Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmModel.hh,v 1.77 2010-10-14 16:27:35 vnivanch Exp $ >> 27 // GEANT4 tag $Name: not supported by cvs2svn $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmModel 34 // File name: G4VEmModel 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: 40 // Modifications: 38 // 41 // 39 // 23-12-02 V.Ivanchenko change interface befo 42 // 23-12-02 V.Ivanchenko change interface before move to cut per region 40 // 24-01-03 Cut per region (V.Ivanchenko) 43 // 24-01-03 Cut per region (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 42 // 25-02-03 Add sample theta and displacement 45 // 25-02-03 Add sample theta and displacement (V.Ivanchenko) 43 // 23-07-03 Replace G4Material by G4MaterialCu 46 // 23-07-03 Replace G4Material by G4MaterialCutCouple in dE/dx and CrossSection 44 // calculation (V.Ivanchenko) 47 // calculation (V.Ivanchenko) 45 // 01-03-04 L.Urban signature changed in Sampl 48 // 01-03-04 L.Urban signature changed in SampleCosineTheta 46 // 23-04-04 L.urban signature of SampleCosineT 49 // 23-04-04 L.urban signature of SampleCosineTheta changed back 47 // 17-11-04 Add method CrossSectionPerAtom (V. 50 // 17-11-04 Add method CrossSectionPerAtom (V.Ivanchenko) 48 // 14-03-05 Reduce number of pure virtual meth 51 // 14-03-05 Reduce number of pure virtual methods and make inline part 49 // separate (V.Ivanchenko) 52 // separate (V.Ivanchenko) 50 // 24-03-05 Remove IsInCharge and add G4VParti 53 // 24-03-05 Remove IsInCharge and add G4VParticleChange in the constructor (VI) 51 // 08-04-05 Major optimisation of internal int 54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 52 // 15-04-05 optimize internal interface for ms 55 // 15-04-05 optimize internal interface for msc (V.Ivanchenko) 53 // 08-05-05 A -> N (V.Ivanchenko) 56 // 08-05-05 A -> N (V.Ivanchenko) 54 // 25-07-05 Move constructor and destructor to 57 // 25-07-05 Move constructor and destructor to the body (V.Ivanchenko) 55 // 02-02-06 ComputeCrossSectionPerAtom: defaul 58 // 02-02-06 ComputeCrossSectionPerAtom: default value A=0. (mma) 56 // 06-02-06 add method ComputeMeanFreePath() ( 59 // 06-02-06 add method ComputeMeanFreePath() (mma) 57 // 07-03-06 Optimize msc methods (V.Ivanchenko 60 // 07-03-06 Optimize msc methods (V.Ivanchenko) 58 // 29-06-06 Add member currentElement and Get/ 61 // 29-06-06 Add member currentElement and Get/Set methods (V.Ivanchenko) 59 // 29-10-07 Added SampleScattering (V.Ivanchen 62 // 29-10-07 Added SampleScattering (V.Ivanchenko) 60 // 15-07-08 Reorder class members and improve 63 // 15-07-08 Reorder class members and improve comments (VI) 61 // 21-07-08 Added vector of G4ElementSelector 64 // 21-07-08 Added vector of G4ElementSelector and methods to use it (VI) 62 // 12-09-08 Added methods GetParticleCharge, G 65 // 12-09-08 Added methods GetParticleCharge, GetChargeSquareRatio, 63 // CorrectionsAlongStep, ActivateNucl 66 // CorrectionsAlongStep, ActivateNuclearStopping (VI) 64 // 16-02-09 Moved implementations of virtual m 67 // 16-02-09 Moved implementations of virtual methods to source (VI) 65 // 07-04-09 Moved msc methods from G4VEmModel 68 // 07-04-09 Moved msc methods from G4VEmModel to G4VMscModel (VI) 66 // 13-10-10 Added G4VEmAngularDistribution (VI 69 // 13-10-10 Added G4VEmAngularDistribution (VI) 67 // 70 // 68 // Class Description: 71 // Class Description: 69 // 72 // 70 // Abstract interface to energy loss models 73 // Abstract interface to energy loss models 71 74 72 // ------------------------------------------- 75 // ------------------------------------------------------------------- 73 // 76 // 74 77 75 #ifndef G4VEmModel_h 78 #ifndef G4VEmModel_h 76 #define G4VEmModel_h 1 79 #define G4VEmModel_h 1 77 80 78 #include "globals.hh" 81 #include "globals.hh" 79 #include "G4DynamicParticle.hh" 82 #include "G4DynamicParticle.hh" 80 #include "G4ParticleDefinition.hh" 83 #include "G4ParticleDefinition.hh" 81 #include "G4MaterialCutsCouple.hh" 84 #include "G4MaterialCutsCouple.hh" 82 #include "G4Material.hh" 85 #include "G4Material.hh" 83 #include "G4Element.hh" 86 #include "G4Element.hh" 84 #include "G4ElementVector.hh" 87 #include "G4ElementVector.hh" 85 #include "G4Isotope.hh" << 86 #include "G4DataVector.hh" 88 #include "G4DataVector.hh" 87 #include "G4VEmFluctuationModel.hh" 89 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmAngularDistribution.hh" 90 #include "G4VEmAngularDistribution.hh" 89 #include "G4EmElementSelector.hh" 91 #include "G4EmElementSelector.hh" 90 #include <CLHEP/Random/RandomEngine.h> << 92 #include "Randomize.hh" 91 #include <vector> 93 #include <vector> 92 94 93 class G4ElementData; << 94 class G4PhysicsTable; 95 class G4PhysicsTable; 95 class G4Region; 96 class G4Region; 96 class G4VParticleChange; 97 class G4VParticleChange; 97 class G4ParticleChangeForLoss; 98 class G4ParticleChangeForLoss; 98 class G4ParticleChangeForGamma; 99 class G4ParticleChangeForGamma; 99 class G4Track; 100 class G4Track; 100 class G4LossTableManager; << 101 101 102 class G4VEmModel 102 class G4VEmModel 103 { 103 { 104 104 105 public: 105 public: 106 106 107 explicit G4VEmModel(const G4String& nam); << 107 G4VEmModel(const G4String& nam); 108 108 109 virtual ~G4VEmModel(); 109 virtual ~G4VEmModel(); 110 110 111 //------------------------------------------ 111 //------------------------------------------------------------------------ 112 // Virtual methods to be implemented for any 112 // Virtual methods to be implemented for any concrete model 113 //------------------------------------------ 113 //------------------------------------------------------------------------ 114 114 115 virtual void Initialise(const G4ParticleDefi << 115 virtual void Initialise(const G4ParticleDefinition*, >> 116 const G4DataVector&) = 0; 116 117 117 virtual void SampleSecondaries(std::vector<G 118 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 118 const G4Mater << 119 const G4MaterialCutsCouple*, 119 const G4Dynam << 120 const G4DynamicParticle*, 120 G4double tmin << 121 G4double tmin = 0.0, 121 G4double tmax << 122 G4double tmax = DBL_MAX) = 0; 122 << 123 //------------------------------------------ << 124 // Methods for initialisation of MT; may be << 125 //------------------------------------------ << 126 << 127 // initialisation in local thread << 128 virtual void InitialiseLocal(const G4Particl << 129 G4VEmModel* mas << 130 << 131 // initialisation of a new material at run t << 132 virtual void InitialiseForMaterial(const G4P << 133 const G4M << 134 << 135 // initialisation of a new element at run ti << 136 virtual void InitialiseForElement(const G4Pa << 137 G4int Z); << 138 123 139 //------------------------------------------ 124 //------------------------------------------------------------------------ 140 // Methods with standard implementation; may 125 // Methods with standard implementation; may be overwritten if needed 141 //------------------------------------------ 126 //------------------------------------------------------------------------ 142 127 143 // main method to compute dEdx 128 // main method to compute dEdx 144 virtual G4double ComputeDEDXPerVolume(const 129 virtual G4double ComputeDEDXPerVolume(const G4Material*, 145 const << 130 const G4ParticleDefinition*, 146 G4doub << 131 G4double kineticEnergy, 147 G4doub << 132 G4double cutEnergy = DBL_MAX); 148 133 149 // main method to compute cross section per 134 // main method to compute cross section per Volume 150 virtual G4double CrossSectionPerVolume(const 135 virtual G4double CrossSectionPerVolume(const G4Material*, 151 const << 136 const G4ParticleDefinition*, 152 G4dou << 137 G4double kineticEnergy, 153 G4dou << 138 G4double cutEnergy = 0.0, 154 G4dou << 139 G4double maxEnergy = DBL_MAX); 155 << 156 // method to get partial cross section << 157 virtual G4double GetPartialCrossSection(cons << 158 G4in << 159 cons << 160 G4do << 161 140 162 // main method to compute cross section per 141 // main method to compute cross section per atom 163 virtual G4double ComputeCrossSectionPerAtom( 142 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 164 << 143 G4double kinEnergy, 165 << 144 G4double Z, 166 << 145 G4double A = 0., /* amu */ 167 << 146 G4double cutEnergy = 0.0, 168 << 147 G4double maxEnergy = DBL_MAX); 169 << 148 170 // main method to compute cross section per << 171 virtual G4double ComputeCrossSectionPerShell << 172 << 173 << 174 << 175 << 176 << 177 // Compute effective ion charge square 149 // Compute effective ion charge square 178 virtual G4double ChargeSquareRatio(const G4T 150 virtual G4double ChargeSquareRatio(const G4Track&); 179 151 180 // Compute effective ion charge square 152 // Compute effective ion charge square 181 virtual G4double GetChargeSquareRatio(const 153 virtual G4double GetChargeSquareRatio(const G4ParticleDefinition*, 182 const << 154 const G4Material*, 183 G4doub << 155 G4double kineticEnergy); 184 156 185 // Compute ion charge 157 // Compute ion charge 186 virtual G4double GetParticleCharge(const G4P 158 virtual G4double GetParticleCharge(const G4ParticleDefinition*, 187 const G4M << 159 const G4Material*, 188 G4double << 160 G4double kineticEnergy); 189 << 190 // Initialisation for a new track << 191 virtual void StartTracking(G4Track*); << 192 161 193 // add correction to energy loss and compute 162 // add correction to energy loss and compute non-ionizing energy loss 194 virtual void CorrectionsAlongStep(const G4Ma 163 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 195 const G4Dy << 164 const G4DynamicParticle*, 196 const G4do << 165 G4double& eloss, 197 G4double& << 166 G4double& niel, 198 << 167 G4double length); 199 // value which may be tabulated (by default << 200 virtual G4double Value(const G4MaterialCutsC << 201 const G4ParticleDefin << 202 G4double kineticEnerg << 203 << 204 // threshold for zero value << 205 virtual G4double MinPrimaryEnergy(const G4Ma << 206 const G4Pa << 207 G4double c << 208 << 209 // model can define low-energy limit for the << 210 virtual G4double MinEnergyCut(const G4Partic << 211 const G4Materi << 212 168 213 // initialisation at run time for a given ma << 169 // initilisation at run time for a given material 214 virtual void SetupForMaterial(const G4Partic 170 virtual void SetupForMaterial(const G4ParticleDefinition*, 215 const G4Materi << 171 const G4Material*, 216 G4double kinet 172 G4double kineticEnergy); 217 173 218 // add a region for the model 174 // add a region for the model 219 virtual void DefineForRegion(const G4Region* 175 virtual void DefineForRegion(const G4Region*); 220 176 221 // fill number of different type of secondar << 222 virtual void FillNumberOfSecondaries(G4int& << 223 G4int& << 224 << 225 // for automatic documentation << 226 virtual void ModelDescription(std::ostream& << 227 << 228 protected: 177 protected: 229 178 230 // initialisation of the ParticleChange for 179 // initialisation of the ParticleChange for the model 231 G4ParticleChangeForLoss* GetParticleChangeFo 180 G4ParticleChangeForLoss* GetParticleChangeForLoss(); 232 181 233 // initialisation of the ParticleChange for 182 // initialisation of the ParticleChange for the model 234 G4ParticleChangeForGamma* GetParticleChangeF 183 G4ParticleChangeForGamma* GetParticleChangeForGamma(); 235 184 236 // kinematically allowed max kinetic energy 185 // kinematically allowed max kinetic energy of a secondary 237 virtual G4double MaxSecondaryEnergy(const G4 186 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 238 G4double << 187 G4double kineticEnergy); 239 188 240 public: 189 public: 241 190 242 //------------------------------------------ 191 //------------------------------------------------------------------------ 243 // Generic methods common to all models 192 // Generic methods common to all models 244 //------------------------------------------ 193 //------------------------------------------------------------------------ 245 194 246 // should be called at initialisation to bui 195 // should be called at initialisation to build element selectors 247 void InitialiseElementSelectors(const G4Part << 196 void InitialiseElementSelectors(const G4ParticleDefinition*, 248 const G4Data << 197 const G4DataVector&); 249 198 250 // should be called at initialisation to acc << 199 // dEdx per unit length 251 inline std::vector<G4EmElementSelector*>* Ge << 200 inline G4double ComputeDEDX(const G4MaterialCutsCouple*, >> 201 const G4ParticleDefinition*, >> 202 G4double kineticEnergy, >> 203 G4double cutEnergy = DBL_MAX); 252 204 253 // should be called at initialisation to set << 205 // cross section per volume 254 inline void SetElementSelectors(std::vector< << 255 << 256 // dEdx per unit length, base material appro << 257 inline G4double ComputeDEDX( const G4Materia << 258 const G4Particl << 259 G4double kineti << 260 G4double cutEne << 261 << 262 // cross section per volume, base material a << 263 inline G4double CrossSection(const G4Materia 206 inline G4double CrossSection(const G4MaterialCutsCouple*, 264 const G4Particl << 207 const G4ParticleDefinition*, 265 G4double kineti << 208 G4double kineticEnergy, 266 G4double cutEne << 209 G4double cutEnergy = 0.0, 267 G4double maxEne << 210 G4double maxEnergy = DBL_MAX); 268 211 269 // compute mean free path via cross section 212 // compute mean free path via cross section per volume 270 inline G4double ComputeMeanFreePath(const G4 213 inline G4double ComputeMeanFreePath(const G4ParticleDefinition*, 271 G4double << 214 G4double kineticEnergy, 272 const G4 << 215 const G4Material*, 273 G4double << 216 G4double cutEnergy = 0.0, 274 G4double << 217 G4double maxEnergy = DBL_MAX); 275 218 276 // generic cross section per element 219 // generic cross section per element 277 inline G4double ComputeCrossSectionPerAtom(c 220 inline G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 278 c 221 const G4Element*, 279 G << 222 G4double kinEnergy, 280 G << 223 G4double cutEnergy = 0.0, 281 G << 224 G4double maxEnergy = DBL_MAX); >> 225 >> 226 // select isotope in order to have precise mass of the nucleus >> 227 inline G4int SelectIsotopeNumber(const G4Element*); 282 228 283 // atom can be selected effitiantly if eleme 229 // atom can be selected effitiantly if element selectors are initialised 284 inline const G4Element* SelectRandomAtom(con 230 inline const G4Element* SelectRandomAtom(const G4MaterialCutsCouple*, 285 con << 231 const G4ParticleDefinition*, 286 G4d << 232 G4double kineticEnergy, 287 G4d << 233 G4double cutEnergy = 0.0, 288 G4d << 234 G4double maxEnergy = DBL_MAX); 289 // same as SelectRandomAtom above but more e << 290 inline const G4Element* SelectTargetAtom(con << 291 con << 292 G4d << 293 G4d << 294 G4d << 295 G4d << 296 235 297 // to select atom cross section per volume i 236 // to select atom cross section per volume is recomputed for each element 298 const G4Element* SelectRandomAtom(const G4Ma 237 const G4Element* SelectRandomAtom(const G4Material*, 299 const G4Pa << 238 const G4ParticleDefinition*, 300 G4double k << 239 G4double kineticEnergy, 301 G4double c << 240 G4double cutEnergy = 0.0, 302 G4double m << 241 G4double maxEnergy = DBL_MAX); 303 << 304 // to select atom if cross section is propor << 305 const G4Element* GetCurrentElement(const G4M << 306 G4int SelectRandomAtomNumber(const G4Materia << 307 << 308 // select isotope in order to have precise m << 309 const G4Isotope* GetCurrentIsotope(const G4E << 310 G4int SelectIsotopeNumber(const G4Element*) << 311 242 312 //------------------------------------------ 243 //------------------------------------------------------------------------ 313 // Get/Set methods 244 // Get/Set methods 314 //------------------------------------------ 245 //------------------------------------------------------------------------ 315 246 316 void SetParticleChange(G4VParticleChange*, G << 247 void SetParticleChange(G4VParticleChange*, G4VEmFluctuationModel* f=0); 317 << 318 void SetCrossSectionTable(G4PhysicsTable*, G << 319 << 320 inline G4ElementData* GetElementData(); << 321 << 322 inline G4PhysicsTable* GetCrossSectionTable( << 323 248 324 inline G4VEmFluctuationModel* GetModelOfFluc 249 inline G4VEmFluctuationModel* GetModelOfFluctuations(); 325 250 326 inline G4VEmAngularDistribution* GetAngularD 251 inline G4VEmAngularDistribution* GetAngularDistribution(); 327 252 328 inline G4VEmModel* GetTripletModel(); << 329 << 330 inline void SetTripletModel(G4VEmModel*); << 331 << 332 inline void SetAngularDistribution(G4VEmAngu 253 inline void SetAngularDistribution(G4VEmAngularDistribution*); 333 254 334 inline G4double HighEnergyLimit() const; 255 inline G4double HighEnergyLimit() const; 335 256 336 inline G4double LowEnergyLimit() const; 257 inline G4double LowEnergyLimit() const; 337 258 338 inline G4double HighEnergyActivationLimit() << 339 << 340 inline G4double LowEnergyActivationLimit() c << 341 << 342 inline G4double PolarAngleLimit() const; 259 inline G4double PolarAngleLimit() const; 343 260 344 inline G4double SecondaryThreshold() const; 261 inline G4double SecondaryThreshold() const; 345 262 346 inline G4bool DeexcitationFlag() const; << 263 inline G4bool LPMFlag() const; 347 264 348 inline G4bool ForceBuildTableFlag() const; << 265 inline G4bool DeexcitationFlag() const; 349 << 350 inline G4bool UseAngularGeneratorFlag() cons << 351 << 352 inline void SetAngularGeneratorFlag(G4bool); << 353 266 354 inline void SetHighEnergyLimit(G4double); 267 inline void SetHighEnergyLimit(G4double); 355 268 356 inline void SetLowEnergyLimit(G4double); 269 inline void SetLowEnergyLimit(G4double); 357 270 358 inline void SetActivationHighEnergyLimit(G4d 271 inline void SetActivationHighEnergyLimit(G4double); 359 272 360 inline void SetActivationLowEnergyLimit(G4do 273 inline void SetActivationLowEnergyLimit(G4double); 361 274 362 inline G4bool IsActive(G4double kinEnergy) c << 275 inline G4bool IsActive(G4double kinEnergy); 363 276 364 inline void SetPolarAngleLimit(G4double); 277 inline void SetPolarAngleLimit(G4double); 365 278 366 inline void SetSecondaryThreshold(G4double); 279 inline void SetSecondaryThreshold(G4double); 367 280 368 inline void SetDeexcitationFlag(G4bool val); << 281 inline void SetLPMFlag(G4bool val); 369 << 370 inline void SetForceBuildTable(G4bool val); << 371 << 372 inline void SetFluctuationFlag(G4bool val); << 373 282 374 inline G4bool IsMaster() const; << 283 inline void SetDeexcitationFlag(G4bool val); 375 << 376 inline void SetUseBaseMaterials(G4bool val); << 377 << 378 inline G4bool UseBaseMaterials() const; << 379 284 380 inline G4double MaxSecondaryKinEnergy(const 285 inline G4double MaxSecondaryKinEnergy(const G4DynamicParticle* dynParticle); 381 286 382 inline const G4String& GetName() const; 287 inline const G4String& GetName() const; 383 288 384 inline void SetCurrentCouple(const G4Materia 289 inline void SetCurrentCouple(const G4MaterialCutsCouple*); 385 290 386 inline G4bool IsLocked() const; << 291 inline const G4Element* GetCurrentElement() const; 387 << 388 inline void SetLocked(G4bool); << 389 << 390 // obsolete methods << 391 [[deprecated("Use G4EmParameters::Instance() << 392 void SetLPMFlag(G4bool); << 393 << 394 void SetMasterThread(G4bool); << 395 << 396 // hide assignment operator << 397 G4VEmModel & operator=(const G4VEmModel &ri << 398 G4VEmModel(const G4VEmModel&) = delete; << 399 292 400 protected: 293 protected: 401 294 402 inline const G4MaterialCutsCouple* CurrentCo 295 inline const G4MaterialCutsCouple* CurrentCouple() const; 403 296 404 inline void SetCurrentElement(const G4Elemen 297 inline void SetCurrentElement(const G4Element*); 405 298 406 private: 299 private: 407 300 408 // ======== Parameters of the class fixed at << 301 // hide assignment operator 409 << 302 G4VEmModel & operator=(const G4VEmModel &right); 410 G4VEmFluctuationModel* flucModel = null << 303 G4VEmModel(const G4VEmModel&); 411 G4VEmAngularDistribution* anglModel = null << 412 G4VEmModel* fTripletModel = << 413 const G4MaterialCutsCouple* fCurrentCouple = << 414 const G4Element* fCurrentElement << 415 std::vector<G4EmElementSelector*>* elmSelect << 416 G4LossTableManager* fEmManager; << 417 << 418 protected: << 419 << 420 G4ElementData* fElementData = << 421 G4VParticleChange* pParticleChange << 422 G4PhysicsTable* xSectionTable = << 423 const G4Material* pBaseMaterial = << 424 const std::vector<G4double>* theDensityFacto << 425 const std::vector<G4int>* theDensityIdx = << 426 << 427 G4double inveplus; << 428 G4double pFactor = 1.0; << 429 304 430 private: << 305 // ======== Parameters of the class fixed at construction ========= 431 306 432 G4double lowLimit; << 307 G4VEmFluctuationModel* flucModel; 433 G4double highLimit; << 308 G4VEmAngularDistribution* anglModel; 434 G4double eMinActive = 0.0; << 309 const G4String name; 435 G4double eMaxActive = DBL_MAX; << 310 436 G4double secondaryThreshold = DBL_MAX; << 311 // ======== Parameters of the class fixed at initialisation ======= 437 G4double polarAngleLimit; << 312 >> 313 G4double lowLimit; >> 314 G4double highLimit; >> 315 G4double eMinActive; >> 316 G4double eMaxActive; >> 317 G4double polarAngleLimit; >> 318 G4double secondaryThreshold; >> 319 G4bool theLPMflag; 438 320 439 G4int nSelectors = 0; << 321 G4int nSelectors; 440 G4int nsec = 5; << 322 std::vector<G4EmElementSelector*> elmSelectors; 441 323 442 protected: 324 protected: 443 325 444 std::size_t currentCoupleIndex = 0; << 326 G4VParticleChange* pParticleChange; 445 std::size_t basedCoupleIndex = 0; << 327 446 G4bool lossFlucFlag = true; << 328 // ======== Cashed values - may be state dependent ================ 447 329 448 private: 330 private: 449 331 450 G4bool flagDeexcitation = false; << 332 const G4MaterialCutsCouple* fCurrentCouple; 451 G4bool flagForceBuildTable = false; << 333 const G4Element* fCurrentElement; 452 G4bool isMaster = true; << 453 << 454 G4bool localTable = true; << 455 G4bool localElmSelectors = true; << 456 G4bool useAngularGenerator = false; << 457 G4bool useBaseMaterials = false; << 458 G4bool isLocked = false; << 459 334 460 const G4String name; << 335 G4int nsec; >> 336 G4bool flagDeexcitation; 461 std::vector<G4double> xsec; 337 std::vector<G4double> xsec; 462 338 463 }; 339 }; 464 340 465 // ======== Run time inline methods ========== 341 // ======== Run time inline methods ================ 466 342 467 inline void G4VEmModel::SetCurrentCouple(const << 343 inline void G4VEmModel::SetCurrentCouple(const G4MaterialCutsCouple* p) 468 { 344 { 469 if(fCurrentCouple != ptr) { << 345 fCurrentCouple = p; 470 fCurrentCouple = ptr; << 471 basedCoupleIndex = currentCoupleIndex = pt << 472 pBaseMaterial = ptr->GetMaterial(); << 473 pFactor = 1.0; << 474 if(useBaseMaterials) { << 475 basedCoupleIndex = (*theDensityIdx)[curr << 476 if(nullptr != pBaseMaterial->GetBaseMate << 477 pBaseMaterial = pBaseMaterial->GetBaseMateri << 478 pFactor = (*theDensityFactor)[currentCou << 479 } << 480 } << 481 } 346 } 482 347 483 //....oooOO0OOooo........oooOO0OOooo........oo << 348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 484 349 485 inline const G4MaterialCutsCouple* G4VEmModel: 350 inline const G4MaterialCutsCouple* G4VEmModel::CurrentCouple() const 486 { 351 { 487 return fCurrentCouple; 352 return fCurrentCouple; 488 } 353 } 489 354 490 //....oooOO0OOooo........oooOO0OOooo........oo << 355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 491 356 492 inline void G4VEmModel::SetCurrentElement(cons 357 inline void G4VEmModel::SetCurrentElement(const G4Element* elm) 493 { 358 { 494 fCurrentElement = elm; 359 fCurrentElement = elm; 495 } 360 } 496 361 497 //....oooOO0OOooo........oooOO0OOooo........oo << 362 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 363 >> 364 inline const G4Element* G4VEmModel::GetCurrentElement() const >> 365 { >> 366 return fCurrentElement; >> 367 } >> 368 >> 369 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 498 370 499 inline 371 inline 500 G4double G4VEmModel::MaxSecondaryKinEnergy(con 372 G4double G4VEmModel::MaxSecondaryKinEnergy(const G4DynamicParticle* dynPart) 501 { 373 { 502 return MaxSecondaryEnergy(dynPart->GetPartic 374 return MaxSecondaryEnergy(dynPart->GetParticleDefinition(), 503 dynPart->GetKineti 375 dynPart->GetKineticEnergy()); 504 } 376 } 505 377 506 //....oooOO0OOooo........oooOO0OOooo........oo << 378 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 507 379 508 inline G4double G4VEmModel::ComputeDEDX(const << 380 inline G4double G4VEmModel::ComputeDEDX(const G4MaterialCutsCouple* c, 509 const << 381 const G4ParticleDefinition* p, 510 G4doub << 382 G4double kinEnergy, 511 G4doub << 383 G4double cutEnergy) 512 { 384 { 513 SetCurrentCouple(couple); << 385 fCurrentCouple = c; 514 return pFactor*ComputeDEDXPerVolume(pBaseMat << 386 return ComputeDEDXPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy); 515 } 387 } 516 388 517 //....oooOO0OOooo........oooOO0OOooo........oo << 389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 518 390 519 inline G4double G4VEmModel::CrossSection(const << 391 inline G4double G4VEmModel::CrossSection(const G4MaterialCutsCouple* c, 520 const << 392 const G4ParticleDefinition* p, 521 G4dou << 393 G4double kinEnergy, 522 G4dou << 394 G4double cutEnergy, 523 G4dou << 395 G4double maxEnergy) 524 { << 396 { 525 SetCurrentCouple(couple); << 397 fCurrentCouple = c; 526 return pFactor*CrossSectionPerVolume(pBaseMa << 398 return CrossSectionPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy,maxEnergy); 527 cutEner << 528 } 399 } 529 400 530 //....oooOO0OOooo........oooOO0OOooo........oo << 401 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 531 402 532 inline << 403 inline G4double G4VEmModel::ComputeMeanFreePath(const G4ParticleDefinition* p, 533 G4double G4VEmModel::ComputeMeanFreePath(const << 404 G4double ekin, 534 G4dou << 405 const G4Material* material, 535 const << 406 G4double emin, 536 G4dou << 407 G4double emax) 537 G4dou << 538 { 408 { 539 G4double cross = CrossSectionPerVolume(mater << 409 G4double mfp = DBL_MAX; 540 return (cross > 0.0) ? 1./cross : DBL_MAX; << 410 G4double cross = CrossSectionPerVolume(material,p,ekin,emin,emax); >> 411 if (cross > DBL_MIN) { mfp = 1./cross; } >> 412 return mfp; 541 } 413 } 542 414 543 //....oooOO0OOooo........oooOO0OOooo........oo << 415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 544 416 545 inline G4double << 417 inline G4double G4VEmModel::ComputeCrossSectionPerAtom( 546 G4VEmModel::ComputeCrossSectionPerAtom(const G << 418 const G4ParticleDefinition* part, 547 const G << 419 const G4Element* elm, 548 G4doubl << 420 G4double kinEnergy, 549 G4doubl << 421 G4double cutEnergy, 550 G4doubl << 422 G4double maxEnergy) 551 { 423 { 552 fCurrentElement = elm; 424 fCurrentElement = elm; 553 return ComputeCrossSectionPerAtom(part,kinEn 425 return ComputeCrossSectionPerAtom(part,kinEnergy,elm->GetZ(),elm->GetN(), 554 cutEnergy, << 426 cutEnergy,maxEnergy); 555 } 427 } 556 428 557 //....oooOO0OOooo........oooOO0OOooo........oo << 429 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 558 430 559 inline const G4Element* << 431 inline 560 G4VEmModel::SelectRandomAtom(const G4MaterialC << 432 const G4Element* G4VEmModel::SelectRandomAtom(const G4MaterialCutsCouple* couple, 561 const G4ParticleD << 433 const G4ParticleDefinition* p, 562 G4double kinEnerg << 434 G4double kinEnergy, 563 G4double cutEnerg << 435 G4double cutEnergy, 564 G4double maxEnerg << 436 G4double maxEnergy) 565 { << 437 { 566 SetCurrentCouple(couple); << 438 fCurrentCouple = couple; 567 fCurrentElement = (nSelectors > 0) ? << 439 if(nSelectors > 0) { 568 ((*elmSelectors)[couple->GetIndex()])->Sel << 440 fCurrentElement = 569 SelectRandomAtom(pBaseMaterial,part,kinEne << 441 elmSelectors[couple->GetIndex()]->SelectRandomAtom(kinEnergy); >> 442 } else { >> 443 fCurrentElement = SelectRandomAtom(couple->GetMaterial(),p,kinEnergy, >> 444 cutEnergy,maxEnergy); >> 445 } 570 return fCurrentElement; 446 return fCurrentElement; 571 } 447 } 572 448 573 //....oooOO0OOooo........oooOO0OOooo........oo << 449 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 574 450 575 inline const G4Element* << 451 inline G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) 576 G4VEmModel::SelectTargetAtom(const G4MaterialC << 452 { 577 const G4ParticleD << 453 fCurrentElement = elm; 578 G4double kinEnerg << 454 G4int N = G4int(elm->GetN() + 0.5); 579 G4double logKinE, << 455 G4int ni = elm->GetNumberOfIsotopes(); 580 G4double cutEnerg << 456 if(ni > 0) { 581 G4double maxEnerg << 457 G4int idx = 0; 582 { << 458 if(ni > 1) { 583 SetCurrentCouple(couple); << 459 G4double* ab = elm->GetRelativeAbundanceVector(); 584 fCurrentElement = (nSelectors > 0) << 460 G4double x = G4UniformRand(); 585 ? ((*elmSelectors)[couple->GetIndex()])->Se << 461 for(; idx<ni; ++idx) { 586 : SelectRandomAtom(pBaseMaterial,part,kinEn << 462 x -= ab[idx]; 587 return fCurrentElement; << 463 if (x <= 0.0) { break; } >> 464 } >> 465 if(idx >= ni) { idx = ni - 1; } >> 466 } >> 467 N = elm->GetIsotope(idx)->GetN(); >> 468 } >> 469 return N; 588 } 470 } 589 471 590 // ======== Get/Set inline methods used at ini 472 // ======== Get/Set inline methods used at initialisation ================ 591 473 592 inline G4VEmFluctuationModel* G4VEmModel::GetM 474 inline G4VEmFluctuationModel* G4VEmModel::GetModelOfFluctuations() 593 { 475 { 594 return flucModel; 476 return flucModel; 595 } 477 } 596 478 597 //....oooOO0OOooo........oooOO0OOooo........oo << 479 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 598 480 599 inline G4VEmAngularDistribution* G4VEmModel::G 481 inline G4VEmAngularDistribution* G4VEmModel::GetAngularDistribution() 600 { 482 { 601 return anglModel; 483 return anglModel; 602 } 484 } 603 485 604 //....oooOO0OOooo........oooOO0OOooo........oo << 486 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 605 487 606 inline void G4VEmModel::SetAngularDistribution 488 inline void G4VEmModel::SetAngularDistribution(G4VEmAngularDistribution* p) 607 { 489 { 608 if(p != anglModel) { << 490 anglModel = p; 609 delete anglModel; << 610 anglModel = p; << 611 } << 612 } << 613 << 614 //....oooOO0OOooo........oooOO0OOooo........oo << 615 << 616 inline G4VEmModel* G4VEmModel::GetTripletModel << 617 { << 618 return fTripletModel; << 619 } 491 } 620 492 621 //....oooOO0OOooo........oooOO0OOooo........oo << 493 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 622 << 623 inline void G4VEmModel::SetTripletModel(G4VEmM << 624 { << 625 if(p != fTripletModel) { << 626 delete fTripletModel; << 627 fTripletModel = p; << 628 } << 629 } << 630 << 631 //....oooOO0OOooo........oooOO0OOooo........oo << 632 494 633 inline G4double G4VEmModel::HighEnergyLimit() 495 inline G4double G4VEmModel::HighEnergyLimit() const 634 { 496 { 635 return highLimit; 497 return highLimit; 636 } 498 } 637 499 638 //....oooOO0OOooo........oooOO0OOooo........oo << 500 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 639 501 640 inline G4double G4VEmModel::LowEnergyLimit() c 502 inline G4double G4VEmModel::LowEnergyLimit() const 641 { 503 { 642 return lowLimit; 504 return lowLimit; 643 } 505 } 644 506 645 //....oooOO0OOooo........oooOO0OOooo........oo << 507 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 646 << 647 inline G4double G4VEmModel::HighEnergyActivati << 648 { << 649 return eMaxActive; << 650 } << 651 << 652 //....oooOO0OOooo........oooOO0OOooo........oo << 653 << 654 inline G4double G4VEmModel::LowEnergyActivatio << 655 { << 656 return eMinActive; << 657 } << 658 << 659 //....oooOO0OOooo........oooOO0OOooo........oo << 660 508 661 inline G4double G4VEmModel::PolarAngleLimit() 509 inline G4double G4VEmModel::PolarAngleLimit() const 662 { 510 { 663 return polarAngleLimit; 511 return polarAngleLimit; 664 } 512 } 665 513 666 //....oooOO0OOooo........oooOO0OOooo........oo << 514 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 667 515 668 inline G4double G4VEmModel::SecondaryThreshold 516 inline G4double G4VEmModel::SecondaryThreshold() const 669 { 517 { 670 return secondaryThreshold; 518 return secondaryThreshold; 671 } 519 } 672 520 673 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 674 522 675 inline G4bool G4VEmModel::DeexcitationFlag() c << 523 inline G4bool G4VEmModel::LPMFlag() const 676 { << 677 return flagDeexcitation; << 678 } << 679 << 680 //....oooOO0OOooo........oooOO0OOooo........oo << 681 << 682 inline G4bool G4VEmModel::ForceBuildTableFlag( << 683 { << 684 return flagForceBuildTable; << 685 } << 686 << 687 //....oooOO0OOooo........oooOO0OOooo........oo << 688 << 689 inline G4bool G4VEmModel::UseAngularGeneratorF << 690 { 524 { 691 return useAngularGenerator; << 525 return theLPMflag; 692 } 526 } 693 527 694 //....oooOO0OOooo........oooOO0OOooo........oo 528 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 695 529 696 inline void G4VEmModel::SetAngularGeneratorFla << 530 inline G4bool G4VEmModel::DeexcitationFlag() const 697 { << 698 useAngularGenerator = val; << 699 } << 700 << 701 //....oooOO0OOooo........oooOO0OOooo........oo << 702 << 703 inline void G4VEmModel::SetFluctuationFlag(G4b << 704 { << 705 lossFlucFlag = val; << 706 } << 707 << 708 //....oooOO0OOooo........oooOO0OOooo........oo << 709 << 710 inline G4bool G4VEmModel::IsMaster() const << 711 { << 712 return isMaster; << 713 } << 714 << 715 //....oooOO0OOooo........oooOO0OOooo........oo << 716 << 717 inline void G4VEmModel::SetUseBaseMaterials(G4 << 718 { << 719 useBaseMaterials = val; << 720 } << 721 << 722 //....oooOO0OOooo........oooOO0OOooo........oo << 723 << 724 inline G4bool G4VEmModel::UseBaseMaterials() c << 725 { 531 { 726 return useBaseMaterials; << 532 return flagDeexcitation; 727 } 533 } 728 534 729 //....oooOO0OOooo........oooOO0OOooo........oo << 535 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 730 536 731 inline void G4VEmModel::SetHighEnergyLimit(G4d 537 inline void G4VEmModel::SetHighEnergyLimit(G4double val) 732 { 538 { 733 highLimit = val; 539 highLimit = val; 734 } 540 } 735 541 736 //....oooOO0OOooo........oooOO0OOooo........oo << 542 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 737 543 738 inline void G4VEmModel::SetLowEnergyLimit(G4do 544 inline void G4VEmModel::SetLowEnergyLimit(G4double val) 739 { 545 { 740 lowLimit = val; 546 lowLimit = val; 741 } 547 } 742 548 743 //....oooOO0OOooo........oooOO0OOooo........oo << 549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 744 550 745 inline void G4VEmModel::SetActivationHighEnerg 551 inline void G4VEmModel::SetActivationHighEnergyLimit(G4double val) 746 { 552 { 747 eMaxActive = val; 553 eMaxActive = val; 748 } 554 } 749 555 750 //....oooOO0OOooo........oooOO0OOooo........oo << 556 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 751 557 752 inline void G4VEmModel::SetActivationLowEnergy 558 inline void G4VEmModel::SetActivationLowEnergyLimit(G4double val) 753 { 559 { 754 eMinActive = val; 560 eMinActive = val; 755 } 561 } 756 562 757 //....oooOO0OOooo........oooOO0OOooo........oo << 563 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 758 564 759 inline G4bool G4VEmModel::IsActive(G4double ki << 565 inline G4bool G4VEmModel::IsActive(G4double kinEnergy) 760 { 566 { 761 return (kinEnergy >= eMinActive && kinEnergy 567 return (kinEnergy >= eMinActive && kinEnergy <= eMaxActive); 762 } 568 } 763 569 764 //....oooOO0OOooo........oooOO0OOooo........oo << 570 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 765 571 766 inline void G4VEmModel::SetPolarAngleLimit(G4d 572 inline void G4VEmModel::SetPolarAngleLimit(G4double val) 767 { 573 { 768 if(!isLocked) { polarAngleLimit = val; } << 574 polarAngleLimit = val; 769 } 575 } 770 576 771 //....oooOO0OOooo........oooOO0OOooo........oo << 577 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 772 578 773 inline void G4VEmModel::SetSecondaryThreshold( 579 inline void G4VEmModel::SetSecondaryThreshold(G4double val) 774 { 580 { 775 secondaryThreshold = val; 581 secondaryThreshold = val; 776 } 582 } 777 583 778 //....oooOO0OOooo........oooOO0OOooo........oo 584 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 779 585 780 inline void G4VEmModel::SetDeexcitationFlag(G4 << 586 inline void G4VEmModel::SetLPMFlag(G4bool val) 781 { 587 { 782 flagDeexcitation = val; << 588 theLPMflag = val; 783 } 589 } 784 590 785 //....oooOO0OOooo........oooOO0OOooo........oo 591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 786 592 787 inline void G4VEmModel::SetForceBuildTable(G4b << 593 inline void G4VEmModel::SetDeexcitationFlag(G4bool val) 788 { 594 { 789 flagForceBuildTable = val; << 595 flagDeexcitation = val; 790 } 596 } 791 597 792 //....oooOO0OOooo........oooOO0OOooo........oo << 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 793 599 794 inline const G4String& G4VEmModel::GetName() c 600 inline const G4String& G4VEmModel::GetName() const 795 { 601 { 796 return name; 602 return name; 797 } 603 } 798 604 799 //....oooOO0OOooo........oooOO0OOooo........oo << 605 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 800 << 801 inline std::vector<G4EmElementSelector*>* G4VE << 802 { << 803 return elmSelectors; << 804 } << 805 << 806 //....oooOO0OOooo........oooOO0OOooo........oo << 807 << 808 inline void << 809 G4VEmModel::SetElementSelectors(std::vector<G4 << 810 { << 811 if(p != elmSelectors) { << 812 elmSelectors = p; << 813 nSelectors = (nullptr != elmSelectors) ? G << 814 localElmSelectors = false; << 815 } << 816 } << 817 << 818 //....oooOO0OOooo........oooOO0OOooo........oo << 819 << 820 inline G4ElementData* G4VEmModel::GetElementDa << 821 { << 822 return fElementData; << 823 } << 824 << 825 //....oooOO0OOooo........oooOO0OOooo........oo << 826 << 827 inline G4PhysicsTable* G4VEmModel::GetCrossSec << 828 { << 829 return xSectionTable; << 830 } << 831 << 832 //....oooOO0OOooo........oooOO0OOooo........oo << 833 << 834 inline G4bool G4VEmModel::IsLocked() const << 835 { << 836 return isLocked; << 837 } << 838 << 839 //....oooOO0OOooo........oooOO0OOooo........oo << 840 << 841 inline void G4VEmModel::SetLocked(G4bool val) << 842 { << 843 isLocked = val; << 844 } << 845 << 846 //....oooOO0OOooo........oooOO0OOooo........oo << 847 606 848 #endif 607 #endif >> 608 849 609