // >> 39 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 40 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 41 // 24-01-03 Make models region aware (V.Ivanchenko) >> 42 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 43 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 44 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 45 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 46 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 47 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 48 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 49 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 50 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 51 // 14-01-04 Activate precise range calculation (V.Ivanchenko) >> 52 // 10-03-04 Fix problem of step limit calculation (V.Ivanchenko) >> 53 // 30-06-04 make destructor virtual (V.Ivanchenko) >> 54 // 05-07-04 fix problem of GenericIons seen at small cuts (V.Ivanchenko) 39 // 55 // 40 // Class Description: 56 // Class Description: 41 // 57 // 42 // It is the unified energy loss process it ca 58 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 59 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 60 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 61 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 62 // that information on fly. 47 63 48 // ------------------------------------------- 64 // ------------------------------------------------------------------- 49 // 65 // 50 66 51 #ifndef G4VEnergyLossProcess_h 67 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 68 #define G4VEnergyLossProcess_h 1 53 69 54 #include "G4VContinuousDiscreteProcess.hh" 70 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 71 #include "globals.hh" 56 #include "G4Material.hh" 72 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 73 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 74 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 75 #include "G4EmModelManager.hh" >> 76 #include "G4UnitsTable.hh" 60 #include "G4ParticleChangeForLoss.hh" 77 #include "G4ParticleChangeForLoss.hh" 61 #include "G4EmTableType.hh" << 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" << 64 #include "G4PhysicsVector.hh" << 65 78 66 class G4Step; 79 class G4Step; 67 class G4ParticleDefinition; 80 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 81 class G4VEmModel; 70 class G4VEmFluctuationModel; 82 class G4VEmFluctuationModel; 71 class G4DataVector; 83 class G4DataVector; >> 84 class G4PhysicsTable; >> 85 class G4PhysicsVector; >> 86 class G4VSubCutoffProcessor; 72 class G4Region; 87 class G4Region; 73 class G4SafetyHelper; << 74 class G4VAtomDeexcitation; << 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 88 80 //....oooOO0OOooo........oooOO0OOooo........oo 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 90 82 class G4VEnergyLossProcess : public G4VContinu 91 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 92 { 84 public: 93 public: 85 94 86 G4VEnergyLossProcess(const G4String& name = 95 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 96 G4ProcessType type = fElectromagnetic); 88 << 89 ~G4VEnergyLossProcess() override; << 90 97 91 //------------------------------------------ << 98 virtual ~G4VEnergyLossProcess(); 92 // Virtual methods to be implemented in conc << 93 //------------------------------------------ << 94 << 95 protected: << 96 99 97 // description of specific process parameter << 100 void Initialise(); 98 virtual void StreamProcessInfo(std::ostream& << 99 101 100 virtual void InitialiseEnergyLossProcess(con << 102 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); 101 con << 102 103 103 public: << 104 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 104 << 105 // used as low energy limit LambdaTable << 106 virtual G4double MinPrimaryEnergy(const G4Pa << 107 const G4Ma << 108 105 109 // print documentation in html format << 106 virtual std::vector<G4Track*>* SecondariesAlongStep( 110 void ProcessDescription(std::ostream& outFil << 107 const G4Step&, >> 108 G4double& tmax, >> 109 G4double& eloss, >> 110 G4double& kinEnergy) = 0; 111 111 112 // prepare all tables << 112 virtual void SecondariesPostStep( 113 void PreparePhysicsTable(const G4ParticleDef << 113 G4VEmModel*, >> 114 const G4MaterialCutsCouple*, >> 115 const G4DynamicParticle*, >> 116 G4double& tcut, >> 117 G4double& kinEnergy) = 0; 114 118 115 // build all tables << 119 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 116 void BuildPhysicsTable(const G4ParticleDefin << 120 // True for all charged particles 117 << 118 // build a table << 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType << 120 << 121 // build a table << 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy << 123 << 124 // Called before tracking of each new G4Trac << 125 void StartTracking(G4Track*) override; << 126 << 127 // Step limit from AlongStep << 128 G4double AlongStepGetPhysicalInteractionLeng << 129 const G4Trac << 130 G4double pr << 131 G4double cu << 132 G4double& cu << 133 G4GPILSelect << 134 << 135 // Step limit from cross section << 136 G4double PostStepGetPhysicalInteractionLengt << 137 const G4Trac << 138 G4double pre << 139 G4ForceCondi << 140 << 141 // AlongStep computations << 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 143 << 144 // PostStep sampling of secondaries << 145 G4VParticleChange* PostStepDoIt(const G4Trac << 146 << 147 // Store all PhysicsTable in files. << 148 // Return false in case of any fatal failure << 149 G4bool StorePhysicsTable(const G4ParticleDef << 150 const G4String& dir << 151 G4bool ascii = fals << 152 << 153 // Retrieve all Physics from a files. << 154 // Return true if all the Physics Table are << 155 // Return false if any fatal failure. << 156 G4bool RetrievePhysicsTable(const G4Particle << 157 const G4String& << 158 G4bool ascii) ov << 159 121 160 private: << 122 virtual void BuildPhysicsTable(const G4ParticleDefinition&); 161 << 123 // Build physics table during initialisation 162 // summary printout after initialisation << 163 void StreamInfo(std::ostream& out, const G4P << 164 G4bool rst=false) const; << 165 << 166 //------------------------------------------ << 167 // Public interface to cross section, mfp an << 168 // These methods are not used in run time << 169 //------------------------------------------ << 170 << 171 public: << 172 << 173 // access to dispersion of restricted energy << 174 G4double GetDEDXDispersion(const G4MaterialC << 175 const G4DynamicPa << 176 G4double length); << 177 124 178 // Access to cross section table << 125 virtual void PrintInfoDefinition(); 179 G4double CrossSectionPerVolume(G4double kine << 180 const G4Mater << 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 126 185 // access to cross section << 127 // Print out of the class parameters 186 G4double MeanFreePath(const G4Track& track); << 187 128 188 // access to step limit << 129 G4PhysicsTable* BuildDEDXTable(); 189 G4double ContinuousStepLimit(const G4Track& << 190 G4double previo << 191 G4double curren << 192 G4double& curre << 193 130 194 protected: << 131 G4PhysicsTable* BuildDEDXTableForPreciseRange(); 195 132 196 // implementation of the pure virtual method << 133 G4PhysicsTable* BuildLambdaTable(); 197 G4double GetMeanFreePath(const G4Track& trac << 198 G4double previousSt << 199 G4ForceCondition* c << 200 << 201 // implementation of the pure virtual method << 202 G4double GetContinuousStepLimit(const G4Trac << 203 G4double pre << 204 G4double cur << 205 G4double& cu << 206 << 207 // creation of an empty vector for cross sec << 208 G4PhysicsVector* LambdaPhysicsVector(const G << 209 G4doubl << 210 << 211 inline std::size_t CurrentMaterialCutsCouple << 212 << 213 //------------------------------------------ << 214 // Specific methods to set, access, modify m << 215 //------------------------------------------ << 216 134 217 // Select model in run time << 135 G4PhysicsTable* BuildLambdaSubTable(); 218 inline void SelectModel(G4double kinEnergy); << 219 136 220 public: << 137 void SetParticle(const G4ParticleDefinition* p); 221 // Select model by energy and couple index << 138 void SetBaseParticle(const G4ParticleDefinition* p); 222 // Not for run time processing << 139 void SetSecondaryParticle(const G4ParticleDefinition* p); 223 inline G4VEmModel* SelectModelForMaterial(G4 << 224 st << 225 << 226 // Add EM model coupled with fluctuation mod << 227 // of order defines which pair of models wil << 228 // energy interval << 229 void AddEmModel(G4int, G4VEmModel*, << 230 G4VEmFluctuationModel* fluc << 231 const G4Region* region = nul << 232 << 233 // Assign a model to a process local list, t << 234 // the derived process should execute AddEmM << 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 << 237 // Access to models << 238 inline std::size_t NumberOfModels() const; << 239 << 240 // Return a model from the local list << 241 inline G4VEmModel* EmModel(std::size_t index << 242 << 243 // Access to models from G4EmModelManager li << 244 inline G4VEmModel* GetModelByIndex(std::size << 245 << 246 // Assign a fluctuation model to a process << 247 inline void SetFluctModel(G4VEmFluctuationMo << 248 << 249 // Return the assigned fluctuation model << 250 inline G4VEmFluctuationModel* FluctModel() c << 251 << 252 //------------------------------------------ << 253 // Define and access particle type << 254 //------------------------------------------ << 255 140 256 protected: << 141 const G4ParticleDefinition* Particle() const; 257 inline void SetParticle(const G4ParticleDefi << 142 const G4ParticleDefinition* BaseParticle() const; 258 inline void SetSecondaryParticle(const G4Par << 143 const G4ParticleDefinition* SecondaryParticle() const; >> 144 // Particle definition 259 145 260 public: << 146 void SetDEDXBinning(G4int nbins); 261 inline void SetBaseParticle(const G4Particle << 147 // Binning for dEdx, range, and inverse range tables 262 inline const G4ParticleDefinition* Particle( << 263 inline const G4ParticleDefinition* BaseParti << 264 inline const G4ParticleDefinition* Secondary << 265 148 266 // hide assignment operator << 149 void SetDEDXBinningForPreciseRange(G4int nbins); 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 150 // Binning for dEdx, range, and inverse range tables 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 151 270 //------------------------------------------ << 152 void SetLambdaBinning(G4int nbins); 271 // Get/set parameters to configure the proce << 153 // Binning for lambda table 272 //------------------------------------------ << 273 154 274 // Add subcut processor for the region << 155 void SetMinKinEnergy(G4double e); 275 void ActivateSubCutoff(const G4Region* regio << 156 G4double MinKinEnergy() const; >> 157 // Min kinetic energy for tables 276 158 277 // Activate biasing << 159 void SetMaxKinEnergy(G4double e); 278 void SetCrossSectionBiasingFactor(G4double f << 160 G4double MaxKinEnergy() const; >> 161 // Max kinetic energy for tables 279 162 280 void ActivateForcedInteraction(G4double leng << 163 void SetMaxKinEnergyForPreciseRange(G4double e); 281 const G4Strin << 164 // Max kinetic energy for tables 282 G4bool flag = << 283 165 284 void ActivateSecondaryBiasing(const G4String << 166 G4bool StorePhysicsTable(G4ParticleDefinition*, 285 G4double energ << 167 const G4String& directory, >> 168 G4bool ascii = false); >> 169 // Store PhysicsTable in a file. >> 170 // Return false in case of failure at I/O >> 171 >> 172 G4bool RetrievePhysicsTable(G4ParticleDefinition*, >> 173 const G4String& directory, >> 174 G4bool ascii); >> 175 // Retrieve Physics from a file. >> 176 // (return true if the Physics Table can be build by using file) >> 177 // (return false if the process has no functionality or in case of failure) >> 178 // File name should is constructed as processName+particleName and the >> 179 // should be placed under the directory specifed by the argument. >> 180 >> 181 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 182 const G4Region* region = 0); >> 183 // Add EM model coupled with fluctuation model for the region >> 184 >> 185 void UpdateEmModel(const G4String&, G4double, G4double); >> 186 // Define new energy range for thhe model identified by the name >> 187 >> 188 void AddSubCutoffProcessor(G4VSubCutoffProcessor*, const G4Region* region = 0); >> 189 // Add subcutoff processor for the region >> 190 >> 191 virtual void ActivateFluorescence(G4bool, const G4Region* region = 0); >> 192 virtual void ActivateAugerElectronProduction(G4bool, const G4Region* region = 0); >> 193 // Activate deexcitation code 286 194 287 inline void SetLossFluctuations(G4bool val); << 195 virtual void SetSubCutoff(G4bool); 288 196 289 inline void SetSpline(G4bool val); << 197 void SetDEDXTable(G4PhysicsTable* p); 290 inline void SetCrossSectionType(G4CrossSecti << 198 G4PhysicsTable* DEDXTable() const; 291 inline G4CrossSectionType CrossSectionType() << 292 199 293 // Set/Get flag "isIonisation" << 200 void SetPreciseRangeTable(G4PhysicsTable* pRange); 294 void SetIonisation(G4bool val); << 201 G4PhysicsTable* PreciseRangeTable() const; 295 inline G4bool IsIonisationProcess() const; << 296 202 297 // Redefine parameteters for stepping contro << 203 void SetRangeTableForLoss(G4PhysicsTable* p); 298 void SetLinearLossLimit(G4double val); << 204 G4PhysicsTable* RangeTableForLoss() const; 299 void SetStepFunction(G4double v1, G4double v << 300 void SetLowestEnergyLimit(G4double); << 301 205 302 inline G4int NumberOfSubCutoffRegions() cons << 206 void SetInverseRangeTable(G4PhysicsTable* p); >> 207 G4PhysicsTable* InverseRangeTable() const; 303 208 304 //------------------------------------------ << 209 void SetSecondaryRangeTable(G4PhysicsTable* p); 305 // Specific methods to path Physics Tables t << 306 //------------------------------------------ << 307 210 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab << 309 void SetCSDARangeTable(G4PhysicsTable* pRang << 310 void SetRangeTableForLoss(G4PhysicsTable* p) << 311 void SetInverseRangeTable(G4PhysicsTable* p) << 312 void SetLambdaTable(G4PhysicsTable* p); 211 void SetLambdaTable(G4PhysicsTable* p); >> 212 G4PhysicsTable* LambdaTable(); 313 213 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 214 void SetSubLambdaTable(G4PhysicsTable* p); 315 void SetEnergyOfCrossSectionMax(std::vector< << 215 G4PhysicsTable* SubLambdaTable(); 316 216 317 //------------------------------------------ << 217 G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 318 // Specific methods to define custom Physics << 319 //------------------------------------------ << 320 218 321 // Binning for dEdx, range, inverse range an << 219 G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 322 void SetDEDXBinning(G4int nbins); << 323 220 324 // Min kinetic energy for tables << 221 G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 325 void SetMinKinEnergy(G4double e); << 326 inline G4double MinKinEnergy() const; << 327 << 328 // Max kinetic energy for tables << 329 void SetMaxKinEnergy(G4double e); << 330 inline G4double MaxKinEnergy() const; << 331 222 332 // Biasing parameters << 223 G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple* couple); 333 inline G4double CrossSectionBiasingFactor() << 334 224 335 // Return values for given G4MaterialCutsCou << 225 G4double GetLambda(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 336 inline G4double GetDEDX(G4double kineticEner << 226 // It returns the MeanFreePath of the process 337 inline G4double GetCSDADEDX(G4double kinetic << 338 const G4Material << 339 inline G4double GetDEDX(G4double kineticEner << 340 G4double logKineticE << 341 inline G4double GetRange(G4double kineticEne << 342 inline G4double GetRange(G4double kineticEne << 343 G4double logKinetic << 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 << 352 inline G4bool TablesAreBuilt() const; << 353 << 354 // Access to specific tables << 355 inline G4PhysicsTable* DEDXTable() const; << 356 inline G4PhysicsTable* DEDXunRestrictedTable << 357 inline G4PhysicsTable* IonisationTable() con << 358 inline G4PhysicsTable* CSDARangeTable() cons << 359 inline G4PhysicsTable* RangeTableForLoss() c << 360 inline G4PhysicsTable* InverseRangeTable() c << 361 inline G4PhysicsTable* LambdaTable() const; << 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 363 inline std::vector<G4double>* EnergyOfCrossS << 364 << 365 inline G4bool UseBaseMaterial() const; << 366 << 367 //------------------------------------------ << 368 // Run time method for simulation of ionisat << 369 //------------------------------------------ << 370 227 371 // access atom on which interaction happens << 228 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 372 const G4Element* GetCurrentElement() const; << 229 const G4DynamicParticle* dp, >> 230 G4double length); 373 231 374 // Set scaling parameters for ions is needed << 232 G4double MicroscopicCrossSection(G4double kineticEnergy, 375 void SetDynamicMassCharge(G4double massratio << 233 const G4MaterialCutsCouple* couple); >> 234 // It returns the MeanFreePath of the process for a (energy, material) 376 235 377 private: << 236 void SetLinearLossLimit(G4double val); 378 237 379 void FillSecondariesAlongStep(G4double weigh << 238 void SetLossFluctuations(G4bool val); 380 239 381 void PrintWarning(const G4String&, G4double << 240 void SetIntegral(G4bool val); >> 241 G4bool IsIntegral() const; 382 242 383 // define material and indexes << 243 void SetRandomStep(G4bool val); 384 inline void DefineMaterial(const G4MaterialC << 385 244 386 //------------------------------------------ << 245 void SetMinSubRange(G4double val); 387 // Compute values using scaling relation, ma << 388 //------------------------------------------ << 389 inline G4double GetDEDXForScaledEnergy(G4dou << 390 inline G4double GetDEDXForScaledEnergy(G4dou << 391 G4dou << 392 inline G4double GetIonisationForScaledEnergy << 393 inline G4double GetScaledRangeForScaledEnerg << 394 inline G4double GetScaledRangeForScaledEnerg << 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 << 401 inline G4double ScaledKinEnergyForLoss(G4dou << 402 inline G4double GetLambdaForScaledEnergy(G4d << 403 inline G4double GetLambdaForScaledEnergy(G4d << 404 G4d << 405 246 406 inline G4double LogScaledEkin(const G4Track& << 247 void SetStepLimits(G4double v1, G4double v2); 407 << 408 void ComputeLambdaForScaledEnergy(G4double s << 409 const G4Tr << 410 248 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 249 void SetStepFunction(G4double v1, G4double v2); 412 250 413 protected: << 251 void SetLambdaFactor(G4double val); 414 252 415 G4ParticleChangeForLoss fParticleChange; << 253 G4bool TablesAreBuilt() const; 416 const G4Material* currentMaterial << 417 const G4MaterialCutsCouple* currentCouple = << 418 254 419 private: << 255 G4int NumberOfSubCutoffRegions() const; 420 256 421 G4LossTableManager* lManager; << 257 G4double MeanFreePath(const G4Track& track, 422 G4EmModelManager* modelManager; << 258 G4double previousStepSize, 423 G4VEmModel* currentModel = n << 259 G4ForceCondition* condition); 424 G4EmBiasingManager* biasManager = nu << 425 G4SafetyHelper* safetyHelper; << 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 260 450 std::vector<G4double>* theEnergyOfCrossSecti << 261 G4double ContinuousStepLimit(const G4Track& track, 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 262 G4double previousStepSize, >> 263 G4double currentMinimumStep, >> 264 G4double& currentSafety); 452 265 453 G4double lowestKinEnergy; << 266 void ResetNumberOfInteractionLengthLeft(); 454 G4double minKinEnergy; << 267 // reset (determine the value of)NumberOfInteractionLengthLeft 455 G4double maxKinEnergy; << 456 G4double maxKinEnergyCSDA; << 457 268 458 G4double linLossLimit = 0.01; << 269 G4VEmModel* SelectModelForMaterial(G4double kinEnergy, size_t& idx) const; 459 G4double dRoverRange = 0.2; << 460 G4double finalRange; << 461 G4double lambdaFactor = 0.8; << 462 G4double invLambdaFactor; << 463 G4double biasFactor = 1.0; << 464 << 465 G4double massRatio = 1.0; << 466 G4double logMassRatio = 0.0; << 467 G4double fFactor = 1.0; << 468 G4double reduceFactor = 1.0; << 469 G4double chargeSqRatio = 1.0; << 470 G4double fRange = 0.0; << 471 G4double fRangeEnergy = 0.0; << 472 270 473 protected: 271 protected: 474 272 475 G4double preStepLambda = 0.0; << 273 virtual G4double GetMeanFreePath(const G4Track& track, 476 G4double preStepKinEnergy = 0.0; << 274 G4double previousStepSize, 477 G4double preStepScaledEnergy = 0.0; << 275 G4ForceCondition* condition); 478 G4double mfpKinEnergy = 0.0; << 479 276 480 std::size_t currentCoupleIndex = 0; << 277 virtual G4double GetContinuousStepLimit(const G4Track& track, >> 278 G4double previousStepSize, >> 279 G4double currentMinimumStep, >> 280 G4double& currentSafety); 481 281 482 private: << 282 virtual >> 283 const G4ParticleDefinition* DefineBaseParticle(const G4ParticleDefinition*); 483 284 484 G4int nBins; << 285 virtual 485 G4int nBinsCSDA; << 286 G4PhysicsVector* DEDXPhysicsVector(const G4MaterialCutsCouple*); 486 G4int numberOfModels = 0; << 487 G4int nSCoffRegions = 0; << 488 G4int secID = _DeltaElectron; << 489 G4int tripletID = _TripletElectron; << 490 G4int biasID = _DeltaEBelowCut; << 491 G4int epixeID = _ePIXE; << 492 G4int gpixeID = _GammaPIXE; << 493 G4int mainSecondaries = 1; << 494 << 495 std::size_t basedCoupleIndex = 0; << 496 std::size_t coupleIdxRange = 0; << 497 std::size_t idxDEDX = 0; << 498 std::size_t idxDEDXunRestricted = 0; << 499 std::size_t idxIonisation = 0; << 500 std::size_t idxRange = 0; << 501 std::size_t idxCSDA = 0; << 502 std::size_t idxSecRange = 0; << 503 std::size_t idxInverseRange = 0; << 504 std::size_t idxLambda = 0; << 505 << 506 G4GPILSelection aGPILSelection; << 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 287 526 std::vector<G4DynamicParticle*> secParticles << 288 virtual 527 std::vector<G4Track*> scTracks; << 289 G4PhysicsVector* DEDXPhysicsVectorForPreciseRange(const G4MaterialCutsCouple*); 528 }; << 529 290 530 // ======== Run time inline methods ========== << 291 virtual >> 292 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 531 293 532 inline std::size_t G4VEnergyLossProcess::Curre << 294 virtual 533 { << 295 G4PhysicsVector* SubLambdaPhysicsVector(const G4MaterialCutsCouple*); 534 return currentCoupleIndex; << 535 } << 536 296 537 //....oooOO0OOooo........oooOO0OOooo........oo << 297 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, >> 298 const G4Material*, G4double cut) = 0; 538 299 539 inline void G4VEnergyLossProcess::SelectModel( << 300 virtual G4double MaxSecondaryEnergy(const G4DynamicParticle* dp) = 0; 540 { << 541 currentModel = modelManager->SelectModel(kin << 542 currentModel->SetCurrentCouple(currentCouple << 543 } << 544 301 545 //....oooOO0OOooo........oooOO0OOooo........oo << 302 G4VEmModel* SelectModel(G4double kinEnergy); 546 303 547 inline G4VEmModel* G4VEnergyLossProcess::Selec << 304 G4VSubCutoffProcessor* SubCutoffProcessor(size_t index); 548 G4double kinEnergy, std::si << 549 { << 550 return modelManager->SelectModel(kinEnergy, << 551 } << 552 305 553 //....oooOO0OOooo........oooOO0OOooo........oo << 306 size_t CurrentMaterialCutsCoupleIndex() const; 554 307 555 inline void << 308 void SetMassRatio(G4double val); 556 G4VEnergyLossProcess::DefineMaterial(const G4M << 557 { << 558 if(couple != currentCouple) { << 559 currentCouple = couple; << 560 currentMaterial = couple->GetMaterial(); << 561 basedCoupleIndex = currentCoupleIndex = co << 562 fFactor = chargeSqRatio*biasFactor; << 563 mfpKinEnergy = DBL_MAX; << 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } << 571 } << 572 309 573 //....oooOO0OOooo........oooOO0OOooo........oo << 310 void SetReduceFactor(G4double val); 574 311 575 inline G4double G4VEnergyLossProcess::GetDEDXF << 312 void SetChargeSquare(G4double val); 576 { << 577 /* << 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 579 << basedCoupleIndex << " E(MeV)= " << 580 << " Emin= " << minKinEnergy << " Fa << 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 584 return x; << 585 } << 586 313 587 //....oooOO0OOooo........oooOO0OOooo........oo << 314 void SetChargeSquareRatio(G4double val); >> 315 >> 316 G4double GetCurrentRange() const; 588 317 589 inline << 318 private: 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { << 592 /* << 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 594 << basedCoupleIndex << " E(MeV)= " << 595 << " Emin= " << minKinEnergy << " Fa << 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 599 return x; << 600 } << 601 319 602 //....oooOO0OOooo........oooOO0OOooo........oo << 320 void Clear(); 603 321 604 inline G4double G4VEnergyLossProcess::GetIonis << 322 void DefineMaterial(const G4MaterialCutsCouple* couple); 605 { << 606 G4double x = << 607 fFactor*(*theIonisationTable)[basedCoupleI << 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 609 return x; << 610 } << 611 323 612 //....oooOO0OOooo........oooOO0OOooo........oo << 324 G4double GetDEDXForLoss(G4double kineticEnergy); 613 325 614 inline G4double G4VEnergyLossProcess::GetScale << 326 G4double GetRangeForLoss(G4double kineticEnergy); 615 { << 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 617 // << basedCoupleIndex << " E(MeV)= << 618 // << " lastIdx= " << lastIdx << " << 619 if(currentCoupleIndex != coupleIdxRange || f << 620 coupleIdxRange = currentCoupleIndex; << 621 fRangeEnergy = e; << 622 fRange = reduceFactor*((*theRangeTableForL << 623 if (fRange < 0.0) { fRange = 0.0; } << 624 else if (e < minKinEnergy) { fRange *= std << 625 } << 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } << 631 327 632 inline G4double << 328 G4double GetPreciseRange(G4double kineticEnergy); 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 634 { << 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 636 // << basedCoupleIndex << " E(MeV)= << 637 // << " lastIdx= " << lastIdx << " << 638 if(currentCoupleIndex != coupleIdxRange || f << 639 coupleIdxRange = currentCoupleIndex; << 640 fRangeEnergy = e; << 641 fRange = reduceFactor*((*theRangeTableForL << 642 if (fRange < 0.0) { fRange = 0.0; } << 643 else if (e < minKinEnergy) { fRange *= std << 644 } << 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } << 650 329 651 //....oooOO0OOooo........oooOO0OOooo........oo << 330 G4double GetLambda(G4double scaledKinEnergy); 652 331 653 inline G4double << 332 void ComputeLambda(G4double scaledKinEnergy); 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 655 { << 656 G4double x = ((*theCSDARangeTable)[basedCoup << 657 if (x < 0.0) { x = 0.0; } << 658 else if (e < minKinEnergy) { x *= std::sqrt( << 659 return x; << 660 } << 661 333 662 //....oooOO0OOooo........oooOO0OOooo........oo << 334 G4double ScaledKinEnergyForLoss(G4double range); 663 335 664 inline G4double << 336 // hide assignment operator 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 666 << 667 { << 668 G4double x = ((*theCSDARangeTable)[basedCoup << 669 if (x < 0.0) { x = 0.0; } << 670 else if (e < minKinEnergy) { x *= std::sqrt( << 671 return x; << 672 } << 673 337 674 //....oooOO0OOooo........oooOO0OOooo........oo << 338 G4VEnergyLossProcess(G4VEnergyLossProcess &); >> 339 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 675 340 676 inline G4double G4VEnergyLossProcess::ScaledKi << 341 // ===================================================================== 677 { << 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 679 // << basedCoupleIndex << " R(mm)= " << 680 // << theInverseRangeTable << G4endl << 681 G4PhysicsVector* v = (*theInverseRangeTable) << 682 G4double rmin = v->Energy(0); << 683 G4double e = 0.0; << 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 685 else if(r > 0.0) { << 686 G4double x = r/rmin; << 687 e = minKinEnergy*x*x; << 688 } << 689 return e; << 690 } << 691 342 692 //....oooOO0OOooo........oooOO0OOooo........oo << 343 protected: 693 344 694 inline G4double G4VEnergyLossProcess::GetLambd << 345 G4ParticleChangeForLoss fParticleChange; 695 { << 696 return fFactor*((*theLambdaTable)[basedCoupl << 697 } << 698 346 699 //....oooOO0OOooo........oooOO0OOooo........oo << 347 private: 700 348 701 inline G4double << 349 G4EmModelManager* modelManager; 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 350 std::vector<G4VSubCutoffProcessor*> scoffProcessors; 703 { << 351 std::vector<const G4Region*> scoffRegions; 704 return fFactor*((*theLambdaTable)[basedCoupl << 352 G4int nSCoffRegions; 705 } << 353 std::vector<G4int> idxSCoffRegions; >> 354 >> 355 // tables and vectors >> 356 G4PhysicsTable* theDEDXTable; >> 357 G4PhysicsTable* theRangeTableForLoss; >> 358 G4PhysicsTable* thePreciseRangeTable; >> 359 G4PhysicsTable* theSecondaryRangeTable; >> 360 G4PhysicsTable* theInverseRangeTable; >> 361 G4PhysicsTable* theLambdaTable; >> 362 G4PhysicsTable* theSubLambdaTable; >> 363 G4double* theDEDXAtMaxEnergy; >> 364 G4double* theRangeAtMaxEnergy; >> 365 G4double* theEnergyOfCrossSectionMax; >> 366 G4double* theCrossSectionMax; >> 367 >> 368 const G4DataVector* theCuts; >> 369 >> 370 const G4ParticleDefinition* particle; >> 371 const G4ParticleDefinition* baseParticle; >> 372 const G4ParticleDefinition* secondaryParticle; >> 373 >> 374 // cash >> 375 const G4Material* currentMaterial; >> 376 const G4MaterialCutsCouple* currentCouple; >> 377 size_t currentMaterialIndex; >> 378 G4double minStepLimit; >> 379 >> 380 G4int nDEDXBins; >> 381 G4int nDEDXBinsForRange; >> 382 G4int nLambdaBins; 706 383 707 //....oooOO0OOooo........oooOO0OOooo........oo << 384 G4double lowestKinEnergy; >> 385 G4double minKinEnergy; >> 386 G4double maxKinEnergy; >> 387 G4double maxKinEnergyForRange; 708 388 709 inline G4double G4VEnergyLossProcess::LogScale << 389 G4double massRatio; 710 { << 390 G4double reduceFactor; 711 return track.GetDynamicParticle()->GetLogKin << 391 G4double chargeSquare; 712 } << 392 G4double chargeSqRatio; >> 393 >> 394 G4double preStepLambda; >> 395 G4double preStepMFP; >> 396 G4double fRange; >> 397 G4double preStepKinEnergy; >> 398 G4double preStepScaledEnergy; >> 399 G4double linLossLimit; >> 400 G4double minSubRange; >> 401 G4double dRoverRange; >> 402 G4double finalRange; >> 403 G4double defaultRoverRange; >> 404 G4double defaultIntegralRange; >> 405 G4double lambdaFactor; >> 406 G4double mfpKinEnergy; >> 407 >> 408 G4bool lossFluctuationFlag; >> 409 G4bool rndmStepFlag; >> 410 G4bool hasRestProcess; >> 411 G4bool tablesAreBuilt; >> 412 G4bool integral; >> 413 G4bool meanFreePath; >> 414 }; 713 415 714 //....oooOO0OOooo........oooOO0OOooo........oo 416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 417 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 418 716 inline G4double << 419 inline void G4VEnergyLossProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 718 const G4Material << 719 { 420 { 720 DefineMaterial(couple); << 421 if(couple != currentCouple) { 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 422 currentCouple = couple; >> 423 currentMaterial = couple->GetMaterial(); >> 424 currentMaterialIndex = couple->GetIndex(); >> 425 minStepLimit = std::min(finalRange, >> 426 currentCouple->GetProductionCuts()->GetProductionCut(idxG4ElectronCut)); >> 427 if(integral && (!meanFreePath || preStepScaledEnergy < mfpKinEnergy)) >> 428 ResetNumberOfInteractionLengthLeft(); >> 429 } 722 } 430 } 723 431 724 //....oooOO0OOooo........oooOO0OOooo........oo 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 433 726 inline G4double << 434 inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 435 const G4MaterialCutsCouple* couple) 728 const G4Material << 729 G4double logKinE << 730 { 436 { 731 DefineMaterial(couple); 437 DefineMaterial(couple); 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 438 return GetDEDXForLoss(kineticEnergy); 733 } 439 } 734 440 735 //....oooOO0OOooo........oooOO0OOooo........oo 441 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 442 737 inline G4double << 443 inline G4double G4VEnergyLossProcess::GetDEDXForLoss(G4double e) 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 739 const G4Materia << 740 { 444 { 741 DefineMaterial(couple); << 445 G4bool b; 742 return GetScaledRangeForScaledEnergy(kinEner << 446 e *= massRatio; >> 447 G4double x = ((*theDEDXTable)[currentMaterialIndex]->GetValue(e, b))*chargeSqRatio; >> 448 if(e < minKinEnergy) x *= sqrt(e/minKinEnergy); >> 449 return x; 743 } 450 } 744 451 745 //....oooOO0OOooo........oooOO0OOooo........oo 452 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 453 747 inline G4double << 454 inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 455 const G4MaterialCutsCouple* couple) 749 const G4Materia << 750 G4double logKin << 751 { 456 { 752 DefineMaterial(couple); 457 DefineMaterial(couple); 753 return GetScaledRangeForScaledEnergy(kinEner << 458 G4double x = DBL_MAX; >> 459 if(thePreciseRangeTable) x = GetPreciseRange(kineticEnergy); >> 460 else if(theRangeTableForLoss) x = GetRangeForLoss(kineticEnergy); >> 461 return x; 754 } 462 } 755 463 756 //....oooOO0OOooo........oooOO0OOooo........oo 464 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 465 758 inline G4double << 466 inline G4double G4VEnergyLossProcess::GetPreciseRange(G4double e) 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 760 const G4Mat << 761 { 467 { 762 DefineMaterial(couple); << 468 G4bool b; 763 return (nullptr == theCSDARangeTable) ? DBL_ << 469 G4double x; 764 GetLimitScaledRangeForScaledEnergy(kinetic << 470 e *= massRatio; >> 471 >> 472 if (e < maxKinEnergyForRange) { >> 473 x = ((*thePreciseRangeTable)[currentMaterialIndex])->GetValue(e, b); >> 474 if(e < minKinEnergy) x *= sqrt(e/minKinEnergy); >> 475 >> 476 } else { >> 477 x = theRangeAtMaxEnergy[currentMaterialIndex] + >> 478 (e - maxKinEnergyForRange)/theDEDXAtMaxEnergy[currentMaterialIndex]; >> 479 } >> 480 return x*reduceFactor; 765 } 481 } 766 482 767 //....oooOO0OOooo........oooOO0OOooo........oo 483 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 484 769 inline G4double << 485 inline G4double G4VEnergyLossProcess::GetRangeForLoss(G4double& kineticEnergy, 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 486 const G4MaterialCutsCouple* couple) 771 const G << 772 { 487 { 773 DefineMaterial(couple); 488 DefineMaterial(couple); 774 return ScaledKinEnergyForLoss(range/reduceFa << 489 G4double x = DBL_MAX; >> 490 if(theRangeTableForLoss) x = GetRangeForLoss(kineticEnergy); >> 491 return x; 775 } 492 } 776 493 777 //....oooOO0OOooo........oooOO0OOooo........oo 494 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 778 495 779 inline G4double << 496 inline G4double G4VEnergyLossProcess::GetRangeForLoss(G4double e) 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 781 const G4Materi << 782 { 497 { 783 DefineMaterial(couple); << 498 G4bool b; 784 return (nullptr != theLambdaTable) ? << 499 e *= massRatio; 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 500 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b); >> 501 if(e < minKinEnergy) x *= sqrt(e/minKinEnergy); >> 502 return x*reduceFactor; 786 } 503 } 787 504 788 //....oooOO0OOooo........oooOO0OOooo........oo 505 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 506 790 inline G4double << 507 inline G4double G4VEnergyLossProcess::GetKineticEnergy(G4double& range, 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 508 const G4MaterialCutsCouple* couple) 792 const G4Materi << 793 G4double logKi << 794 { 509 { 795 DefineMaterial(couple); 510 DefineMaterial(couple); 796 return (nullptr != theLambdaTable) ? << 511 G4double r = range/reduceFactor; 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 512 G4double e = ScaledKinEnergyForLoss(r)/massRatio; 798 : 0.0; << 513 return e; 799 } << 800 << 801 // ======== Get/Set inline methods used at ini << 802 << 803 inline void G4VEnergyLossProcess::SetFluctMode << 804 { << 805 fluctModel = p; << 806 } 514 } 807 515 808 //....oooOO0OOooo........oooOO0OOooo........oo 516 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 809 517 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 518 inline G4double G4VEnergyLossProcess::ScaledKinEnergyForLoss(G4double r) 811 { 519 { 812 return fluctModel; << 520 G4PhysicsVector* v = (*theInverseRangeTable)[currentMaterialIndex]; >> 521 G4double rmin = v->GetLowEdgeEnergy(0); >> 522 G4double e = minKinEnergy; >> 523 if(r <= rmin) { >> 524 r /= rmin; >> 525 e *= r*r; >> 526 } else { >> 527 G4bool b; >> 528 e = v->GetValue(r, b); >> 529 } >> 530 return e; 813 } 531 } 814 532 815 //....oooOO0OOooo........oooOO0OOooo........oo 533 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 534 817 inline void G4VEnergyLossProcess::SetParticle( << 535 inline G4double G4VEnergyLossProcess::GetDEDXDispersion( >> 536 const G4MaterialCutsCouple *couple, >> 537 const G4DynamicParticle* dp, >> 538 G4double length) 818 { 539 { 819 particle = p; << 540 DefineMaterial(couple); >> 541 G4double tmax = MaxSecondaryEnergy(dp); >> 542 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); >> 543 return modelManager->GetDEDXDispersion(currentMaterial, dp, tmax, length, >> 544 currentMaterialIndex); 820 } 545 } 821 546 822 //....oooOO0OOooo........oooOO0OOooo........oo 547 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 823 548 824 inline void << 549 inline G4double G4VEnergyLossProcess::GetLambda(G4double& kineticEnergy, 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 550 const G4MaterialCutsCouple* couple) 826 { 551 { 827 secondaryParticle = p; << 552 DefineMaterial(couple); >> 553 G4double x = 0.0; >> 554 if(theLambdaTable) x = GetLambda(kineticEnergy*massRatio); >> 555 return x; 828 } 556 } 829 557 830 //....oooOO0OOooo........oooOO0OOooo........oo 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 559 832 inline void << 560 inline G4double G4VEnergyLossProcess::GetLambda(G4double e) 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 561 { 835 baseParticle = p; << 562 G4bool b; >> 563 return chargeSqRatio*(((*theLambdaTable)[currentMaterialIndex])->GetValue(e, b)); 836 } 564 } 837 565 838 //....oooOO0OOooo........oooOO0OOooo........oo 566 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 567 840 inline const G4ParticleDefinition* G4VEnergyLo << 568 inline void G4VEnergyLossProcess::ComputeLambda(G4double e) 841 { 569 { 842 return particle; << 570 meanFreePath = false; 843 } << 571 mfpKinEnergy = 0.0; 844 << 572 G4double emax = theEnergyOfCrossSectionMax[currentMaterialIndex]; 845 //....oooOO0OOooo........oooOO0OOooo........oo << 573 if (e <= emax) preStepLambda = GetLambda(e); 846 << 574 else { 847 inline const G4ParticleDefinition* G4VEnergyLo << 575 e *= lambdaFactor; 848 { << 576 if(e > emax) { 849 return baseParticle; << 577 mfpKinEnergy = e; >> 578 preStepLambda = GetLambda(e); >> 579 } else preStepLambda = chargeSqRatio*theCrossSectionMax[currentMaterialIndex]; >> 580 } 850 } 581 } 851 582 852 //....oooOO0OOooo........oooOO0OOooo........oo 583 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 584 854 inline const G4ParticleDefinition* << 585 inline G4double G4VEnergyLossProcess::GetMeanFreePath(const G4Track& track, 855 G4VEnergyLossProcess::SecondaryParticle() cons << 586 G4double, G4ForceCondition*) 856 { 587 { 857 return secondaryParticle; << 588 preStepKinEnergy = track.GetKineticEnergy(); >> 589 preStepScaledEnergy = preStepKinEnergy*massRatio; >> 590 DefineMaterial(track.GetMaterialCutsCouple()); >> 591 if (meanFreePath) { >> 592 if (integral) ComputeLambda(preStepScaledEnergy); >> 593 else preStepLambda = GetLambda(preStepScaledEnergy); >> 594 if(0.0 < preStepLambda) preStepMFP = 1.0/preStepLambda; >> 595 else preStepMFP = DBL_MAX; >> 596 } >> 597 // G4cout<<GetProcessName()<<": e= "<<preStepKinEnergy<<" mfp= "<<preStepMFP<<G4endl; >> 598 return preStepMFP; 858 } 599 } 859 600 860 //....oooOO0OOooo........oooOO0OOooo........oo 601 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 602 862 inline void G4VEnergyLossProcess::SetLossFluct << 603 inline G4double G4VEnergyLossProcess::GetContinuousStepLimit(const G4Track&, >> 604 G4double, G4double currentMinStep, G4double&) 863 { 605 { 864 lossFluctuationFlag = val; << 606 G4double x = DBL_MAX; 865 actLossFluc = true; << 607 if(theRangeTableForLoss) { 866 } << 608 fRange = GetRange(preStepKinEnergy, currentCouple); 867 609 868 //....oooOO0OOooo........oooOO0OOooo........oo << 610 x = fRange; >> 611 G4double y = x*dRoverRange; 869 612 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 613 if(x > minStepLimit && y < currentMinStep ) 871 { << 614 x = y + minStepLimit*(1.0 - dRoverRange)*(2.0 - minStepLimit/fRange); 872 spline = val; << 615 } >> 616 return x; 873 } 617 } 874 618 875 //....oooOO0OOooo........oooOO0OOooo........oo 619 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 876 620 877 inline void G4VEnergyLossProcess::SetCrossSect << 621 inline void G4VEnergyLossProcess::ResetNumberOfInteractionLengthLeft() 878 { 622 { 879 fXSType = val; << 623 meanFreePath = true; >> 624 G4VProcess::ResetNumberOfInteractionLengthLeft(); 880 } 625 } 881 626 882 //....oooOO0OOooo........oooOO0OOooo........oo << 883 << 884 inline G4CrossSectionType G4VEnergyLossProcess << 885 { << 886 return fXSType; << 887 } << 888 627 889 //....oooOO0OOooo........oooOO0OOooo........oo 628 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 629 891 inline G4bool G4VEnergyLossProcess::IsIonisati << 630 inline G4VEmModel* G4VEnergyLossProcess::SelectModel(G4double kinEnergy) 892 { 631 { 893 return isIonisation; << 632 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 894 } 633 } 895 634 896 //....oooOO0OOooo........oooOO0OOooo........oo 635 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 897 636 898 inline G4int G4VEnergyLossProcess::NumberOfSub << 637 inline G4VEmModel* G4VEnergyLossProcess::SelectModelForMaterial( >> 638 G4double kinEnergy, size_t& idx) const 899 { 639 { 900 return nSCoffRegions; << 640 return modelManager->SelectModel(kinEnergy, idx); 901 } 641 } 902 642 903 //....oooOO0OOooo........oooOO0OOooo........oo 643 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 644 905 inline G4double G4VEnergyLossProcess::MinKinEn << 645 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 906 { 646 { 907 return minKinEnergy; << 647 return particle; 908 } 648 } 909 649 910 //....oooOO0OOooo........oooOO0OOooo........oo 650 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 651 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 652 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 913 { 653 { 914 return maxKinEnergy; << 654 return baseParticle; 915 } 655 } 916 656 917 //....oooOO0OOooo........oooOO0OOooo........oo 657 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 918 658 919 inline G4double G4VEnergyLossProcess::CrossSec << 659 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 920 { 660 { 921 return biasFactor; << 661 return secondaryParticle; 922 } 662 } 923 663 924 //....oooOO0OOooo........oooOO0OOooo........oo 664 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 925 665 926 inline G4bool G4VEnergyLossProcess::TablesAreB << 666 inline G4VSubCutoffProcessor* G4VEnergyLossProcess::SubCutoffProcessor(size_t index) 927 { 667 { 928 return tablesAreBuilt; << 668 G4VSubCutoffProcessor* p = 0; >> 669 if( nSCoffRegions ) p = scoffProcessors[idxSCoffRegions[index]]; >> 670 return p; 929 } 671 } 930 672 931 //....oooOO0OOooo........oooOO0OOooo........oo 673 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 << 674 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 675 inline G4PhysicsTable* G4VEnergyLossProcess::DEDXTable() const 934 { 676 { 935 return theDEDXTable; 677 return theDEDXTable; 936 } 678 } 937 679 938 //....oooOO0OOooo........oooOO0OOooo........oo 680 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 << 681 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 682 inline G4PhysicsTable* G4VEnergyLossProcess::PreciseRangeTable() const 941 { 683 { 942 return theDEDXunRestrictedTable; << 684 return thePreciseRangeTable; 943 } 685 } 944 686 945 //....oooOO0OOooo........oooOO0OOooo........oo 687 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 << 688 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 689 inline G4PhysicsTable* G4VEnergyLossProcess::RangeTableForLoss() const 948 { 690 { 949 return theIonisationTable; << 691 return theRangeTableForLoss; 950 } 692 } 951 693 952 //....oooOO0OOooo........oooOO0OOooo........oo 694 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 953 695 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 696 inline G4PhysicsTable* G4VEnergyLossProcess::InverseRangeTable() const 955 { 697 { 956 return theCSDARangeTable; << 698 return theInverseRangeTable; 957 } 699 } 958 700 959 //....oooOO0OOooo........oooOO0OOooo........oo 701 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 960 << 702 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 703 inline G4PhysicsTable* G4VEnergyLossProcess::LambdaTable() 962 { 704 { 963 return theRangeTableForLoss; << 705 return theLambdaTable; 964 } 706 } 965 707 966 //....oooOO0OOooo........oooOO0OOooo........oo 708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 967 << 709 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 710 inline G4PhysicsTable* G4VEnergyLossProcess::SubLambdaTable() 969 { 711 { 970 return theInverseRangeTable; << 712 return theSubLambdaTable; 971 } 713 } 972 714 973 //....oooOO0OOooo........oooOO0OOooo........oo 715 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 974 << 716 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 717 inline G4bool G4VEnergyLossProcess::IsIntegral() const 976 { 718 { 977 return theLambdaTable; << 719 return integral; 978 } 720 } 979 721 980 //....oooOO0OOooo........oooOO0OOooo........oo 722 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 981 723 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 724 inline size_t G4VEnergyLossProcess::CurrentMaterialCutsCoupleIndex() const 983 { 725 { 984 return baseMat; << 726 return currentMaterialIndex; 985 } 727 } 986 728 987 //....oooOO0OOooo........oooOO0OOooo........oo 729 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 988 << 730 989 inline std::vector<G4double>* << 731 inline void G4VEnergyLossProcess::SetMassRatio(G4double val) 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { 732 { 992 return theEnergyOfCrossSectionMax; << 733 massRatio = val; 993 } 734 } 994 735 995 //....oooOO0OOooo........oooOO0OOooo........oo 736 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 996 << 737 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 738 inline void G4VEnergyLossProcess::SetReduceFactor(G4double val) 998 { 739 { 999 return fXSpeaks; << 740 reduceFactor = val; 1000 } 741 } 1001 742 1002 //....oooOO0OOooo........oooOO0OOooo........o 743 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1003 << 744 1004 inline std::size_t G4VEnergyLossProcess::Numb << 745 inline void G4VEnergyLossProcess::SetChargeSquare(G4double val) 1005 { 746 { 1006 return numberOfModels; << 747 chargeSquare = val; 1007 } 748 } 1008 749 1009 //....oooOO0OOooo........oooOO0OOooo........o 750 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 751 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 752 inline void G4VEnergyLossProcess::SetChargeSquareRatio(G4double val) 1012 { 753 { 1013 return (index < emModels->size()) ? (*emMod << 754 chargeSqRatio = val; 1014 } 755 } 1015 << 756 1016 //....oooOO0OOooo........oooOO0OOooo........o 757 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 << 758 1018 inline G4VEmModel* << 759 inline G4double G4VEnergyLossProcess::GetCurrentRange() const 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 760 { 1021 return modelManager->GetModel((G4int)idx, v << 761 return fRange; 1022 } 762 } 1023 763 1024 //....oooOO0OOooo........oooOO0OOooo........o 764 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 765 1026 #endif 766 #endif 1027 767