Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmModel.hh,v 1.72.2.1 2010/04/06 09:05:17 gcosmo Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-02 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmModel 34 // File name: G4VEmModel 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: 40 // Modifications: 38 // 41 // 39 // 23-12-02 V.Ivanchenko change interface befo 42 // 23-12-02 V.Ivanchenko change interface before move to cut per region 40 // 24-01-03 Cut per region (V.Ivanchenko) 43 // 24-01-03 Cut per region (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 42 // 25-02-03 Add sample theta and displacement 45 // 25-02-03 Add sample theta and displacement (V.Ivanchenko) 43 // 23-07-03 Replace G4Material by G4MaterialCu 46 // 23-07-03 Replace G4Material by G4MaterialCutCouple in dE/dx and CrossSection 44 // calculation (V.Ivanchenko) 47 // calculation (V.Ivanchenko) 45 // 01-03-04 L.Urban signature changed in Sampl 48 // 01-03-04 L.Urban signature changed in SampleCosineTheta 46 // 23-04-04 L.urban signature of SampleCosineT 49 // 23-04-04 L.urban signature of SampleCosineTheta changed back 47 // 17-11-04 Add method CrossSectionPerAtom (V. 50 // 17-11-04 Add method CrossSectionPerAtom (V.Ivanchenko) 48 // 14-03-05 Reduce number of pure virtual meth 51 // 14-03-05 Reduce number of pure virtual methods and make inline part 49 // separate (V.Ivanchenko) 52 // separate (V.Ivanchenko) 50 // 24-03-05 Remove IsInCharge and add G4VParti 53 // 24-03-05 Remove IsInCharge and add G4VParticleChange in the constructor (VI) 51 // 08-04-05 Major optimisation of internal int 54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 52 // 15-04-05 optimize internal interface for ms 55 // 15-04-05 optimize internal interface for msc (V.Ivanchenko) 53 // 08-05-05 A -> N (V.Ivanchenko) 56 // 08-05-05 A -> N (V.Ivanchenko) 54 // 25-07-05 Move constructor and destructor to 57 // 25-07-05 Move constructor and destructor to the body (V.Ivanchenko) 55 // 02-02-06 ComputeCrossSectionPerAtom: defaul 58 // 02-02-06 ComputeCrossSectionPerAtom: default value A=0. (mma) 56 // 06-02-06 add method ComputeMeanFreePath() ( 59 // 06-02-06 add method ComputeMeanFreePath() (mma) 57 // 07-03-06 Optimize msc methods (V.Ivanchenko 60 // 07-03-06 Optimize msc methods (V.Ivanchenko) 58 // 29-06-06 Add member currentElement and Get/ 61 // 29-06-06 Add member currentElement and Get/Set methods (V.Ivanchenko) 59 // 29-10-07 Added SampleScattering (V.Ivanchen 62 // 29-10-07 Added SampleScattering (V.Ivanchenko) 60 // 15-07-08 Reorder class members and improve 63 // 15-07-08 Reorder class members and improve comments (VI) 61 // 21-07-08 Added vector of G4ElementSelector 64 // 21-07-08 Added vector of G4ElementSelector and methods to use it (VI) 62 // 12-09-08 Added methods GetParticleCharge, G 65 // 12-09-08 Added methods GetParticleCharge, GetChargeSquareRatio, 63 // CorrectionsAlongStep, ActivateNucl 66 // CorrectionsAlongStep, ActivateNuclearStopping (VI) 64 // 16-02-09 Moved implementations of virtual m 67 // 16-02-09 Moved implementations of virtual methods to source (VI) 65 // 07-04-09 Moved msc methods from G4VEmModel 68 // 07-04-09 Moved msc methods from G4VEmModel to G4VMscModel (VI) 66 // 13-10-10 Added G4VEmAngularDistribution (VI << 67 // 69 // 68 // Class Description: 70 // Class Description: 69 // 71 // 70 // Abstract interface to energy loss models 72 // Abstract interface to energy loss models 71 73 72 // ------------------------------------------- 74 // ------------------------------------------------------------------- 73 // 75 // 74 76 75 #ifndef G4VEmModel_h 77 #ifndef G4VEmModel_h 76 #define G4VEmModel_h 1 78 #define G4VEmModel_h 1 77 79 78 #include "globals.hh" 80 #include "globals.hh" 79 #include "G4DynamicParticle.hh" 81 #include "G4DynamicParticle.hh" 80 #include "G4ParticleDefinition.hh" 82 #include "G4ParticleDefinition.hh" 81 #include "G4MaterialCutsCouple.hh" 83 #include "G4MaterialCutsCouple.hh" 82 #include "G4Material.hh" 84 #include "G4Material.hh" 83 #include "G4Element.hh" 85 #include "G4Element.hh" 84 #include "G4ElementVector.hh" 86 #include "G4ElementVector.hh" 85 #include "G4Isotope.hh" << 86 #include "G4DataVector.hh" 87 #include "G4DataVector.hh" 87 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmAngularDistribution.hh" << 89 #include "G4EmElementSelector.hh" 89 #include "G4EmElementSelector.hh" 90 #include <CLHEP/Random/RandomEngine.h> << 90 #include "Randomize.hh" 91 #include <vector> 91 #include <vector> 92 92 93 class G4ElementData; << 94 class G4PhysicsTable; 93 class G4PhysicsTable; 95 class G4Region; 94 class G4Region; 96 class G4VParticleChange; 95 class G4VParticleChange; 97 class G4ParticleChangeForLoss; 96 class G4ParticleChangeForLoss; 98 class G4ParticleChangeForGamma; 97 class G4ParticleChangeForGamma; 99 class G4Track; 98 class G4Track; 100 class G4LossTableManager; << 101 99 102 class G4VEmModel 100 class G4VEmModel 103 { 101 { 104 102 105 public: 103 public: 106 104 107 explicit G4VEmModel(const G4String& nam); << 105 G4VEmModel(const G4String& nam); 108 106 109 virtual ~G4VEmModel(); 107 virtual ~G4VEmModel(); 110 108 111 //------------------------------------------ 109 //------------------------------------------------------------------------ 112 // Virtual methods to be implemented for any 110 // Virtual methods to be implemented for any concrete model 113 //------------------------------------------ 111 //------------------------------------------------------------------------ 114 112 115 virtual void Initialise(const G4ParticleDefi << 113 virtual void Initialise(const G4ParticleDefinition*, >> 114 const G4DataVector&) = 0; 116 115 117 virtual void SampleSecondaries(std::vector<G 116 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 118 const G4Mater << 117 const G4MaterialCutsCouple*, 119 const G4Dynam << 118 const G4DynamicParticle*, 120 G4double tmin << 119 G4double tmin = 0.0, 121 G4double tmax << 120 G4double tmax = DBL_MAX) = 0; 122 << 123 //------------------------------------------ << 124 // Methods for initialisation of MT; may be << 125 //------------------------------------------ << 126 << 127 // initialisation in local thread << 128 virtual void InitialiseLocal(const G4Particl << 129 G4VEmModel* mas << 130 << 131 // initialisation of a new material at run t << 132 virtual void InitialiseForMaterial(const G4P << 133 const G4M << 134 << 135 // initialisation of a new element at run ti << 136 virtual void InitialiseForElement(const G4Pa << 137 G4int Z); << 138 121 139 //------------------------------------------ 122 //------------------------------------------------------------------------ 140 // Methods with standard implementation; may 123 // Methods with standard implementation; may be overwritten if needed 141 //------------------------------------------ 124 //------------------------------------------------------------------------ 142 125 143 // main method to compute dEdx 126 // main method to compute dEdx 144 virtual G4double ComputeDEDXPerVolume(const 127 virtual G4double ComputeDEDXPerVolume(const G4Material*, 145 const << 128 const G4ParticleDefinition*, 146 G4doub << 129 G4double kineticEnergy, 147 G4doub << 130 G4double cutEnergy = DBL_MAX); 148 131 149 // main method to compute cross section per 132 // main method to compute cross section per Volume 150 virtual G4double CrossSectionPerVolume(const 133 virtual G4double CrossSectionPerVolume(const G4Material*, 151 const << 134 const G4ParticleDefinition*, 152 G4dou << 135 G4double kineticEnergy, 153 G4dou << 136 G4double cutEnergy = 0.0, 154 G4dou << 137 G4double maxEnergy = DBL_MAX); 155 << 156 // method to get partial cross section << 157 virtual G4double GetPartialCrossSection(cons << 158 G4in << 159 cons << 160 G4do << 161 138 162 // main method to compute cross section per 139 // main method to compute cross section per atom 163 virtual G4double ComputeCrossSectionPerAtom( 140 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 164 << 141 G4double kinEnergy, 165 << 142 G4double Z, 166 << 143 G4double A = 0., /* amu */ 167 << 144 G4double cutEnergy = 0.0, 168 << 145 G4double maxEnergy = DBL_MAX); 169 << 146 170 // main method to compute cross section per << 147 // min cut in kinetic energy allowed by the model 171 virtual G4double ComputeCrossSectionPerShell << 148 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 172 << 149 const G4MaterialCutsCouple*); 173 << 174 << 175 << 176 << 177 // Compute effective ion charge square << 178 virtual G4double ChargeSquareRatio(const G4T << 179 150 180 // Compute effective ion charge square 151 // Compute effective ion charge square 181 virtual G4double GetChargeSquareRatio(const 152 virtual G4double GetChargeSquareRatio(const G4ParticleDefinition*, 182 const << 153 const G4Material*, 183 G4doub << 154 G4double kineticEnergy); 184 155 185 // Compute ion charge 156 // Compute ion charge 186 virtual G4double GetParticleCharge(const G4P 157 virtual G4double GetParticleCharge(const G4ParticleDefinition*, 187 const G4M << 158 const G4Material*, 188 G4double << 159 G4double kineticEnergy); 189 << 190 // Initialisation for a new track << 191 virtual void StartTracking(G4Track*); << 192 160 193 // add correction to energy loss and compute 161 // add correction to energy loss and compute non-ionizing energy loss 194 virtual void CorrectionsAlongStep(const G4Ma 162 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 195 const G4Dy << 163 const G4DynamicParticle*, 196 const G4do << 164 G4double& eloss, 197 G4double& << 165 G4double& niel, 198 << 166 G4double length); 199 // value which may be tabulated (by default << 167 200 virtual G4double Value(const G4MaterialCutsC << 168 // sample PIXE deexcitation 201 const G4ParticleDefin << 169 virtual void SampleDeexcitationAlongStep(const G4Material*, 202 G4double kineticEnerg << 170 const G4Track&, 203 << 171 G4double& eloss); 204 // threshold for zero value << 205 virtual G4double MinPrimaryEnergy(const G4Ma << 206 const G4Pa << 207 G4double c << 208 172 209 // model can define low-energy limit for the << 173 // initilisation at run time for a given material 210 virtual G4double MinEnergyCut(const G4Partic << 211 const G4Materi << 212 << 213 // initialisation at run time for a given ma << 214 virtual void SetupForMaterial(const G4Partic 174 virtual void SetupForMaterial(const G4ParticleDefinition*, 215 const G4Materi << 175 const G4Material*, 216 G4double kinet 176 G4double kineticEnergy); 217 177 218 // add a region for the model 178 // add a region for the model 219 virtual void DefineForRegion(const G4Region* 179 virtual void DefineForRegion(const G4Region*); 220 180 221 // fill number of different type of secondar << 222 virtual void FillNumberOfSecondaries(G4int& << 223 G4int& << 224 << 225 // for automatic documentation << 226 virtual void ModelDescription(std::ostream& << 227 << 228 protected: 181 protected: 229 182 230 // initialisation of the ParticleChange for 183 // initialisation of the ParticleChange for the model 231 G4ParticleChangeForLoss* GetParticleChangeFo 184 G4ParticleChangeForLoss* GetParticleChangeForLoss(); 232 185 233 // initialisation of the ParticleChange for 186 // initialisation of the ParticleChange for the model 234 G4ParticleChangeForGamma* GetParticleChangeF 187 G4ParticleChangeForGamma* GetParticleChangeForGamma(); 235 188 236 // kinematically allowed max kinetic energy 189 // kinematically allowed max kinetic energy of a secondary 237 virtual G4double MaxSecondaryEnergy(const G4 190 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 238 G4double << 191 G4double kineticEnergy); 239 192 240 public: 193 public: 241 194 242 //------------------------------------------ 195 //------------------------------------------------------------------------ 243 // Generic methods common to all models 196 // Generic methods common to all models 244 //------------------------------------------ 197 //------------------------------------------------------------------------ 245 198 246 // should be called at initialisation to bui 199 // should be called at initialisation to build element selectors 247 void InitialiseElementSelectors(const G4Part << 200 void InitialiseElementSelectors(const G4ParticleDefinition*, 248 const G4Data << 201 const G4DataVector&); 249 << 250 // should be called at initialisation to acc << 251 inline std::vector<G4EmElementSelector*>* Ge << 252 << 253 // should be called at initialisation to set << 254 inline void SetElementSelectors(std::vector< << 255 202 256 // dEdx per unit length, base material appro << 203 // dEdx per unit length 257 inline G4double ComputeDEDX( const G4Materia << 204 inline G4double ComputeDEDX(const G4MaterialCutsCouple*, 258 const G4Particl << 205 const G4ParticleDefinition*, 259 G4double kineti << 206 G4double kineticEnergy, 260 G4double cutEne << 207 G4double cutEnergy = DBL_MAX); 261 208 262 // cross section per volume, base material a << 209 // cross section per volume 263 inline G4double CrossSection(const G4Materia 210 inline G4double CrossSection(const G4MaterialCutsCouple*, 264 const G4Particl << 211 const G4ParticleDefinition*, 265 G4double kineti << 212 G4double kineticEnergy, 266 G4double cutEne << 213 G4double cutEnergy = 0.0, 267 G4double maxEne << 214 G4double maxEnergy = DBL_MAX); 268 215 269 // compute mean free path via cross section 216 // compute mean free path via cross section per volume 270 inline G4double ComputeMeanFreePath(const G4 217 inline G4double ComputeMeanFreePath(const G4ParticleDefinition*, 271 G4double << 218 G4double kineticEnergy, 272 const G4 << 219 const G4Material*, 273 G4double << 220 G4double cutEnergy = 0.0, 274 G4double << 221 G4double maxEnergy = DBL_MAX); 275 222 276 // generic cross section per element 223 // generic cross section per element 277 inline G4double ComputeCrossSectionPerAtom(c 224 inline G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 278 c 225 const G4Element*, 279 G << 226 G4double kinEnergy, 280 G << 227 G4double cutEnergy = 0.0, 281 G << 228 G4double maxEnergy = DBL_MAX); >> 229 >> 230 // select isotope in order to have precise mass of the nucleus >> 231 inline G4int SelectIsotopeNumber(const G4Element*); 282 232 283 // atom can be selected effitiantly if eleme 233 // atom can be selected effitiantly if element selectors are initialised 284 inline const G4Element* SelectRandomAtom(con 234 inline const G4Element* SelectRandomAtom(const G4MaterialCutsCouple*, 285 con << 235 const G4ParticleDefinition*, 286 G4d << 236 G4double kineticEnergy, 287 G4d << 237 G4double cutEnergy = 0.0, 288 G4d << 238 G4double maxEnergy = DBL_MAX); 289 // same as SelectRandomAtom above but more e << 290 inline const G4Element* SelectTargetAtom(con << 291 con << 292 G4d << 293 G4d << 294 G4d << 295 G4d << 296 239 297 // to select atom cross section per volume i 240 // to select atom cross section per volume is recomputed for each element 298 const G4Element* SelectRandomAtom(const G4Ma 241 const G4Element* SelectRandomAtom(const G4Material*, 299 const G4Pa << 242 const G4ParticleDefinition*, 300 G4double k << 243 G4double kineticEnergy, 301 G4double c << 244 G4double cutEnergy = 0.0, 302 G4double m << 245 G4double maxEnergy = DBL_MAX); 303 << 304 // to select atom if cross section is propor << 305 const G4Element* GetCurrentElement(const G4M << 306 G4int SelectRandomAtomNumber(const G4Materia << 307 << 308 // select isotope in order to have precise m << 309 const G4Isotope* GetCurrentIsotope(const G4E << 310 G4int SelectIsotopeNumber(const G4Element*) << 311 246 312 //------------------------------------------ 247 //------------------------------------------------------------------------ 313 // Get/Set methods 248 // Get/Set methods 314 //------------------------------------------ 249 //------------------------------------------------------------------------ 315 250 316 void SetParticleChange(G4VParticleChange*, G << 317 << 318 void SetCrossSectionTable(G4PhysicsTable*, G << 319 << 320 inline G4ElementData* GetElementData(); << 321 << 322 inline G4PhysicsTable* GetCrossSectionTable( << 323 << 324 inline G4VEmFluctuationModel* GetModelOfFluc 251 inline G4VEmFluctuationModel* GetModelOfFluctuations(); 325 252 326 inline G4VEmAngularDistribution* GetAngularD << 327 << 328 inline G4VEmModel* GetTripletModel(); << 329 << 330 inline void SetTripletModel(G4VEmModel*); << 331 << 332 inline void SetAngularDistribution(G4VEmAngu << 333 << 334 inline G4double HighEnergyLimit() const; 253 inline G4double HighEnergyLimit() const; 335 254 336 inline G4double LowEnergyLimit() const; 255 inline G4double LowEnergyLimit() const; 337 256 338 inline G4double HighEnergyActivationLimit() << 339 << 340 inline G4double LowEnergyActivationLimit() c << 341 << 342 inline G4double PolarAngleLimit() const; 257 inline G4double PolarAngleLimit() const; 343 258 344 inline G4double SecondaryThreshold() const; 259 inline G4double SecondaryThreshold() const; 345 260 346 inline G4bool DeexcitationFlag() const; << 261 inline G4bool LPMFlag() const; 347 << 348 inline G4bool ForceBuildTableFlag() const; << 349 << 350 inline G4bool UseAngularGeneratorFlag() cons << 351 262 352 inline void SetAngularGeneratorFlag(G4bool); << 263 inline G4bool DeexcitationFlag() const; 353 264 354 inline void SetHighEnergyLimit(G4double); 265 inline void SetHighEnergyLimit(G4double); 355 266 356 inline void SetLowEnergyLimit(G4double); 267 inline void SetLowEnergyLimit(G4double); 357 268 358 inline void SetActivationHighEnergyLimit(G4d 269 inline void SetActivationHighEnergyLimit(G4double); 359 270 360 inline void SetActivationLowEnergyLimit(G4do 271 inline void SetActivationLowEnergyLimit(G4double); 361 272 362 inline G4bool IsActive(G4double kinEnergy) c << 273 inline G4bool IsActive(G4double kinEnergy); 363 274 364 inline void SetPolarAngleLimit(G4double); 275 inline void SetPolarAngleLimit(G4double); 365 276 366 inline void SetSecondaryThreshold(G4double); 277 inline void SetSecondaryThreshold(G4double); 367 278 368 inline void SetDeexcitationFlag(G4bool val); << 279 inline void SetLPMFlag(G4bool val); 369 << 370 inline void SetForceBuildTable(G4bool val); << 371 280 372 inline void SetFluctuationFlag(G4bool val); << 281 inline void SetDeexcitationFlag(G4bool val); 373 << 374 inline G4bool IsMaster() const; << 375 << 376 inline void SetUseBaseMaterials(G4bool val); << 377 282 378 inline G4bool UseBaseMaterials() const; << 283 inline void ActivateNuclearStopping(G4bool); 379 284 380 inline G4double MaxSecondaryKinEnergy(const 285 inline G4double MaxSecondaryKinEnergy(const G4DynamicParticle* dynParticle); 381 286 382 inline const G4String& GetName() const; 287 inline const G4String& GetName() const; 383 288 384 inline void SetCurrentCouple(const G4Materia << 289 inline void SetParticleChange(G4VParticleChange*, G4VEmFluctuationModel*); 385 << 386 inline G4bool IsLocked() const; << 387 << 388 inline void SetLocked(G4bool); << 389 290 390 // obsolete methods << 291 inline void SetCurrentCouple(const G4MaterialCutsCouple*); 391 [[deprecated("Use G4EmParameters::Instance() << 392 void SetLPMFlag(G4bool); << 393 << 394 void SetMasterThread(G4bool); << 395 << 396 // hide assignment operator << 397 G4VEmModel & operator=(const G4VEmModel &ri << 398 G4VEmModel(const G4VEmModel&) = delete; << 399 292 400 protected: 293 protected: 401 294 402 inline const G4MaterialCutsCouple* CurrentCo 295 inline const G4MaterialCutsCouple* CurrentCouple() const; 403 296 404 inline void SetCurrentElement(const G4Elemen 297 inline void SetCurrentElement(const G4Element*); 405 298 406 private: << 299 inline const G4Element* GetCurrentElement() const; 407 300 408 // ======== Parameters of the class fixed at << 301 private: 409 << 410 G4VEmFluctuationModel* flucModel = null << 411 G4VEmAngularDistribution* anglModel = null << 412 G4VEmModel* fTripletModel = << 413 const G4MaterialCutsCouple* fCurrentCouple = << 414 const G4Element* fCurrentElement << 415 std::vector<G4EmElementSelector*>* elmSelect << 416 G4LossTableManager* fEmManager; << 417 302 418 protected: << 303 // hide assignment operator >> 304 G4VEmModel & operator=(const G4VEmModel &right); >> 305 G4VEmModel(const G4VEmModel&); 419 306 420 G4ElementData* fElementData = << 307 // ======== Parameters of the class fixed at construction ========= 421 G4VParticleChange* pParticleChange << 422 G4PhysicsTable* xSectionTable = << 423 const G4Material* pBaseMaterial = << 424 const std::vector<G4double>* theDensityFacto << 425 const std::vector<G4int>* theDensityIdx = << 426 308 427 G4double inveplus; << 309 G4VEmFluctuationModel* fluc; 428 G4double pFactor = 1.0; << 310 const G4String name; 429 311 430 private: << 312 // ======== Parameters of the class fixed at initialisation ======= 431 313 432 G4double lowLimit; << 314 G4double lowLimit; 433 G4double highLimit; << 315 G4double highLimit; 434 G4double eMinActive = 0.0; << 316 G4double eMinActive; 435 G4double eMaxActive = DBL_MAX; << 317 G4double eMaxActive; 436 G4double secondaryThreshold = DBL_MAX; << 318 G4double polarAngleLimit; 437 G4double polarAngleLimit; << 319 G4double secondaryThreshold; >> 320 G4bool theLPMflag; 438 321 439 G4int nSelectors = 0; << 322 G4int nSelectors; 440 G4int nsec = 5; << 323 std::vector<G4EmElementSelector*> elmSelectors; 441 324 442 protected: 325 protected: 443 326 444 std::size_t currentCoupleIndex = 0; << 327 G4VParticleChange* pParticleChange; 445 std::size_t basedCoupleIndex = 0; << 328 G4bool nuclearStopping; 446 G4bool lossFlucFlag = true; << 329 >> 330 // ======== Cashed values - may be state dependent ================ 447 331 448 private: 332 private: 449 333 450 G4bool flagDeexcitation = false; << 334 const G4MaterialCutsCouple* currentCouple; 451 G4bool flagForceBuildTable = false; << 335 const G4Element* currentElement; 452 G4bool isMaster = true; << 453 << 454 G4bool localTable = true; << 455 G4bool localElmSelectors = true; << 456 G4bool useAngularGenerator = false; << 457 G4bool useBaseMaterials = false; << 458 G4bool isLocked = false; << 459 336 460 const G4String name; << 337 G4int nsec; >> 338 G4bool flagDeexcitation; 461 std::vector<G4double> xsec; 339 std::vector<G4double> xsec; 462 340 463 }; 341 }; 464 342 465 // ======== Run time inline methods ========== 343 // ======== Run time inline methods ================ 466 344 467 inline void G4VEmModel::SetCurrentCouple(const << 345 inline void G4VEmModel::SetCurrentCouple(const G4MaterialCutsCouple* p) 468 { 346 { 469 if(fCurrentCouple != ptr) { << 347 currentCouple = p; 470 fCurrentCouple = ptr; << 471 basedCoupleIndex = currentCoupleIndex = pt << 472 pBaseMaterial = ptr->GetMaterial(); << 473 pFactor = 1.0; << 474 if(useBaseMaterials) { << 475 basedCoupleIndex = (*theDensityIdx)[curr << 476 if(nullptr != pBaseMaterial->GetBaseMate << 477 pBaseMaterial = pBaseMaterial->GetBaseMateri << 478 pFactor = (*theDensityFactor)[currentCou << 479 } << 480 } << 481 } 348 } 482 349 483 //....oooOO0OOooo........oooOO0OOooo........oo << 350 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 484 351 485 inline const G4MaterialCutsCouple* G4VEmModel: 352 inline const G4MaterialCutsCouple* G4VEmModel::CurrentCouple() const 486 { 353 { 487 return fCurrentCouple; << 354 return currentCouple; 488 } 355 } 489 356 490 //....oooOO0OOooo........oooOO0OOooo........oo << 357 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 491 358 492 inline void G4VEmModel::SetCurrentElement(cons 359 inline void G4VEmModel::SetCurrentElement(const G4Element* elm) 493 { 360 { 494 fCurrentElement = elm; << 361 currentElement = elm; 495 } 362 } 496 363 497 //....oooOO0OOooo........oooOO0OOooo........oo << 364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 498 365 499 inline << 366 inline const G4Element* G4VEmModel::GetCurrentElement() const 500 G4double G4VEmModel::MaxSecondaryKinEnergy(con << 501 { 367 { 502 return MaxSecondaryEnergy(dynPart->GetPartic << 368 return currentElement; 503 dynPart->GetKineti << 504 } 369 } 505 370 506 //....oooOO0OOooo........oooOO0OOooo........oo << 371 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 507 << 508 inline G4double G4VEmModel::ComputeDEDX(const << 509 const << 510 G4doub << 511 G4doub << 512 { << 513 SetCurrentCouple(couple); << 514 return pFactor*ComputeDEDXPerVolume(pBaseMat << 515 } << 516 << 517 //....oooOO0OOooo........oooOO0OOooo........oo << 518 << 519 inline G4double G4VEmModel::CrossSection(const << 520 const << 521 G4dou << 522 G4dou << 523 G4dou << 524 { << 525 SetCurrentCouple(couple); << 526 return pFactor*CrossSectionPerVolume(pBaseMa << 527 cutEner << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 372 532 inline 373 inline 533 G4double G4VEmModel::ComputeMeanFreePath(const << 374 G4double G4VEmModel::MaxSecondaryKinEnergy(const G4DynamicParticle* dynPart) 534 G4dou << 535 const << 536 G4dou << 537 G4dou << 538 { 375 { 539 G4double cross = CrossSectionPerVolume(mater << 376 return MaxSecondaryEnergy(dynPart->GetDefinition(), 540 return (cross > 0.0) ? 1./cross : DBL_MAX; << 377 dynPart->GetKineticEnergy()); 541 } 378 } 542 379 543 //....oooOO0OOooo........oooOO0OOooo........oo << 380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 544 381 545 inline G4double << 382 inline G4double G4VEmModel::ComputeDEDX(const G4MaterialCutsCouple* c, 546 G4VEmModel::ComputeCrossSectionPerAtom(const G << 383 const G4ParticleDefinition* p, 547 const G << 384 G4double kinEnergy, 548 G4doubl << 385 G4double cutEnergy) 549 G4doubl << 550 G4doubl << 551 { 386 { 552 fCurrentElement = elm; << 387 currentCouple = c; 553 return ComputeCrossSectionPerAtom(part,kinEn << 388 return ComputeDEDXPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy); 554 cutEnergy, << 555 } 389 } 556 390 557 //....oooOO0OOooo........oooOO0OOooo........oo << 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 558 << 559 inline const G4Element* << 560 G4VEmModel::SelectRandomAtom(const G4MaterialC << 561 const G4ParticleD << 562 G4double kinEnerg << 563 G4double cutEnerg << 564 G4double maxEnerg << 565 { << 566 SetCurrentCouple(couple); << 567 fCurrentElement = (nSelectors > 0) ? << 568 ((*elmSelectors)[couple->GetIndex()])->Sel << 569 SelectRandomAtom(pBaseMaterial,part,kinEne << 570 return fCurrentElement; << 571 } << 572 << 573 //....oooOO0OOooo........oooOO0OOooo........oo << 574 392 575 inline const G4Element* << 393 inline G4double G4VEmModel::CrossSection(const G4MaterialCutsCouple* c, 576 G4VEmModel::SelectTargetAtom(const G4MaterialC << 394 const G4ParticleDefinition* p, 577 const G4ParticleD << 395 G4double kinEnergy, 578 G4double kinEnerg << 396 G4double cutEnergy, 579 G4double logKinE, << 397 G4double maxEnergy) 580 G4double cutEnerg << 398 { 581 G4double maxEnerg << 399 currentCouple = c; 582 { << 400 return CrossSectionPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy,maxEnergy); 583 SetCurrentCouple(couple); << 584 fCurrentElement = (nSelectors > 0) << 585 ? ((*elmSelectors)[couple->GetIndex()])->Se << 586 : SelectRandomAtom(pBaseMaterial,part,kinEn << 587 return fCurrentElement; << 588 } 401 } 589 402 590 // ======== Get/Set inline methods used at ini << 403 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 591 404 592 inline G4VEmFluctuationModel* G4VEmModel::GetM << 405 inline G4double G4VEmModel::ComputeMeanFreePath(const G4ParticleDefinition* p, >> 406 G4double ekin, >> 407 const G4Material* material, >> 408 G4double emin, >> 409 G4double emax) 593 { 410 { 594 return flucModel; << 411 G4double mfp = DBL_MAX; >> 412 G4double cross = CrossSectionPerVolume(material,p,ekin,emin,emax); >> 413 if (cross > DBL_MIN) { mfp = 1./cross; } >> 414 return mfp; 595 } 415 } 596 416 597 //....oooOO0OOooo........oooOO0OOooo........oo << 417 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 598 418 599 inline G4VEmAngularDistribution* G4VEmModel::G << 419 inline G4double G4VEmModel::ComputeCrossSectionPerAtom( >> 420 const G4ParticleDefinition* part, >> 421 const G4Element* elm, >> 422 G4double kinEnergy, >> 423 G4double cutEnergy, >> 424 G4double maxEnergy) 600 { 425 { 601 return anglModel; << 426 currentElement = elm; >> 427 return ComputeCrossSectionPerAtom(part,kinEnergy,elm->GetZ(),elm->GetN(), >> 428 cutEnergy,maxEnergy); 602 } 429 } 603 430 604 //....oooOO0OOooo........oooOO0OOooo........oo << 431 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 605 432 606 inline void G4VEmModel::SetAngularDistribution << 433 inline 607 { << 434 const G4Element* G4VEmModel::SelectRandomAtom(const G4MaterialCutsCouple* couple, 608 if(p != anglModel) { << 435 const G4ParticleDefinition* p, 609 delete anglModel; << 436 G4double kinEnergy, 610 anglModel = p; << 437 G4double cutEnergy, >> 438 G4double maxEnergy) >> 439 { >> 440 currentCouple = couple; >> 441 if(nSelectors > 0) { >> 442 currentElement = >> 443 elmSelectors[couple->GetIndex()]->SelectRandomAtom(kinEnergy); >> 444 } else { >> 445 currentElement = SelectRandomAtom(couple->GetMaterial(),p,kinEnergy, >> 446 cutEnergy,maxEnergy); 611 } 447 } >> 448 return currentElement; 612 } 449 } 613 450 614 //....oooOO0OOooo........oooOO0OOooo........oo << 451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 615 452 616 inline G4VEmModel* G4VEmModel::GetTripletModel << 453 inline G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) 617 { 454 { 618 return fTripletModel; << 455 currentElement = elm; >> 456 G4int N = G4int(elm->GetN() + 0.5); >> 457 G4int ni = elm->GetNumberOfIsotopes(); >> 458 if(ni > 0) { >> 459 G4int idx = 0; >> 460 if(ni > 1) { >> 461 G4double* ab = elm->GetRelativeAbundanceVector(); >> 462 G4double x = G4UniformRand(); >> 463 for(; idx<ni; ++idx) { >> 464 x -= ab[idx]; >> 465 if (x <= 0.0) { break; } >> 466 } >> 467 if(idx >= ni) { idx = ni - 1; } >> 468 } >> 469 N = elm->GetIsotope(idx)->GetN(); >> 470 } >> 471 return N; 619 } 472 } 620 473 621 //....oooOO0OOooo........oooOO0OOooo........oo << 474 // ======== Get/Set inline methods used at initialisation ================ 622 475 623 inline void G4VEmModel::SetTripletModel(G4VEmM << 476 inline G4VEmFluctuationModel* G4VEmModel::GetModelOfFluctuations() 624 { 477 { 625 if(p != fTripletModel) { << 478 return fluc; 626 delete fTripletModel; << 627 fTripletModel = p; << 628 } << 629 } 479 } 630 480 631 //....oooOO0OOooo........oooOO0OOooo........oo << 481 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 632 482 633 inline G4double G4VEmModel::HighEnergyLimit() 483 inline G4double G4VEmModel::HighEnergyLimit() const 634 { 484 { 635 return highLimit; 485 return highLimit; 636 } 486 } 637 487 638 //....oooOO0OOooo........oooOO0OOooo........oo << 488 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 639 489 640 inline G4double G4VEmModel::LowEnergyLimit() c 490 inline G4double G4VEmModel::LowEnergyLimit() const 641 { 491 { 642 return lowLimit; 492 return lowLimit; 643 } 493 } 644 494 645 //....oooOO0OOooo........oooOO0OOooo........oo << 495 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 646 << 647 inline G4double G4VEmModel::HighEnergyActivati << 648 { << 649 return eMaxActive; << 650 } << 651 << 652 //....oooOO0OOooo........oooOO0OOooo........oo << 653 << 654 inline G4double G4VEmModel::LowEnergyActivatio << 655 { << 656 return eMinActive; << 657 } << 658 << 659 //....oooOO0OOooo........oooOO0OOooo........oo << 660 496 661 inline G4double G4VEmModel::PolarAngleLimit() 497 inline G4double G4VEmModel::PolarAngleLimit() const 662 { 498 { 663 return polarAngleLimit; 499 return polarAngleLimit; 664 } 500 } 665 501 666 //....oooOO0OOooo........oooOO0OOooo........oo << 502 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 667 503 668 inline G4double G4VEmModel::SecondaryThreshold 504 inline G4double G4VEmModel::SecondaryThreshold() const 669 { 505 { 670 return secondaryThreshold; 506 return secondaryThreshold; 671 } 507 } 672 508 673 //....oooOO0OOooo........oooOO0OOooo........oo 509 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 674 510 675 inline G4bool G4VEmModel::DeexcitationFlag() c << 511 inline G4bool G4VEmModel::LPMFlag() const 676 { << 677 return flagDeexcitation; << 678 } << 679 << 680 //....oooOO0OOooo........oooOO0OOooo........oo << 681 << 682 inline G4bool G4VEmModel::ForceBuildTableFlag( << 683 { << 684 return flagForceBuildTable; << 685 } << 686 << 687 //....oooOO0OOooo........oooOO0OOooo........oo << 688 << 689 inline G4bool G4VEmModel::UseAngularGeneratorF << 690 { << 691 return useAngularGenerator; << 692 } << 693 << 694 //....oooOO0OOooo........oooOO0OOooo........oo << 695 << 696 inline void G4VEmModel::SetAngularGeneratorFla << 697 { 512 { 698 useAngularGenerator = val; << 513 return theLPMflag; 699 } 514 } 700 515 701 //....oooOO0OOooo........oooOO0OOooo........oo 516 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 702 517 703 inline void G4VEmModel::SetFluctuationFlag(G4b << 518 inline G4bool G4VEmModel::DeexcitationFlag() const 704 { << 705 lossFlucFlag = val; << 706 } << 707 << 708 //....oooOO0OOooo........oooOO0OOooo........oo << 709 << 710 inline G4bool G4VEmModel::IsMaster() const << 711 { << 712 return isMaster; << 713 } << 714 << 715 //....oooOO0OOooo........oooOO0OOooo........oo << 716 << 717 inline void G4VEmModel::SetUseBaseMaterials(G4 << 718 { << 719 useBaseMaterials = val; << 720 } << 721 << 722 //....oooOO0OOooo........oooOO0OOooo........oo << 723 << 724 inline G4bool G4VEmModel::UseBaseMaterials() c << 725 { 519 { 726 return useBaseMaterials; << 520 return flagDeexcitation; 727 } 521 } 728 522 729 //....oooOO0OOooo........oooOO0OOooo........oo << 523 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 730 524 731 inline void G4VEmModel::SetHighEnergyLimit(G4d 525 inline void G4VEmModel::SetHighEnergyLimit(G4double val) 732 { 526 { 733 highLimit = val; 527 highLimit = val; 734 } 528 } 735 529 736 //....oooOO0OOooo........oooOO0OOooo........oo << 530 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 737 531 738 inline void G4VEmModel::SetLowEnergyLimit(G4do 532 inline void G4VEmModel::SetLowEnergyLimit(G4double val) 739 { 533 { 740 lowLimit = val; 534 lowLimit = val; 741 } 535 } 742 536 743 //....oooOO0OOooo........oooOO0OOooo........oo << 537 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 744 538 745 inline void G4VEmModel::SetActivationHighEnerg 539 inline void G4VEmModel::SetActivationHighEnergyLimit(G4double val) 746 { 540 { 747 eMaxActive = val; 541 eMaxActive = val; 748 } 542 } 749 543 750 //....oooOO0OOooo........oooOO0OOooo........oo << 544 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 751 545 752 inline void G4VEmModel::SetActivationLowEnergy 546 inline void G4VEmModel::SetActivationLowEnergyLimit(G4double val) 753 { 547 { 754 eMinActive = val; 548 eMinActive = val; 755 } 549 } 756 550 757 //....oooOO0OOooo........oooOO0OOooo........oo << 551 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 758 552 759 inline G4bool G4VEmModel::IsActive(G4double ki << 553 inline G4bool G4VEmModel::IsActive(G4double kinEnergy) 760 { 554 { 761 return (kinEnergy >= eMinActive && kinEnergy 555 return (kinEnergy >= eMinActive && kinEnergy <= eMaxActive); 762 } 556 } 763 557 764 //....oooOO0OOooo........oooOO0OOooo........oo << 558 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 765 559 766 inline void G4VEmModel::SetPolarAngleLimit(G4d 560 inline void G4VEmModel::SetPolarAngleLimit(G4double val) 767 { 561 { 768 if(!isLocked) { polarAngleLimit = val; } << 562 polarAngleLimit = val; 769 } 563 } 770 564 771 //....oooOO0OOooo........oooOO0OOooo........oo << 565 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 772 566 773 inline void G4VEmModel::SetSecondaryThreshold( 567 inline void G4VEmModel::SetSecondaryThreshold(G4double val) 774 { 568 { 775 secondaryThreshold = val; 569 secondaryThreshold = val; 776 } 570 } 777 571 778 //....oooOO0OOooo........oooOO0OOooo........oo 572 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 779 573 780 inline void G4VEmModel::SetDeexcitationFlag(G4 << 574 inline void G4VEmModel::SetLPMFlag(G4bool val) 781 { 575 { 782 flagDeexcitation = val; << 576 theLPMflag = val; 783 } 577 } 784 578 785 //....oooOO0OOooo........oooOO0OOooo........oo 579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 786 580 787 inline void G4VEmModel::SetForceBuildTable(G4b << 581 inline void G4VEmModel::SetDeexcitationFlag(G4bool val) 788 { << 789 flagForceBuildTable = val; << 790 } << 791 << 792 //....oooOO0OOooo........oooOO0OOooo........oo << 793 << 794 inline const G4String& G4VEmModel::GetName() c << 795 { << 796 return name; << 797 } << 798 << 799 //....oooOO0OOooo........oooOO0OOooo........oo << 800 << 801 inline std::vector<G4EmElementSelector*>* G4VE << 802 { << 803 return elmSelectors; << 804 } << 805 << 806 //....oooOO0OOooo........oooOO0OOooo........oo << 807 << 808 inline void << 809 G4VEmModel::SetElementSelectors(std::vector<G4 << 810 { << 811 if(p != elmSelectors) { << 812 elmSelectors = p; << 813 nSelectors = (nullptr != elmSelectors) ? G << 814 localElmSelectors = false; << 815 } << 816 } << 817 << 818 //....oooOO0OOooo........oooOO0OOooo........oo << 819 << 820 inline G4ElementData* G4VEmModel::GetElementDa << 821 { 582 { 822 return fElementData; << 583 flagDeexcitation = val; 823 } 584 } 824 585 825 //....oooOO0OOooo........oooOO0OOooo........oo 586 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 826 587 827 inline G4PhysicsTable* G4VEmModel::GetCrossSec << 588 inline void G4VEmModel::ActivateNuclearStopping(G4bool val) 828 { 589 { 829 return xSectionTable; << 590 nuclearStopping = val; 830 } 591 } 831 592 832 //....oooOO0OOooo........oooOO0OOooo........oo << 593 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 833 594 834 inline G4bool G4VEmModel::IsLocked() const << 595 inline const G4String& G4VEmModel::GetName() const 835 { 596 { 836 return isLocked; << 597 return name; 837 } 598 } 838 599 839 //....oooOO0OOooo........oooOO0OOooo........oo << 600 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 840 601 841 inline void G4VEmModel::SetLocked(G4bool val) << 602 inline void G4VEmModel::SetParticleChange(G4VParticleChange* p, >> 603 G4VEmFluctuationModel* f = 0) 842 { 604 { 843 isLocked = val; << 605 if(p && pParticleChange != p) { pParticleChange = p; } >> 606 fluc = f; 844 } 607 } 845 608 846 //....oooOO0OOooo........oooOO0OOooo........oo << 609 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 847 610 848 #endif 611 #endif >> 612 849 613