Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEnergyLossProcess.hh,v 1.3 2004/01/14 18:01:57 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-00-patch-01 $ 26 // 25 // 27 // ------------------------------------------- 26 // ------------------------------------------------------------------- 28 // 27 // 29 // GEANT4 Class header file 28 // GEANT4 Class header file 30 // 29 // 31 // 30 // 32 // File name: G4VEnergyLossProcess 31 // File name: G4VEnergyLossProcess 33 // 32 // 34 // Author: Vladimir Ivanchenko on base 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 34 // 36 // Creation date: 03.01.2002 35 // Creation date: 03.01.2002 37 // 36 // 38 // Modifications: Vladimir Ivanchenko << 37 // Modifications: >> 38 // >> 39 // 26-12-02 Secondary production moved to derived classes (V.Ivanchenko) >> 40 // 20-01-03 Migrade to cut per region (V.Ivanchenko) >> 41 // 24-01-03 Make models region aware (V.Ivanchenko) >> 42 // 05-02-03 Fix compilation warnings (V.Ivanchenko) >> 43 // 13-02-03 SubCutoffProcessors defined for regions (V.Ivanchenko) >> 44 // 17-02-03 Fix problem of store/restore tables (V.Ivanchenko) >> 45 // 26-02-03 Region dependent step limit (V.Ivanchenko) >> 46 // 26-03-03 Add GetDEDXDispersion (V.Ivanchenko) >> 47 // 09-04-03 Fix problem of negative range limit for non integral (V.Ivanchenko) >> 48 // 13-05-03 Add calculation of precise range (V.Ivanchenko) >> 49 // 21-07-03 Add UpdateEmModel method (V.Ivanchenko) >> 50 // 12-11-03 G4EnergyLossSTD -> G4EnergyLossProcess (V.Ivanchenko) >> 51 // 14-01-04 Activate precise range calculation (V.Ivanchenko) 39 // 52 // 40 // Class Description: 53 // Class Description: 41 // 54 // 42 // It is the unified energy loss process it ca 55 // It is the unified energy loss process it calculates the continuous 43 // energy loss for charged particles using a s 56 // energy loss for charged particles using a set of Energy Loss 44 // models valid for different energy regions. 57 // models valid for different energy regions. There are a possibility 45 // to create and access to dE/dx and range tab 58 // to create and access to dE/dx and range tables, or to calculate 46 // that information on fly. 59 // that information on fly. 47 60 48 // ------------------------------------------- 61 // ------------------------------------------------------------------- 49 // 62 // 50 63 51 #ifndef G4VEnergyLossProcess_h 64 #ifndef G4VEnergyLossProcess_h 52 #define G4VEnergyLossProcess_h 1 65 #define G4VEnergyLossProcess_h 1 53 66 54 #include "G4VContinuousDiscreteProcess.hh" 67 #include "G4VContinuousDiscreteProcess.hh" 55 #include "globals.hh" 68 #include "globals.hh" 56 #include "G4Material.hh" 69 #include "G4Material.hh" 57 #include "G4MaterialCutsCouple.hh" 70 #include "G4MaterialCutsCouple.hh" 58 #include "G4Track.hh" 71 #include "G4Track.hh" 59 #include "G4EmModelManager.hh" 72 #include "G4EmModelManager.hh" 60 #include "G4ParticleChangeForLoss.hh" << 73 #include "G4UnitsTable.hh" 61 #include "G4EmTableType.hh" << 62 #include "G4EmSecondaryParticleType.hh" << 63 #include "G4PhysicsTable.hh" << 64 #include "G4PhysicsVector.hh" << 65 74 66 class G4Step; 75 class G4Step; 67 class G4ParticleDefinition; 76 class G4ParticleDefinition; 68 class G4EmParameters; << 69 class G4VEmModel; 77 class G4VEmModel; 70 class G4VEmFluctuationModel; 78 class G4VEmFluctuationModel; 71 class G4DataVector; 79 class G4DataVector; >> 80 class G4VParticleChange; >> 81 class G4PhysicsTable; >> 82 class G4PhysicsVector; >> 83 class G4VSubCutoffProcessor; 72 class G4Region; 84 class G4Region; 73 class G4SafetyHelper; << 74 class G4VAtomDeexcitation; << 75 class G4VSubCutProducer; << 76 class G4EmBiasingManager; << 77 class G4LossTableManager; << 78 class G4EmDataHandler; << 79 85 80 //....oooOO0OOooo........oooOO0OOooo........oo 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 87 82 class G4VEnergyLossProcess : public G4VContinu 88 class G4VEnergyLossProcess : public G4VContinuousDiscreteProcess 83 { 89 { 84 public: 90 public: 85 91 86 G4VEnergyLossProcess(const G4String& name = 92 G4VEnergyLossProcess(const G4String& name = "EnergyLoss", 87 G4ProcessType type = fE << 93 G4ProcessType type = fElectromagnetic); 88 94 89 ~G4VEnergyLossProcess() override; << 95 ~G4VEnergyLossProcess(); 90 96 91 //------------------------------------------ << 97 void Initialise(); 92 // Virtual methods to be implemented in conc << 93 //------------------------------------------ << 94 98 95 protected: << 99 G4VParticleChange* AlongStepDoIt(const G4Track&, const G4Step&); 96 100 97 // description of specific process parameter << 101 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 98 virtual void StreamProcessInfo(std::ostream& << 99 102 100 virtual void InitialiseEnergyLossProcess(con << 103 virtual std::vector<G4Track*>* SecondariesAlongStep( 101 con << 104 const G4Step&, >> 105 G4double& tmax, >> 106 G4double& eloss, >> 107 G4double& kinEnergy) = 0; 102 108 103 public: << 109 virtual void SecondariesPostStep( >> 110 G4VEmModel*, >> 111 const G4MaterialCutsCouple*, >> 112 const G4DynamicParticle*, >> 113 G4double& tcut, >> 114 G4double& kinEnergy) = 0; 104 115 105 // used as low energy limit LambdaTable << 116 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 106 virtual G4double MinPrimaryEnergy(const G4Pa << 117 // True for all charged particles 107 const G4Ma << 108 118 109 // print documentation in html format << 119 virtual 110 void ProcessDescription(std::ostream& outFil << 120 void BuildPhysicsTable(const G4ParticleDefinition&); >> 121 // Build physics table during initialisation 111 122 112 // prepare all tables << 123 virtual void PrintInfoDefinition(); 113 void PreparePhysicsTable(const G4ParticleDef << 114 << 115 // build all tables << 116 void BuildPhysicsTable(const G4ParticleDefin << 117 << 118 // build a table << 119 G4PhysicsTable* BuildDEDXTable(G4EmTableType << 120 << 121 // build a table << 122 G4PhysicsTable* BuildLambdaTable(G4EmTableTy << 123 << 124 // Called before tracking of each new G4Trac << 125 void StartTracking(G4Track*) override; << 126 << 127 // Step limit from AlongStep << 128 G4double AlongStepGetPhysicalInteractionLeng << 129 const G4Trac << 130 G4double pr << 131 G4double cu << 132 G4double& cu << 133 G4GPILSelect << 134 << 135 // Step limit from cross section << 136 G4double PostStepGetPhysicalInteractionLengt << 137 const G4Trac << 138 G4double pre << 139 G4ForceCondi << 140 << 141 // AlongStep computations << 142 G4VParticleChange* AlongStepDoIt(const G4Tra << 143 << 144 // PostStep sampling of secondaries << 145 G4VParticleChange* PostStepDoIt(const G4Trac << 146 << 147 // Store all PhysicsTable in files. << 148 // Return false in case of any fatal failure << 149 G4bool StorePhysicsTable(const G4ParticleDef << 150 const G4String& dir << 151 G4bool ascii = fals << 152 << 153 // Retrieve all Physics from a files. << 154 // Return true if all the Physics Table are << 155 // Return false if any fatal failure. << 156 G4bool RetrievePhysicsTable(const G4Particle << 157 const G4String& << 158 G4bool ascii) ov << 159 << 160 private: << 161 124 162 // summary printout after initialisation << 125 // Print out of the class parameters 163 void StreamInfo(std::ostream& out, const G4P << 164 G4bool rst=false) const; << 165 << 166 //------------------------------------------ << 167 // Public interface to cross section, mfp an << 168 // These methods are not used in run time << 169 //------------------------------------------ << 170 126 171 public: << 127 G4PhysicsTable* BuildDEDXTable(); 172 128 173 // access to dispersion of restricted energy << 129 G4PhysicsTable* BuildDEDXTableForPreciseRange(); 174 G4double GetDEDXDispersion(const G4MaterialC << 175 const G4DynamicPa << 176 G4double length); << 177 130 178 // Access to cross section table << 131 G4PhysicsTable* BuildLambdaTable(); 179 G4double CrossSectionPerVolume(G4double kine << 180 const G4Mater << 181 G4double CrossSectionPerVolume(G4double kine << 182 const G4Mater << 183 G4double logK << 184 132 185 // access to cross section << 133 G4PhysicsTable* BuildLambdaSubTable(); 186 G4double MeanFreePath(const G4Track& track); << 187 134 188 // access to step limit << 135 void SetParticles(const G4ParticleDefinition*, 189 G4double ContinuousStepLimit(const G4Track& << 136 const G4ParticleDefinition*); 190 G4double previo << 191 G4double curren << 192 G4double& curre << 193 137 194 protected: << 138 void SetParticle(const G4ParticleDefinition* p); >> 139 void SetBaseParticle(const G4ParticleDefinition* p); >> 140 void SetSecondaryParticle(const G4ParticleDefinition* p); 195 141 196 // implementation of the pure virtual method << 142 const G4ParticleDefinition* Particle() const; 197 G4double GetMeanFreePath(const G4Track& trac << 143 const G4ParticleDefinition* BaseParticle() const; 198 G4double previousSt << 144 const G4ParticleDefinition* SecondaryParticle() const; 199 G4ForceCondition* c << 145 // Particle definition 200 146 201 // implementation of the pure virtual method << 147 void SetDEDXBinning(G4int nbins); 202 G4double GetContinuousStepLimit(const G4Trac << 148 // Binning for dEdx, range, and inverse range tables 203 G4double pre << 204 G4double cur << 205 G4double& cu << 206 << 207 // creation of an empty vector for cross sec << 208 G4PhysicsVector* LambdaPhysicsVector(const G << 209 G4doubl << 210 << 211 inline std::size_t CurrentMaterialCutsCouple << 212 << 213 //------------------------------------------ << 214 // Specific methods to set, access, modify m << 215 //------------------------------------------ << 216 << 217 // Select model in run time << 218 inline void SelectModel(G4double kinEnergy); << 219 << 220 public: << 221 // Select model by energy and couple index << 222 // Not for run time processing << 223 inline G4VEmModel* SelectModelForMaterial(G4 << 224 st << 225 << 226 // Add EM model coupled with fluctuation mod << 227 // of order defines which pair of models wil << 228 // energy interval << 229 void AddEmModel(G4int, G4VEmModel*, << 230 G4VEmFluctuationModel* fluc << 231 const G4Region* region = nul << 232 << 233 // Assign a model to a process local list, t << 234 // the derived process should execute AddEmM << 235 void SetEmModel(G4VEmModel*, G4int index=0); << 236 << 237 // Access to models << 238 inline std::size_t NumberOfModels() const; << 239 << 240 // Return a model from the local list << 241 inline G4VEmModel* EmModel(std::size_t index << 242 << 243 // Access to models from G4EmModelManager li << 244 inline G4VEmModel* GetModelByIndex(std::size << 245 << 246 // Assign a fluctuation model to a process << 247 inline void SetFluctModel(G4VEmFluctuationMo << 248 << 249 // Return the assigned fluctuation model << 250 inline G4VEmFluctuationModel* FluctModel() c << 251 << 252 //------------------------------------------ << 253 // Define and access particle type << 254 //------------------------------------------ << 255 << 256 protected: << 257 inline void SetParticle(const G4ParticleDefi << 258 inline void SetSecondaryParticle(const G4Par << 259 << 260 public: << 261 inline void SetBaseParticle(const G4Particle << 262 inline const G4ParticleDefinition* Particle( << 263 inline const G4ParticleDefinition* BaseParti << 264 inline const G4ParticleDefinition* Secondary << 265 << 266 // hide assignment operator << 267 G4VEnergyLossProcess(G4VEnergyLossProcess &) << 268 G4VEnergyLossProcess & operator=(const G4VEn << 269 << 270 //------------------------------------------ << 271 // Get/set parameters to configure the proce << 272 //------------------------------------------ << 273 << 274 // Add subcut processor for the region << 275 void ActivateSubCutoff(const G4Region* regio << 276 149 277 // Activate biasing << 150 void SetDEDXBinningForPreciseRange(G4int nbins); 278 void SetCrossSectionBiasingFactor(G4double f << 151 // Binning for dEdx, range, and inverse range tables 279 152 280 void ActivateForcedInteraction(G4double leng << 153 void SetLambdaBinning(G4int nbins); 281 const G4Strin << 154 // Binning for lambda table 282 G4bool flag = << 283 155 284 void ActivateSecondaryBiasing(const G4String << 156 void SetMinKinEnergy(G4double e); 285 G4double energ << 157 G4double MinKinEnergy() const; >> 158 // Min kinetic energy for tables 286 159 287 inline void SetLossFluctuations(G4bool val); << 160 void SetMaxKinEnergy(G4double e); >> 161 G4double MaxKinEnergy() const; >> 162 // Max kinetic energy for tables 288 163 289 inline void SetSpline(G4bool val); << 164 void SetMaxKinEnergyForPreciseRange(G4double e); 290 inline void SetCrossSectionType(G4CrossSecti << 165 // Max kinetic energy for tables 291 inline G4CrossSectionType CrossSectionType() << 292 166 293 // Set/Get flag "isIonisation" << 167 G4bool StorePhysicsTable(G4ParticleDefinition*, 294 void SetIonisation(G4bool val); << 168 const G4String& directory, 295 inline G4bool IsIonisationProcess() const; << 169 G4bool ascii = false); >> 170 // Store PhysicsTable in a file. >> 171 // Return false in case of failure at I/O >> 172 >> 173 G4bool RetrievePhysicsTable(G4ParticleDefinition*, >> 174 const G4String& directory, >> 175 G4bool ascii); >> 176 // Retrieve Physics from a file. >> 177 // (return true if the Physics Table can be build by using file) >> 178 // (return false if the process has no functionality or in case of failure) >> 179 // File name should is constructed as processName+particleName and the >> 180 // should be placed under the directory specifed by the argument. >> 181 >> 182 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 183 const G4Region* region = 0); >> 184 // Add EM model coupled with fluctuation model for the region >> 185 >> 186 void UpdateEmModel(const G4String&, G4double, G4double); >> 187 // Define new energy range for thhe model identified by the name >> 188 >> 189 void AddSubCutoffProcessor(G4VSubCutoffProcessor*, const G4Region* region = 0); >> 190 // Add subcutoff processor for the region 296 191 297 // Redefine parameteters for stepping contro << 192 virtual void SetSubCutoff(G4bool) {}; 298 void SetLinearLossLimit(G4double val); << 299 void SetStepFunction(G4double v1, G4double v << 300 void SetLowestEnergyLimit(G4double); << 301 193 302 inline G4int NumberOfSubCutoffRegions() cons << 194 void SetDEDXTable(G4PhysicsTable* p); >> 195 G4PhysicsTable* DEDXTable() const {return theDEDXTable;}; 303 196 304 //------------------------------------------ << 197 void SetRangeTable(G4PhysicsTable* p); 305 // Specific methods to path Physics Tables t << 198 G4PhysicsTable* RangeTable() const {return theRangeTable;}; 306 //------------------------------------------ << 307 199 308 void SetDEDXTable(G4PhysicsTable* p, G4EmTab << 309 void SetCSDARangeTable(G4PhysicsTable* pRang << 310 void SetRangeTableForLoss(G4PhysicsTable* p) 200 void SetRangeTableForLoss(G4PhysicsTable* p); 311 void SetInverseRangeTable(G4PhysicsTable* p) << 201 G4PhysicsTable* RangeTableForLoss() const {return theRangeTableForLoss;}; 312 void SetLambdaTable(G4PhysicsTable* p); << 313 202 314 void SetTwoPeaksXS(std::vector<G4TwoPeaksXS* << 203 void SetInverseRangeTable(G4PhysicsTable* p); 315 void SetEnergyOfCrossSectionMax(std::vector< << 204 G4PhysicsTable* InverseRangeTable() const {return theInverseRangeTable;}; 316 205 317 //------------------------------------------ << 206 void SetSecondaryRangeTable(G4PhysicsTable* p); 318 // Specific methods to define custom Physics << 319 //------------------------------------------ << 320 207 321 // Binning for dEdx, range, inverse range an << 208 void SetLambdaTable(G4PhysicsTable* p); 322 void SetDEDXBinning(G4int nbins); << 209 G4PhysicsTable* LambdaTable() {return theLambdaTable;}; 323 210 324 // Min kinetic energy for tables << 211 void SetSubLambdaTable(G4PhysicsTable* p); 325 void SetMinKinEnergy(G4double e); << 212 G4PhysicsTable* SubLambdaTable() {return theSubLambdaTable;}; 326 inline G4double MinKinEnergy() const; << 327 213 328 // Max kinetic energy for tables << 214 G4double GetDEDX(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 329 void SetMaxKinEnergy(G4double e); << 330 inline G4double MaxKinEnergy() const; << 331 215 332 // Biasing parameters << 216 G4double GetRange(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 333 inline G4double CrossSectionBiasingFactor() << 334 217 335 // Return values for given G4MaterialCutsCou << 218 G4double GetKineticEnergy(G4double& range, const G4MaterialCutsCouple* couple); 336 inline G4double GetDEDX(G4double kineticEner << 337 inline G4double GetCSDADEDX(G4double kinetic << 338 const G4Material << 339 inline G4double GetDEDX(G4double kineticEner << 340 G4double logKineticE << 341 inline G4double GetRange(G4double kineticEne << 342 inline G4double GetRange(G4double kineticEne << 343 G4double logKinetic << 344 inline G4double GetCSDARange(G4double kineti << 345 const G4Materia << 346 inline G4double GetKineticEnergy(G4double ra << 347 const G4Mat << 348 inline G4double GetLambda(G4double kineticEn << 349 inline G4double GetLambda(G4double kineticEn << 350 G4double logKineti << 351 << 352 inline G4bool TablesAreBuilt() const; << 353 << 354 // Access to specific tables << 355 inline G4PhysicsTable* DEDXTable() const; << 356 inline G4PhysicsTable* DEDXunRestrictedTable << 357 inline G4PhysicsTable* IonisationTable() con << 358 inline G4PhysicsTable* CSDARangeTable() cons << 359 inline G4PhysicsTable* RangeTableForLoss() c << 360 inline G4PhysicsTable* InverseRangeTable() c << 361 inline G4PhysicsTable* LambdaTable() const; << 362 inline std::vector<G4TwoPeaksXS*>* TwoPeaksX << 363 inline std::vector<G4double>* EnergyOfCrossS << 364 << 365 inline G4bool UseBaseMaterial() const; << 366 << 367 //------------------------------------------ << 368 // Run time method for simulation of ionisat << 369 //------------------------------------------ << 370 219 371 // access atom on which interaction happens << 220 G4double GetLambda(G4double kineticEnergy, const G4MaterialCutsCouple* couple); 372 const G4Element* GetCurrentElement() const; << 221 // It returns the MeanFreePath of the process 373 222 374 // Set scaling parameters for ions is needed << 223 G4double GetDEDXDispersion(const G4MaterialCutsCouple *couple, 375 void SetDynamicMassCharge(G4double massratio << 224 const G4DynamicParticle* dp, >> 225 G4double& length); 376 226 377 private: << 227 G4double MicroscopicCrossSection(G4double kineticEnergy, >> 228 const G4MaterialCutsCouple* couple); >> 229 // It returns the MeanFreePath of the process for a (energy, material) 378 230 379 void FillSecondariesAlongStep(G4double weigh << 231 void SetLinearLossLimit(G4double val) {linLossLimit = val;}; 380 232 381 void PrintWarning(const G4String&, G4double << 233 void SetLossFluctuations(G4bool val) {lossFluctuationFlag = val;}; 382 234 383 // define material and indexes << 235 void SetIntegral(G4bool val); 384 inline void DefineMaterial(const G4MaterialC << 236 G4bool IsIntegral() const {return integral;} 385 237 386 //------------------------------------------ << 238 void SetRandomStep(G4bool val) {rndmStepFlag = val;}; 387 // Compute values using scaling relation, ma << 388 //------------------------------------------ << 389 inline G4double GetDEDXForScaledEnergy(G4dou << 390 inline G4double GetDEDXForScaledEnergy(G4dou << 391 G4dou << 392 inline G4double GetIonisationForScaledEnergy << 393 inline G4double GetScaledRangeForScaledEnerg << 394 inline G4double GetScaledRangeForScaledEnerg << 395 << 396 << 397 inline G4double GetLimitScaledRangeForScaled << 398 inline G4double GetLimitScaledRangeForScaled << 399 << 400 << 401 inline G4double ScaledKinEnergyForLoss(G4dou << 402 inline G4double GetLambdaForScaledEnergy(G4d << 403 inline G4double GetLambdaForScaledEnergy(G4d << 404 G4d << 405 << 406 inline G4double LogScaledEkin(const G4Track& << 407 << 408 void ComputeLambdaForScaledEnergy(G4double s << 409 const G4Tr << 410 239 411 G4bool IsRegionForCubcutProcessor(const G4Tr << 240 void SetMinSubRange(G4double val) {minSubRange = val;}; 412 241 413 protected: << 242 void SetStepLimits(G4double v1, G4double v2); 414 << 243 void SetStepFunction(G4double v1, G4double v2); 415 G4ParticleChangeForLoss fParticleChange; << 416 const G4Material* currentMaterial << 417 const G4MaterialCutsCouple* currentCouple = << 418 244 419 private: << 245 G4bool TablesAreBuilt() const {return tablesAreBuilt;}; 420 246 421 G4LossTableManager* lManager; << 247 G4int NumberOfSubCutoffRegions() const {return nSCoffRegions;}; 422 G4EmModelManager* modelManager; << 423 G4VEmModel* currentModel = n << 424 G4EmBiasingManager* biasManager = nu << 425 G4SafetyHelper* safetyHelper; << 426 G4EmParameters* theParameters; << 427 G4VEmFluctuationModel* fluctModel = nul << 428 G4VAtomDeexcitation* atomDeexcitation << 429 G4VSubCutProducer* subcutProducer = << 430 << 431 const G4ParticleDefinition* particle = nullp << 432 const G4ParticleDefinition* baseParticle = n << 433 const G4ParticleDefinition* secondaryParticl << 434 G4EmDataHandler* theData = nullptr; << 435 << 436 G4PhysicsTable* theDEDXTable = nullptr; << 437 G4PhysicsTable* theDEDXunRestrictedTable = n << 438 G4PhysicsTable* theIonisationTable = nullptr << 439 G4PhysicsTable* theRangeTableForLoss = nullp << 440 G4PhysicsTable* theCSDARangeTable = nullptr; << 441 G4PhysicsTable* theInverseRangeTable = nullp << 442 G4PhysicsTable* theLambdaTable = nullptr; << 443 << 444 std::vector<const G4Region*>* scoffRegions = << 445 std::vector<G4VEmModel*>* emModels = nul << 446 const std::vector<G4int>* theDensityIdx << 447 const std::vector<G4double>* theDensityFact << 448 const G4DataVector* theCuts = null << 449 248 450 std::vector<G4double>* theEnergyOfCrossSecti << 249 G4double MeanFreePath(const G4Track& track, 451 std::vector<G4TwoPeaksXS*>* fXSpeaks = nullp << 250 G4double previousStepSize, >> 251 G4ForceCondition* condition); 452 252 453 G4double lowestKinEnergy; << 253 G4double ContinuousStepLimit(const G4Track& track, 454 G4double minKinEnergy; << 254 G4double previousStepSize, 455 G4double maxKinEnergy; << 255 G4double currentMinimumStep, 456 G4double maxKinEnergyCSDA; << 256 G4double& currentSafety); 457 257 458 G4double linLossLimit = 0.01; << 258 void ResetNumberOfInteractionLengthLeft(); 459 G4double dRoverRange = 0.2; << 259 // reset (determine the value of)NumberOfInteractionLengthLeft 460 G4double finalRange; << 461 G4double lambdaFactor = 0.8; << 462 G4double invLambdaFactor; << 463 G4double biasFactor = 1.0; << 464 << 465 G4double massRatio = 1.0; << 466 G4double logMassRatio = 0.0; << 467 G4double fFactor = 1.0; << 468 G4double reduceFactor = 1.0; << 469 G4double chargeSqRatio = 1.0; << 470 G4double fRange = 0.0; << 471 G4double fRangeEnergy = 0.0; << 472 260 473 protected: 261 protected: 474 262 475 G4double preStepLambda = 0.0; << 263 virtual 476 G4double preStepKinEnergy = 0.0; << 264 G4double GetMeanFreePath(const G4Track& track, 477 G4double preStepScaledEnergy = 0.0; << 265 G4double previousStepSize, 478 G4double mfpKinEnergy = 0.0; << 266 G4ForceCondition* condition); 479 << 480 std::size_t currentCoupleIndex = 0; << 481 267 482 private: << 268 virtual >> 269 G4double GetContinuousStepLimit(const G4Track& track, >> 270 G4double previousStepSize, >> 271 G4double currentMinimumStep, >> 272 G4double& currentSafety); 483 273 484 G4int nBins; << 274 virtual 485 G4int nBinsCSDA; << 275 const G4ParticleDefinition* DefineBaseParticle( 486 G4int numberOfModels = 0; << 276 const G4ParticleDefinition*) {return 0;}; 487 G4int nSCoffRegions = 0; << 488 G4int secID = _DeltaElectron; << 489 G4int tripletID = _TripletElectron; << 490 G4int biasID = _DeltaEBelowCut; << 491 G4int epixeID = _ePIXE; << 492 G4int gpixeID = _GammaPIXE; << 493 G4int mainSecondaries = 1; << 494 << 495 std::size_t basedCoupleIndex = 0; << 496 std::size_t coupleIdxRange = 0; << 497 std::size_t idxDEDX = 0; << 498 std::size_t idxDEDXunRestricted = 0; << 499 std::size_t idxIonisation = 0; << 500 std::size_t idxRange = 0; << 501 std::size_t idxCSDA = 0; << 502 std::size_t idxSecRange = 0; << 503 std::size_t idxInverseRange = 0; << 504 std::size_t idxLambda = 0; << 505 << 506 G4GPILSelection aGPILSelection; << 507 G4CrossSectionType fXSType = fEmOnePeak; << 508 << 509 G4bool lossFluctuationFlag = true; << 510 G4bool useCutAsFinalRange = false; << 511 G4bool tablesAreBuilt = false; << 512 G4bool spline = true; << 513 G4bool isIon = false; << 514 G4bool isIonisation = false; << 515 G4bool useDeexcitation = false; << 516 G4bool biasFlag = false; << 517 G4bool weightFlag = false; << 518 G4bool isMaster = false; << 519 G4bool baseMat = false; << 520 G4bool actLinLossLimit = false; << 521 G4bool actLossFluc = false; << 522 G4bool actBinning = false; << 523 G4bool actMinKinEnergy = false; << 524 G4bool actMaxKinEnergy = false; << 525 277 526 std::vector<G4DynamicParticle*> secParticles << 278 virtual 527 std::vector<G4Track*> scTracks; << 279 G4PhysicsVector* DEDXPhysicsVector(const G4MaterialCutsCouple*); 528 }; << 529 280 530 // ======== Run time inline methods ========== << 281 virtual >> 282 G4PhysicsVector* DEDXPhysicsVectorForPreciseRange(const G4MaterialCutsCouple*); 531 283 532 inline std::size_t G4VEnergyLossProcess::Curre << 284 virtual 533 { << 285 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 534 return currentCoupleIndex; << 535 } << 536 286 537 //....oooOO0OOooo........oooOO0OOooo........oo << 287 virtual >> 288 G4PhysicsVector* SubLambdaPhysicsVector(const G4MaterialCutsCouple*); 538 289 539 inline void G4VEnergyLossProcess::SelectModel( << 290 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 540 { << 291 const G4Material*, G4double cut) = 0; 541 currentModel = modelManager->SelectModel(kin << 542 currentModel->SetCurrentCouple(currentCouple << 543 } << 544 292 545 //....oooOO0OOooo........oooOO0OOooo........oo << 293 virtual G4double MaxSecondaryEnergy(const G4DynamicParticle* dp) = 0; 546 294 547 inline G4VEmModel* G4VEnergyLossProcess::Selec << 295 G4VEmModel* SelectModel(G4double& kinEnergy); 548 G4double kinEnergy, std::si << 549 { << 550 return modelManager->SelectModel(kinEnergy, << 551 } << 552 296 553 //....oooOO0OOooo........oooOO0OOooo........oo << 297 G4VSubCutoffProcessor* SubCutoffProcessor(size_t index); 554 298 555 inline void << 299 size_t CurrentMaterialCutsCoupleIndex() const {return currentMaterialIndex;}; 556 G4VEnergyLossProcess::DefineMaterial(const G4M << 557 { << 558 if(couple != currentCouple) { << 559 currentCouple = couple; << 560 currentMaterial = couple->GetMaterial(); << 561 basedCoupleIndex = currentCoupleIndex = co << 562 fFactor = chargeSqRatio*biasFactor; << 563 mfpKinEnergy = DBL_MAX; << 564 idxLambda = 0; << 565 if(baseMat) { << 566 basedCoupleIndex = (*theDensityIdx)[curr << 567 fFactor *= (*theDensityFactor)[currentCo << 568 } << 569 reduceFactor = 1.0/(fFactor*massRatio); << 570 } << 571 } << 572 300 573 //....oooOO0OOooo........oooOO0OOooo........oo << 301 void SetMassRatio(G4double val) {massRatio = val;}; 574 302 575 inline G4double G4VEnergyLossProcess::GetDEDXF << 303 void SetReduceFactor(G4double val) {reduceFactor = val;}; 576 { << 577 /* << 578 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 579 << basedCoupleIndex << " E(MeV)= " << 580 << " Emin= " << minKinEnergy << " Fa << 581 << " " << theDEDXTable << G4endl; */ << 582 G4double x = fFactor*(*theDEDXTable)[basedCo << 583 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 584 return x; << 585 } << 586 304 587 //....oooOO0OOooo........oooOO0OOooo........oo << 305 void SetChargeSquare(G4double val) {chargeSquare = val;}; 588 306 589 inline << 307 void SetChargeSquareRatio(G4double val) {chargeSqRatio = val;}; 590 G4double G4VEnergyLossProcess::GetDEDXForScale << 591 { << 592 /* << 593 G4cout << "G4VEnergyLossProcess::GetDEDX: Id << 594 << basedCoupleIndex << " E(MeV)= " << 595 << " Emin= " << minKinEnergy << " Fa << 596 << " " << theDEDXTable << G4endl; */ << 597 G4double x = fFactor*(*theDEDXTable)[basedCo << 598 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 599 return x; << 600 } << 601 308 602 //....oooOO0OOooo........oooOO0OOooo........oo << 309 private: 603 310 604 inline G4double G4VEnergyLossProcess::GetIonis << 311 void Clear(); 605 { << 606 G4double x = << 607 fFactor*(*theIonisationTable)[basedCoupleI << 608 if(e < minKinEnergy) { x *= std::sqrt(e/minK << 609 return x; << 610 } << 611 312 612 //....oooOO0OOooo........oooOO0OOooo........oo << 313 void DefineMaterial(const G4MaterialCutsCouple* couple); 613 314 614 inline G4double G4VEnergyLossProcess::GetScale << 315 G4double GetRangeForLoss(G4double& kineticEnergy, const G4MaterialCutsCouple* couple); 615 { << 616 //G4cout << "G4VEnergyLossProcess::GetScaled << 617 // << basedCoupleIndex << " E(MeV)= << 618 // << " lastIdx= " << lastIdx << " << 619 if(currentCoupleIndex != coupleIdxRange || f << 620 coupleIdxRange = currentCoupleIndex; << 621 fRangeEnergy = e; << 622 fRange = reduceFactor*((*theRangeTableForL << 623 if (fRange < 0.0) { fRange = 0.0; } << 624 else if (e < minKinEnergy) { fRange *= std << 625 } << 626 //G4cout << "G4VEnergyLossProcess::GetScaled << 627 // << basedCoupleIndex << " E(MeV)= << 628 // << " R= " << computedRange << " << 629 return fRange; << 630 } << 631 << 632 inline G4double << 633 G4VEnergyLossProcess::GetScaledRangeForScaledE << 634 { << 635 //G4cout << "G4VEnergyLossProcess::GetScaled << 636 // << basedCoupleIndex << " E(MeV)= << 637 // << " lastIdx= " << lastIdx << " << 638 if(currentCoupleIndex != coupleIdxRange || f << 639 coupleIdxRange = currentCoupleIndex; << 640 fRangeEnergy = e; << 641 fRange = reduceFactor*((*theRangeTableForL << 642 if (fRange < 0.0) { fRange = 0.0; } << 643 else if (e < minKinEnergy) { fRange *= std << 644 } << 645 //G4cout << "G4VEnergyLossProcess::GetScaled << 646 // << basedCoupleIndex << " E(MeV)= << 647 // << " R= " << fRange << " " << t << 648 return fRange; << 649 } << 650 316 651 //....oooOO0OOooo........oooOO0OOooo........oo << 317 // hide assignment operator 652 318 653 inline G4double << 319 G4VEnergyLossProcess(G4VEnergyLossProcess &); 654 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 320 G4VEnergyLossProcess & operator=(const G4VEnergyLossProcess &right); 655 { << 656 G4double x = ((*theCSDARangeTable)[basedCoup << 657 if (x < 0.0) { x = 0.0; } << 658 else if (e < minKinEnergy) { x *= std::sqrt( << 659 return x; << 660 } << 661 321 662 //....oooOO0OOooo........oooOO0OOooo........oo << 322 // ===================================================================== 663 323 664 inline G4double << 324 private: 665 G4VEnergyLossProcess::GetLimitScaledRangeForSc << 666 << 667 { << 668 G4double x = ((*theCSDARangeTable)[basedCoup << 669 if (x < 0.0) { x = 0.0; } << 670 else if (e < minKinEnergy) { x *= std::sqrt( << 671 return x; << 672 } << 673 325 674 //....oooOO0OOooo........oooOO0OOooo........oo << 326 G4EmModelManager* modelManager; >> 327 std::vector<G4VSubCutoffProcessor*> scoffProcessors; >> 328 std::vector<const G4Region*> scoffRegions; >> 329 G4int nSCoffRegions; >> 330 std::vector<G4int> idxSCoffRegions; >> 331 >> 332 // tables and vectors >> 333 G4PhysicsTable* theDEDXTable; >> 334 G4PhysicsTable* theRangeTable; >> 335 G4PhysicsTable* theRangeTableForLoss; >> 336 G4PhysicsTable* theSecondaryRangeTable; >> 337 G4PhysicsTable* theInverseRangeTable; >> 338 G4PhysicsTable* theLambdaTable; >> 339 G4PhysicsTable* theSubLambdaTable; >> 340 G4double* theDEDXAtMaxEnergy; >> 341 G4double* theRangeAtMaxEnergy; >> 342 >> 343 const G4DataVector* theCuts; >> 344 >> 345 const G4ParticleDefinition* particle; >> 346 const G4ParticleDefinition* baseParticle; >> 347 const G4ParticleDefinition* secondaryParticle; >> 348 >> 349 // cash >> 350 const G4Material* currentMaterial; >> 351 const G4MaterialCutsCouple* currentCouple; >> 352 size_t currentMaterialIndex; >> 353 G4double minStepLimit; >> 354 >> 355 G4int nDEDXBins; >> 356 G4int nDEDXBinsForRange; >> 357 G4int nLambdaBins; 675 358 676 inline G4double G4VEnergyLossProcess::ScaledKi << 359 G4double faclow; 677 { << 360 G4double minKinEnergy; 678 //G4cout << "G4VEnergyLossProcess::GetEnergy << 361 G4double maxKinEnergy; 679 // << basedCoupleIndex << " R(mm)= " << 362 G4double maxKinEnergyForRange; 680 // << theInverseRangeTable << G4endl << 363 G4double lowKinEnergy; 681 G4PhysicsVector* v = (*theInverseRangeTable) << 682 G4double rmin = v->Energy(0); << 683 G4double e = 0.0; << 684 if(r >= rmin) { e = v->Value(r, idxInverseRa << 685 else if(r > 0.0) { << 686 G4double x = r/rmin; << 687 e = minKinEnergy*x*x; << 688 } << 689 return e; << 690 } << 691 364 692 //....oooOO0OOooo........oooOO0OOooo........oo << 365 G4double massRatio; >> 366 G4double reduceFactor; >> 367 G4double chargeSquare; >> 368 G4double chargeSqRatio; >> 369 >> 370 G4double preStepLambda; >> 371 G4double fRange; >> 372 G4double preStepKinEnergy; >> 373 G4double preStepScaledEnergy; >> 374 G4double linLossLimit; >> 375 G4double minSubRange; >> 376 G4double dRoverRange; >> 377 G4double finalRange; >> 378 G4double defaultRoverRange; >> 379 G4double defaultIntegralRange; 693 380 694 inline G4double G4VEnergyLossProcess::GetLambd << 381 G4bool lossFluctuationFlag; 695 { << 382 G4bool rndmStepFlag; 696 return fFactor*((*theLambdaTable)[basedCoupl << 383 G4bool hasRestProcess; 697 } << 384 G4bool tablesAreBuilt; >> 385 G4bool integral; >> 386 G4bool meanFreePath; >> 387 }; 698 388 699 //....oooOO0OOooo........oooOO0OOooo........oo 389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 700 << 701 inline G4double << 702 G4VEnergyLossProcess::GetLambdaForScaledEnergy << 703 { << 704 return fFactor*((*theLambdaTable)[basedCoupl << 705 } << 706 << 707 //....oooOO0OOooo........oooOO0OOooo........oo 390 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 708 391 709 inline G4double G4VEnergyLossProcess::LogScale << 392 inline void G4VEnergyLossProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 710 { 393 { 711 return track.GetDynamicParticle()->GetLogKin << 394 if(couple != currentCouple) { >> 395 currentCouple = couple; >> 396 currentMaterial = couple->GetMaterial(); >> 397 currentMaterialIndex = couple->GetIndex(); >> 398 minStepLimit = std::min(finalRange, >> 399 currentCouple->GetProductionCuts()->GetProductionCut(idxG4ElectronCut)); >> 400 if(integral && !meanFreePath) ResetNumberOfInteractionLengthLeft(); >> 401 } 712 } 402 } 713 403 714 //....oooOO0OOooo........oooOO0OOooo........oo 404 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 715 405 716 inline G4double << 406 inline G4double G4VEnergyLossProcess::GetDEDX(G4double& kineticEnergy, 717 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 407 const G4MaterialCutsCouple* couple) 718 const G4Material << 719 { 408 { 720 DefineMaterial(couple); 409 DefineMaterial(couple); 721 return GetDEDXForScaledEnergy(kinEnergy*mass << 410 G4bool b; >> 411 return ((*theDEDXTable)[currentMaterialIndex]-> >> 412 GetValue(kineticEnergy*massRatio, b))*chargeSqRatio; 722 } 413 } 723 414 724 //....oooOO0OOooo........oooOO0OOooo........oo 415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 416 726 inline G4double << 417 inline G4double G4VEnergyLossProcess::GetRange(G4double& kineticEnergy, 727 G4VEnergyLossProcess::GetDEDX(G4double kinEner << 418 const G4MaterialCutsCouple* couple) 728 const G4Material << 729 G4double logKinE << 730 { 419 { 731 DefineMaterial(couple); 420 DefineMaterial(couple); 732 return GetDEDXForScaledEnergy(kinEnergy*mass << 421 G4bool b; >> 422 G4double x; >> 423 G4double e = kineticEnergy*massRatio; >> 424 if (e < maxKinEnergyForRange) { >> 425 x = ((*theRangeTable)[currentMaterialIndex])->GetValue(e, b); >> 426 } else { >> 427 x = theRangeAtMaxEnergy[currentMaterialIndex] + >> 428 (e - maxKinEnergyForRange)/theDEDXAtMaxEnergy[currentMaterialIndex]; >> 429 } >> 430 return x*reduceFactor; 733 } 431 } 734 432 735 //....oooOO0OOooo........oooOO0OOooo........oo 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 736 434 737 inline G4double << 435 inline G4double G4VEnergyLossProcess::GetRangeForLoss(G4double& kineticEnergy, 738 G4VEnergyLossProcess::GetRange(G4double kinEne << 436 const G4MaterialCutsCouple* couple) 739 const G4Materia << 740 { 437 { 741 DefineMaterial(couple); 438 DefineMaterial(couple); 742 return GetScaledRangeForScaledEnergy(kinEner << 439 G4bool b; >> 440 G4double e = kineticEnergy*massRatio; >> 441 G4double x = ((*theRangeTableForLoss)[currentMaterialIndex])->GetValue(e, b); >> 442 return x*reduceFactor; 743 } 443 } 744 444 745 //....oooOO0OOooo........oooOO0OOooo........oo 445 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 746 446 747 inline G4double << 447 inline G4double G4VEnergyLossProcess::GetKineticEnergy(G4double& range, 748 G4VEnergyLossProcess::GetRange(G4double kinEne << 448 const G4MaterialCutsCouple* couple) 749 const G4Materia << 750 G4double logKin << 751 { 449 { 752 DefineMaterial(couple); 450 DefineMaterial(couple); 753 return GetScaledRangeForScaledEnergy(kinEner << 451 G4bool b; >> 452 return ((*theInverseRangeTable)[currentMaterialIndex]-> >> 453 GetValue(range/reduceFactor, b))/massRatio; 754 } 454 } 755 455 756 //....oooOO0OOooo........oooOO0OOooo........oo 456 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 757 457 758 inline G4double << 458 inline G4double G4VEnergyLossProcess::GetDEDXDispersion( 759 G4VEnergyLossProcess::GetCSDARange(G4double ki << 459 const G4MaterialCutsCouple *couple, 760 const G4Mat << 460 const G4DynamicParticle* dp, >> 461 G4double& length) 761 { 462 { 762 DefineMaterial(couple); 463 DefineMaterial(couple); 763 return (nullptr == theCSDARangeTable) ? DBL_ << 464 G4double tmax = MaxSecondaryEnergy(dp); 764 GetLimitScaledRangeForScaledEnergy(kinetic << 465 tmax = std::min(tmax,(*theCuts)[currentMaterialIndex]); >> 466 return modelManager->GetDEDXDispersion(currentMaterial, dp, tmax, length, >> 467 currentMaterialIndex); 765 } 468 } 766 469 767 //....oooOO0OOooo........oooOO0OOooo........oo 470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 768 471 769 inline G4double << 472 inline G4double G4VEnergyLossProcess::GetMeanFreePath(const G4Track& track, 770 G4VEnergyLossProcess::GetKineticEnergy(G4doubl << 473 G4double, 771 const G << 474 G4ForceCondition* cond) 772 { 475 { 773 DefineMaterial(couple); << 476 *cond = NotForced; 774 return ScaledKinEnergyForLoss(range/reduceFa << 775 } << 776 477 777 //....oooOO0OOooo........oooOO0OOooo........oo << 478 DefineMaterial(track.GetMaterialCutsCouple()); 778 << 479 preStepKinEnergy = track.GetKineticEnergy(); 779 inline G4double << 480 preStepScaledEnergy = preStepKinEnergy*massRatio; 780 G4VEnergyLossProcess::GetLambda(G4double kinEn << 481 if (meanFreePath) { 781 const G4Materi << 482 G4bool b; 782 { << 483 preStepLambda = (((*theLambdaTable)[currentMaterialIndex])-> 783 DefineMaterial(couple); << 484 GetValue(preStepScaledEnergy, b)) * chargeSqRatio; 784 return (nullptr != theLambdaTable) ? << 485 if (integral) meanFreePath = false; 785 GetLambdaForScaledEnergy(kinEnergy*massRat << 486 } >> 487 G4double x = DBL_MAX; >> 488 if(0.0 < preStepLambda) x = 1.0/preStepLambda; >> 489 // G4cout << GetProcessName() << ": e= " << preStepKinEnergy << " mfp= " << x << G4endl; >> 490 return x; 786 } 491 } 787 492 788 //....oooOO0OOooo........oooOO0OOooo........oo 493 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 494 790 inline G4double << 495 inline G4double G4VEnergyLossProcess::GetContinuousStepLimit(const G4Track&, 791 G4VEnergyLossProcess::GetLambda(G4double kinEn << 496 G4double, G4double currentMinStep, G4double&) 792 const G4Materi << 793 G4double logKi << 794 { 497 { 795 DefineMaterial(couple); << 498 G4double x = DBL_MAX; 796 return (nullptr != theLambdaTable) ? << 797 GetLambdaForScaledEnergy(kinEnergy*massRat << 798 : 0.0; << 799 } << 800 << 801 // ======== Get/Set inline methods used at ini << 802 << 803 inline void G4VEnergyLossProcess::SetFluctMode << 804 { << 805 fluctModel = p; << 806 } << 807 499 808 //....oooOO0OOooo........oooOO0OOooo........oo << 500 if (theRangeTable) { >> 501 //G4bool b; >> 502 // fRange = ((*theRangeTableForLoss)[currentMaterialIndex])-> >> 503 // GetValue(preStepScaledEnergy, b)*reduceFactor; >> 504 fRange = GetRange(preStepKinEnergy, currentCouple); >> 505 >> 506 x = fRange; >> 507 G4double y = x*dRoverRange; >> 508 if(x > minStepLimit && y < currentMinStep ) { >> 509 if (integral) x = std::max(y,minStepLimit); >> 510 else { >> 511 x = y + minStepLimit*(1.0 - dRoverRange)*(2.0 - minStepLimit/fRange); >> 512 if(x > fRange) x = fRange; >> 513 if(rndmStepFlag) x = minStepLimit + (x-minStepLimit)*G4UniformRand(); >> 514 } >> 515 } >> 516 } 809 517 810 inline G4VEmFluctuationModel* G4VEnergyLossPro << 518 return x; 811 { << 812 return fluctModel; << 813 } 519 } 814 520 815 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 816 522 817 inline void G4VEnergyLossProcess::SetParticle( << 523 inline void G4VEnergyLossProcess::ResetNumberOfInteractionLengthLeft() 818 { 524 { 819 particle = p; << 525 meanFreePath = true; >> 526 G4VProcess::ResetNumberOfInteractionLengthLeft(); 820 } 527 } 821 528 822 //....oooOO0OOooo........oooOO0OOooo........oo << 823 << 824 inline void << 825 G4VEnergyLossProcess::SetSecondaryParticle(con << 826 { << 827 secondaryParticle = p; << 828 } << 829 529 830 //....oooOO0OOooo........oooOO0OOooo........oo 530 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 831 531 832 inline void << 532 inline G4VEmModel* G4VEnergyLossProcess::SelectModel(G4double& kinEnergy) 833 G4VEnergyLossProcess::SetBaseParticle(const G4 << 834 { 533 { 835 baseParticle = p; << 534 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 836 } 535 } 837 536 838 //....oooOO0OOooo........oooOO0OOooo........oo 537 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 839 538 840 inline const G4ParticleDefinition* G4VEnergyLo 539 inline const G4ParticleDefinition* G4VEnergyLossProcess::Particle() const 841 { 540 { 842 return particle; 541 return particle; 843 } 542 } 844 543 845 //....oooOO0OOooo........oooOO0OOooo........oo 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 846 545 847 inline const G4ParticleDefinition* G4VEnergyLo 546 inline const G4ParticleDefinition* G4VEnergyLossProcess::BaseParticle() const 848 { 547 { 849 return baseParticle; 548 return baseParticle; 850 } 549 } 851 550 852 //....oooOO0OOooo........oooOO0OOooo........oo 551 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 853 552 854 inline const G4ParticleDefinition* << 553 inline const G4ParticleDefinition* G4VEnergyLossProcess::SecondaryParticle() const 855 G4VEnergyLossProcess::SecondaryParticle() cons << 856 { 554 { 857 return secondaryParticle; 555 return secondaryParticle; 858 } 556 } 859 557 860 //....oooOO0OOooo........oooOO0OOooo........oo 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 861 559 862 inline void G4VEnergyLossProcess::SetLossFluct << 560 inline void G4VEnergyLossProcess::SetDEDXBinning(G4int nbins) 863 { << 864 lossFluctuationFlag = val; << 865 actLossFluc = true; << 866 } << 867 << 868 //....oooOO0OOooo........oooOO0OOooo........oo << 869 << 870 inline void G4VEnergyLossProcess::SetSpline(G4 << 871 { 561 { 872 spline = val; << 562 nDEDXBins = nbins; 873 } 563 } 874 564 875 //....oooOO0OOooo........oooOO0OOooo........oo 565 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 876 566 877 inline void G4VEnergyLossProcess::SetCrossSect << 567 inline void G4VEnergyLossProcess::SetDEDXBinningForPreciseRange(G4int nbins) 878 { 568 { 879 fXSType = val; << 569 nDEDXBinsForRange = nbins; 880 } << 881 << 882 //....oooOO0OOooo........oooOO0OOooo........oo << 883 << 884 inline G4CrossSectionType G4VEnergyLossProcess << 885 { << 886 return fXSType; << 887 } 570 } 888 571 889 //....oooOO0OOooo........oooOO0OOooo........oo 572 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 890 573 891 inline G4bool G4VEnergyLossProcess::IsIonisati << 574 inline void G4VEnergyLossProcess::SetLambdaBinning(G4int nbins) 892 { 575 { 893 return isIonisation; << 576 nLambdaBins = nbins; 894 } << 895 << 896 //....oooOO0OOooo........oooOO0OOooo........oo << 897 << 898 inline G4int G4VEnergyLossProcess::NumberOfSub << 899 { << 900 return nSCoffRegions; << 901 } 577 } 902 578 903 //....oooOO0OOooo........oooOO0OOooo........oo 579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 904 580 905 inline G4double G4VEnergyLossProcess::MinKinEn 581 inline G4double G4VEnergyLossProcess::MinKinEnergy() const 906 { 582 { 907 return minKinEnergy; 583 return minKinEnergy; 908 } 584 } 909 585 910 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 911 587 912 inline G4double G4VEnergyLossProcess::MaxKinEn << 588 inline void G4VEnergyLossProcess::SetMinKinEnergy(G4double e) 913 { << 914 return maxKinEnergy; << 915 } << 916 << 917 //....oooOO0OOooo........oooOO0OOooo........oo << 918 << 919 inline G4double G4VEnergyLossProcess::CrossSec << 920 { << 921 return biasFactor; << 922 } << 923 << 924 //....oooOO0OOooo........oooOO0OOooo........oo << 925 << 926 inline G4bool G4VEnergyLossProcess::TablesAreB << 927 { 589 { 928 return tablesAreBuilt; << 590 minKinEnergy = e; >> 591 lowKinEnergy = minKinEnergy*faclow; 929 } 592 } 930 593 931 //....oooOO0OOooo........oooOO0OOooo........oo 594 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 932 595 933 inline G4PhysicsTable* G4VEnergyLossProcess::D << 596 inline void G4VEnergyLossProcess::SetMaxKinEnergy(G4double e) 934 { 597 { 935 return theDEDXTable; << 598 maxKinEnergy = e; >> 599 if(e < maxKinEnergyForRange) maxKinEnergyForRange = e; 936 } 600 } 937 601 938 //....oooOO0OOooo........oooOO0OOooo........oo 602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 939 603 940 inline G4PhysicsTable* G4VEnergyLossProcess::D << 604 inline void G4VEnergyLossProcess::SetMaxKinEnergyForPreciseRange(G4double e) 941 { 605 { 942 return theDEDXunRestrictedTable; << 606 maxKinEnergyForRange = e; 943 } 607 } 944 608 945 //....oooOO0OOooo........oooOO0OOooo........oo 609 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 946 610 947 inline G4PhysicsTable* G4VEnergyLossProcess::I << 611 inline G4double G4VEnergyLossProcess::MaxKinEnergy() const 948 { << 949 return theIonisationTable; << 950 } << 951 << 952 //....oooOO0OOooo........oooOO0OOooo........oo << 953 << 954 inline G4PhysicsTable* G4VEnergyLossProcess::C << 955 { << 956 return theCSDARangeTable; << 957 } << 958 << 959 //....oooOO0OOooo........oooOO0OOooo........oo << 960 << 961 inline G4PhysicsTable* G4VEnergyLossProcess::R << 962 { << 963 return theRangeTableForLoss; << 964 } << 965 << 966 //....oooOO0OOooo........oooOO0OOooo........oo << 967 << 968 inline G4PhysicsTable* G4VEnergyLossProcess::I << 969 { << 970 return theInverseRangeTable; << 971 } << 972 << 973 //....oooOO0OOooo........oooOO0OOooo........oo << 974 << 975 inline G4PhysicsTable* G4VEnergyLossProcess::L << 976 { << 977 return theLambdaTable; << 978 } << 979 << 980 //....oooOO0OOooo........oooOO0OOooo........oo << 981 << 982 inline G4bool G4VEnergyLossProcess::UseBaseMat << 983 { << 984 return baseMat; << 985 } << 986 << 987 //....oooOO0OOooo........oooOO0OOooo........oo << 988 << 989 inline std::vector<G4double>* << 990 G4VEnergyLossProcess::EnergyOfCrossSectionMax( << 991 { << 992 return theEnergyOfCrossSectionMax; << 993 } << 994 << 995 //....oooOO0OOooo........oooOO0OOooo........oo << 996 << 997 inline std::vector<G4TwoPeaksXS*>* G4VEnergyLo << 998 { << 999 return fXSpeaks; << 1000 } << 1001 << 1002 //....oooOO0OOooo........oooOO0OOooo........o << 1003 << 1004 inline std::size_t G4VEnergyLossProcess::Numb << 1005 { 612 { 1006 return numberOfModels; << 613 return maxKinEnergy; 1007 } 614 } 1008 615 1009 //....oooOO0OOooo........oooOO0OOooo........o 616 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1010 617 1011 inline G4VEmModel* G4VEnergyLossProcess::EmMo << 618 inline G4double G4VEnergyLossProcess::GetLambda(G4double kineticEnergy, >> 619 const G4MaterialCutsCouple* couple) 1012 { 620 { 1013 return (index < emModels->size()) ? (*emMod << 621 DefineMaterial(couple); >> 622 G4double x = DBL_MAX; >> 623 G4bool b; >> 624 if(theLambdaTable) { >> 625 G4double y = (((*theLambdaTable)[currentMaterialIndex])-> >> 626 GetValue(kineticEnergy*massRatio, b)); >> 627 if(y > 0.0) x = 1.0/y; >> 628 } >> 629 return x; 1014 } 630 } 1015 631 1016 //....oooOO0OOooo........oooOO0OOooo........o 632 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1017 633 1018 inline G4VEmModel* << 634 inline G4VSubCutoffProcessor* G4VEnergyLossProcess::SubCutoffProcessor(size_t index) 1019 G4VEnergyLossProcess::GetModelByIndex(std::si << 1020 { 635 { 1021 return modelManager->GetModel((G4int)idx, v << 636 G4VSubCutoffProcessor* p = 0; >> 637 if( nSCoffRegions ) p = scoffProcessors[idxSCoffRegions[index]]; >> 638 return p; 1022 } 639 } 1023 640 1024 //....oooOO0OOooo........oooOO0OOooo........o 641 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 1025 642 1026 #endif 643 #endif 1027 644