Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmModel.hh,v 1.72 2009/09/23 14:42:47 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmModel 34 // File name: G4VEmModel 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: 40 // Modifications: 38 // 41 // 39 // 23-12-02 V.Ivanchenko change interface befo 42 // 23-12-02 V.Ivanchenko change interface before move to cut per region 40 // 24-01-03 Cut per region (V.Ivanchenko) 43 // 24-01-03 Cut per region (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 42 // 25-02-03 Add sample theta and displacement 45 // 25-02-03 Add sample theta and displacement (V.Ivanchenko) 43 // 23-07-03 Replace G4Material by G4MaterialCu 46 // 23-07-03 Replace G4Material by G4MaterialCutCouple in dE/dx and CrossSection 44 // calculation (V.Ivanchenko) 47 // calculation (V.Ivanchenko) 45 // 01-03-04 L.Urban signature changed in Sampl 48 // 01-03-04 L.Urban signature changed in SampleCosineTheta 46 // 23-04-04 L.urban signature of SampleCosineT 49 // 23-04-04 L.urban signature of SampleCosineTheta changed back 47 // 17-11-04 Add method CrossSectionPerAtom (V. 50 // 17-11-04 Add method CrossSectionPerAtom (V.Ivanchenko) 48 // 14-03-05 Reduce number of pure virtual meth 51 // 14-03-05 Reduce number of pure virtual methods and make inline part 49 // separate (V.Ivanchenko) 52 // separate (V.Ivanchenko) 50 // 24-03-05 Remove IsInCharge and add G4VParti 53 // 24-03-05 Remove IsInCharge and add G4VParticleChange in the constructor (VI) 51 // 08-04-05 Major optimisation of internal int 54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 52 // 15-04-05 optimize internal interface for ms 55 // 15-04-05 optimize internal interface for msc (V.Ivanchenko) 53 // 08-05-05 A -> N (V.Ivanchenko) 56 // 08-05-05 A -> N (V.Ivanchenko) 54 // 25-07-05 Move constructor and destructor to 57 // 25-07-05 Move constructor and destructor to the body (V.Ivanchenko) 55 // 02-02-06 ComputeCrossSectionPerAtom: defaul 58 // 02-02-06 ComputeCrossSectionPerAtom: default value A=0. (mma) 56 // 06-02-06 add method ComputeMeanFreePath() ( 59 // 06-02-06 add method ComputeMeanFreePath() (mma) 57 // 07-03-06 Optimize msc methods (V.Ivanchenko 60 // 07-03-06 Optimize msc methods (V.Ivanchenko) 58 // 29-06-06 Add member currentElement and Get/ 61 // 29-06-06 Add member currentElement and Get/Set methods (V.Ivanchenko) 59 // 29-10-07 Added SampleScattering (V.Ivanchen 62 // 29-10-07 Added SampleScattering (V.Ivanchenko) 60 // 15-07-08 Reorder class members and improve 63 // 15-07-08 Reorder class members and improve comments (VI) 61 // 21-07-08 Added vector of G4ElementSelector 64 // 21-07-08 Added vector of G4ElementSelector and methods to use it (VI) 62 // 12-09-08 Added methods GetParticleCharge, G 65 // 12-09-08 Added methods GetParticleCharge, GetChargeSquareRatio, 63 // CorrectionsAlongStep, ActivateNucl 66 // CorrectionsAlongStep, ActivateNuclearStopping (VI) 64 // 16-02-09 Moved implementations of virtual m 67 // 16-02-09 Moved implementations of virtual methods to source (VI) 65 // 07-04-09 Moved msc methods from G4VEmModel 68 // 07-04-09 Moved msc methods from G4VEmModel to G4VMscModel (VI) 66 // 13-10-10 Added G4VEmAngularDistribution (VI << 67 // 69 // 68 // Class Description: 70 // Class Description: 69 // 71 // 70 // Abstract interface to energy loss models 72 // Abstract interface to energy loss models 71 73 72 // ------------------------------------------- 74 // ------------------------------------------------------------------- 73 // 75 // 74 76 75 #ifndef G4VEmModel_h 77 #ifndef G4VEmModel_h 76 #define G4VEmModel_h 1 78 #define G4VEmModel_h 1 77 79 78 #include "globals.hh" 80 #include "globals.hh" 79 #include "G4DynamicParticle.hh" 81 #include "G4DynamicParticle.hh" 80 #include "G4ParticleDefinition.hh" 82 #include "G4ParticleDefinition.hh" 81 #include "G4MaterialCutsCouple.hh" 83 #include "G4MaterialCutsCouple.hh" 82 #include "G4Material.hh" 84 #include "G4Material.hh" 83 #include "G4Element.hh" 85 #include "G4Element.hh" 84 #include "G4ElementVector.hh" 86 #include "G4ElementVector.hh" 85 #include "G4Isotope.hh" << 86 #include "G4DataVector.hh" 87 #include "G4DataVector.hh" 87 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmAngularDistribution.hh" << 89 #include "G4EmElementSelector.hh" 89 #include "G4EmElementSelector.hh" 90 #include <CLHEP/Random/RandomEngine.h> << 90 #include "Randomize.hh" 91 #include <vector> 91 #include <vector> 92 92 93 class G4ElementData; << 94 class G4PhysicsTable; 93 class G4PhysicsTable; 95 class G4Region; 94 class G4Region; 96 class G4VParticleChange; 95 class G4VParticleChange; 97 class G4ParticleChangeForLoss; 96 class G4ParticleChangeForLoss; 98 class G4ParticleChangeForGamma; 97 class G4ParticleChangeForGamma; 99 class G4Track; 98 class G4Track; 100 class G4LossTableManager; << 101 99 102 class G4VEmModel 100 class G4VEmModel 103 { 101 { 104 102 105 public: 103 public: 106 104 107 explicit G4VEmModel(const G4String& nam); << 105 G4VEmModel(const G4String& nam); 108 106 109 virtual ~G4VEmModel(); 107 virtual ~G4VEmModel(); 110 108 111 //------------------------------------------ 109 //------------------------------------------------------------------------ 112 // Virtual methods to be implemented for any 110 // Virtual methods to be implemented for any concrete model 113 //------------------------------------------ 111 //------------------------------------------------------------------------ 114 112 115 virtual void Initialise(const G4ParticleDefi << 113 virtual void Initialise(const G4ParticleDefinition*, >> 114 const G4DataVector&) = 0; 116 115 117 virtual void SampleSecondaries(std::vector<G 116 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 118 const G4Mater << 117 const G4MaterialCutsCouple*, 119 const G4Dynam << 118 const G4DynamicParticle*, 120 G4double tmin << 119 G4double tmin = 0.0, 121 G4double tmax << 120 G4double tmax = DBL_MAX) = 0; 122 << 123 //------------------------------------------ << 124 // Methods for initialisation of MT; may be << 125 //------------------------------------------ << 126 << 127 // initialisation in local thread << 128 virtual void InitialiseLocal(const G4Particl << 129 G4VEmModel* mas << 130 << 131 // initialisation of a new material at run t << 132 virtual void InitialiseForMaterial(const G4P << 133 const G4M << 134 << 135 // initialisation of a new element at run ti << 136 virtual void InitialiseForElement(const G4Pa << 137 G4int Z); << 138 121 139 //------------------------------------------ 122 //------------------------------------------------------------------------ 140 // Methods with standard implementation; may 123 // Methods with standard implementation; may be overwritten if needed 141 //------------------------------------------ 124 //------------------------------------------------------------------------ 142 125 143 // main method to compute dEdx 126 // main method to compute dEdx 144 virtual G4double ComputeDEDXPerVolume(const 127 virtual G4double ComputeDEDXPerVolume(const G4Material*, 145 const << 128 const G4ParticleDefinition*, 146 G4doub << 129 G4double kineticEnergy, 147 G4doub << 130 G4double cutEnergy = DBL_MAX); 148 131 149 // main method to compute cross section per 132 // main method to compute cross section per Volume 150 virtual G4double CrossSectionPerVolume(const 133 virtual G4double CrossSectionPerVolume(const G4Material*, 151 const << 134 const G4ParticleDefinition*, 152 G4dou << 135 G4double kineticEnergy, 153 G4dou << 136 G4double cutEnergy = 0.0, 154 G4dou << 137 G4double maxEnergy = DBL_MAX); 155 << 156 // method to get partial cross section << 157 virtual G4double GetPartialCrossSection(cons << 158 G4in << 159 cons << 160 G4do << 161 138 162 // main method to compute cross section per 139 // main method to compute cross section per atom 163 virtual G4double ComputeCrossSectionPerAtom( 140 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 164 << 141 G4double kinEnergy, 165 << 142 G4double Z, 166 << 143 G4double A = 0., /* amu */ 167 << 144 G4double cutEnergy = 0.0, 168 << 145 G4double maxEnergy = DBL_MAX); 169 << 146 170 // main method to compute cross section per << 147 // min cut in kinetic energy allowed by the model 171 virtual G4double ComputeCrossSectionPerShell << 148 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 172 << 149 const G4MaterialCutsCouple*); 173 << 174 << 175 << 176 << 177 // Compute effective ion charge square << 178 virtual G4double ChargeSquareRatio(const G4T << 179 150 180 // Compute effective ion charge square 151 // Compute effective ion charge square 181 virtual G4double GetChargeSquareRatio(const 152 virtual G4double GetChargeSquareRatio(const G4ParticleDefinition*, 182 const << 153 const G4Material*, 183 G4doub << 154 G4double kineticEnergy); 184 155 185 // Compute ion charge 156 // Compute ion charge 186 virtual G4double GetParticleCharge(const G4P 157 virtual G4double GetParticleCharge(const G4ParticleDefinition*, 187 const G4M << 158 const G4Material*, 188 G4double << 159 G4double kineticEnergy); 189 << 190 // Initialisation for a new track << 191 virtual void StartTracking(G4Track*); << 192 160 193 // add correction to energy loss and compute 161 // add correction to energy loss and compute non-ionizing energy loss 194 virtual void CorrectionsAlongStep(const G4Ma 162 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 195 const G4Dy << 163 const G4DynamicParticle*, 196 const G4do << 164 G4double& eloss, 197 G4double& << 165 G4double& niel, 198 << 166 G4double length); 199 // value which may be tabulated (by default << 167 200 virtual G4double Value(const G4MaterialCutsC << 168 // sample PIXE deexcitation 201 const G4ParticleDefin << 169 virtual void SampleDeexcitationAlongStep(const G4Material*, 202 G4double kineticEnerg << 170 const G4Track&, 203 << 171 G4double& eloss); 204 // threshold for zero value << 205 virtual G4double MinPrimaryEnergy(const G4Ma << 206 const G4Pa << 207 G4double c << 208 172 209 // model can define low-energy limit for the << 173 // initilisation at run time for a given material 210 virtual G4double MinEnergyCut(const G4Partic << 211 const G4Materi << 212 << 213 // initialisation at run time for a given ma << 214 virtual void SetupForMaterial(const G4Partic 174 virtual void SetupForMaterial(const G4ParticleDefinition*, 215 const G4Materi << 175 const G4Material*, 216 G4double kinet 176 G4double kineticEnergy); 217 177 218 // add a region for the model 178 // add a region for the model 219 virtual void DefineForRegion(const G4Region* 179 virtual void DefineForRegion(const G4Region*); 220 180 221 // fill number of different type of secondar << 222 virtual void FillNumberOfSecondaries(G4int& << 223 G4int& << 224 << 225 // for automatic documentation << 226 virtual void ModelDescription(std::ostream& << 227 << 228 protected: 181 protected: 229 182 230 // initialisation of the ParticleChange for 183 // initialisation of the ParticleChange for the model 231 G4ParticleChangeForLoss* GetParticleChangeFo 184 G4ParticleChangeForLoss* GetParticleChangeForLoss(); 232 185 233 // initialisation of the ParticleChange for 186 // initialisation of the ParticleChange for the model 234 G4ParticleChangeForGamma* GetParticleChangeF 187 G4ParticleChangeForGamma* GetParticleChangeForGamma(); 235 188 236 // kinematically allowed max kinetic energy 189 // kinematically allowed max kinetic energy of a secondary 237 virtual G4double MaxSecondaryEnergy(const G4 190 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, 238 G4double << 191 G4double kineticEnergy); 239 192 240 public: 193 public: 241 194 242 //------------------------------------------ 195 //------------------------------------------------------------------------ 243 // Generic methods common to all models 196 // Generic methods common to all models 244 //------------------------------------------ 197 //------------------------------------------------------------------------ 245 198 246 // should be called at initialisation to bui 199 // should be called at initialisation to build element selectors 247 void InitialiseElementSelectors(const G4Part << 200 void InitialiseElementSelectors(const G4ParticleDefinition*, 248 const G4Data << 201 const G4DataVector&); 249 << 250 // should be called at initialisation to acc << 251 inline std::vector<G4EmElementSelector*>* Ge << 252 << 253 // should be called at initialisation to set << 254 inline void SetElementSelectors(std::vector< << 255 202 256 // dEdx per unit length, base material appro << 203 // dEdx per unit length 257 inline G4double ComputeDEDX( const G4Materia << 204 inline G4double ComputeDEDX(const G4MaterialCutsCouple*, 258 const G4Particl << 205 const G4ParticleDefinition*, 259 G4double kineti << 206 G4double kineticEnergy, 260 G4double cutEne << 207 G4double cutEnergy = DBL_MAX); 261 208 262 // cross section per volume, base material a << 209 // cross section per volume 263 inline G4double CrossSection(const G4Materia 210 inline G4double CrossSection(const G4MaterialCutsCouple*, 264 const G4Particl << 211 const G4ParticleDefinition*, 265 G4double kineti << 212 G4double kineticEnergy, 266 G4double cutEne << 213 G4double cutEnergy = 0.0, 267 G4double maxEne << 214 G4double maxEnergy = DBL_MAX); 268 215 269 // compute mean free path via cross section 216 // compute mean free path via cross section per volume 270 inline G4double ComputeMeanFreePath(const G4 217 inline G4double ComputeMeanFreePath(const G4ParticleDefinition*, 271 G4double << 218 G4double kineticEnergy, 272 const G4 << 219 const G4Material*, 273 G4double << 220 G4double cutEnergy = 0.0, 274 G4double << 221 G4double maxEnergy = DBL_MAX); 275 222 276 // generic cross section per element 223 // generic cross section per element 277 inline G4double ComputeCrossSectionPerAtom(c 224 inline G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 278 c 225 const G4Element*, 279 G << 226 G4double kinEnergy, 280 G << 227 G4double cutEnergy = 0.0, 281 G << 228 G4double maxEnergy = DBL_MAX); 282 229 283 // atom can be selected effitiantly if eleme 230 // atom can be selected effitiantly if element selectors are initialised 284 inline const G4Element* SelectRandomAtom(con 231 inline const G4Element* SelectRandomAtom(const G4MaterialCutsCouple*, 285 con << 232 const G4ParticleDefinition*, 286 G4d << 233 G4double kineticEnergy, 287 G4d << 234 G4double cutEnergy = 0.0, 288 G4d << 235 G4double maxEnergy = DBL_MAX); 289 // same as SelectRandomAtom above but more e << 290 inline const G4Element* SelectTargetAtom(con << 291 con << 292 G4d << 293 G4d << 294 G4d << 295 G4d << 296 236 297 // to select atom cross section per volume i 237 // to select atom cross section per volume is recomputed for each element 298 const G4Element* SelectRandomAtom(const G4Ma << 238 inline const G4Element* SelectRandomAtom(const G4Material*, 299 const G4Pa << 239 const G4ParticleDefinition*, 300 G4double k << 240 G4double kineticEnergy, 301 G4double c << 241 G4double cutEnergy = 0.0, 302 G4double m << 242 G4double maxEnergy = DBL_MAX); 303 << 304 // to select atom if cross section is propor << 305 const G4Element* GetCurrentElement(const G4M << 306 G4int SelectRandomAtomNumber(const G4Materia << 307 243 308 // select isotope in order to have precise m 244 // select isotope in order to have precise mass of the nucleus 309 const G4Isotope* GetCurrentIsotope(const G4E << 245 inline G4int SelectIsotopeNumber(const G4Element*); 310 G4int SelectIsotopeNumber(const G4Element*) << 311 246 312 //------------------------------------------ 247 //------------------------------------------------------------------------ 313 // Get/Set methods 248 // Get/Set methods 314 //------------------------------------------ 249 //------------------------------------------------------------------------ 315 250 316 void SetParticleChange(G4VParticleChange*, G << 317 << 318 void SetCrossSectionTable(G4PhysicsTable*, G << 319 << 320 inline G4ElementData* GetElementData(); << 321 << 322 inline G4PhysicsTable* GetCrossSectionTable( << 323 << 324 inline G4VEmFluctuationModel* GetModelOfFluc 251 inline G4VEmFluctuationModel* GetModelOfFluctuations(); 325 252 326 inline G4VEmAngularDistribution* GetAngularD << 327 << 328 inline G4VEmModel* GetTripletModel(); << 329 << 330 inline void SetTripletModel(G4VEmModel*); << 331 << 332 inline void SetAngularDistribution(G4VEmAngu << 333 << 334 inline G4double HighEnergyLimit() const; 253 inline G4double HighEnergyLimit() const; 335 254 336 inline G4double LowEnergyLimit() const; 255 inline G4double LowEnergyLimit() const; 337 256 338 inline G4double HighEnergyActivationLimit() << 339 << 340 inline G4double LowEnergyActivationLimit() c << 341 << 342 inline G4double PolarAngleLimit() const; 257 inline G4double PolarAngleLimit() const; 343 258 344 inline G4double SecondaryThreshold() const; 259 inline G4double SecondaryThreshold() const; 345 260 346 inline G4bool DeexcitationFlag() const; << 261 inline G4bool LPMFlag() const; 347 << 348 inline G4bool ForceBuildTableFlag() const; << 349 << 350 inline G4bool UseAngularGeneratorFlag() cons << 351 262 352 inline void SetAngularGeneratorFlag(G4bool); << 263 inline G4bool DeexcitationFlag() const; 353 264 354 inline void SetHighEnergyLimit(G4double); 265 inline void SetHighEnergyLimit(G4double); 355 266 356 inline void SetLowEnergyLimit(G4double); 267 inline void SetLowEnergyLimit(G4double); 357 268 358 inline void SetActivationHighEnergyLimit(G4d 269 inline void SetActivationHighEnergyLimit(G4double); 359 270 360 inline void SetActivationLowEnergyLimit(G4do 271 inline void SetActivationLowEnergyLimit(G4double); 361 272 362 inline G4bool IsActive(G4double kinEnergy) c << 273 inline G4bool IsActive(G4double kinEnergy); 363 274 364 inline void SetPolarAngleLimit(G4double); 275 inline void SetPolarAngleLimit(G4double); 365 276 366 inline void SetSecondaryThreshold(G4double); 277 inline void SetSecondaryThreshold(G4double); 367 278 368 inline void SetDeexcitationFlag(G4bool val); << 279 inline void SetLPMFlag(G4bool val); 369 << 370 inline void SetForceBuildTable(G4bool val); << 371 << 372 inline void SetFluctuationFlag(G4bool val); << 373 280 374 inline G4bool IsMaster() const; << 281 inline void SetDeexcitationFlag(G4bool val); 375 << 376 inline void SetUseBaseMaterials(G4bool val); << 377 282 378 inline G4bool UseBaseMaterials() const; << 283 inline void ActivateNuclearStopping(G4bool); 379 284 380 inline G4double MaxSecondaryKinEnergy(const 285 inline G4double MaxSecondaryKinEnergy(const G4DynamicParticle* dynParticle); 381 286 382 inline const G4String& GetName() const; 287 inline const G4String& GetName() const; 383 288 384 inline void SetCurrentCouple(const G4Materia << 289 inline void SetParticleChange(G4VParticleChange*, G4VEmFluctuationModel*); 385 290 386 inline G4bool IsLocked() const; << 291 inline void SetCurrentCouple(const G4MaterialCutsCouple*); 387 << 388 inline void SetLocked(G4bool); << 389 << 390 // obsolete methods << 391 [[deprecated("Use G4EmParameters::Instance() << 392 void SetLPMFlag(G4bool); << 393 << 394 void SetMasterThread(G4bool); << 395 << 396 // hide assignment operator << 397 G4VEmModel & operator=(const G4VEmModel &ri << 398 G4VEmModel(const G4VEmModel&) = delete; << 399 292 400 protected: 293 protected: 401 294 402 inline const G4MaterialCutsCouple* CurrentCo 295 inline const G4MaterialCutsCouple* CurrentCouple() const; 403 296 404 inline void SetCurrentElement(const G4Elemen 297 inline void SetCurrentElement(const G4Element*); 405 298 406 private: << 299 inline const G4Element* GetCurrentElement() const; 407 300 408 // ======== Parameters of the class fixed at << 301 private: 409 << 410 G4VEmFluctuationModel* flucModel = null << 411 G4VEmAngularDistribution* anglModel = null << 412 G4VEmModel* fTripletModel = << 413 const G4MaterialCutsCouple* fCurrentCouple = << 414 const G4Element* fCurrentElement << 415 std::vector<G4EmElementSelector*>* elmSelect << 416 G4LossTableManager* fEmManager; << 417 302 418 protected: << 303 // hide assignment operator >> 304 G4VEmModel & operator=(const G4VEmModel &right); >> 305 G4VEmModel(const G4VEmModel&); 419 306 420 G4ElementData* fElementData = << 307 // ======== Parameters of the class fixed at construction ========= 421 G4VParticleChange* pParticleChange << 422 G4PhysicsTable* xSectionTable = << 423 const G4Material* pBaseMaterial = << 424 const std::vector<G4double>* theDensityFacto << 425 const std::vector<G4int>* theDensityIdx = << 426 308 427 G4double inveplus; << 309 G4VEmFluctuationModel* fluc; 428 G4double pFactor = 1.0; << 310 const G4String name; 429 311 430 private: << 312 // ======== Parameters of the class fixed at initialisation ======= 431 313 432 G4double lowLimit; << 314 G4double lowLimit; 433 G4double highLimit; << 315 G4double highLimit; 434 G4double eMinActive = 0.0; << 316 G4double eMinActive; 435 G4double eMaxActive = DBL_MAX; << 317 G4double eMaxActive; 436 G4double secondaryThreshold = DBL_MAX; << 318 G4double polarAngleLimit; 437 G4double polarAngleLimit; << 319 G4double secondaryThreshold; >> 320 G4bool theLPMflag; 438 321 439 G4int nSelectors = 0; << 322 G4int nSelectors; 440 G4int nsec = 5; << 323 std::vector<G4EmElementSelector*> elmSelectors; 441 324 442 protected: 325 protected: 443 326 444 std::size_t currentCoupleIndex = 0; << 327 G4VParticleChange* pParticleChange; 445 std::size_t basedCoupleIndex = 0; << 328 G4bool nuclearStopping; 446 G4bool lossFlucFlag = true; << 329 >> 330 // ======== Cashed values - may be state dependent ================ 447 331 448 private: 332 private: 449 333 450 G4bool flagDeexcitation = false; << 334 const G4MaterialCutsCouple* currentCouple; 451 G4bool flagForceBuildTable = false; << 335 const G4Element* currentElement; 452 G4bool isMaster = true; << 453 << 454 G4bool localTable = true; << 455 G4bool localElmSelectors = true; << 456 G4bool useAngularGenerator = false; << 457 G4bool useBaseMaterials = false; << 458 G4bool isLocked = false; << 459 336 460 const G4String name; << 337 G4int nsec; >> 338 G4bool flagDeexcitation; 461 std::vector<G4double> xsec; 339 std::vector<G4double> xsec; 462 340 463 }; 341 }; 464 342 465 // ======== Run time inline methods ========== << 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 466 << 344 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 467 inline void G4VEmModel::SetCurrentCouple(const << 468 { << 469 if(fCurrentCouple != ptr) { << 470 fCurrentCouple = ptr; << 471 basedCoupleIndex = currentCoupleIndex = pt << 472 pBaseMaterial = ptr->GetMaterial(); << 473 pFactor = 1.0; << 474 if(useBaseMaterials) { << 475 basedCoupleIndex = (*theDensityIdx)[curr << 476 if(nullptr != pBaseMaterial->GetBaseMate << 477 pBaseMaterial = pBaseMaterial->GetBaseMateri << 478 pFactor = (*theDensityFactor)[currentCou << 479 } << 480 } << 481 } << 482 << 483 //....oooOO0OOooo........oooOO0OOooo........oo << 484 345 485 inline const G4MaterialCutsCouple* G4VEmModel: << 346 inline G4double G4VEmModel::ComputeDEDX(const G4MaterialCutsCouple* c, 486 { << 347 const G4ParticleDefinition* p, 487 return fCurrentCouple; << 348 G4double kinEnergy, 488 } << 349 G4double cutEnergy) 489 << 490 //....oooOO0OOooo........oooOO0OOooo........oo << 491 << 492 inline void G4VEmModel::SetCurrentElement(cons << 493 { << 494 fCurrentElement = elm; << 495 } << 496 << 497 //....oooOO0OOooo........oooOO0OOooo........oo << 498 << 499 inline << 500 G4double G4VEmModel::MaxSecondaryKinEnergy(con << 501 { 350 { 502 return MaxSecondaryEnergy(dynPart->GetPartic << 351 currentCouple = c; 503 dynPart->GetKineti << 352 return ComputeDEDXPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy); 504 } 353 } 505 354 506 //....oooOO0OOooo........oooOO0OOooo........oo << 355 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 507 356 508 inline G4double G4VEmModel::ComputeDEDX(const << 357 inline G4double G4VEmModel::CrossSection(const G4MaterialCutsCouple* c, 509 const << 358 const G4ParticleDefinition* p, 510 G4doub << 359 G4double kinEnergy, 511 G4doub << 360 G4double cutEnergy, >> 361 G4double maxEnergy) 512 { 362 { 513 SetCurrentCouple(couple); << 363 currentCouple = c; 514 return pFactor*ComputeDEDXPerVolume(pBaseMat << 364 return CrossSectionPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy,maxEnergy); 515 } << 516 << 517 //....oooOO0OOooo........oooOO0OOooo........oo << 518 << 519 inline G4double G4VEmModel::CrossSection(const << 520 const << 521 G4dou << 522 G4dou << 523 G4dou << 524 { << 525 SetCurrentCouple(couple); << 526 return pFactor*CrossSectionPerVolume(pBaseMa << 527 cutEner << 528 } 365 } 529 366 530 //....oooOO0OOooo........oooOO0OOooo........oo << 367 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 531 368 532 inline << 369 inline G4double G4VEmModel::ComputeMeanFreePath(const G4ParticleDefinition* p, 533 G4double G4VEmModel::ComputeMeanFreePath(const << 370 G4double ekin, 534 G4dou << 371 const G4Material* material, 535 const << 372 G4double emin, 536 G4dou << 373 G4double emax) 537 G4dou << 538 { 374 { 539 G4double cross = CrossSectionPerVolume(mater << 375 G4double mfp = DBL_MAX; 540 return (cross > 0.0) ? 1./cross : DBL_MAX; << 376 G4double cross = CrossSectionPerVolume(material,p,ekin,emin,emax); >> 377 if (cross > DBL_MIN) mfp = 1./cross; >> 378 return mfp; 541 } 379 } 542 380 543 //....oooOO0OOooo........oooOO0OOooo........oo << 381 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 544 382 545 inline G4double << 383 inline G4double G4VEmModel::ComputeCrossSectionPerAtom( 546 G4VEmModel::ComputeCrossSectionPerAtom(const G << 384 const G4ParticleDefinition* part, 547 const G << 385 const G4Element* elm, 548 G4doubl << 386 G4double kinEnergy, 549 G4doubl << 387 G4double cutEnergy, 550 G4doubl << 388 G4double maxEnergy) 551 { 389 { 552 fCurrentElement = elm; << 390 currentElement = elm; 553 return ComputeCrossSectionPerAtom(part,kinEn 391 return ComputeCrossSectionPerAtom(part,kinEnergy,elm->GetZ(),elm->GetN(), 554 cutEnergy, << 392 cutEnergy,maxEnergy); 555 } << 556 << 557 //....oooOO0OOooo........oooOO0OOooo........oo << 558 << 559 inline const G4Element* << 560 G4VEmModel::SelectRandomAtom(const G4MaterialC << 561 const G4ParticleD << 562 G4double kinEnerg << 563 G4double cutEnerg << 564 G4double maxEnerg << 565 { << 566 SetCurrentCouple(couple); << 567 fCurrentElement = (nSelectors > 0) ? << 568 ((*elmSelectors)[couple->GetIndex()])->Sel << 569 SelectRandomAtom(pBaseMaterial,part,kinEne << 570 return fCurrentElement; << 571 } << 572 << 573 //....oooOO0OOooo........oooOO0OOooo........oo << 574 << 575 inline const G4Element* << 576 G4VEmModel::SelectTargetAtom(const G4MaterialC << 577 const G4ParticleD << 578 G4double kinEnerg << 579 G4double logKinE, << 580 G4double cutEnerg << 581 G4double maxEnerg << 582 { << 583 SetCurrentCouple(couple); << 584 fCurrentElement = (nSelectors > 0) << 585 ? ((*elmSelectors)[couple->GetIndex()])->Se << 586 : SelectRandomAtom(pBaseMaterial,part,kinEn << 587 return fCurrentElement; << 588 } << 589 << 590 // ======== Get/Set inline methods used at ini << 591 << 592 inline G4VEmFluctuationModel* G4VEmModel::GetM << 593 { << 594 return flucModel; << 595 } 393 } 596 394 597 //....oooOO0OOooo........oooOO0OOooo........oo << 395 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 598 396 599 inline G4VEmAngularDistribution* G4VEmModel::G << 397 inline 600 { << 398 const G4Element* G4VEmModel::SelectRandomAtom(const G4MaterialCutsCouple* couple, 601 return anglModel; << 399 const G4ParticleDefinition* p, >> 400 G4double kinEnergy, >> 401 G4double cutEnergy, >> 402 G4double maxEnergy) >> 403 { >> 404 currentCouple = couple; >> 405 if(nSelectors > 0) { >> 406 currentElement = >> 407 elmSelectors[couple->GetIndex()]->SelectRandomAtom(kinEnergy); >> 408 } else { >> 409 currentElement = SelectRandomAtom(couple->GetMaterial(),p,kinEnergy, >> 410 cutEnergy,maxEnergy); >> 411 } >> 412 return currentElement; 602 } 413 } 603 414 604 //....oooOO0OOooo........oooOO0OOooo........oo << 415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 605 416 606 inline void G4VEmModel::SetAngularDistribution << 417 inline 607 { << 418 const G4Element* G4VEmModel::SelectRandomAtom(const G4Material* material, 608 if(p != anglModel) { << 419 const G4ParticleDefinition* pd, 609 delete anglModel; << 420 G4double kinEnergy, 610 anglModel = p; << 421 G4double tcut, >> 422 G4double tmax) >> 423 { >> 424 const G4ElementVector* theElementVector = material->GetElementVector(); >> 425 G4int n = material->GetNumberOfElements() - 1; >> 426 currentElement = (*theElementVector)[n]; >> 427 if (n > 0) { >> 428 G4double x = G4UniformRand()* >> 429 G4VEmModel::CrossSectionPerVolume(material,pd,kinEnergy,tcut,tmax); >> 430 for(G4int i=0; i<n; i++) { >> 431 if (x <= xsec[i]) { >> 432 currentElement = (*theElementVector)[i]; >> 433 break; >> 434 } >> 435 } 611 } 436 } >> 437 return currentElement; 612 } 438 } 613 439 614 //....oooOO0OOooo........oooOO0OOooo........oo << 440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 615 441 616 inline G4VEmModel* G4VEmModel::GetTripletModel << 442 inline G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) 617 { 443 { 618 return fTripletModel; << 444 currentElement = elm; >> 445 G4int N = G4int(elm->GetN() + 0.5); >> 446 G4int ni = elm->GetNumberOfIsotopes(); >> 447 if(ni > 0) { >> 448 G4int idx = 0; >> 449 if(ni > 1) { >> 450 G4double* ab = elm->GetRelativeAbundanceVector(); >> 451 G4double x = G4UniformRand(); >> 452 for(; idx<ni; idx++) { >> 453 x -= ab[idx]; >> 454 if (x <= 0.0) break; >> 455 } >> 456 if(idx >= ni) idx = ni - 1; >> 457 } >> 458 N = elm->GetIsotope(idx)->GetN(); >> 459 } >> 460 return N; 619 } 461 } 620 462 621 //....oooOO0OOooo........oooOO0OOooo........oo << 463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 622 464 623 inline void G4VEmModel::SetTripletModel(G4VEmM << 465 inline G4VEmFluctuationModel* G4VEmModel::GetModelOfFluctuations() 624 { 466 { 625 if(p != fTripletModel) { << 467 return fluc; 626 delete fTripletModel; << 627 fTripletModel = p; << 628 } << 629 } 468 } 630 469 631 //....oooOO0OOooo........oooOO0OOooo........oo << 470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 632 471 633 inline G4double G4VEmModel::HighEnergyLimit() 472 inline G4double G4VEmModel::HighEnergyLimit() const 634 { 473 { 635 return highLimit; 474 return highLimit; 636 } 475 } 637 476 638 //....oooOO0OOooo........oooOO0OOooo........oo << 477 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 639 478 640 inline G4double G4VEmModel::LowEnergyLimit() c 479 inline G4double G4VEmModel::LowEnergyLimit() const 641 { 480 { 642 return lowLimit; 481 return lowLimit; 643 } 482 } 644 483 645 //....oooOO0OOooo........oooOO0OOooo........oo << 484 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 646 << 647 inline G4double G4VEmModel::HighEnergyActivati << 648 { << 649 return eMaxActive; << 650 } << 651 << 652 //....oooOO0OOooo........oooOO0OOooo........oo << 653 << 654 inline G4double G4VEmModel::LowEnergyActivatio << 655 { << 656 return eMinActive; << 657 } << 658 << 659 //....oooOO0OOooo........oooOO0OOooo........oo << 660 485 661 inline G4double G4VEmModel::PolarAngleLimit() 486 inline G4double G4VEmModel::PolarAngleLimit() const 662 { 487 { 663 return polarAngleLimit; 488 return polarAngleLimit; 664 } 489 } 665 490 666 //....oooOO0OOooo........oooOO0OOooo........oo << 491 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 667 492 668 inline G4double G4VEmModel::SecondaryThreshold 493 inline G4double G4VEmModel::SecondaryThreshold() const 669 { 494 { 670 return secondaryThreshold; 495 return secondaryThreshold; 671 } 496 } 672 497 673 //....oooOO0OOooo........oooOO0OOooo........oo 498 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 674 499 675 inline G4bool G4VEmModel::DeexcitationFlag() c << 500 inline G4bool G4VEmModel::LPMFlag() const 676 { << 677 return flagDeexcitation; << 678 } << 679 << 680 //....oooOO0OOooo........oooOO0OOooo........oo << 681 << 682 inline G4bool G4VEmModel::ForceBuildTableFlag( << 683 { << 684 return flagForceBuildTable; << 685 } << 686 << 687 //....oooOO0OOooo........oooOO0OOooo........oo << 688 << 689 inline G4bool G4VEmModel::UseAngularGeneratorF << 690 { << 691 return useAngularGenerator; << 692 } << 693 << 694 //....oooOO0OOooo........oooOO0OOooo........oo << 695 << 696 inline void G4VEmModel::SetAngularGeneratorFla << 697 { << 698 useAngularGenerator = val; << 699 } << 700 << 701 //....oooOO0OOooo........oooOO0OOooo........oo << 702 << 703 inline void G4VEmModel::SetFluctuationFlag(G4b << 704 { << 705 lossFlucFlag = val; << 706 } << 707 << 708 //....oooOO0OOooo........oooOO0OOooo........oo << 709 << 710 inline G4bool G4VEmModel::IsMaster() const << 711 { 501 { 712 return isMaster; << 502 return theLPMflag; 713 } 503 } 714 504 715 //....oooOO0OOooo........oooOO0OOooo........oo 505 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 716 506 717 inline void G4VEmModel::SetUseBaseMaterials(G4 << 507 inline G4bool G4VEmModel::DeexcitationFlag() const 718 { << 719 useBaseMaterials = val; << 720 } << 721 << 722 //....oooOO0OOooo........oooOO0OOooo........oo << 723 << 724 inline G4bool G4VEmModel::UseBaseMaterials() c << 725 { 508 { 726 return useBaseMaterials; << 509 return flagDeexcitation; 727 } 510 } 728 511 729 //....oooOO0OOooo........oooOO0OOooo........oo << 512 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 730 513 731 inline void G4VEmModel::SetHighEnergyLimit(G4d 514 inline void G4VEmModel::SetHighEnergyLimit(G4double val) 732 { 515 { 733 highLimit = val; 516 highLimit = val; 734 } 517 } 735 518 736 //....oooOO0OOooo........oooOO0OOooo........oo << 519 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 737 520 738 inline void G4VEmModel::SetLowEnergyLimit(G4do 521 inline void G4VEmModel::SetLowEnergyLimit(G4double val) 739 { 522 { 740 lowLimit = val; 523 lowLimit = val; 741 } 524 } 742 525 743 //....oooOO0OOooo........oooOO0OOooo........oo << 526 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 744 527 745 inline void G4VEmModel::SetActivationHighEnerg 528 inline void G4VEmModel::SetActivationHighEnergyLimit(G4double val) 746 { 529 { 747 eMaxActive = val; 530 eMaxActive = val; 748 } 531 } 749 532 750 //....oooOO0OOooo........oooOO0OOooo........oo << 533 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 751 534 752 inline void G4VEmModel::SetActivationLowEnergy 535 inline void G4VEmModel::SetActivationLowEnergyLimit(G4double val) 753 { 536 { 754 eMinActive = val; 537 eMinActive = val; 755 } 538 } 756 539 757 //....oooOO0OOooo........oooOO0OOooo........oo << 540 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 758 541 759 inline G4bool G4VEmModel::IsActive(G4double ki << 542 inline G4bool G4VEmModel::IsActive(G4double kinEnergy) 760 { 543 { 761 return (kinEnergy >= eMinActive && kinEnergy 544 return (kinEnergy >= eMinActive && kinEnergy <= eMaxActive); 762 } 545 } 763 546 764 //....oooOO0OOooo........oooOO0OOooo........oo << 547 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 765 548 766 inline void G4VEmModel::SetPolarAngleLimit(G4d 549 inline void G4VEmModel::SetPolarAngleLimit(G4double val) 767 { 550 { 768 if(!isLocked) { polarAngleLimit = val; } << 551 polarAngleLimit = val; 769 } 552 } 770 553 771 //....oooOO0OOooo........oooOO0OOooo........oo << 554 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 772 555 773 inline void G4VEmModel::SetSecondaryThreshold( 556 inline void G4VEmModel::SetSecondaryThreshold(G4double val) 774 { 557 { 775 secondaryThreshold = val; 558 secondaryThreshold = val; 776 } 559 } 777 560 778 //....oooOO0OOooo........oooOO0OOooo........oo 561 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 779 562 >> 563 inline void G4VEmModel::SetLPMFlag(G4bool val) >> 564 { >> 565 theLPMflag = val; >> 566 } >> 567 >> 568 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 569 780 inline void G4VEmModel::SetDeexcitationFlag(G4 570 inline void G4VEmModel::SetDeexcitationFlag(G4bool val) 781 { 571 { 782 flagDeexcitation = val; 572 flagDeexcitation = val; 783 } 573 } 784 574 785 //....oooOO0OOooo........oooOO0OOooo........oo 575 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 786 576 787 inline void G4VEmModel::SetForceBuildTable(G4b << 577 inline void G4VEmModel::ActivateNuclearStopping(G4bool val) 788 { 578 { 789 flagForceBuildTable = val; << 579 nuclearStopping = val; 790 } 580 } 791 581 792 //....oooOO0OOooo........oooOO0OOooo........oo << 582 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 793 583 794 inline const G4String& G4VEmModel::GetName() c << 584 inline >> 585 G4double G4VEmModel::MaxSecondaryKinEnergy(const G4DynamicParticle* dynPart) 795 { 586 { 796 return name; << 587 return MaxSecondaryEnergy(dynPart->GetDefinition(), >> 588 dynPart->GetKineticEnergy()); 797 } 589 } 798 590 799 //....oooOO0OOooo........oooOO0OOooo........oo << 591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 800 592 801 inline std::vector<G4EmElementSelector*>* G4VE << 593 inline const G4String& G4VEmModel::GetName() const 802 { 594 { 803 return elmSelectors; << 595 return name; 804 } 596 } 805 597 806 //....oooOO0OOooo........oooOO0OOooo........oo << 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 807 599 808 inline void << 600 inline void G4VEmModel::SetParticleChange(G4VParticleChange* p, 809 G4VEmModel::SetElementSelectors(std::vector<G4 << 601 G4VEmFluctuationModel* f = 0) 810 { 602 { 811 if(p != elmSelectors) { << 603 if(p && pParticleChange != p) pParticleChange = p; 812 elmSelectors = p; << 604 fluc = f; 813 nSelectors = (nullptr != elmSelectors) ? G << 814 localElmSelectors = false; << 815 } << 816 } 605 } 817 606 818 //....oooOO0OOooo........oooOO0OOooo........oo << 607 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 819 608 820 inline G4ElementData* G4VEmModel::GetElementDa << 609 inline void G4VEmModel::SetCurrentCouple(const G4MaterialCutsCouple* p) 821 { 610 { 822 return fElementData; << 611 currentCouple = p; 823 } 612 } 824 613 825 //....oooOO0OOooo........oooOO0OOooo........oo << 614 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 826 615 827 inline G4PhysicsTable* G4VEmModel::GetCrossSec << 616 inline const G4MaterialCutsCouple* G4VEmModel::CurrentCouple() const 828 { 617 { 829 return xSectionTable; << 618 return currentCouple; 830 } 619 } 831 620 832 //....oooOO0OOooo........oooOO0OOooo........oo << 621 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 833 622 834 inline G4bool G4VEmModel::IsLocked() const << 623 inline void G4VEmModel::SetCurrentElement(const G4Element* elm) 835 { 624 { 836 return isLocked; << 625 currentElement = elm; 837 } 626 } 838 627 839 //....oooOO0OOooo........oooOO0OOooo........oo << 628 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 840 629 841 inline void G4VEmModel::SetLocked(G4bool val) << 630 inline const G4Element* G4VEmModel::GetCurrentElement() const 842 { 631 { 843 isLocked = val; << 632 return currentElement; 844 } 633 } 845 634 846 //....oooOO0OOooo........oooOO0OOooo........oo << 635 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 847 636 848 #endif 637 #endif >> 638 849 639