Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4VEmModel.hh,v 1.59 2008/11/13 19:29:41 vnivanch Exp $ >> 27 // GEANT4 tag $Name: geant4-09-02-patch-04 $ >> 28 // 26 // ------------------------------------------- 29 // ------------------------------------------------------------------- 27 // 30 // 28 // GEANT4 Class header file 31 // GEANT4 Class header file 29 // 32 // 30 // 33 // 31 // File name: G4VEmModel 34 // File name: G4VEmModel 32 // 35 // 33 // Author: Vladimir Ivanchenko 36 // Author: Vladimir Ivanchenko 34 // 37 // 35 // Creation date: 03.01.2002 38 // Creation date: 03.01.2002 36 // 39 // 37 // Modifications: 40 // Modifications: 38 // 41 // 39 // 23-12-02 V.Ivanchenko change interface befo 42 // 23-12-02 V.Ivanchenko change interface before move to cut per region 40 // 24-01-03 Cut per region (V.Ivanchenko) 43 // 24-01-03 Cut per region (V.Ivanchenko) 41 // 13-02-03 Add name (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 42 // 25-02-03 Add sample theta and displacement 45 // 25-02-03 Add sample theta and displacement (V.Ivanchenko) 43 // 23-07-03 Replace G4Material by G4MaterialCu 46 // 23-07-03 Replace G4Material by G4MaterialCutCouple in dE/dx and CrossSection 44 // calculation (V.Ivanchenko) 47 // calculation (V.Ivanchenko) 45 // 01-03-04 L.Urban signature changed in Sampl 48 // 01-03-04 L.Urban signature changed in SampleCosineTheta 46 // 23-04-04 L.urban signature of SampleCosineT 49 // 23-04-04 L.urban signature of SampleCosineTheta changed back 47 // 17-11-04 Add method CrossSectionPerAtom (V. 50 // 17-11-04 Add method CrossSectionPerAtom (V.Ivanchenko) 48 // 14-03-05 Reduce number of pure virtual meth 51 // 14-03-05 Reduce number of pure virtual methods and make inline part 49 // separate (V.Ivanchenko) 52 // separate (V.Ivanchenko) 50 // 24-03-05 Remove IsInCharge and add G4VParti 53 // 24-03-05 Remove IsInCharge and add G4VParticleChange in the constructor (VI) 51 // 08-04-05 Major optimisation of internal int 54 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 52 // 15-04-05 optimize internal interface for ms 55 // 15-04-05 optimize internal interface for msc (V.Ivanchenko) 53 // 08-05-05 A -> N (V.Ivanchenko) 56 // 08-05-05 A -> N (V.Ivanchenko) 54 // 25-07-05 Move constructor and destructor to 57 // 25-07-05 Move constructor and destructor to the body (V.Ivanchenko) 55 // 02-02-06 ComputeCrossSectionPerAtom: defaul 58 // 02-02-06 ComputeCrossSectionPerAtom: default value A=0. (mma) 56 // 06-02-06 add method ComputeMeanFreePath() ( 59 // 06-02-06 add method ComputeMeanFreePath() (mma) 57 // 07-03-06 Optimize msc methods (V.Ivanchenko 60 // 07-03-06 Optimize msc methods (V.Ivanchenko) 58 // 29-06-06 Add member currentElement and Get/ 61 // 29-06-06 Add member currentElement and Get/Set methods (V.Ivanchenko) 59 // 29-10-07 Added SampleScattering (V.Ivanchen 62 // 29-10-07 Added SampleScattering (V.Ivanchenko) 60 // 15-07-08 Reorder class members and improve 63 // 15-07-08 Reorder class members and improve comments (VI) 61 // 21-07-08 Added vector of G4ElementSelector 64 // 21-07-08 Added vector of G4ElementSelector and methods to use it (VI) 62 // 12-09-08 Added methods GetParticleCharge, G 65 // 12-09-08 Added methods GetParticleCharge, GetChargeSquareRatio, 63 // CorrectionsAlongStep, ActivateNucl 66 // CorrectionsAlongStep, ActivateNuclearStopping (VI) 64 // 16-02-09 Moved implementations of virtual m << 65 // 07-04-09 Moved msc methods from G4VEmModel << 66 // 13-10-10 Added G4VEmAngularDistribution (VI << 67 // 67 // 68 // Class Description: 68 // Class Description: 69 // 69 // 70 // Abstract interface to energy loss models 70 // Abstract interface to energy loss models 71 71 72 // ------------------------------------------- 72 // ------------------------------------------------------------------- 73 // 73 // 74 74 75 #ifndef G4VEmModel_h 75 #ifndef G4VEmModel_h 76 #define G4VEmModel_h 1 76 #define G4VEmModel_h 1 77 77 78 #include "globals.hh" 78 #include "globals.hh" 79 #include "G4DynamicParticle.hh" 79 #include "G4DynamicParticle.hh" 80 #include "G4ParticleDefinition.hh" 80 #include "G4ParticleDefinition.hh" 81 #include "G4MaterialCutsCouple.hh" 81 #include "G4MaterialCutsCouple.hh" 82 #include "G4Material.hh" 82 #include "G4Material.hh" 83 #include "G4Element.hh" 83 #include "G4Element.hh" 84 #include "G4ElementVector.hh" 84 #include "G4ElementVector.hh" 85 #include "G4Isotope.hh" << 86 #include "G4DataVector.hh" 85 #include "G4DataVector.hh" 87 #include "G4VEmFluctuationModel.hh" 86 #include "G4VEmFluctuationModel.hh" 88 #include "G4VEmAngularDistribution.hh" << 89 #include "G4EmElementSelector.hh" 87 #include "G4EmElementSelector.hh" 90 #include <CLHEP/Random/RandomEngine.h> << 88 #include "Randomize.hh" 91 #include <vector> 89 #include <vector> 92 90 93 class G4ElementData; << 94 class G4PhysicsTable; 91 class G4PhysicsTable; 95 class G4Region; 92 class G4Region; 96 class G4VParticleChange; 93 class G4VParticleChange; 97 class G4ParticleChangeForLoss; << 98 class G4ParticleChangeForGamma; << 99 class G4Track; 94 class G4Track; 100 class G4LossTableManager; << 101 95 102 class G4VEmModel 96 class G4VEmModel 103 { 97 { 104 98 105 public: 99 public: 106 100 107 explicit G4VEmModel(const G4String& nam); << 101 G4VEmModel(const G4String& nam); 108 102 109 virtual ~G4VEmModel(); 103 virtual ~G4VEmModel(); 110 104 111 //------------------------------------------ 105 //------------------------------------------------------------------------ 112 // Virtual methods to be implemented for any 106 // Virtual methods to be implemented for any concrete model 113 //------------------------------------------ 107 //------------------------------------------------------------------------ 114 108 115 virtual void Initialise(const G4ParticleDefi << 109 virtual void Initialise(const G4ParticleDefinition*, >> 110 const G4DataVector&) = 0; 116 111 117 virtual void SampleSecondaries(std::vector<G 112 virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*, 118 const G4Mater << 113 const G4MaterialCutsCouple*, 119 const G4Dynam << 114 const G4DynamicParticle*, 120 G4double tmin << 115 G4double tmin = 0.0, 121 G4double tmax << 116 G4double tmax = DBL_MAX) = 0; 122 << 123 //------------------------------------------ << 124 // Methods for initialisation of MT; may be << 125 //------------------------------------------ << 126 << 127 // initialisation in local thread << 128 virtual void InitialiseLocal(const G4Particl << 129 G4VEmModel* mas << 130 << 131 // initialisation of a new material at run t << 132 virtual void InitialiseForMaterial(const G4P << 133 const G4M << 134 << 135 // initialisation of a new element at run ti << 136 virtual void InitialiseForElement(const G4Pa << 137 G4int Z); << 138 117 139 //------------------------------------------ 118 //------------------------------------------------------------------------ 140 // Methods with standard implementation; may 119 // Methods with standard implementation; may be overwritten if needed 141 //------------------------------------------ 120 //------------------------------------------------------------------------ 142 121 >> 122 // dEdx per unit length >> 123 virtual G4double ComputeDEDX(const G4MaterialCutsCouple*, >> 124 const G4ParticleDefinition*, >> 125 G4double kineticEnergy, >> 126 G4double cutEnergy = DBL_MAX); >> 127 143 // main method to compute dEdx 128 // main method to compute dEdx 144 virtual G4double ComputeDEDXPerVolume(const 129 virtual G4double ComputeDEDXPerVolume(const G4Material*, 145 const << 130 const G4ParticleDefinition*, 146 G4doub << 131 G4double kineticEnergy, 147 G4doub << 132 G4double cutEnergy = DBL_MAX); >> 133 >> 134 // cross section per volume >> 135 virtual G4double CrossSection(const G4MaterialCutsCouple*, >> 136 const G4ParticleDefinition*, >> 137 G4double kineticEnergy, >> 138 G4double cutEnergy = 0.0, >> 139 G4double maxEnergy = DBL_MAX); 148 140 149 // main method to compute cross section per 141 // main method to compute cross section per Volume 150 virtual G4double CrossSectionPerVolume(const 142 virtual G4double CrossSectionPerVolume(const G4Material*, 151 const << 143 const G4ParticleDefinition*, 152 G4dou << 144 G4double kineticEnergy, 153 G4dou << 145 G4double cutEnergy = 0.0, 154 G4dou << 146 G4double maxEnergy = DBL_MAX); 155 << 156 // method to get partial cross section << 157 virtual G4double GetPartialCrossSection(cons << 158 G4in << 159 cons << 160 G4do << 161 147 162 // main method to compute cross section per << 148 // main method to compute cross section depending on atom 163 virtual G4double ComputeCrossSectionPerAtom( 149 virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 164 << 150 G4double kinEnergy, 165 << 151 G4double Z, 166 << 152 G4double A = 0., /* amu */ 167 << 153 G4double cutEnergy = 0.0, 168 << 154 G4double maxEnergy = DBL_MAX); 169 << 155 170 // main method to compute cross section per << 156 // min cut in kinetic energy allowed by the model 171 virtual G4double ComputeCrossSectionPerShell << 157 virtual G4double MinEnergyCut(const G4ParticleDefinition*, 172 << 158 const G4MaterialCutsCouple*); 173 << 174 << 175 << 176 << 177 // Compute effective ion charge square << 178 virtual G4double ChargeSquareRatio(const G4T << 179 159 180 // Compute effective ion charge square 160 // Compute effective ion charge square 181 virtual G4double GetChargeSquareRatio(const 161 virtual G4double GetChargeSquareRatio(const G4ParticleDefinition*, 182 const << 162 const G4Material*, 183 G4doub << 163 G4double kineticEnergy); 184 164 185 // Compute ion charge 165 // Compute ion charge 186 virtual G4double GetParticleCharge(const G4P 166 virtual G4double GetParticleCharge(const G4ParticleDefinition*, 187 const G4M << 167 const G4Material*, 188 G4double << 168 G4double kineticEnergy); 189 169 190 // Initialisation for a new track << 170 // add correction to energy loss and ompute non-ionizing energy loss 191 virtual void StartTracking(G4Track*); << 192 << 193 // add correction to energy loss and compute << 194 virtual void CorrectionsAlongStep(const G4Ma 171 virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*, 195 const G4Dy << 172 const G4DynamicParticle*, 196 const G4do << 173 G4double& eloss, 197 G4double& << 174 G4double& niel, 198 << 175 G4double length); 199 // value which may be tabulated (by default << 200 virtual G4double Value(const G4MaterialCutsC << 201 const G4ParticleDefin << 202 G4double kineticEnerg << 203 << 204 // threshold for zero value << 205 virtual G4double MinPrimaryEnergy(const G4Ma << 206 const G4Pa << 207 G4double c << 208 << 209 // model can define low-energy limit for the << 210 virtual G4double MinEnergyCut(const G4Partic << 211 const G4Materi << 212 176 213 // initialisation at run time for a given ma << 177 protected: 214 virtual void SetupForMaterial(const G4Partic << 215 const G4Materi << 216 G4double kinet << 217 178 218 // add a region for the model << 179 // kinematically allowed max kinetic energy of a secondary 219 virtual void DefineForRegion(const G4Region* << 180 virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition*, >> 181 G4double kineticEnergy); >> 182 >> 183 //------------------------------------------------------------------------ >> 184 // Methods for msc simulation which needs to be overwritten >> 185 //------------------------------------------------------------------------ 220 186 221 // fill number of different type of secondar << 187 public: 222 virtual void FillNumberOfSecondaries(G4int& << 223 G4int& << 224 188 225 // for automatic documentation << 189 virtual void SampleScattering(const G4DynamicParticle*, 226 virtual void ModelDescription(std::ostream& << 190 G4double safety); 227 191 228 protected: << 192 virtual G4double ComputeTruePathLengthLimit(const G4Track& track, >> 193 G4PhysicsTable* theLambdaTable, >> 194 G4double currentMinimalStep); 229 195 230 // initialisation of the ParticleChange for << 196 virtual G4double ComputeGeomPathLength(G4double truePathLength); 231 G4ParticleChangeForLoss* GetParticleChangeFo << 232 197 233 // initialisation of the ParticleChange for << 198 virtual G4double ComputeTrueStepLength(G4double geomPathLength); 234 G4ParticleChangeForGamma* GetParticleChangeF << 235 199 236 // kinematically allowed max kinetic energy << 200 virtual void DefineForRegion(const G4Region*); 237 virtual G4double MaxSecondaryEnergy(const G4 << 238 G4double << 239 201 240 public: << 202 virtual void SetupForMaterial(const G4ParticleDefinition*, >> 203 const G4Material*, >> 204 G4double kineticEnergy); 241 205 242 //------------------------------------------ 206 //------------------------------------------------------------------------ 243 // Generic methods common to all models 207 // Generic methods common to all models 244 //------------------------------------------ 208 //------------------------------------------------------------------------ 245 209 246 // should be called at initialisation to bui 210 // should be called at initialisation to build element selectors 247 void InitialiseElementSelectors(const G4Part << 211 void InitialiseElementSelectors(const G4ParticleDefinition*, 248 const G4Data << 212 const G4DataVector&); 249 << 250 // should be called at initialisation to acc << 251 inline std::vector<G4EmElementSelector*>* Ge << 252 << 253 // should be called at initialisation to set << 254 inline void SetElementSelectors(std::vector< << 255 << 256 // dEdx per unit length, base material appro << 257 inline G4double ComputeDEDX( const G4Materia << 258 const G4Particl << 259 G4double kineti << 260 G4double cutEne << 261 << 262 // cross section per volume, base material a << 263 inline G4double CrossSection(const G4Materia << 264 const G4Particl << 265 G4double kineti << 266 G4double cutEne << 267 G4double maxEne << 268 213 269 // compute mean free path via cross section 214 // compute mean free path via cross section per volume 270 inline G4double ComputeMeanFreePath(const G4 << 215 G4double ComputeMeanFreePath(const G4ParticleDefinition*, 271 G4double << 216 G4double kineticEnergy, 272 const G4 << 217 const G4Material*, 273 G4double << 218 G4double cutEnergy = 0.0, 274 G4double << 219 G4double maxEnergy = DBL_MAX); 275 220 276 // generic cross section per element 221 // generic cross section per element 277 inline G4double ComputeCrossSectionPerAtom(c 222 inline G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 278 c 223 const G4Element*, 279 G << 224 G4double kinEnergy, 280 G << 225 G4double cutEnergy = 0.0, 281 G << 226 G4double maxEnergy = DBL_MAX); 282 227 283 // atom can be selected effitiantly if eleme 228 // atom can be selected effitiantly if element selectors are initialised 284 inline const G4Element* SelectRandomAtom(con 229 inline const G4Element* SelectRandomAtom(const G4MaterialCutsCouple*, 285 con << 230 const G4ParticleDefinition*, 286 G4d << 231 G4double kineticEnergy, 287 G4d << 232 G4double cutEnergy = 0.0, 288 G4d << 233 G4double maxEnergy = DBL_MAX); 289 // same as SelectRandomAtom above but more e << 234 290 inline const G4Element* SelectTargetAtom(con << 235 // this method can be used only in the case if generic method to compute 291 con << 236 // cross section per volume is used and not overwritten in derived class 292 G4d << 237 inline const G4Element* SelectRandomAtom(const G4Material*, 293 G4d << 238 const G4ParticleDefinition*, 294 G4d << 239 G4double kineticEnergy, 295 G4d << 240 G4double cutEnergy = 0.0, 296 << 241 G4double maxEnergy = DBL_MAX); 297 // to select atom cross section per volume i << 298 const G4Element* SelectRandomAtom(const G4Ma << 299 const G4Pa << 300 G4double k << 301 G4double c << 302 G4double m << 303 << 304 // to select atom if cross section is propor << 305 const G4Element* GetCurrentElement(const G4M << 306 G4int SelectRandomAtomNumber(const G4Materia << 307 242 308 // select isotope in order to have precise m 243 // select isotope in order to have precise mass of the nucleus 309 const G4Isotope* GetCurrentIsotope(const G4E << 244 inline G4int SelectIsotopeNumber(const G4Element*); 310 G4int SelectIsotopeNumber(const G4Element*) << 311 245 312 //------------------------------------------ 246 //------------------------------------------------------------------------ 313 // Get/Set methods 247 // Get/Set methods 314 //------------------------------------------ 248 //------------------------------------------------------------------------ 315 249 316 void SetParticleChange(G4VParticleChange*, G << 317 << 318 void SetCrossSectionTable(G4PhysicsTable*, G << 319 << 320 inline G4ElementData* GetElementData(); << 321 << 322 inline G4PhysicsTable* GetCrossSectionTable( << 323 << 324 inline G4VEmFluctuationModel* GetModelOfFluc 250 inline G4VEmFluctuationModel* GetModelOfFluctuations(); 325 251 326 inline G4VEmAngularDistribution* GetAngularD << 327 << 328 inline G4VEmModel* GetTripletModel(); << 329 << 330 inline void SetTripletModel(G4VEmModel*); << 331 << 332 inline void SetAngularDistribution(G4VEmAngu << 333 << 334 inline G4double HighEnergyLimit() const; 252 inline G4double HighEnergyLimit() const; 335 253 336 inline G4double LowEnergyLimit() const; 254 inline G4double LowEnergyLimit() const; 337 255 338 inline G4double HighEnergyActivationLimit() << 339 << 340 inline G4double LowEnergyActivationLimit() c << 341 << 342 inline G4double PolarAngleLimit() const; 256 inline G4double PolarAngleLimit() const; 343 257 344 inline G4double SecondaryThreshold() const; 258 inline G4double SecondaryThreshold() const; 345 259 346 inline G4bool DeexcitationFlag() const; << 260 inline G4bool LPMFlag() const; 347 << 348 inline G4bool ForceBuildTableFlag() const; << 349 << 350 inline G4bool UseAngularGeneratorFlag() cons << 351 << 352 inline void SetAngularGeneratorFlag(G4bool); << 353 261 354 inline void SetHighEnergyLimit(G4double); 262 inline void SetHighEnergyLimit(G4double); 355 263 356 inline void SetLowEnergyLimit(G4double); 264 inline void SetLowEnergyLimit(G4double); 357 265 358 inline void SetActivationHighEnergyLimit(G4d << 359 << 360 inline void SetActivationLowEnergyLimit(G4do << 361 << 362 inline G4bool IsActive(G4double kinEnergy) c << 363 << 364 inline void SetPolarAngleLimit(G4double); 266 inline void SetPolarAngleLimit(G4double); 365 267 366 inline void SetSecondaryThreshold(G4double); 268 inline void SetSecondaryThreshold(G4double); 367 269 368 inline void SetDeexcitationFlag(G4bool val); << 270 inline void SetLPMFlag(G4bool val); 369 << 370 inline void SetForceBuildTable(G4bool val); << 371 << 372 inline void SetFluctuationFlag(G4bool val); << 373 << 374 inline G4bool IsMaster() const; << 375 << 376 inline void SetUseBaseMaterials(G4bool val); << 377 271 378 inline G4bool UseBaseMaterials() const; << 272 inline void ActivateNuclearStopping(G4bool); 379 273 380 inline G4double MaxSecondaryKinEnergy(const 274 inline G4double MaxSecondaryKinEnergy(const G4DynamicParticle* dynParticle); 381 275 382 inline const G4String& GetName() const; 276 inline const G4String& GetName() const; 383 277 384 inline void SetCurrentCouple(const G4Materia << 278 inline void SetParticleChange(G4VParticleChange*, G4VEmFluctuationModel*); 385 << 386 inline G4bool IsLocked() const; << 387 << 388 inline void SetLocked(G4bool); << 389 << 390 // obsolete methods << 391 [[deprecated("Use G4EmParameters::Instance() << 392 void SetLPMFlag(G4bool); << 393 << 394 void SetMasterThread(G4bool); << 395 << 396 // hide assignment operator << 397 G4VEmModel & operator=(const G4VEmModel &ri << 398 G4VEmModel(const G4VEmModel&) = delete; << 399 279 400 protected: 280 protected: 401 281 402 inline const G4MaterialCutsCouple* CurrentCo << 282 inline const G4Element* GetCurrentElement() const; 403 283 404 inline void SetCurrentElement(const G4Elemen 284 inline void SetCurrentElement(const G4Element*); 405 285 406 private: 286 private: 407 287 408 // ======== Parameters of the class fixed at << 288 // hide assignment operator 409 << 289 G4VEmModel & operator=(const G4VEmModel &right); 410 G4VEmFluctuationModel* flucModel = null << 290 G4VEmModel(const G4VEmModel&); 411 G4VEmAngularDistribution* anglModel = null << 412 G4VEmModel* fTripletModel = << 413 const G4MaterialCutsCouple* fCurrentCouple = << 414 const G4Element* fCurrentElement << 415 std::vector<G4EmElementSelector*>* elmSelect << 416 G4LossTableManager* fEmManager; << 417 << 418 protected: << 419 291 420 G4ElementData* fElementData = << 292 // ======== Parameters of the class fixed at construction ========= 421 G4VParticleChange* pParticleChange << 422 G4PhysicsTable* xSectionTable = << 423 const G4Material* pBaseMaterial = << 424 const std::vector<G4double>* theDensityFacto << 425 const std::vector<G4int>* theDensityIdx = << 426 293 427 G4double inveplus; << 294 G4VEmFluctuationModel* fluc; 428 G4double pFactor = 1.0; << 295 const G4String name; 429 296 430 private: << 297 // ======== Parameters of the class fixed at initialisation ======= 431 298 432 G4double lowLimit; << 299 G4double lowLimit; 433 G4double highLimit; << 300 G4double highLimit; 434 G4double eMinActive = 0.0; << 301 G4double polarAngleLimit; 435 G4double eMaxActive = DBL_MAX; << 302 G4double secondaryThreshold; 436 G4double secondaryThreshold = DBL_MAX; << 303 G4bool theLPMflag; 437 G4double polarAngleLimit; << 438 304 439 G4int nSelectors = 0; << 305 G4int nSelectors; 440 G4int nsec = 5; << 306 std::vector<G4EmElementSelector*> elmSelectors; 441 307 442 protected: 308 protected: 443 309 444 std::size_t currentCoupleIndex = 0; << 310 G4VParticleChange* pParticleChange; 445 std::size_t basedCoupleIndex = 0; << 311 G4bool nuclearStopping; 446 G4bool lossFlucFlag = true; << 447 312 448 private: << 313 // ======== Cashed values - may be state dependent ================ 449 314 450 G4bool flagDeexcitation = false; << 315 private: 451 G4bool flagForceBuildTable = false; << 452 G4bool isMaster = true; << 453 << 454 G4bool localTable = true; << 455 G4bool localElmSelectors = true; << 456 G4bool useAngularGenerator = false; << 457 G4bool useBaseMaterials = false; << 458 G4bool isLocked = false; << 459 316 460 const G4String name; << 317 const G4Element* currentElement; >> 318 G4int nsec; 461 std::vector<G4double> xsec; 319 std::vector<G4double> xsec; 462 320 463 }; 321 }; 464 322 465 // ======== Run time inline methods ========== << 323 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 466 << 324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 467 inline void G4VEmModel::SetCurrentCouple(const << 468 { << 469 if(fCurrentCouple != ptr) { << 470 fCurrentCouple = ptr; << 471 basedCoupleIndex = currentCoupleIndex = pt << 472 pBaseMaterial = ptr->GetMaterial(); << 473 pFactor = 1.0; << 474 if(useBaseMaterials) { << 475 basedCoupleIndex = (*theDensityIdx)[curr << 476 if(nullptr != pBaseMaterial->GetBaseMate << 477 pBaseMaterial = pBaseMaterial->GetBaseMateri << 478 pFactor = (*theDensityFactor)[currentCou << 479 } << 480 } << 481 } << 482 << 483 //....oooOO0OOooo........oooOO0OOooo........oo << 484 << 485 inline const G4MaterialCutsCouple* G4VEmModel: << 486 { << 487 return fCurrentCouple; << 488 } << 489 << 490 //....oooOO0OOooo........oooOO0OOooo........oo << 491 325 492 inline void G4VEmModel::SetCurrentElement(cons << 326 inline G4double G4VEmModel::HighEnergyLimit() const 493 { << 494 fCurrentElement = elm; << 495 } << 496 << 497 //....oooOO0OOooo........oooOO0OOooo........oo << 498 << 499 inline << 500 G4double G4VEmModel::MaxSecondaryKinEnergy(con << 501 { << 502 return MaxSecondaryEnergy(dynPart->GetPartic << 503 dynPart->GetKineti << 504 } << 505 << 506 //....oooOO0OOooo........oooOO0OOooo........oo << 507 << 508 inline G4double G4VEmModel::ComputeDEDX(const << 509 const << 510 G4doub << 511 G4doub << 512 { << 513 SetCurrentCouple(couple); << 514 return pFactor*ComputeDEDXPerVolume(pBaseMat << 515 } << 516 << 517 //....oooOO0OOooo........oooOO0OOooo........oo << 518 << 519 inline G4double G4VEmModel::CrossSection(const << 520 const << 521 G4dou << 522 G4dou << 523 G4dou << 524 { << 525 SetCurrentCouple(couple); << 526 return pFactor*CrossSectionPerVolume(pBaseMa << 527 cutEner << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline << 533 G4double G4VEmModel::ComputeMeanFreePath(const << 534 G4dou << 535 const << 536 G4dou << 537 G4dou << 538 { 327 { 539 G4double cross = CrossSectionPerVolume(mater << 328 return highLimit; 540 return (cross > 0.0) ? 1./cross : DBL_MAX; << 541 } 329 } 542 330 543 //....oooOO0OOooo........oooOO0OOooo........oo << 331 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 544 332 545 inline G4double << 333 inline G4double G4VEmModel::LowEnergyLimit() const 546 G4VEmModel::ComputeCrossSectionPerAtom(const G << 547 const G << 548 G4doubl << 549 G4doubl << 550 G4doubl << 551 { 334 { 552 fCurrentElement = elm; << 335 return lowLimit; 553 return ComputeCrossSectionPerAtom(part,kinEn << 554 cutEnergy, << 555 } << 556 << 557 //....oooOO0OOooo........oooOO0OOooo........oo << 558 << 559 inline const G4Element* << 560 G4VEmModel::SelectRandomAtom(const G4MaterialC << 561 const G4ParticleD << 562 G4double kinEnerg << 563 G4double cutEnerg << 564 G4double maxEnerg << 565 { << 566 SetCurrentCouple(couple); << 567 fCurrentElement = (nSelectors > 0) ? << 568 ((*elmSelectors)[couple->GetIndex()])->Sel << 569 SelectRandomAtom(pBaseMaterial,part,kinEne << 570 return fCurrentElement; << 571 } << 572 << 573 //....oooOO0OOooo........oooOO0OOooo........oo << 574 << 575 inline const G4Element* << 576 G4VEmModel::SelectTargetAtom(const G4MaterialC << 577 const G4ParticleD << 578 G4double kinEnerg << 579 G4double logKinE, << 580 G4double cutEnerg << 581 G4double maxEnerg << 582 { << 583 SetCurrentCouple(couple); << 584 fCurrentElement = (nSelectors > 0) << 585 ? ((*elmSelectors)[couple->GetIndex()])->Se << 586 : SelectRandomAtom(pBaseMaterial,part,kinEn << 587 return fCurrentElement; << 588 } 336 } 589 337 590 // ======== Get/Set inline methods used at ini << 338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 591 339 592 inline G4VEmFluctuationModel* G4VEmModel::GetM << 340 inline G4double G4VEmModel::PolarAngleLimit() const 593 { 341 { 594 return flucModel; << 342 return polarAngleLimit; 595 } 343 } 596 344 597 //....oooOO0OOooo........oooOO0OOooo........oo << 345 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 598 346 599 inline G4VEmAngularDistribution* G4VEmModel::G << 347 inline G4double G4VEmModel::SecondaryThreshold() const 600 { 348 { 601 return anglModel; << 349 return secondaryThreshold; 602 } 350 } 603 351 604 //....oooOO0OOooo........oooOO0OOooo........oo 352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 605 353 606 inline void G4VEmModel::SetAngularDistribution << 354 inline G4bool G4VEmModel::LPMFlag() const 607 { 355 { 608 if(p != anglModel) { << 356 return theLPMflag; 609 delete anglModel; << 610 anglModel = p; << 611 } << 612 } 357 } 613 358 614 //....oooOO0OOooo........oooOO0OOooo........oo << 359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 615 360 616 inline G4VEmModel* G4VEmModel::GetTripletModel << 361 inline void G4VEmModel::SetHighEnergyLimit(G4double val) 617 { 362 { 618 return fTripletModel; << 363 highLimit = val; 619 } 364 } 620 365 621 //....oooOO0OOooo........oooOO0OOooo........oo << 366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 622 367 623 inline void G4VEmModel::SetTripletModel(G4VEmM << 368 inline void G4VEmModel::SetLowEnergyLimit(G4double val) 624 { 369 { 625 if(p != fTripletModel) { << 370 lowLimit = val; 626 delete fTripletModel; << 627 fTripletModel = p; << 628 } << 629 } 371 } 630 372 631 //....oooOO0OOooo........oooOO0OOooo........oo << 373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 632 374 633 inline G4double G4VEmModel::HighEnergyLimit() << 375 inline void G4VEmModel::SetPolarAngleLimit(G4double val) 634 { 376 { 635 return highLimit; << 377 polarAngleLimit = val; 636 } 378 } 637 379 638 //....oooOO0OOooo........oooOO0OOooo........oo << 380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 639 381 640 inline G4double G4VEmModel::LowEnergyLimit() c << 382 inline void G4VEmModel::SetSecondaryThreshold(G4double val) 641 { 383 { 642 return lowLimit; << 384 secondaryThreshold = val; 643 } 385 } 644 386 645 //....oooOO0OOooo........oooOO0OOooo........oo 387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 646 388 647 inline G4double G4VEmModel::HighEnergyActivati << 389 inline void G4VEmModel::SetLPMFlag(G4bool val) 648 { 390 { 649 return eMaxActive; << 391 theLPMflag = val; 650 } 392 } 651 393 652 //....oooOO0OOooo........oooOO0OOooo........oo 394 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 653 395 654 inline G4double G4VEmModel::LowEnergyActivatio << 396 inline void G4VEmModel::ActivateNuclearStopping(G4bool val) 655 { 397 { 656 return eMinActive; << 398 nuclearStopping = val; 657 } 399 } 658 400 659 //....oooOO0OOooo........oooOO0OOooo........oo << 401 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 660 402 661 inline G4double G4VEmModel::PolarAngleLimit() << 403 inline G4double G4VEmModel::ComputeCrossSectionPerAtom( >> 404 const G4ParticleDefinition* part, >> 405 const G4Element* elm, >> 406 G4double kinEnergy, >> 407 G4double cutEnergy, >> 408 G4double maxEnergy) 662 { 409 { 663 return polarAngleLimit; << 410 currentElement = elm; >> 411 return ComputeCrossSectionPerAtom(part,kinEnergy,elm->GetZ(),elm->GetN(), >> 412 cutEnergy,maxEnergy); 664 } 413 } 665 414 666 //....oooOO0OOooo........oooOO0OOooo........oo << 415 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 667 416 668 inline G4double G4VEmModel::SecondaryThreshold << 417 inline void G4VEmModel::SetParticleChange(G4VParticleChange* p, >> 418 G4VEmFluctuationModel* f = 0) 669 { 419 { 670 return secondaryThreshold; << 420 if(p && pParticleChange != p) pParticleChange = p; >> 421 fluc = f; 671 } 422 } 672 423 673 //....oooOO0OOooo........oooOO0OOooo........oo << 424 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 674 << 675 inline G4bool G4VEmModel::DeexcitationFlag() c << 676 { << 677 return flagDeexcitation; << 678 } << 679 425 680 //....oooOO0OOooo........oooOO0OOooo........oo << 681 426 682 inline G4bool G4VEmModel::ForceBuildTableFlag( << 427 inline G4VEmFluctuationModel* G4VEmModel::GetModelOfFluctuations() 683 { 428 { 684 return flagForceBuildTable; << 429 return fluc; 685 } 430 } 686 431 687 //....oooOO0OOooo........oooOO0OOooo........oo << 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 688 433 689 inline G4bool G4VEmModel::UseAngularGeneratorF << 434 inline G4double G4VEmModel::MinEnergyCut(const G4ParticleDefinition*, >> 435 const G4MaterialCutsCouple*) 690 { 436 { 691 return useAngularGenerator; << 437 return 0.0; 692 } 438 } 693 439 694 //....oooOO0OOooo........oooOO0OOooo........oo << 440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 695 441 696 inline void G4VEmModel::SetAngularGeneratorFla << 442 inline G4double G4VEmModel::GetChargeSquareRatio(const G4ParticleDefinition* p, >> 443 const G4Material*, G4double) 697 { 444 { 698 useAngularGenerator = val; << 445 G4double q = p->GetPDGCharge()/CLHEP::eplus; >> 446 return q*q; 699 } 447 } 700 448 701 //....oooOO0OOooo........oooOO0OOooo........oo << 449 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 702 450 703 inline void G4VEmModel::SetFluctuationFlag(G4b << 451 inline G4double G4VEmModel::GetParticleCharge(const G4ParticleDefinition* p, >> 452 const G4Material*, G4double) 704 { 453 { 705 lossFlucFlag = val; << 454 return p->GetPDGCharge(); 706 } 455 } 707 456 708 //....oooOO0OOooo........oooOO0OOooo........oo << 457 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 709 458 710 inline G4bool G4VEmModel::IsMaster() const << 459 inline void G4VEmModel::CorrectionsAlongStep(const G4MaterialCutsCouple*, 711 { << 460 const G4DynamicParticle*, 712 return isMaster; << 461 G4double&,G4double&,G4double) 713 } << 462 {} 714 463 715 //....oooOO0OOooo........oooOO0OOooo........oo << 464 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 716 465 717 inline void G4VEmModel::SetUseBaseMaterials(G4 << 466 inline G4double G4VEmModel::ComputeDEDXPerVolume(const G4Material*, >> 467 const G4ParticleDefinition*, >> 468 G4double,G4double) 718 { 469 { 719 useBaseMaterials = val; << 470 return 0.0; 720 } 471 } 721 472 722 //....oooOO0OOooo........oooOO0OOooo........oo << 473 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 723 474 724 inline G4bool G4VEmModel::UseBaseMaterials() c << 475 inline G4double G4VEmModel::ComputeDEDX(const G4MaterialCutsCouple* c, >> 476 const G4ParticleDefinition* p, >> 477 G4double kinEnergy, >> 478 G4double cutEnergy) 725 { 479 { 726 return useBaseMaterials; << 480 return ComputeDEDXPerVolume(c->GetMaterial(),p,kinEnergy,cutEnergy); 727 } 481 } 728 482 729 //....oooOO0OOooo........oooOO0OOooo........oo << 483 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 730 484 731 inline void G4VEmModel::SetHighEnergyLimit(G4d << 485 inline G4double G4VEmModel::CrossSection(const G4MaterialCutsCouple* c, >> 486 const G4ParticleDefinition* p, >> 487 G4double kinEnergy, >> 488 G4double cutEnergy, >> 489 G4double maxEnergy) 732 { 490 { 733 highLimit = val; << 491 return CrossSectionPerVolume(c->GetMaterial(),p, >> 492 kinEnergy,cutEnergy,maxEnergy); 734 } 493 } 735 494 736 //....oooOO0OOooo........oooOO0OOooo........oo << 495 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 737 496 738 inline void G4VEmModel::SetLowEnergyLimit(G4do << 497 inline G4double G4VEmModel::ComputeCrossSectionPerAtom( >> 498 const G4ParticleDefinition*, >> 499 G4double, G4double, G4double, >> 500 G4double, G4double) 739 { 501 { 740 lowLimit = val; << 502 return 0.0; 741 } 503 } 742 504 743 //....oooOO0OOooo........oooOO0OOooo........oo << 505 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 744 506 745 inline void G4VEmModel::SetActivationHighEnerg << 507 inline 746 { << 508 const G4Element* G4VEmModel::SelectRandomAtom(const G4MaterialCutsCouple* couple, 747 eMaxActive = val; << 509 const G4ParticleDefinition* p, >> 510 G4double kinEnergy, >> 511 G4double cutEnergy, >> 512 G4double maxEnergy) >> 513 { >> 514 if(nSelectors > 0) { >> 515 currentElement = >> 516 elmSelectors[couple->GetIndex()]->SelectRandomAtom(kinEnergy); >> 517 } else { >> 518 currentElement = SelectRandomAtom(couple->GetMaterial(),p,kinEnergy, >> 519 cutEnergy,maxEnergy); >> 520 } >> 521 return currentElement; 748 } 522 } 749 523 750 //....oooOO0OOooo........oooOO0OOooo........oo << 524 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 751 525 752 inline void G4VEmModel::SetActivationLowEnergy << 526 inline 753 { << 527 const G4Element* G4VEmModel::SelectRandomAtom(const G4Material* material, 754 eMinActive = val; << 528 const G4ParticleDefinition* pd, >> 529 G4double kinEnergy, >> 530 G4double tcut, >> 531 G4double tmax) >> 532 { >> 533 const G4ElementVector* theElementVector = material->GetElementVector(); >> 534 G4int n = material->GetNumberOfElements() - 1; >> 535 currentElement = (*theElementVector)[n]; >> 536 if (n > 0) { >> 537 G4double x = G4UniformRand()* >> 538 G4VEmModel::CrossSectionPerVolume(material,pd,kinEnergy,tcut,tmax); >> 539 for(G4int i=0; i<n; i++) { >> 540 if (x <= xsec[i]) { >> 541 currentElement = (*theElementVector)[i]; >> 542 break; >> 543 } >> 544 } >> 545 } >> 546 return currentElement; 755 } 547 } 756 548 757 //....oooOO0OOooo........oooOO0OOooo........oo << 549 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 758 550 759 inline G4bool G4VEmModel::IsActive(G4double ki << 551 inline G4int G4VEmModel::SelectIsotopeNumber(const G4Element* elm) 760 { 552 { 761 return (kinEnergy >= eMinActive && kinEnergy << 553 G4int N = G4int(elm->GetN() + 0.5); >> 554 G4int ni = elm->GetNumberOfIsotopes(); >> 555 if(ni > 0) { >> 556 G4int idx = 0; >> 557 if(ni > 1) { >> 558 G4double* ab = currentElement->GetRelativeAbundanceVector(); >> 559 G4double x = G4UniformRand(); >> 560 for(; idx<ni; idx++) { >> 561 x -= ab[idx]; >> 562 if (x <= 0.0) break; >> 563 } >> 564 if(idx >= ni) idx = ni - 1; >> 565 } >> 566 N = elm->GetIsotope(idx)->GetN(); >> 567 } >> 568 return N; 762 } 569 } 763 570 764 //....oooOO0OOooo........oooOO0OOooo........oo << 571 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 765 572 766 inline void G4VEmModel::SetPolarAngleLimit(G4d << 573 inline const G4Element* G4VEmModel::GetCurrentElement() const 767 { 574 { 768 if(!isLocked) { polarAngleLimit = val; } << 575 return currentElement; 769 } 576 } 770 577 771 //....oooOO0OOooo........oooOO0OOooo........oo << 578 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 772 579 773 inline void G4VEmModel::SetSecondaryThreshold( << 580 inline void G4VEmModel::SetCurrentElement(const G4Element* elm) 774 { 581 { 775 secondaryThreshold = val; << 582 currentElement = elm; 776 } 583 } 777 584 778 //....oooOO0OOooo........oooOO0OOooo........oo << 585 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 779 586 780 inline void G4VEmModel::SetDeexcitationFlag(G4 << 587 inline >> 588 G4double G4VEmModel::MaxSecondaryKinEnergy(const G4DynamicParticle* dynPart) 781 { 589 { 782 flagDeexcitation = val; << 590 return MaxSecondaryEnergy(dynPart->GetDefinition(), >> 591 dynPart->GetKineticEnergy()); 783 } 592 } 784 593 785 //....oooOO0OOooo........oooOO0OOooo........oo << 594 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 786 595 787 inline void G4VEmModel::SetForceBuildTable(G4b << 596 inline G4double G4VEmModel::MaxSecondaryEnergy(const G4ParticleDefinition*, >> 597 G4double kineticEnergy) 788 { 598 { 789 flagForceBuildTable = val; << 599 return kineticEnergy; 790 } 600 } 791 601 792 //....oooOO0OOooo........oooOO0OOooo........oo << 602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 793 603 794 inline const G4String& G4VEmModel::GetName() c 604 inline const G4String& G4VEmModel::GetName() const 795 { 605 { 796 return name; 606 return name; 797 } 607 } 798 608 799 //....oooOO0OOooo........oooOO0OOooo........oo << 609 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 610 // Methods for msc simulation >> 611 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 800 612 801 inline std::vector<G4EmElementSelector*>* G4VE << 613 inline void G4VEmModel::SampleScattering(const G4DynamicParticle*, G4double) 802 { << 614 {} 803 return elmSelectors; << 804 } << 805 615 806 //....oooOO0OOooo........oooOO0OOooo........oo << 616 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 807 617 808 inline void << 618 inline G4double G4VEmModel::ComputeTruePathLengthLimit( 809 G4VEmModel::SetElementSelectors(std::vector<G4 << 619 const G4Track&, >> 620 G4PhysicsTable*, >> 621 G4double) 810 { 622 { 811 if(p != elmSelectors) { << 623 return DBL_MAX; 812 elmSelectors = p; << 813 nSelectors = (nullptr != elmSelectors) ? G << 814 localElmSelectors = false; << 815 } << 816 } 624 } 817 625 818 //....oooOO0OOooo........oooOO0OOooo........oo << 626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 819 627 820 inline G4ElementData* G4VEmModel::GetElementDa << 628 inline G4double G4VEmModel::ComputeGeomPathLength(G4double truePathLength) 821 { 629 { 822 return fElementData; << 630 return truePathLength; 823 } 631 } 824 632 825 //....oooOO0OOooo........oooOO0OOooo........oo << 633 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 826 634 827 inline G4PhysicsTable* G4VEmModel::GetCrossSec << 635 inline G4double G4VEmModel::ComputeTrueStepLength(G4double geomPathLength) 828 { 636 { 829 return xSectionTable; << 637 return geomPathLength; 830 } 638 } 831 639 832 //....oooOO0OOooo........oooOO0OOooo........oo << 640 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 833 641 834 inline G4bool G4VEmModel::IsLocked() const << 642 inline void G4VEmModel::DefineForRegion(const G4Region*) 835 { << 643 {} 836 return isLocked; << 837 } << 838 644 839 //....oooOO0OOooo........oooOO0OOooo........oo << 645 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 840 646 841 inline void G4VEmModel::SetLocked(G4bool val) << 647 inline void G4VEmModel::SetupForMaterial(const G4ParticleDefinition*, 842 { << 648 const G4Material*, G4double) 843 isLocked = val; << 649 {} 844 } << 845 650 846 //....oooOO0OOooo........oooOO0OOooo........oo << 651 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 847 652 848 #endif 653 #endif >> 654 849 655